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ON THE GROUP OF RING MOTIONS OF AN H-TRIVIAL LINK

CELESTE DAMIANI AND SEIICHI KAMADA

Abstract. In this paper we compute a presentation for the group of ring
motions of the split union of a Hopf link with Euclidean components and a

Euclidean circle. A key part of this work is the study of a short exact sequence

of groups of ring motions of general ring links in R
3. This sequence allowed

us to build the main result from the previously known case of the ring group

with one component, which a particular case of the ring groups studied by

Brendle and Hatcher. This work is a first step towards the computation of a
presentation for groups of motions of H-trivial links with an arbitrary number

of components.

1. Introduction

An H-trivial link of type (m, n) is a link in R
3 which is ambiently isotopic to the

split union of m Hopf links and n trivial knots. When m = 0, it is a trivial link
with n components. H-trivial links are a generalization of trivial links, and play an
important role in normal forms of immersed surface-links in R

4 [KK17,KKKL17].
A ring in R

3 is a circle in the strict Euclidian sense, i.e., a round circle on a
plane in R

3. We call a link in R
3 a ring link if each component is a ring. The ring

group Rn (of a trivial ring link with n components) was introduced by Brendle and
Hatcher [BH13] as the fundamental group of the space of all configurations of ring
links which are equivalent, as ring links, 1 to a trivial ring link with n components.
We generalize this notion to the ring group Rm,n as the fundamental group of the
space of all configurations of ring links which are equivalent, as ring links, to an
H-trivial ring link of type (m, n). We give presentations of the ring groups Rm,n

for (m, n) = (0, 1), (1, 0), and (1, 1). Some basic properties of the group Rm,n are
also given.

The paper is structured as follows: in Section 2 we give the basic definitions
concerning ring motions, and we discuss some tools and properties. In Section 3 we
review known results about the ring group Rn of a trivial link, discussing its relation
with the motion group of a trivial link studied in [Dah62] and [Gol81], and recalling
a complete presentation given in [BH13] (Proposition 3.4). In Section 4 we introduce
an exact sequence for groups of ring motions of ring links (Proposition 4.1) on which
we rely to find presentations for many of the considered groups. In Section 5 we
focus on the particular case of the ring group R0,1 of just one ring. Here we give
an alternative argument for the proof of its presentation (Lemma 5.1). This serves
as a strategy model for the case of the ring group R1,0 of a Hopf link, treated in
Section 6 (Lemma 6.5). Finally in Section 7 we join all preliminary results, and
using standard techniques to write presentations for group extensions we give a

Date: August 10, 2018.
2010 Mathematics Subject Classification. Primary 57M07 ; secondary 20F36, 57M25.
1 The original definition of Rn in [BH13] is the fundamental group of the space of all configura-

tions of ring links which are equivalent as links to a trivial link with n components. If a ring link
is equivalent as a link to a trivial ring link, then it is equivalent as a ring link. This fact is asserted
in [BH13].
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2 DAMIANI AND KAMADA

presentation for the group of ring motions R1,1 of a H-trivial ring link of type (1, 1)
in the main result of this paper (Theorem 7.7).

2. Ring motions and motions of links

Let M be a 3-manifold in R
3. A link in M is called a ring link if each component

is a ring. Two ring links L and L′ in M are equivalent (as ring links in M) if there
exists an isotopy {Lt}t∈[0,1] through ring links Lt in M with L0 = L and L1 = L′.

For a ring link L in M , let R(M, L) be the space of all configurations of ring links
which are equivalent, as ring links in M , to L. This space has L as base point. The
ring group of L in M , denoted by R(M, L), is the fundamental group π1(R(M, L)).

Let Lm,n be a ring link in R
3 which is a split union of m Hopf links and n trivial

knots, namely, each Hopf link (and each trivial knot component) can be separated
from the other by a convex hull in R

3. The ring group Rm,n is the ring group
R(R3, Lm,n) of Lm,n, i.e., the fundamental group of the space of all configurations of
ring links which are equivalent, as ring links, to Lm,n. This group does not depend
on the choice of a base point Lm,n.

A ring motion of a ring link L in M is a loop in the based space R(M, L), which
is presented by a 1-parameter family {Lt}t∈[0,1] of ring links in M with L = L0 = L1.
The stationary motion or the trivial motion of L is a ring motion {Lt}t∈[0,1] with
L = Lt for all t ∈ [0, 1]. Two ring motions are said to be equivalent (as ring motions)
or homotopic if they are homotopic through ring motions of L in M . The product of
two ring motions are defined by concatenation. The set of equivalence classes of ring
motions of L in M forms a group. This is, by definition, the ring group R(M, L).

Ring groups are related to motion groups as introduced by Dahm [Dah62] and
Goldsmith [Gol81, Gol82]. Let M be a 3-manifold and L a link in M . Roughly
speaking, a motion of L in M is a 1-parameter family {Lt}t∈[0,1] of links in M
with L = L0 = L1 such that there exists an ambient isotopy {ft}t∈[0,1] of M with
compact support and such that Lt = ft(L) for t ∈ [0, 1]. Two motions are said to
be equivalent (as motions) or homotopic if they are homotopic through motions
of L in M . The product of two motions is defined by concatenation. The set of
equivalence classes of motions of L in M forms a group, which is the motion group
of L in M and is denoted by M(M, L). For a detailed treatment of motions and
motion groups, we refer to Dahm [Dah62] and Goldsmith [Gol81,Gol82].

