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Graph Embedding Using Frequency Filtering

Hoda Bahonar, Abdolreza Mirzaei, Saeed Sadri, Richard C. Wilson, Senior Member, IEEE

Abstract—The target of graph embedding is to embed graphs in vector space such that the embedded feature vectors follow the

differences and similarities of the source graphs. In this paper, a novel method named Frequency Filtering Embedding (FFE) is

proposed which uses graph Fourier transform and Frequency filtering as a graph Fourier domain operator for graph feature extraction.

Frequency filtering amplifies or attenuates selected frequencies using appropriate filter functions. Here, heat, anti-heat, part-sine and

identity filter sets are proposed as the filter functions. A generalized version of FFE named GeFFE is also proposed by defining

pseudo-Fourier operators. This method can be considered as a general framework for formulating some previously defined invariants

in other works by choosing a suitable filter bank and defining suitable pseudo-Fourier operators. This flexibility empowers GeFFE to

adapt itself to the properties of each graph dataset unlike the previous spectral embedding methods and leads to superior classification

accuracy relative to the others. Utilizing the proposed part-sine filter set which its members filter different parts of the spectrum in turn

improves the classification accuracy of GeFFE method. Additionally, GeFFE resolves the cospectrality problem entirely in tested

datasets.

Index Terms—Spectral graph embedding, graph Fourier transform, heat kernel, frequency filtering, graph classification

✦

1 INTRODUCTION

THE key issue in pattern recognition is the formal defi-
nition of pattern space, which is able to represent all dis-

criminative information among different objects. The clas-
sical statistical pattern recognition follows this goal using
vectors as the object representation formalism. There exists
a wide range of well-defined operators and well-developed
efficient algorithms in this approach [1], [2]. Nevertheless,
the nature of patterns in some cases such as bioinformatics
and chemistry [3], document analysis [4], network traffic
control [5] and images classification [6] are not only de-
pendent on features, but also structural relations between
them. In these situations, graphs are versatile alternatives
to feature vectors. However, graphs are not intrinsically
vectorial, which leads to increased complexity of many al-
gorithms in the graph domain. For example, comparison of
two vectors is done in linear time, while comparison of two
graphs (graph isomorphism) has exponential complexity.
This behavior is observed because, unlike the samples of
a vector, there is no standard ordering for the nodes and
edges in a graph. Similarly, it is non-trivial to define some
basic operators required for many algorithms such as sum
and product in the context of graphs. So only a few pattern
recognition algorithms which are usually based on distance
and its derivatives have direct counterparts in the graph
domain [7], [8], [9]. The graph algorithms of this type come
from a classical period of graph based pattern recognition
[8]. In the modern period, two major approaches have been
followed for making use of the powerful existing algorithms
of statistical pattern recognition, namely kernel-based meth-
ods and embedding methods. Kernel-based methods re-
place dot product with a graph kernel in algorithms which
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are formulated in terms of dot products [10], [11], [12].
Graph embedding methods extract structural features from
graph and put them together in a vector format to make use
of algorithms which process and analyze feature vectors di-
rectly [13], [14]. So graph embedding offers an easy solution
for machine learning problems using the power of graphs
as symbolic data structures and computational advantage
of feature vectors. Two main requirements of embedded
feature vectors are that they are invariant and informative.
Being invariant means that the embedded vectors should be
the same for every selected node/edge ordering. These vec-
tors should be informative as well, i.e. they should contain
enough discriminative features such that similar structures
are close together and different structures are far away from
each other in the embedding space [14].
Employing graph spectra is a natural way for extracting
invariants in an acceptable time. There are a variety of
methods in this area [6], [14], [15], [16], [17], [18]. The ques-
tion is if the feature vectors extracted by these methods are
informative enough to have good performance in different
applications. The discriminative structures vary from one
application to another. In some applications, the features
based on small scale connectivity perform better, while the
large-scale structures are better candidates for others [19].
The cycles, paths, and loops have different importance in
recognizing the patterns of different graph sets [17]. So for
the embedding method being universal, it should be flexible
enough to represent any type of graph similarities. This
flexibility is not observed in previous embedding methods
as their properties are the same regardless of the application
in hand.
A possible solution for lowering this limitation is to exploit
different spectral methods to form a high dimensional fea-
ture vector and train the most informative features to adapt
to the structural properties of the graph set as proposed in
[20]. But the power of this mixed strategy is limited to the
power of the methods used, and redundant features may
make it more difficult to find the important discriminative
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features.
Fourier analysis provides better understanding of the signal
by transferring it to another domain [21]. This behavior is
very useful while important features are not easily discover-
able in the original domain [22], [23], [24]. For example, one
way for edge detection is to locally search within the image
to find a sharp change in the brightness of the pixels. How-
ever this operation needs scanning all the pixels to compare
the brightness of them and their neighbors. Fourier analysis
makes this approach easier by filtering the high frequencies.
In other words, edge features of original domain spread all
over the image, but when these features are transformed
into the Fourier domain, their information is limited to a
narrow range of frequency values. More generally, Fourier
analysis creates a kind of scale-space representation, with
small-scale features represented in the high frequencies and
large-scale structure in the low frequencies.
Similarly, the key information in graphs appears at different
scales (i.e. frequencies) in different applications. For exam-
ple when predicting the domain of a protein graph, the
large-scale organization of the protein is likely to be impor-
tant. On the other hand, in protein interaction networks, we
might expect the detailed interactions to be more important.
This is also supported by our previous work on diffusion
wavelets [19]. Therein, Fourier analysis is likely to be a
successful strategy for discovering the features on different
scales of the graph structure. There is a sound definition
for graph Fourier transform in the context of graph signal
processing [25] which provides the notion of frequency in
the Fourier domain. Image signal denoising [26], analysis
of brain imaging [27], video compression [28] and network
traffic analysis [29] are some applications of this context.
Indeed, graph signal processing has emerged for better
signal understanding using the relations (represented by
edges) of the signal samples (represented by nodes). Of
course the application of the graph signal processing is
limited to analysis, processing and making decision about
the nodes of just one graph.
In the context of graph embedding, the samples under
study are graphs, not the graph nodes. So discovering the
most informative features for this context needs separate
investigation. Our goal in this paper is to utilize ideas from
the graph Fourier transform to generate a general set of
graph features which represent a kind of scale space for
the graphs. We can then learn which of these features are
important in particular applications. The contributions of
this paper can be outlined as follows:

1) The main contribution is to use graph signal processing
methods in order to embed graphs in vector space. The
representation of the graph in Fourier domain and its
related operators are chosen for making invariants as
a first step. Then frequency filtering is suggested, as a
Fourier domain operator, to make the invariant more
informative.

2) Frequency Filtering Embedding (FFE) method is pro-
posed whose vectors are the graph responses to some
pre-defined filter functions. Heat, Anti-heat, part-sine,
and identity filter sets are proposed which have dif-
ferent properties in discovering the latent features in
different frequencies.

3) The pseudo-Fourier operators are proposed as the
generalization of Fourier transform. Based on these
operators and frequency filtering operator, Generalized
Frequency Filtering Embedding (GeFFE) is proposed.
This embedding method can be regarded as a general
framework for some previously introduced invariants
such as Laplacian spectrum and eigen-mode.

4) It is shown that the flexibility of using different filter
functions and different pseudo-Fourier operators, en-
ables GeFFE to adopt itself to the properties of different
datasets.

5) Using eigenvalues and eigenvectors at the same time
enables GeFFE to resolve cospectrality problem in
tested datasets.

6) GeFFE can be regarded as a general-purpose embed-
ding method, because its feature vectors are trained to
reflect the different meanings of similarity and dissimi-
larity in different datasets.

After reviewing the literature of graph embedding in
Section 1.1, some preliminaries for better understanding

the paper issues are presented in Section 1.2. The different
aspects of the proposed methods are declared in Section 2.
The experimental results are illustrated in Section 3 and
finally in Section 4 the conclusion remarks and the future
trend are clarified.

1.1 Related Work

Graph embedding methods can be divided into three
groups: probing-based, dissimilarity-based and spectral
methods. A straightforward approach for embedding
graphs is probing the graph to enumerate the occurrence
frequencies of special substructures [30]. This approach de-
pends on subgraph isomorphism which is an NP-complete
problem. So in recent years, probing-based methods tend
to utilize the information contained in smaller substruc-
tures, usually limited to one node/edge or two adjacent
nodes/edges [31], [32]. For example, Luqman et al. [31]
proposed to use subgraph homogeneity features, composed
of two histograms. The first shows the label homogeneity of
nodes on both ends of the edges and the second shows the
label homogeneity of edges adjacent to the nodes. Taking
just these local label information into account decreases the
computational complexity of probing-based methods, but
discarding more global substructures increases the possi-
bility of extracting the same feature vector for completely
different graphs substantially.
The more accurate approach which is based on idea pre-
sented in [33] is dissimilarity-based graph embedding [34],
[35], [36], [37]. Riesen and Bunke [38] embedded the graphs
into vector space by their dissimilarity values to some
selected prototype graphs. The graph edit distance which is
used as the dissimilarity measure in this method is defined
as the minimum cost for converting one graph to another
by edit operations. Graph edit distance makes dissimilarity-
based graph embedding method flexible enough to apply on
different graph domains including unlabeled as well as cate-
gorical/numerical labeled graphs. But due to high complex-
ity of graph edit distance computation, the dissimilarity-
based method is just applicable on small graphs [39].
Spectral graph embedding methods extract the graph fea-
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tures using components, eigenvalues (spectrum) and eigen-
vectors of graph representation matrices. The spectral meth-
ods have intermediate computational complexity and in-
termediate accuracy. These methods rely on extensive re-
searches in the field of spectral graph theory [40], so it
is not surprising that there are diverse ongoing methods
in this group of graph embedding methods. For example,
Luo et al. [6] derived the unary and binary features from
the eigen-modes (eigenvalues and eigenvectors) of graph
adjacency matrix A. The unary features are computed from
each eigen-mode independently, such as the vector of largest
eigenvalues. The binary features are computed from binary
interactions of eigen-modes. For example, the value in row
i and column j of inter-mode adjacency matrix is the result
of inner product of ith eigenvector, the adjacency matrix,
and jth eigenvector. In hypergraphs domain, Ren et al. [15]
utilized some smallest eigenvalues of the Laplacian matrix
L which is obtained from the adjacency matrix and con-
veys better information about nodes connectivity relative to
adjacency matrix. In another work [16], they used Perron-
Frobenius operator which contains information about edge
interactions. In order to extract permutation invariant fea-
tures from this operator, they used selected polynomial
coefficients of Ihara function defined on Perron-Frobenius
operator and formed the Ihara coefficients vector. Aziz et al.
[17] introduce backtrackless walks as a related concept to
Ihara coefficients. They embedded graphs by the number
of backtrackless paths of different lengths which can be
computed from the powers of Perron-Frobenius operator.
Ihara coefficients and backtrackless walks are less prone
to cospectrality (i.e. the problem of having same vector for
different graphs) relative to the Laplacian spectrum, because
they use more structural information by getting Perron-
Frobenius operator involved, but computing this operator
is computationally expensive.
Another method for cospectrality reduction is getting eigen-
vectors elements involved in embedding. Wilson et al. [14]
tried to take full advantage of the information included in
eigenvectors by getting help from symmetric polynomials.
The output of these functions does not depend on the order
of their inputs. Their elementary symmetric polynomials
which are utilized for making invariant from eigenvectors
entities are defined as follows:

S1(φi1, φi2, . . . , φiN ) =
N
∑

j=1
φij

S2(φi1, φi2, . . . , φiN ) =
N
∑

j=1

N
∑

k=j+1
φijφik

...
Sr(φi1, φi2, . . . , φiN ) =

∑

j1<j2<···<jr

φij1φij2 . . . φijr

...

SN (φi1, φi2, . . . , φiN ) =
N
∏

j=1
φij .

(1)

where φi = (φi1, . . . , φiN ) is the ith eigenvector. Applying
these N functions on the elements of N eigenvectors results
in N2 values which are inserted in graph feature vector.
They showed that the eigenvector elements can be obtained
from these N2 values of symmetric polynomials. So these

values contain all information of eigenvectors and they are
node permutation invariant. But the high dimensionality of
the resultant vector has a destructive impact on accuracy of
embedded vectors in applications.
The heat kernel has proved an effective concept in spectral
graph analysis [18]. This concept provides a metric for
evaluating the amount of information flow from one node
to another. The heat kernel amount from node x to node y
in time t is computed as:

Kt(x, y) =
∑N

l=1 e
−λltφl(x)φl(y), (2)

where (λl, φl) are lth eigenvalue and eigenvector of Lapla-
cian matrix. Apparently, the heat kernel describes the rela-
tion between the nodes of one graph, as it is employed in
studying geometric [41] and hierarchical [42] characteristics
of graphs and graph node signature [42], [43]. For example,
Sun et al. [42] proposed a signature for a graph node as the
amount of transmitted heat from that node to itself during
some pre-specified time steps and called it Heat Kernel Sig-
nature (HKS). There are some attempts to extract invariants
from the heat kernel to utilize it in graph embedding. Wilson
[44] proposed to use histogram of node HKSs or long vector
of their sorted values as the graph feature vector. Xiao et
al. [45] proposed embedding graphs using three invariants
of heat kernel including heat kernel trace, zeta function
derivative, and power series expansion coefficients of heat
content. We propose a systematic approach to transfer heat
kernel to graph embedding scope. This approach can be
regarded as a general framework which produces some
other beneficial concepts rather than heat kernel as special
cases by a notion of parameterization.