For a ring link L in a 3-manifold M ⊂ R
3, there is a natural homomorphism

R(M, L) → M(M, L).

This map is an isomorphism when M = R
3 and L is a trivial ring link [BH13,

Theorem 1], [Dam17, Theorem 3.10].

3. The ring group and the motion group of a trivial link

In this section we recall some known results about the group R0,n = Rn =
R(R3, L) ∼= M(R3, L) of a trivial link L with n components.

Let L be a link in R
3. The Dahm homomorphism is a well-defined homomorphism

D : M(R3, L) −→ Aut(π1(R3 \ L)),

defined as follows. Let {Lt}t∈[0,1] be a motion of L in R
3, and p a base point far

from the motion. Let A ⊂ R
3 × [0, 1] be the annulus with A ∩ R

3 × {t} = Lt × {t}
for t ∈ [0, 1]. Consider the automorphism (i1)−1

∗ ◦(i0)∗ : π1(R3 \L; p) → π1(R3 \L; p),
where ik, for (k = 0, 1), is the inclusion map of R3\L = (R3\L)×{k} to R

3×[0, 1]\A.
Then D({Lt}t∈[0,1]) is defined by this automorphism.

The Dahm homomorphism is also defined on the ring group R(R3, L),

D : R(R3, L) −→ Aut(π1(R3 \ L)).
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Let n ≥ 1, and C = C1 ⊔ · · · ⊔ Cn be a trivial (ring) link with n components
in R

3, with Ci = {(x, y, 0) ∈ R
3 | (x − i)2 + y2 = (1/4)2} for i = 1, . . . , n.

The fundamental group π1(R3 \ C) is the free group Fn of rank n generated by
x1, . . . , xn, where xi is the element represented by a positively oriented meridian
loop of Ck with respect to the counterclockwise orientation of Ck.

The two following results display some basic properties for the motion group
M(R3, C) and the ring group Rn. These will lead to explaining the relation between
the two, and to recalling a presentation for these groups.

Theorem 3.1 ([Gol81, Theorems 5.3 and 5.4]).

(1) The Dahm homomorphism

D : M(R3, C) −→ Aut(Fn)

is injective.
(2) The motion group M(R3, C) is generated by the following types of motions:

• Permute the ith and the (i + 1)st rings by pulling the ith ring through
the (i + 1)st ring.

• Permute the ith and the (i + 1)st rings by passing the ith ring around
the (i + 1)st ring.

• Reverse the orientation of the ith ring by rotationg it by 180 degrees
around the x-axis.

(3) The above generators correspond to the following automorphisms of Fn:

σi :











xi 7→ xi+1;

xi+1 7→ x−1
i+1xixi+1;

xj 7→ xj , for j 6= i, i + 1.

(3.1)

ρi :











xi 7→ xi+1;

xi+1 7→ xi;

xj 7→ xj , for j 6= i, i + 1.

(3.2)

τi :

{

xi 7→ x−1
i ;

xj 7→ xj , for j 6= i.
(3.3)

(4) The image of the Dahm homomorphism, i.e., the subgroup of Aut(Fn)
generated by the above automorphisms, is the group of automorphisms of
Fn of the form α : xi 7→ w−1

i x±1
π(i)wi, where π is a permutation of the

indices and wi is a word in Fn (compare with the group of conjugating
automorphisms [Sav96], also known as group of permutation-conjugacy
automorphisms [SW17]).

Theorem 3.2 ([BH13, Theorem 1]). Let Rn be the configuration space of ring links
which are equivalent to C and let Ln be the space of all smooth links equivalent to
C. The inclusion of Rn into Ln is a homotopy equivalence.

Leaning on Theorem 3.2 it is possible to show that there is a natural isomorphism
between Rn = R(R3, C) and M(R3, C) [Dam17, Theorem 3.10]. Thus the statement
of Theorem 3.1 holds for the ring group Rn too.

Remark 3.3. Our notations σi, ρi, τi for the motions and the automorphisms in
Theorem 3.1 are different from those used in [Gol81] or [BH13]. However they
coincide with the ones used in [Dam17], where this group is called extended loop
braid group LBext

n .
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Proposition 3.4 ([BH13, Theorem 3.7]). The group Rn admits a presentation
given by the sets of generators {σi, ρi | i = 1, . . . , n − 1} and {τi | i = 1, . . . , n}
subject to relations:

(3.4)































































































































σiσj = σjσi for |i − j| > 1

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n − 2

ρiρj = ρjρi for |i − j| > 1

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . , n − 2

ρ2
i = 1 for i = 1, . . . , n − 1

ρiσj = σjρi for |i − j| > 1

ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . , n − 2

σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . , n − 2

τiτj = τjτi for i 6= j

τ2
i = 1 for i = 1, . . . , n

σiτj = τjσi for |i − j| > 1

ρiτj = τjρi for |i − j| > 1

τiρi = ρiτi+1 for i = 1, . . . , n − 1

τiσi = σiτi+1 for i = 1, . . . , n − 1

τi+1σi = ρiσ
−1
i ρiτi for i = 1, . . . , n − 1.