1.2 Preliminaries

An unlabeled graph G is an ordered set G = (V,E), where
V is the node set and E ⊆ V × V is the edge set of the
ordered pairs of nodes. The graph edit distance between
graphs G1 and G2 is defined as the minimum cost of
converting G1 to G2 by consecutive edit operations. Edit
operations are defined according to the graph domain and
edit operation costs are assigned to each edit operation
based on application. For example, in unlabeled graphs
domain, edit operations can be defined as {node insertion,
node deletion, edge insertion, edge deletion} and the cost
can be the same for all edit operations. The edit distance
is considered to be the ‘gold-standard’ comparison between
two graphs, but is NP-hard to compute in general. A good
graph embedding should match the edit distance as closely
as possible. Two common graph representation matrices for
extracting structural information from graphs are adjacency
and Laplacian matrices. The adjacency matrix A is a |V |×|V |
matrix which is defined as:

A(i, j) =

{

1 if (i, j) ∈ E

0 otherwise.
(3)

The graph Laplacian matrix is given by L = D − A, where
D is the diagonal |V | × |V | matrix of node degrees which is
defined to be:

D(i, j) =

{

∑

(i,k)∈E A(i, k) if i = j

0 otherwise.
(4)
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(λl, φl) is lth graph eigen-mode which is composed of lth
eigenvalue of the selected representation matrix and its
related eigenvector, respectively. The selected representation
matrix in this paper is Laplacian matrix.
A graph signal is a function g : V → R, applied to the
graph nodes and results in the vector g ∈ RN , where
g(m) is the value assigned to mth graph node and N is
the number of graph nodes. An unlabeled graph can be
regarded as a constant graph signal with g(m) = 1, for all
nodes m. In the discussions of this paper, the two concepts
of graph and the representative graph signal can be used
interchangeably. So, from now on we use G for referring
to both graph and its graph signal, i.e. G(x) is a graph
signal on graph G . Regarding the notion of frequency of the
Laplacian eigenvalues [25], the graph Fourier transform and
the inverse graph Fourier transform are defined respectively
to be:

Ĝ(λl) = 〈G,φl〉 =
∑N

x=1 G(x)φ∗
l (x), (5)

G(x) =
∑N

l=1 Ĝ(λl)φl(x), (6)

where G is a graph signal, 〈., .〉 is the inner product and
∗ is the conjugate operator. The graph Fourier transform
is therefore defined on the domain of eigenmodes of the
graph and graph eigenvalues play the role of frequencies

in this definition. In other words, Ĝ is the function of the
eigenmode whose λl is representative. Frequency filtering is
an operator in Fourier domain which amplifies or attenuates
some frequencies and is defined as:

Ĝout(λl) = Ĝin(λl)F̂ (λl), (7)

where F̂ (.) is the filter function whose inputs are eigen-
values.
There is a relation between heat kernel and Fourier trans-
form established in [25] which is as follows. Assume G as
the initial heat on the graph nodes. The heat amount on each
node x at time t, HtG(x), can be found by:

HtG(x) =
∑N

y=1 Kt(x, y)G(y), (8)

where Kt(x, y) (from eq. 2) is the transmitted heat from
node x to node y at time t. HtG(x) is total transmitted heat
from node x to all other nodes in time t. Inserting eq. 2 into
eq. 8 and rearranging the

∑

operators, we have:

HtG(x) =
∑N

l=1

∑N
y=1 G(y)e−λltφl(y)φl(x). (9)

Using eq. 6:

HtG(x) =
∑N

l=1 ĤtG(λl)φl(x). (10)

Comparing 9 and 10, it can be concluded that:

ĤtG(λl) =
∑N

y=1 e
−λltG(y)φl(y) = e−λltĜ(λl). (11)

Comparing eq. 11 and eq. 7, HtG is the result of frequency

filtering on G by filter function Ĥt(λl) = e−λlt.

2 PROPOSED METHODS

As it is apparent in graph signal definition, there is an
implicit pre-specified node ordering in a graph signal. The
graph Fourier transform (eq. 5) provides a mapping from

node order dependant signal into a node order independent
one based on the graph structure:

[G(v1), G(v2), . . . , G(vN )]
graph fourier transform
−−−−−−−−−−−−−→ [Ĝ(λ1), Ĝ(λ2), . . . , Ĝ(λN )].

(12)

At first glance the graph representation in Fourier domain
can be used as an invariant in graph embedding. The power
of this embedding depends on the graph signals of the
application. Here we focus on using frequency filtering to
obtain more discriminative and useful graph features for
particular applications.

2.1 Frequency Filtering Embedding

As it is mentioned in Section 1.1, the heat kernel has
proved useful in exploring graph structure. Eq. 8 provides a
mechanism to have a numerical measure for impact power
of a kernel on each node. This numerical measure for heat
kernel, HtG, has been used in signal domain previously but
not in Fourier domain. Considering eq. 11 which shows that
HtG is the result of applying filter function e−λlt to G, we
propose to use e−λlt for some values of t as well as some
other filter functions for graph embedding in vector space.
So, Frequency Filtering Embedding method is proposed as
follows:

Definition 1. Frequency Filtering Embedding (FFE): Let F =
{F1, F2, . . . , Fr} be the filter bank, where Fi : R → R is
a filter function. The frequency filtering embedding γF is
defined as:

γF : G → Rm×r

γF (G) = [f1(G)T , f2(G)T , . . . fr(G)T ],
(13)

where G is the graph domain, m is the number of selected

eigen-modes and fk(G) = [Fk(λj)Ĝ(λj), j = 1, . . . ,m]
is the response of graph G to the filter Fk. where Ĝ is
the Fourier transform of graph G. Here m = N , because
utilizing all the eigen-modes is of interest.

2.2 The proposed filter function sets

The heat filter set members for 1 ≤ t ≤ 6 are shown in Fig.
1(a). As it was mentioned before, their equation is:

Ht(λl) = e−tλl . (14)

These filters amplify the low frequencies and their values
decay rapidly by increasing the magnitude of the eigen-
values. This rapidity is greater for the greater values of t.
So the frequency filtering by each of these functions puts its
emphasis on the structures whose effect is exposed in the
low frequencies. The heat filter function set is useful where
noise affects mostly on the small scale structures like indi-
vidual edges, and this noise can be removed significantly by
removing the high frequencies, the most important features
occur in the large scale interactions (low frequencies), and
the effect of the small scale sub-structures can be safely
removed. Although the usefulness of the heat functions
for describing the between node relations of one graph
is confirmed by several previous researches as mentioned
in Section 1.1, the experiments confirm that other filter
functions which put their emphasis on the other portions
of the spectrum may convey more information regarding to
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(b) anti-heat filters

0 1 2 3 4 5 6
eigenvalue

0

0.2

0.4

0.6

0.8

1

fil
te

r 
fu

nc
tio

n 
va

lu
e

ps1
ps2
ps3
ps4
ps5
ps6
ps7
ps8
ps9
ps10
ps11

(c) part-sine filters

0 1 2 3 4 5 6

eigenvalue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fi
lt
e
r 

fu
n
c
ti
o
n
 v

a
lu

e

h1
h2
h3
h4
h5
h6
ah1
ah2
ah3
ah4
ah5
ah6
ps1
ps2
ps3
ps4
ps5
ps6
ps7
ps8
ps9
ps10
ps11

(d) all filters except X

Fig. 1: The proposed filter function sets.

the application in hand. Here utilizing three other filter sets
are proposed. The anti-heat filter set is the second used filter
set, shown in Fig 1(b). These filters are computed with the
following equation:

AHt(λl) = e−t(R−λl), (15)

where R is the end point of the eigenvalues range. It can
be seen that unlike the heat filter functions, in these filters,
the emphasis is on the high frequencies. Unlike the heat
filter set, the anti-heat filter functions are useful where the
important features reside in the small interactions, so the
high frequencies can not be removed. The low frequencies
can be disregarded, because they possess redundant or
unrelated features. The third filter set, shown in Fig. 1(c) is
the part-sine filter set whose every member emphasize on a
special portion of the spectrum and is calculated as follows:

PSr,ρ(λl) =

{

sin π
2ρ (λl − ρ(r − 2)) if ρ(r − 2) ≤ λl ≤ ρr

0 otherwise,

(16)

where ρ is the number of sub-ranges the part-sine functions
defined on and r is their sequence number. For the situ-
ations that the most effective frequencies are unknown or
the important information spread over the entire frequency
domain, the part-sine filters are good candidates. Dividing
the spectrum into different sub-ranges, separates the effects
of the features of different scales. Considering the entire
spectrum equips us with all the features, including effective,
non-effective and noisy features. The undesired features
can be removed in subsequent steps. Fig 1d displays the
mentioned filters together for comparison. The last filter
is X(λl) = λl. This filter is appended to the filter set for
generalizing the proposed method, as it will be shown in
Section 2.4.

2.3 Pseudo-Fourier operators

FFE has the potential to be a general-purpose embedding
method, because it makes use of both eigenvalues and

eigenvectors simultaneously. The effect of the eigenvalues
can be adjusted in FFE by changing the filter function.
Another flexibility which is needed for generalizing FFE is
the feasibility of defining different combinations of eigen-
vector elements. This feasibility is not provided by FFE,
because it represents a linear transform of the original
representation. Despite being invariant, the graph Fourier
transform does not always provide so much information
about the graph structure. For a constant graph signal, the

Fourier transform is given by Ĝ(λl) =
∑N

x=1 φl(x) which is
equal to S1(φl) of symmetric polynomials (eq. 2). Because
of these two reasons, providing some new operators rather
than Fourier transform using some different combination
strategies on the elements of eigenvectors can be helpful.
We call these operators as pseudo-Fourier operators (PFOs).
A PFO should preserve these conditions:

1) It should possess the notion of frequency like in the
Fourier transform, i.e. it should preserve the property
that by moving towards the greater eigenvalues, the
number of changes in the values of the eigenvector
elements decreases or increases monotonically.

2) It should be able to formulate the methods which use
just the eigenvalues as the special cases. For instance,
the Laplacian spectrum is a relatively strong method
which FFE cannot formulate.

3) It should promote the capability of pattern recognition
of graphs relative to the mere use of Fourier transform
in FFE. Additionally, it should formulate FFE as the
special case.

The PFOs are motivated by a number of factors. Firstly,
PFOs are directly related to the symmetric polynomials [14],
introduced as a successful graph representation, but more
convenient numerically. Secondly, we adopt the nonlinear
combination of the eigenvector elements, to make our in-
variant more general and informative. Finally, as pointed
out for each PFO separately in the following, the proposed
PFOs convey useful information about the graph structure
and enrich our invariant.

Definition 2. Power PFO: The power PFO of graph G is
a N × Ω matrix named Ġ, whose column ω ∈ W =
{ω1, ω2, . . . , ωΩ} is the power PFO of order ω of G and
computed as follows:

Ġω = [
∑N

u=1 φ1(u)
ω,

∑N
u=1 φ2(u)

ω, . . . ,
∑N

u=1 φN (u)ω]T .
(17)

The power PFO of order 0 is the number of graph
vertices and is constant over the eigen-modes. Therefore,
as it will be shown in Section 2.4, utilizing power PFO of
order 0 in proposed GeFFE method, removes the effect of
the eigenvector elements, so it makes possible for GeFFE to
generate the effect of eigenvalue-dependent feature vectors
such as the Laplacian spectrum. The power PFO of order 1 is
the Fourier transform and it conveys the notion of frequency.
The increasing powers emphasize higher-value components
of the eigenvector like a kind of soft-max function. In terms
of the graph structure, this emphasizes graphs where a
single node has a strong response at a particular frequency,

as
∑N

u=1 φ1(u)
ω will be large in this case. The transform

functions are, however, not longer orthogonal.
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Definition 3. Correlated PFO: The correlated PFO of graph
G is a N × Ω matrix named G̈, whose column ω ∈ W =
{ω1, ω2, . . . , ωΩ} is the correlated PFO of order ω and com-
puted as follows:

G̈ω = [
N
∑

u1=1

N
∑

u2=1
· · ·

N
∑

uω=1
(φ1(u1)φ1(u2) . . . φ1(uω)),

N
∑

u1=1

N
∑

u2=1
· · ·

N
∑

uω=1
(φ2(u1)φ2(u2) . . . φ2(uω)),

...
N
∑

u1=1

N
∑

u2=1
· · ·

N
∑

uω=1
(φN (u1)φN (u2) . . . φN (uω))]

T .