4. Extensions and projections

Let L1 and L2 be ring links in a 3-manifold M ⊂ R
3 with L1 ∩ L2 = ∅.

We say that a ring motion {L1(t)}t∈[0,1] of L1 in M and a ring motion {L2(t)}t∈[0,1]

of L2 in M are disjoint if L1(t) ∩ L2(t) = ∅ for all t ∈ [0, 1]. In this case,
{L1(t) ⊔ L2(t)}t∈[0,1] is a ring motion of L1 ⊔ L2 in M . We denote this ring motion
by {L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1] and call it the union of the motions {L1(t)}t∈[0,1]

and {L2(t)}t∈[0,1].
We denote by R(M, L1, L2) the subgroup of the ring group R(M, L1 ⊔ L2) con-

sisting of equivalence classes of ring motions which can be written as the union of a
motion of L1 and a motion of L2. It is a subgroup of index two if and only if there
exists a ring motion of L1 ⊔ L2 in M which interchanges L1 and L2. Otherwise,
R(M, L1, L2) = R(M, L1 ⊔ L2).

For a ring motion {L2(t)}t∈[0,1] of L2 in M \L1, we have a ring motion {L1}t∈[0,1]⊔
{L2(t)}t∈[0,1] of L1 ⊔ L2 in M , where {L1}t∈[0,1] is the stationary motion of L1. We
call it the extension of {L2(t)}t∈[0,1] with L1, and we denote it by e({L2(t)}t∈[0,1]).
We have a well-defined homomorphism

e : R(M \ L1, L2) −→ R(M, L1, L2)

with e([{L2(t)}t∈[0,1]]) = [e({L2(t)}t∈[0,1])].
Let

p1 : R(M, L1, L2) −→ R(M, L1)

be the homomorphism sending [{L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1]] to [{L1(t)}t∈[0,1]].

Proposition 4.1. Let L1 and L2 be disjoint ring links in M ⊂ R
3. Consider the

composition of e and p1:

(4.1) R(M \ L1, L2)
e

−−−−→ R(M, L1, L2)
p1

−−−−→ R(M, L1).

Then Im e ⊂ Ker p1.

Proof. Follows directly from the definitions of the applications e and p1. �
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Although it seems likely that the sequence (4.1) is exact in many cases, few
examples are known to the authors at this moment. For example, in the case
of trivial links due to [BH13] and in the cases which we discuss in this paper,
sequence (4.1) is exact.

Remark 4.2. Let L1 and L2 be disjoint links in a 3-manifold M . It is known [Gol81,
Proposition 3.10] that the following sequence on motion groups is exact:

M(M \ L1, L2)
e

−−−−→ M(M, L1, L2)
p1

−−−−→ M(M, L1).

5. The ring group of a ring

First we observe the ring group of a ring C in R
3. Let C be the unit ring {(x, y, 0) ∈

R
3 | x2 + y2 = 1}. In [Gol81] and [BH13] it is shown that the ring group R(R3, C)

and the motion group M(R3, C) are cyclic groups of order 2 generated by the class
of a ring motion of C rotating it 180 degrees about the y-axis.

Let Rx(ϕ), Ry(ϕ), Rz(ϕ) denote (counterclockwise) rotations of R
3 about the

x-axis, the y-axis and the z-axis by angle ϕ. These are identified with special
orthogonal matrices as follows:

Rx(ϕ) =





1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ



 , Ry(ϕ) =





cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ





Rz(ϕ) =





cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1



 .

Let τC be the element of R(R3, C) represented by a ring motion {Ry(πt)(C)}t∈[0,1],
i.e., the 180 degrees rotation about the y-axis.

Lemma 5.1 ([BH13, Theorem 3.7], [Gol81, Theorem 5.3]). The ring group R(R3, C),
which is isomorphic to the motion group M(R3, C), admits the presentation

〈τC | τ2
C = 1〉.

Proof. We only show the case of R(R3, C). Any ring L in R
3 is determined uniquely

by the position of the center c(L) ∈ R
3, the radius r(C) ∈ R>0, and an element

g(C) of the Grassman manifold G(2, 3) of unoriented 2-planes through the origin O
in R

3, which is obtained from the plane H(C) containing C by sliding it along the

vector
−−−−→
c(L)O. Thus the space of rings in R

3 is identifies with R
3 × R>0 × G(2, 3).

There is a deformation retract to the subspace {O} × {1} × G(2, 3) ∼= G(2, 3).
The fundamental group of G(2, 3) is a cyclic group of order 2 generated by a loop
which rotates the xy-plane by 180 degrees about the y-axis. This corresponds τC ∈
R(R3, C). �

The proof above suggests a strategy to deform a ring motion to a “standard” ring
motion, which is used later for the case of a Hopf link.