(18)

The correlated PFO of the orders 0 and 1 are equivalent
to the power PFO of the same orders. The order 2 is the
first order which the information of the correlation between
different entities of the eigenvector is appeared on. This PFO
measures the statistical correlation between the eigenvector
elements at different orders. This therefore gives a large
value when the frequency response of a group of nodes is
the same (i.e. they have the same relationship to the rest of
the graph).

2.4 Generalized Frequency Filtering Embedding

The generalized frequency filtering embedding is defined as
follows:

Definition 4. Generalized Frequency Filtering Embedding
(GeFFE): Let F = {F1, F2, . . . , Fr} be the filter bank and
W = {ω1, ω2, . . . , ωΩ} be the order set of the PFO. The
generalized frequency filtering embedding γF,W is defined
as:

γF,W : G → RΩ×m×r

γF,W(G) = [fω1

1 (G)T , fω2

1 (G)T , . . . , fωΩ

1 (G)T ,
f
ω1

2 (G)T , fω2

2 (G)T , . . . , fωΩ

2 (G)T ,
...
f
ω1

r (G)T , fω2

r (G)T , . . . , fωΩ

r (G)T , ],

(19)

where G is the graph domain, m is the number of selected
eigen-modes, and f

ω
k (G) = [Fk(λj)Ǧ

ω(λj), j = 1, . . . ,m] is
the response of order ω of graph G to the filter Fk. where Ǧ

can be one of Ġ and G̈, for instance.

In the above definition, F and W can be selected stati-
cally or trained for each application. The second approach is
more effective, because as it is shown in Sections 3.3 and 3.4,
the best combinations of filters and PFOs vary for varying
graph structures. The training process is described in Section
3.5.
By definition 4, we propose GeFFE as a general framework,
which can formulate some previously-introduced invariants
as the special cases, by choosing the appropriate filter
function and the appropriate Fourier transform of different
orders. The definitions of PFO as well as two sets F and
W for these invariants are tabulated in Table 1. As it is
clarified, GeFFE can formulate both the spectrum-based
invariants like Laplacian spectrum by removing the impact
of the Fourier transform and the eigenvector-based invari-
ants like symmetric polynomials by removing the impact

of eigenvalues. GeFFE can generate more complicated in-
variants like eigen-modes and the heat content power series
coefficients by getting both eigenvalues and eigenvectors
involved in GeFFE vector computation. In the last case, the
mth element of the embedded vector q is:

qm =
∑N

k=1

(

(
∑N

u=1 φk(u))
2 (−λk)

m

m!

)

. (20)

The embedded vector of GeFFE is more informative,
because it possesses the components themselves not their
summation. For full equivalence, the applied classifier
should be able to simulate the impact of summation for the
vector components.

TABLE 1: The Previously Defined Invariants as the Special
Case of GeFFE.

Invariant F W Ǧω

Lspec {λk|k = 1, 2, . . . , N} {0} Ġω

Ftran {1|k = 1, 2, . . . , N} {1} Ġω

Poly {1|k = 1, 2, . . . , N} {1, 2, . . . , |V |} G̈ω

Emod {λk|k = 1, 2, . . . , N} {1} Ġω

HIP
{

(−λk)
1

1!
,
(−λk)

2

2!
, . . . ,

(−λk)
m

m!
|k = 1, 2, . . . , N

}

{2}
[

(
∑N

u=1 φk(u))
ω |

k = 1, 2, . . . , N
]T

Lspec, Ftran, Poly, Emod and HIP stand for Laplacian-spectra, Fourier trans-
form, Symmetric polynomials [14], Eigen-mode [6] and Heat content power
series coefficients [45], respectively.

3 EXPERIMENTAL RESULTS

In this section, some experimental results are reported to
show the effect of GeFFE in differentiating and classification
of different graphs with different properties. All the classi-
fication accuracies are estimated using 5NN classifier and 5
fold cross validation and the average of 10 runs are reported.
A set of diverse datasets collected from different related
papers are used in the experiments of this paper. The graphs
of mutag dataset [46] represent the chemical compounds
which are classified to be mutagen or not. In PTC dataset
[47] , the objective is to detect the carcinogenicity of the
chemical compounds from their graphs. The graphs of
Enzymes dataset [48] represent the tertiary structure of
proteins in two types of enzymes. PPI [49] is the dataset
of the protein-protein interaction networks in two types of
bacteria. CATH2 [48] consists of the graphs of the proteins
and the objective is to detect the homogeneity class. Protein
dataset [50] is composed of the protein structure of six types
of the enzymes. Shock dataset [51] is constructed from the
skeletal structures of 2D objects. Llow, Lmed and Lhigh
datasets [50] consist of the graphs of hand-writing letters
with low, medium and high distortions, respectively. The
objective is to detect the class (i.e. a, b, ...,z) of the input
letter. COIL15 [50] and ODBK50 [52] are two object detection
datasets composed of the object structural graphs whose
vertices are extracted through corner detection and edges
are inserted through triangulation. The properties of these
datasets are tabulated in Table 2.
The proposed methods are compared with some previous

graph embedding methods including: Laplacian Spectrum
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TABLE 2: The Real Graph Datasets.

Dataset #Vertices
(min, max, ave)

#Edges
(min, max, ave)

#Graphs #Classes

mutag (14, 40, 26.03) (26, 84, 53.78) 188 2

PTC (2, 109, 25.56) (2, 216, 51.92) 344 2

Enzymes (2, 126, 32.63) (1, 149, 62.14) 600 2

PPI (3, 232, 109.60) (4, 3006, 864.37) 86 2

CATH2 (143, 568, 307.99) (556, 2220, 1254.8) 190 2

Protein (2, 126, 32.63) (1, 149, 62.14) 600 6

Shock (4, 33, 13.17) (6, 64, 24.33) 150 10

Llow (1, 8, 4.68) (0, 6, 3.13) 2250 15

Lmed (1, 9, 4.67) (0, 7, 3.21) 2250 15

Lhigh (1, 9, 4.67) (0, 9, 4.5) 2250 15

COIL15 (18, 77, 42.73) (45, 222, 116.49) 585 15

ODBK50 (41, 200, 123.23) (106, 589, 352.81) 600 50

(Lspec), the symmetric polynomials signature (Poly) [14],
the number of backtrackless walks of different lengths
(BTW) [17], Ihara zeta functions (IZF) [16], heat kernel
trace (HIT) and power series expansion coefficients of heat
content (HIP) [45], the number of random walks of different
lengths (RW) [12], the sorted elements of wave kernel (WK)
[53], the histogram and sorted values of node HKSs (KShist
and HKSsort) [44].