6. The ring group of a Hopf link

Let H1 and H2 be unit rings in R
3 with H1 = {(x, y, 0) ∈ R

3 | x2 + y2 = 1}
and H2 = {(0, y, z) ∈ R

3 | (y − 1)2 + z2 = 1}. The positive standard rotation of H2

along H1 is a ring motion {Rz(2πt)(H2)}t∈[0,1] of H2 in R
3 \ H1 or in R

3, and the
negative standard rotation of H2 along H1 is a ring motion {Rz(−2πt)(H2)}t∈[0,1].

Lemma 6.1. The ring group R(R3 \ H1, H2) admits the presentation

〈ℓ | 〉,

where ℓ is represented by the positive standard rotation of H2 along H1.
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First we introduce the rotation number of a ring motion of H2 in R
3 \ H1 such

that we obtain a homomorphism rot : R(R3 \ H1, H2) → Z with rot(ℓ) = 1.
Given an orientation on H2, note that H2 always comes back to itself with the

same orientation after any ring motion H2 in R
3 \ H1. Thus, a ring motion of

H2 in R
3 \ H1 induces a continuous map from H2 × S1 → R

3 \ H1, and hence a
homomorphism H2(H2 × S1;Z) → H2(R3 \ H1;Z) on the 2nd homology groups. We
call it the homomorphism on the 2nd homology groups induced from the motion
of H2. Note that if two ring motions are homotopic as ring motions then their
induced homomorphisms are the same.

Note that H2(H2 × S1;Z) ∼= Z and H2(R3 \ H1;Z) ∼= Z and the homomorphism
induced from the positive standard rotation of H2 along H1 sends a generator to a
generator. Choose generators of H2(H2 × S1;Z) ∼= Z and H2(R3 \ H1;Z) ∼= Z so
that the homomorphism induced from the positive standard rotation of H2 along
H1 sends 1 ∈ Z to 1 ∈ Z. The rotation number of the motion is the integer which is
the image of 1 under the induced homomorphism on the 2nd homology groups. It
yields the desired homomorphism rot : R(R3 \ H1, H2) → Z with rot(ℓ) = 1.

We call a ring motion {Lt}t∈[0,1] of H2 in R
3 \ H1 a normal ring motion if there

is a continuous map φ : [0, 1] → R such that Lt = Rz(2πφ(t))(H2) for all t ∈ [0, 1].
For a normal ring motion, φ(1) − φ(0) ∈ Z is the rotation number. We have that
the equivalence class of a normal ring motion is ℓφ(1)−φ(0) ∈ R(R3 \ H1, H2).

Proof of Lemma 6.1. It is sufficient to show that R(R3 \ H1, H2) is generated by ℓ,
by using the rotation number. Let {Lt}t∈[0,1] be a ring motion of H2 in R

3 \ H1.
We give H2 the orientation induced from the yz-axis. We can give an orientation
to Lt which is induced from the orientation of H2. Let c(Lt) ∈ R

3 be the center
of Lt, r(Lt) ∈ R>0 the radius, and g+(Lt) an element of the Grassman manifold
G+(2, 3) of oriented 2-planes through the origin O in R

3, which is obtained from the

oriented plane H(Lt) containing Lt by sliding it along the vector
−−−−→
c(Lt)O. Let D(Lt)

be the oriented disk in R
3 bounded by Lt in the plane H(L2) and let d(Lt) be the

intersection point D(Lt) ∩ H1. Give H1 an orientation induced from the xy-plane.
Since each disk D(Lt) intersects with H1 on d(Lt) in the positive direction, we
can deform, up to homotopy as ring motions, the ring motion so that the normal
vector of D(Lt) at d(Lt) is the positive unit tangent vector of H1. Then each H(Lt)
becomes a 2-plane in R

3 containing the z-axis. Next, we deform the ring motion
so that the radius r(Lt) is 1 for all t ∈ [0, 1]. Finally, we deform the ring motion
so that the center c(Lt) is the intersection point d(Lt). Now we see that any ring
motion is homotopic as ring motions to a normal ring motion. This implies that
R(R3 \ H1, H2) is generated by ℓ. �

Now we discuss the ring group R(R3, H1, H2). Let H denote the Hopf link H1 ⊔
H2. Let τH ∈ R(R3, H1, H2) be represented by {Ry(πt)(H)}t∈[0,1], i.e., the ro-

tation of 180 degrees about the y-axis and let ℓ ∈ R(R3, H1, H2) be represented
by {Rz(2πt)(H2)}t∈[0,1], i.e., the positive standard rotation of H2 along H1.

Lemma 6.2. In the ring group R(R3, H1, H2), we have the following.

(1) τ2
H = ℓ and τ4

H = ℓ2 = 1.

(2) τHℓτ−1
H = ℓ−1.

(3) The order of τH is 4 and the order of ℓ is 2.

Proof. (1) Let fτH
: [0, 1] → SO(3) and fℓ : [0, 1] → SO(3) be maps defined by

fτH
(t) = Ry(πt) ∈ SO(3) and fℓ(t) = Rz(2πt) ∈ SO(3).