3.1 Following the edit distance

In an appropriate embedding method, the trend of chan-
ging in the feature distance should obey from the trend of
changing in edit distance. It means that two graphs with
small edit distance should have a small feature distance
and vice versa. This behavior is studied in this experiment.
For this purpose, four random graphs are produced through
four different methods as the seed graphs. The first one is a
Delaunay triangulation graph with 100 nodes whose (x, y)
coordinates are real numbers picked from [1,100] randomly.
The second seed graph is an erdős-Rényi model with 100
nodes and 130 edges. The third seed graph is a geometric
graph with 100 nodes whose 3-dimension coordinates are
picked randomly from [0,1] and two nodes are connected
if they are in 0.5 radius neighborhood of each other. The
last random graph is a small world graph with average
degree 6 and random rewiring probability 0.2. The seed
graphs are shown in the column a of the Fig. 2. In separate
tests, 30 variations of every seed graph are made by random
consecutive edge deletions. This process is repeated 1000
times and yields the set of 1000 graphs for every edit
distance 1 to 30 from the seed graph. The column b of
Fig. 2 shows the mean FFE feature distance against the
edit distance for every corresponding seed graph. The filter
set is F = {X} ∪ {PSr,11|1 ≤ r ≤ 11} and the 12 filter
responses are inserted in a long vector. As it is observed,
FFE cannot differentiate between edited graphs. The reason
is that the positive and negative eigenvector elements cancel
each other and produce the small values as the elements of
Fourier transform for all graphs. The columns c and d of
the Fig. 2 correspond to the long vectors of GeFFE using
the mentioned filter set and the orders W = {0, 1, 4} of
Ġ and G̈, respectively. The resulting vectors have the mean-
ingful feature distances with each other, however the feature

distances of GeFFE by Ġ exhibit less standard deviation in
average and its change is more monotonic.

3.2 Cospectrality

The purpose of this experiment is to study the power of
the proposed embedding methods to differentiate cospectral
graphs. For this experiment, three groups of the strongly
regular graphs (SRGs) and 2 groups of Balanced Incomplete
Block Designs (BIBDs) are used. SRG(v, k, λ, µ) is a k-
regular v-node graph which every pair of its adjacent nodes
has λ common neighbors and every pair of its non-adjacent
nodes has µ common neighbors. BIBD(v, k, λ) is a v-node
graph consisting of k-node blocks such that every pair
of the graph nodes is placed in λ blocks. The graphs of
every group has the identical parameters and the identical
Laplacian spectrum, however they are not isomorphic. FFE
by the identity filter (FFE), GeFFE by the identity filter and
Ġ of order 4 (GeFFE1), and GeFFE by the identity filter and
G̈ of order 4 (GeFFE2) are compared with each other and
with previous methods in cospectrality reduction. The point
should be noted is that since just one filter and one Fourier
order is selected, the embedded vector length is N for all
three proposed methods. The results are tabulated in Table
3. It can be seen that FFE can not differentiate the tested
cospectral graphs, while both GeFFE1 and GeFFE2 are able
to obtain the best possible result in this experiment. The Poly
method could obtain this result, but the length of its feature
vector is N2. IZF method is another method which could
obtain the similar result, but in O(N6) time in comparison
with O(N3) of GeFFE1 and O(N5) of GeFFE2.

TABLE 3: The Amount of Cospectrality in Proposed Meth-
ods.

group SRG SRG SRG BIBD BIBD

(25, 12, 5, 6) (26, 10, 3, 4) (36, 15, 6, 6) (15, 3, 1) (23, 11, 5)

Lspec 105 45 25651 946 611065

Poly 0 0 0 0 0

BTW 105 45 25651 946 611065

IZF 0 0 0 0 0

HIT 105 45 25651 946 611065

HIP 105 45 25651 946 611065

RW 105 45 25651 946 611065

WK 105 45 25651 946 611065

HKSsort 105 45 25651 946 611065

HKShist 105 45 25651 946 611065

FFE 105 45 25651 946 611065

GeFFE1 0 0 0 0 0

GeFFE2 0 0 0 0 0

#gp 105 45 25651 946 611065

The tabulated numbers are the number of cospectral graph pairs.
#gp stands for the total number of graph pairs in the group.

3.3 The comparison between different filters

The purpose of this experiment is to show that different
filters reveal different structural properties of graphs. So
using different filter responses is beneficial. We reason about
our claim in this experiment by showing that GeFFE vectors
of some different filters obtain different classification accu-
racies in real datasets with different characteristics.
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Fig. 2: The feature distances of different proposed methods in comparison with the edit distance. Column a: Seed graphs.
Column b: FFE method. Column c: GeFFE by power PFO. Column d: GeFFE by correlated PFO.

Fig. 3 plots the classification accuracies of embedded vectors
of GeFFE by order 4 of Ġ and each time by one of the filters
of the set {X,H1, H3, H6, AH1, AH3, AH6, PS1,11, PS6,11,
PS11,11} for all tested datasets. It can be seen that different
filters have different effects in classification of the different
datasets. We can see that the heat filters perform much better
than the anti-heat on CATH2, which can be explained by the
fact that the task is to find the homogeneity class which is
related to large-scale structure. On the other hand, anti-heat
performs better on PPI, suggesting the detailed connectivity
is more important in this dataset. On the others, information
is contained over the whole spectrum. The part-sine filter
emphasizes narrow bands, which allows us to see where
the important structure is localized to one particular scale.
The notable point is that although the heat filters are known
as the informative filters in different researches (but in
other areas), these filters are not the best filters in all
cases. Fig. 4 compares the classification accuracies of the
long vectors of three different filter combinations XHAP,
XAP and XP with each other. FXHAP = {X} ∪ {Ht|1 ≤
t ≤ 6} ∪ {AHt|1 ≤ t ≤ 6} ∪ {PSr,11|1 ≤ r ≤ 11},
FXAP = {X} ∪ {AHt|1 ≤ t ≤ 6} ∪ {PSr,11|1 ≤ r ≤ 11},
and FXP = {X} ∪ {PSr,11|1 ≤ r ≤ 11}. It can be seen
that the filter combination including heat filters has the
lower classification accuracies in all the cases. The small
scale between-node interactions, whose effect appear on
high frequencies, play important role in differentiating the
graphs of the applications. When heat filters attenuate the
high frequencies to decrease the effect of the noise, this

beneficial information is lost as well. This behavior is shown
in Fig. 5. The similar tests of Section 3.1 is performed using
the long vectors constructed by orders {0,1,4} of Ġ and
each time by one of the proposed filter functions. Edges are
considered as representatives for small scale substructures
and removing them is studied. The heat filter functions and
PS1,11 filter function are worst in following edit distance.
The feature distances change very slowly and this change is
not monotonic. This behavior is observed because these fil-
ters alleviate the effect of changing the small scale structures
in feature distance. This effect is beneficial in noise reduc-
tion, where the value of these small scale substructures in
differentiating the graphs is negligible; however it is not true
for the applications in hand. Furthermore, although the heat
kernel is known as a good solution for the problem of noise
sensitivity in eigen-modes by down-weighting the high
frequencies [42], but this belief is not necessarily true in all
the applications. The stability of eigen-modes is dependent
on the spectral gap (gap between consecutive eigenvalues)
and depends on the graph structure as well as the frequency.
Where noise and irrelevant local structural errors occur, this
would affect the high-frequency components adversely, but
this is not true of all graph data. Our experiments show
this.
Another point is that the datasets with similar structures
have the similar reactions to different filters. This pheno-
menon can be seen more precisely in Fig. 6(a) to (f) for
different Fourier orders in 3 datasets Llow, Lmed and Lhigh
as the similar set 1 and in Fig. 6(g) to (l) for two datasets
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Fig. 3: The classification accuracies of GeFFE by some differ-
ent filters and order 4 of Ġ.
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Fig. 4: The classification accuracies of some different filter
combinations using three selected combination strategies.

COIL15 and ODBK50 as the similar set 2. It suggests an
acceptable relation between the frequency filtering operator
and graph structure and makes the hope that the GeFFE
strategy is effective enough to extract the similar structures
in different datasets, however the approval of this claim
needs more investigation.

3.4 The comparison between different PFO orders

The experiment similar to the experiment of the previous
section is done for different PFO orders to show the benefits
of using them. The GeFFE vectors of PS4,11 filter, each time

with one of the orders of the set {0, 1, 2, 3, 4, 5} of Ġ are used
in this experiment and the accuracies is plotted in Fig. 7 for
all tested datasets. The similar effect of the previous sub-
section is observable for different orders. The effectiveness
of a special order differs from a dataset to another. For
example, the order 0 has the highest importance in mutag,
PPI and CATH2 and the lowest importance in PTC and
lhigh. The similar effect can be observed in order 4 which is
the most important order in Enzymes, Shock, llow, lmed and
lhigh datasets, while it has the third rank in PTC, Protein,
COIL15 and ODBK50. The ability of discovering similar
structures can be seen more and less in this experiment, too.
This results and the results of the previous sub-section
suggest that different combinations of the filters and the
Fourier orders include useful information and the appro-
priate combination of them should be applied based on
the application in hand. Different datasets have different
properties, and machine learning can use these features to
learn the most appropriate representation.

3.5 GeFFE vs other embedding methods

The main purpose of embedding methods is to map the
similar graphs into close vectors and the dissimilar graphs
into far ones. The experiment reported in Section 3.1 showed
that GeFFE vectors exhibited this property in a synthetic
graph set. The purpose of this experiment is to evaluate
GeFFE for having the mentioned property in real graphs.
Classification using the simple classifier 5NN can help us to
estimate the amount of this property.
GeFFE by the filter set F = {X} ∪ {Ht|1 ≤ t ≤ 6} ∪
{AHt|1 ≤ t ≤ 6} ∪ {PSr,11|1 ≤ r ≤ 11} and the

order set W = {0, 1, 4} of Ġ is compared with the other
embedding methods in Table 5. In the first version of the
method, GeFFE-all, the long vector of all filter responses
is considered as the feature vector. GeFFE-all obtained the
average rank 2.58 among 11 tested methods, which makes it
comparable with the other methods. However, GeFFE-all can
not reach the best accuracy in all tested datasets. The reason
is that as it is shown in Section 3.3 and Section 3.4, different
filters and different orders have different importance in
different datasets, but in GeFFE-all, all of the filter responses
are inserted into the feature vector and participate in the
clustering process with the same importance, regardless
of the properties of the underlying dataset. Consequently,
for taking full advantage of the information revealed by
the filter responses, it is necessary to learn the importance
degree of each filter response and use this degree in the
clustering process.
We followed this aim by applying forward selection on
filter responses. The graph response to the specific filter
and the specific order of PFO is considered as a feature
group, yielding r×Ω feature groups. The forward selection
starts with an empty feature set and at each step, the feature
group which better enhances the classification accuracy in
training data is added to the selected feature groups. 10 first
selected feature groups for the tested datasets are tabulated
in Table 4. According to these results, 4 versions of GeFFE
are applied to the datasets and the results are reported in
Table 5. The feature vectors of GeFFE-best-filter and GeFFE-
best-5-filters are composed of the first and 5 first selected
feature groups in forward selection process, respectively. In
GeFFE-local-max, the selected feature groups are used until
the step where its 10 future steps could not enhance the
accuracy. In GeFFE-global-max, the feature groups are used
until the step where the max accuracy in training data is
obtained. The average number of filter responses in GeFFE-
local-max and GeFFE-global-max over tested datasets are 7.08
and 17.08, respectively. As it can be seen, GeFFE-global-max is
the best performing method. However the other 3 versions
of GeFFE outperforms the previous methods in all the
tested datasets (except a case of GeFFE-best-filter where the
difference is negligible). The first point that can be perceived
from the results is that the selected filters and PFOs are
efficient enough for our purpose and the second point is
that our strategy in selecting suitable filter responses for the
datasets could adopt GeFFE to the structural properties of
different datasets.
It should be noted that in GeFFE-best-filter the feature vector
length is N , which is less or equal to the vector lengths of
the other methods. Generally, the feature vector length of
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Fig. 5: The test of following edit distance for proposed filter functions.