Then [fτH
∗ fτH

] = [fℓ] = −1 in π1(SO(3)) = {1, −1}. This implies that τ2
H = ℓ and

τ4
H = ℓ2 = 1 in R(R3, H1, H2).
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(2) [f−1
τH

∗ fτH
∗ fτH

] = [f−1
ℓ ] = −1 in π1(SO(3)) = {1, −1}.

(3) Consider the image of τH in the motion group M(R3, H) under the homo-
morphisms R(R3, H1, H2) → R(R3, H) → M(R3, H). By using the double linking
number defined in [CKSS02], it can be seen that the order of τH in M(R3, H) is 4.
Thus the order of τ4 in R(R3, H1, H2) is 4. By (1), the order of ℓ is 2.

�

Lemma 6.3. Let H1 and H2 be the unit rings as above. Consider the composition
of e and p1:

(6.1) R(R3 \ H1, H2)
e

−−−−→ R(R3, H1, H2)
p1

−−−−→ R(R3, H1).

(1) The sequence (6.1) is exact.
(2) The map p1 is surjective.

Proof. (1) By Proposition 4.1, we have that Im e ⊂ Ker p1. We show that Ker p1 ⊂
Im e. Let [{L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1]] belong to Ker p1. Then [{L1(t)}t∈[0,1]] = 1

in R(R3, H1). Thus the ring motion {L1(t)}t∈[0,1] is homotopic to the stationary
motion {H1}t∈[0,1] of H1. To obtain such a homotopy, we use the strategy in the
proof of Lemma 5.1. Namely, first we change the ring motion {L1(t)}t∈[0,1] so that
the center c(L1(t)) of the ring L1(t) is the origin O for every t ∈ [0, 1], then change the
radius r(L1(t)), and change the element g(L1(t)) of the Grassman manifold G(2, 3).
This procedure may change {L2(t)}t∈[0,1] by a homotopy keeping L2(t) to be a ring
for every t. Thus the ring motion {L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1] is equivalent to a
motion which is the union of the statinary motion of H1 and a ring motion of H2.
Therefore, Ker p1 ⊂ Im e.

(2) By Lemma 5.1, the ring group R(R3, H1) is generated by τH1
. The map p1

sends τH ∈ R(R3, H1, H2) to τH1
∈ R(R3, H1). Thus p1 is surjective. �

Theorem 6.4. The ring group R(R3, H1, H2) of the ordered Hopf link H = H1 ⊔H2

admits the presentation

(6.2) 〈τH | τ4
H = 1〉.

Proof. By Lemma 6.3, we have a short exact sequence:

(6.3) 1 −→ e(R(R3 \ H1, H2))
ι

−−−−→ R(R3, H1, H2)
p1

−−−−→ R(R3, H1) −→ 1.

Since R(R3 \ H1, H2) is generated by ℓ ∈ R(R3 \ H1, H2) (Lemma 6.1), the image
e(R(R3 \ H1, H2)) is generated by ℓ ∈ R(R3, H1, H2). By Lemma 6.2 the order of
ℓ ∈ R(R3, H1, H2) is 2. Thus, we have

(6.4) e(R(R3 \ H1, H2)) = 〈ℓ | ℓ2 = 1〉.

By Lemma 5.1, we have

(6.5) R(R3, H1) = 〈τH1
| τ2

H1
= 1〉.

We choose τH as a set-theoretical lift of τH1
under p1. By Lemma 6.2, we have

(6.6) τ2
H = ℓ and τHℓτ−1

H = ℓ−1.

Using the short exact sequence (6.3), presentations (6.4) and (6.5), and rela-
tions (6.6), and applying a standard method to give presentations for group exten-
sions [Joh97, Chapter 10] we have that

(6.7) R(R3, H1, H2) = 〈ℓ, τH | ℓ2 = 1, τ2
H = ℓ, τHℓτ−1

H = ℓ−1〉,

which is reduced to the desired presentation (6.2). �



8 DAMIANI AND KAMADA

Now we discuss the ring group R(R3, H). Let e2 be the unit vector (0, 1, 0) in R
3.

We consider an element s ∈ R(R3, H) which interchanges H1 and H2, represented
by the ring motion realized by a sequence of isometries of R3 as follows: first slide
H along (−1/2)e2, apply the rotation by 45 degrees about the y-axis, apply the
rotation by 180 degrees about the x-axis, apply the rotation by −45 degrees about
the y-axis, and slide along (1/2)e2. (This ring motion is equivalent to the following
ring motion: first slide H along −e2, apply the rotation by 180 degrees about the
x-axis, and then apply the rotation by −90 degrees about the y-axis.)

Lemma 6.5. In the group R(R3, H), the following relations are satisfied.

(6.8) s2 = τ2
H and sτHs−1 = τ−1

H ∈ R(R3, H).