TABLE 4: The 10 First Selected Filter Responses Using Forward Selection on the GeFFE Filter Responses.

mutag PTC Enzymes PPI CATH2 Protein Shock Llow Lmed Lhigh COIL15 ODBK50

1 AH5-0 X-1 PS11-0 AH4-0 AH3-0 AH2-0 AH6-0 PS11-0 PS11-0 PS11-0 AH4-0 AH1-0

2 AH6-0 AH2-1 AH6-0 AH6-0 AH2-0 AH3-0 AH5-0 AH6-1 AH4-1 AH6-1 AH3-0 AH2-0

3 X-1 AH3-1 AH4-0 AH3-0 AH5-0 X-0 AH3-0 AH2-1 AH5-1 AH5-1 AH5-0 AH3-0

4 AH4-0 AH6-1 AH3-0 AH5-0 AH4-0 AH4-0 AH4-0 AH3-1 AH3-1 AH4-1 X-1 AH4-0

5 AH3-0 AH4-1 AH5-0 AH2-0 AH1-0 AH5-0 AH2-0 AH4-1 AH6-1 PS11-1 AH6-0 AH5-0

6 AH2-1 AH5-1 AH2-0 PS10-0 AH6-0 AH1-0 AH1-0 AH5-1 AH2-1 PS10-1 AH2-0 AH6-0

7 AH3-1 AH1-1 AH4-1 PS9-0 X-1 AH6-0 PS11-0 AH1-1 PS11-1 AH3-1 PS11-0 X-1

8 AH1-1 AH6-0 X-1 PS7-0 PS11-0 PS11-0 AH3-1 PS6-1 AH1-1 PS11-4 AH1-1 AH1-1

9 AH2-0 PS2-1 AH2-1 PS8-0 AH1-1 X-1 AH2-1 H2-0 PS10-1 PS10-0 AH2-1 PS11-0

10 AH4-1 PS4-1 AH3-1 PS11-0 AH2-1 AH1-1 AH4-1 H1-0 PS6-1 AH2-1 AH3-1 AH2-1

PSi,11 is briefly indicated by PSi.
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Fig. 6: The similar reactions of different filters on the struc-
turally similar datasets. The similar set 1 is {Llow, Lmed
and Lhigh} and the similar set 2 is {COIL15 and ODBK50}.
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Fig. 7: The classification accuracies of GeFFE by PS4,11 filter

and different orders of Ġ.

GeFFE method using power PFOs is of O(N) and its time
complexity is of O(N3) just like the majority of the other
spectral methods. Of course, its training time depends on
the used feature selection strategy.

4 CONCLUSION

In this article, a novel embedding method named GeFFE is
proposed using the graph signal processing operators: fre-
quency filtering and Fourier transform. Frequency filtering
amplifies or attenuates the contribution of different eigen-
values and the proposed pseudo-Fourier operators expands
graph Fourier transform to make diverse invariant combi-
nations of eigenvector elements. The conclusion remarks of
this article can be listed as follows:

1) GeFFE benefits from the information of both eigen-
values and eigenvectors, hence it has the ability of
discovering:

(a) Structural similarities. GeFFE (especially by power
PFOs) can simulate the edit distance in random vari-
ations of a seed graph.

(b) Structural differences: GeFFE by both power and
correlated PFOs can differentiate some groups of
Laplacian cospectral graphs from each other entirely.

2) GeFFE has the ability to concentrate on a special por-
tion of the spectrum and explore its latent structural
information. In this regard:

(a) Some filter functions were proposed. It was experi-
mentally shown that some filter sets excluding the
heat filters results in better classification accuracies.
This observation opens the possibility of discovering
more powerful filter functions.

(b) Different filter functions are different in graph classi-
fication. So training their importance in the applica-
tion in hand is beneficial.

(c) The same filter function shows the same relative cla-
ssification accuracies in structurally similar datasets.
This effect can be observed more and less in different
orders of a filter. This phenomenon introduces GeFFE
as a candidate for discovering the sub-structures in
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TABLE 5: The Classification Accuracies of Some Versions of GeFFE in Comparison With the Existing Embedding Methods.

mutag PTC Enzymes PPI CATH2 Protein Shock Llow Lmed Lhigh COIL15 ODBK50

Lspec 83.32 59.96 82.28 70.57 75.59 38.07 40.73 44.76 34.41 44.36 26.35 15.59

Poly 77.51 52.24 80.98 60.94 07.37 29.22 40.00 37.36 32.48 48.84 16.63 2.36

BTW 83.57 53.67 81.05 66.37 72.48 26.02 35.33 32.12 24.81 27.02 27.36 14.74

IZF 81.43 44.16 81.72 46.54 57.37 16.93 10.00 6.67 6.73 17.87 6.79 2.00

HIT 56.54 49.82 82.58 43.67 53.42 16.93 7.40 12.38 11.74 10.68 7.61 1.57

HIP 56.07 51.32 81.08 48.33 41.31 22.08 16.27 13.08 13.36 10.77 7.60 1.52

RW 81.12 54.01 81.46 64.84 71.84 21.08 35.20 35.73 29.39 29.83 19.06 0.37

WK 78.87 54.64 81.04 62.57 72.11 22.92 37.40 45.00 40.90 37.02 18.64 8.08

HKSsort 78.88 55.09 79.52 71.61 74.48 25.48 38.47 43.87 35.71 44.48 22.98 12.94

HKShist 63.87 45.38 82.17 57.10 54.76 18.05 8.80 6.78 6.67 6.72 5.80 1.22

GeFFE-all 81.92 55.30 81.58 66.95 74.94 32.27 40.73 46.77 39.64 48.46 21.75 9.51

GeFFE-best-filter 89.90 66.04 84.93 84.16 80.89 37.40 49.40 47.03 40.50 49.66 31.22 17.78

GeFFE-best-5-filters 90.38 68.82 85.73 86.24 83.10 42.57 55.47 47.45 41.13 51.35 33.72 20.98

GeFFE-local-max 90.86 69.44 85.92 86.83 83.73 42.75 56.13 47.46 41.25 51.87 33.99 21.25

GeFFE-global-max 91.07* 71.53* 86.43* 87.89* 84.73* 44.05* 57.13* 47.48* 41.34* 52.23* 34.82* 21.68*

The best accuracies for each dataset is determined by the * symbol.
The accuracies of GeFFE versions which are better than all the accuracies of the other previous methods are indicated with bold face.

different datasets.

3) Training the best performing filter responses through
forward selection is a good strategy for adopting
GeFFE to the structural properties of different datasets.
Through this strategy, GeFFE even using just the best
filter response has the superior performances against
existing embedding methods in classification the tested
datasets.

4) GeFFE can play the role of the general framework to
formulate some graph invariants which make use of
eigenvalues, eigenvectors or both of them.

5) GeFFE has the potential to be more efficient by defining
other filters in order to explore the spectrum more
precisely and other PFOs in order to combine the eigen-
vector elements in different ways.

For further assessment on this new trend, we plan to explore
the new filter functions as well as the new methods for com-
posing PFOs. Some specially-designed synthetic datasets
can be helpful for designing a useful filter-bank which each
of its members is appropriate for discovering a special graph
substructure. A similar investigation should be done for dis-
covering the detailed relation between different PFOs and
PFO orders with graph structures. A method is needed to
discover more informative portions of the spectrum for each
dataset and analyze this portion more precisely. Spectral
invariants usually consider only unlabeled or sometimes
labeled graphs, but not attributes. Using graph signal gives
GeFFE the potential of handling attributed graphs, however
this potential ability should be investigated in detail.
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