Proof. We have s2 = ℓ in R(R3, H) (it is easily understood when we draw link
diagrams on the yz-plane). Thus, by Lemma 6.2, we have s2 = τ2

H . By the sequence
of isometries of R3 in the definition of s, the y-axis is sent to itself with reversed
orientation. Since τH is a motion of H realized by the rotation of 180 degrees along
the y-axis, we have sτHs−1 = τ−1

H . �

Theorem 6.6. The ring group R(R3, H) of the Hopf link admits the presentation

(6.9) 〈τH , s | τ4
H = 1, s2 = τ2

H , sτHs−1 = τ−1
H 〉.

Remark that presentation (6.9) can be rewritten as

(6.10) 〈τH , s | τ2
H = s2 = (τHs)2〉,

which is a famous presentation of the quaternion group.

Proof. The ring group R(R3, H1, H2) is a subgroup of R(R3, H) of index 2; consider
the short exact sequence

(6.11) 1 −→ R(R3, H1, H2) −→ R(R3, H) −→ Z2 −→ 1.

As a set-theoretical lift of the generator of Z2 under R(R3, H) → Z2, we choose s ∈
R(R3, H). Using the short exact sequence (6.11), presentation (6.2) of R(R3, H1, H2),
and relations (6.8), we have that R(R3, H) admits the desired presentation (6.9). �

7. The ring group of a Hopf link with a ring

In this section we discuss the ring group of an H-trivial link of type (1, 1), i.e.,
the split union of a Hopf link and a ring.

Let H = H1 ⊔ H2 be a Hopf link and C a ring with H1 = {(x, y, 0) ∈ R
3 |

x2 + y2 = 1}, H1 = {(0, y, z) ∈ R
3 | (y − 1)2 + z2 = 1} and C = {(x, y, 0) ∈ R

3 |
x2 + (y − 5)2 = 1}.

7.1. An exact sequence for R(R3, H, C).

Lemma 7.1. Let H and C be as above. Consider the composition of e and p1:

(7.1) R(R3 \ H, C)
e

−−−−→ R(R3, H, C)
p1

−−−−→ R(R3, H).

(1) The sequence (7.1) is exact.
(2) The map p1 is surjective.

Proof. (1) By Proposition 4.1, we have that Im e ⊂ Ker p1. We show that Ker p1 ⊂
Im e. Let [{L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1]] belong to Ker p1. Then [{L1(t)}t∈[0,1]] = 1

in R(R3, H). Thus the ring motion {L1(t)}t∈[0,1] is homotopic to the stationary
motion {H}t∈[0,1] of H. We show that {L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1] are homotopic
as ring motions to the union of the stationary motion of H and a ring motion of C.
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Step 1. First deform the ring motion {L1(t)}t∈[0,1] of H and the motion {L2(t)}t∈[0,1]

of C in such a way that the restriction to H1 becomes a stationary motion of H1

keeping the condition that the new {L1(t)}t∈[0,1] and {L2(t)}t∈[0,1] are disjoint ring
motions. This is done by the strategy used in the proof of Lemma 5.1 to deform the
motion of H1 to the stationary motion. (Recall the proof of Lemma 6.3.)

Now we may assume that the restriction of {L1(t)}t∈[0,1] to H1 is the stationary

motion. The restriction of {L1(t)}t∈[0,1] to H2 is a ring motion of H2 in R
3 \ H1.

Step 2. Secondly, deform the ring motion {L1(t)}t∈[0,1] of H and the motion
{L2(t)}t∈[0,1] of C so that the restriction to H becomes the stationary motion
of H keeping the condition that the new {L1(t)}t∈[0,1] and {L2(t)}t∈[0,1] are disjoint
ring motions. This is done as follows: Since the restriction of {L1(t)}t∈[0,1] to H2

is a ring motion of H2 in R
3 \ H1, it is homotopic to the power of the positive

or negative standard rotation of H2 along H1 by the argument in the proof of
Lemma 6.1. During the homotopy for {L1(t)}t∈[0,1], we may deform {L2(t)}t∈[0,1]

keeping the condition that it is a ring motion.
Now, {L1(t)}t∈[0,1] ⊔ {L2(t)}t∈[0,1] satisfies that {L1(t)}t∈[0,1] is the stationary

motion of H and {L2(t)}t∈[0,1] is a ring motion of H2 in R
3 \ H. Thus it represents

an element of the image of e : R(R3 \ H, C) → R(R3, H, C).
(2) By Lemma 6.6, the ring group R(R3, H) is generated by τH and s.
Let τ̃H (or s̃) be elements of R(R3, H, C) which is the union of τH (or s) and the

stationary motion on C. Then p1(τ̃H) = τH and p1(s̃) = s. Thus p1 is surjective.

�

Later, in Lemma 7.6, we will see that sequence (7.1) induces a short exact sequence
that will allow us to use once more the standard method to write presentations of
group extensions.

7.2. On the ring group R(R3 \ H, C). Let H = H1 ⊔ H2 be the Hopf link and C
the ring disjoint from H as before. Let us choose a base point for the fundamental
group π1(R3 \(H ⊔C)) in such a way that the z-coordinate is sufficiently large. Let a,
b and c be elements of π1(R3 \ (H ⊔ C)) represented by meridian loops of H1, H2,
and C, respectively. We assume that these meridian loops are oriented such that
the linking number is +1 when we give H1, H2, and C orientations induced from
the xy-plane and the yz-plane, see Figure 1. The fundamental group is the free
product of the free abelian group of rank 2 generated by a and b and the infinite
cyclic group generated by c:

π1(R3 \ (H ⊔ C)) = 〈a, b, c | [a, b] = 1〉 ∼= (Z ⊕ Z) ∗ Z.

C

Db DcDa

H1

H2
xy xy

yz

xyxy

a b c

Figure 1. Generators of π1(R3 \ (H ⊔ C)).
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Let us introduce some ring motions:

• ga: C pulls through H1, see Figure 2;
• gb: C pulls through H2, see Figure 3;
• τC : C rotates by 180 degrees around the y-axis, as in Section 5;
• εC : C moves above H, slides downwards encircling H, and then moves back

to its original position, see Figure 4.

C

H1 H2

Figure 2. The ring motion ga.

C

H1 H2

Figure 3. The ring motion gb.

Lemma 7.2. The ring group R(R3 \ H, C) is generated by ga, gb, εC , τC . The
following relations are satisfied.

(7.2) [ga, gb] = 1, τ2
C = 1, [ga, τC ] = [gb, τC ] = 1, τCεCτC = ε−1

C .

Proof. First of all, remark that the motion group R(R3 \ H, ∗), where ∗ is a point,
is the fundamental group π1(R3 \ H) = 〈a, b | [a, b] = 1〉 ∼= (Z ⊕ Z), and recall that
R(R3, C) = 〈τC | τ2

C = 1〉 ∼= Z2 (Section 5).
Consider Da, Db and Dc to be disks bounded by H1, H2 and C, flatly embedded

in the planes where H1, H2 and C lie, as in Figure 1. Let {Ct}t∈[0,1] be a ring

motion of C in R
3 \ H, and DCt

be the flat disk bounded by Ct, for t ∈ [0, 1]. Let
us distinguish two cases.
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C

H1 H2

Figure 4. The ring motion εC .

1. Suppose that for all t ∈ [0, 1], DCt
∩ (Da ∪ Db) = ∅. After a deformation

of {Ct}t∈[0,1] by a homotopy, we may assume that there exists a convex 3-
ball BC , disjoint from (Da ∪Db), and such that Ct lies in BC for all t ∈ [0, 1].
Then {Ct}t∈[0,1] represents an element of R(BC , C) ∼= R(R3, C) = 〈τC |
τ2

C = 1〉.
2. Suppose that for some value of t, DCt

∩ (Da ∪ Db) 6= ∅. Then let us consider
these two subcases.
2.1. The disks DCt

intersects the interior of Da and/or Db for t in a finite
number of intervals [t̃−ε, t̃+ε], and H1 ∩ int(DCt

) = H2 ∩ int(DCt
) = ∅

for all t ∈ [0, 1]. Then {Ct}t∈[0,1], modulo τC , represents an element

of R(R3 \ H, ∗) = 〈a, b | [a, b] = 1〉.
2.2. The interiors int(DCt

) intersects H1 and/or H2 for t in a finite number
of intervals [t̃−ε, t̃+ε], and Ct ∩(int(Da)∪ int(Db)) = ∅ for all t ∈ [0, 1].
Then {Ct}t∈[0,1], modulo τC , represents an element of the subgroup of

R(R3 \ H, C) generated by the motion εC (Figure 4).

Every generic ring motion of C in R
3 \ H can be decomposed in a combination

of motions that fall in the considered cases, thus τC , ga, gb and εC are a generating
set for R(R3 \ H, C).

The relations in the statement descend from relations of R(R3\H, ∗) and R(R3, C),
with the exception of τCεCτC = ε−1

C . This last relation can be seen from the sequence
of Figures 5, 6, and 7. �

Let R+(R3 \ H, C) be the index 2 subgroup of R(R3 \ H, C) consisting of equiv-
alence classes of ring motions of C that preserve an orientation of C. This is the
subgroup generated by ga, gb, εC .

Lemma 7.3. The ring group R+(R3 \ H, C) admits the presentation

(7.3) 〈 ga, gb, εC | [ga, gb] = 1 〉,
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C
H1

H2

Figure 5. The ring motion ε−1
C .

CH1

H2

Figure 6. A deformation of ε−1
C , where the plane where C is lying

slightly tilts before encircling H.

and the Dahm homomorphism D : R+(R3 \ H, C) → Aut(π1(R3 \ (H ⊔ C))) is
injective.

Proof. The images of the elements ga, gb and εC under the Dahm homomorphism
D : R+(R3 \ H, C) → Aut(π1(R3 \ (H ⊔ C))) = Aut

(

〈a, b, c | [a, b] = 1〉
)

are the
following automorphisms:
(7.4)

D(ga) :







a 7→ a
b 7→ b
c 7→ aca−1

D(gb) :







a 7→ a
b 7→ b
c 7→ bcb−1

D(εC) :







a 7→ cac−1

b 7→ cbc−1

c 7→ c.

Let G1 be the free abelian group generated by g1 and g2, let G2 be the infinite
cyclic group generated by εC , and let G be the free product of G1 and G2, i.e.,
G = 〈ga, gb, εC | [ga, gb] = 1〉. We show that the natural epimorphism µ : G →
R+(R3 \ H, C) is injective by showing that the homomorphism D′ = D ◦ µ : G →
Aut(π1(R3 \ (H ⊔ C))) is injective.

Let W : G → 〈a, b, c | [a, b] = 1〉 be the isomorphism with ga 7→ a, gb 7→ b, εC 7→ c.
Note that for any g ∈ G, D′(g) is the inner automorphism of 〈a, b, c | [a, b] = 1〉 by
W (g), i.e., D′(g)(x) = W (g)xW (g)−1. This implies that D′(g) = 1 if and only if
W (g) = 1. Thus, D′ is an isomorphism and we have the presentation (7.3). �
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C

H1

H2

τC

τC

Figure 7. The plane where C is lying tilts by 180 degrees before
encircling H. The ring motion ε−1

C has been continuously deformed
into the motion τCεCτC .

Remark 7.4. Remark that π1(R3 \ (H ⊔ C)) is a right-angled Artin group, and that
{D(ga), D(gb), D(εC)} is the set of (partial) conjugations in Aut(π1(R3 \ (H ⊔ C))).
Then {D(ga), D(gb), D(εC)} is a generating set for a particular case of group of
vertex-conjugating automorphisms of a right-angled Artin group, for which Toinet
gives a complete presentation in [Toi12]. In this paper he generalises a method used
by McCool [McC86] to study groups of basis-conjugating automorphisms of free
groups. We recall that these last ones are isomorphic to pure untwisted ring groups,
and to pure loop braid groups [BH13,Dam17]

Lemma 7.5. The ring group R(R3 \ H, C) admits the presentation

(7.5) 〈 ga, gb, εC , τC | [ga, gb] = 1, τ2
C = 1, [ga, τC ] = [gb, τC ] = 1, τCεCτC = ε−1

C 〉,

and the Dahm homomorhism D : R(R3 \ H, C) → Aut(π1(R3 \ (H ⊔ C))) is injective.

Proof. Presentation (7.5) is obtained from presentation (7.3) and Lemma 7.2 by
using the short exact sequence

(7.6) 1 −→ R+(R3 \ H, C)
ι

−−−−→ R(R3 \ H, C) −−−−→ Z2 −→ 1.

Let g ∈ R(R3 \ H, C) be an element of the kernel of D. In Lemma 7.3 we have
seen that D is injective on the subgroup R+(R3 \H, C). Suppose g ∈ R(R3 \H, C)\
R+(R3 \ H, C). Then g = g0τC for some g0 ∈ R+(R3 \ H, C). Since

(7.7) D(τC) :







a 7→ a
b 7→ b
c 7→ c−1,
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D(τC) is never an inner automorphism of π1(R3 \ (H ⊔ C))). This contradicts to
that D(g0) is an inner automorphism. Thus, D is injection on R(R3 \ H, C). �

Lemma 7.6. The sequence involving e and p1 in Lemma 7.1 induces the short
exact sequence

(7.8) 1 −→ R(R3 \ H, C)
e

−−−−→ R(R3, H, C)
p1

−−−−→ R(R3, H) −→ 1.

Proof. By Lemma 7.1, it is sufficient to show that e is injective. This follows from the
injectivity of the Dahm homomorphism D : R(R3 \ H, C) → π1(R3 \ (H ⊔ C))). �

7.3. The ring group R(R3, H ⊔ C).

Theorem 7.7. The ring group R(R3, H ⊔ C) (= R(R3, H, C)) admits the following
presentation: Generators:

(7.9) ga, gb, εC , τC , τH , s.

Relations:

(7.10) [ga, gb] = 1, τ2
C = 1, [ga, τC ] = [gb, τC ] = 1, τCεCτC = εC ,

(7.11) τ4
H = 1, s2 = τ2

H , sτHs−1 = τ−1
H ,

(7.12) τHgaτ−1
H = g−1

a , τHgbτ−1
H = g−1

b , τHεCτ−1
H = εC , τHτCτ−1

H = τC ,

(7.13) sgas−1 = ga, sgbs−1 = gb, sεCs−1 = εC , sτCs−1 = τC .

Proof. Consider the short exact sequence (7.6). Let τ̃H (or s̃) be elements of
R(R3, H ⊔ C) which is the union of τH (or s) and the stationary motion on C. Then
p1(τ̃H) = τH and p1(s̃) = s. We have a section R(R3, H) → R(R3, H ⊔ C) sending
τH to τ̃H and s to s̃. Thus, the short exact sequence (7.6) is split. We may denote
the elements τ̃H and s̃ by τH and s for simplicity. Using the presentation (7.5)
of R(R3 \H, C), and the presentation (6.9) of R(R3, H), we have the generators (7.9)
and relations (7.10) and (7.11). The actions of τH and s yield relations (7.12)
and (7.13). �
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