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Abstract

This paper presents ATHANOR, a novel local search
solver that operates on abstract constraint specifi-
cations of combinatorial problems in the ESSENCE

language. It is unique in that it operates directly on
the high level, nested types in ESSENCE, such as set
of partitions or multiset of sequences, without refin-
ing such types into low level representations. This
approach has two main advantages. First, the struc-
ture present in the high level types allows high qual-
ity neighbourhoods for local search to be automati-
cally derived. Second, it allows ATHANOR to scale
much better than solvers that operate on the equiv-
alent, but much larger, low-level representations.
The paper details how ATHANOR operates, cov-
ering incremental evaluation, dynamic unrolling
of quantified expressions and neighbourhood con-
struction. A series of case studies show the perfor-
mance of ATHANOR, benchmarked against several
local search solvers on a range of problem classes.

1 Introduction

Local search [Hoos and Stützle, 2004] is a common method
for solving combinatorial optimisation problems. Typically,
it operates by generating an initial assignment to the variables
in a problem and then tries to iteratively change this assign-
ment, through a sequence of moves or neighbourhoods, in
order to improve an objective. This approach trades com-
pleteness for the ability to make rapid improvements to the
objective, and often finds good solutions more quickly than
systematic search procedures. Given a set of neighbourhood
moves, a metaheuristic is used to select the move to apply at
each step of the search. Common metaheuristics include Hill
Climbing [Russell and Norvig, 2016, Chapter 4], Simulated
Annealing [Kirkpatrick et al., 1983] and Tabu Search [Glover
and Laguna, 1998].

We focus herein on general-purpose local search solvers
that accept as input a constraint model — a declarative de-
scription of a problem consisting of a set of decision vari-
ables under a set of constraints. This is a general, flexible
approach in contrast to local search procedures written for,
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and restricted to, individual problems, such as [Merz and
Freisleben, 1997; Jaszkiewicz, 2002].

Existing approaches typically accept as input models writ-
ten in solver-independent modelling languages like MiniZ-
inc [Nethercote et al., 2007]. The recently-proposed Struc-
tured Neighbourhood Search (SNS) [Akgün et al., 2018] dif-
fers in that it begins from a specification of a problem in the
abstract constraint specification language ESSENCE [Frisch et
al., 2005; Frisch et al., 2007; Frisch et al., 2008]. ESSENCE

allows problems to be described without commitment to low-
level modelling decisions through its support for a rich set of
abstract type constructors, such as sets, multisets, sequences
and relations, each of which can be nested arbitrarily. Fig. 1
presents an example ESSENCE specification of the Capac-
itated Vehicle Routing Problem (CVRP) [Fisher, 1995], in
which orders must be delivered from one depot to a set of
locations via a set of vehicles, while respecting the capac-
ity limit of each vehicle. The parameters to the problem are
denoted by the given statements. The find statement in-
troduces a decision variable. Here a single highly structured
variable (a set of sequences) suffices to capture the problem.
The minimising and such that statements introduce
the objective function and problem constraints respectively.

A neighbourhood describes a set of assignments that can
be reached from a given assignment. SNS was motivated by
the belief that the structure apparent in an abstract specifica-
tion could be exploited to generate powerful neighbourhoods
for local search. SNS does, however, require the refinement
of the neighbourhoods it generates into a lower-level repre-
sentation prior to search.

In this paper we present a local search solver, ATHANOR,
which addresses this limitation by operating directly on
ESSENCE itself. We propose that directly operating on
ESSENCE specifications can provide an increase in both per-
formance and scalability over existing approaches. We test
this hypothesis by comparing ATHANOR with state of the art
local search solvers. Source code and all data used in this
work are publicly available as a github repository 1.

2 Related Work

Constraint-based local search solvers [Hentenryck and
Michel, 2009] such as Oscar-CBLS [Björdal et al., 2015] and

1https://github.com/athanor



given N : int $number of locations

letting L0 be domain int(0..N) $ 0 is the depot

letting L1 be domain int(1..N)

given weights : function (total) L1 --> int(1..)

given costs : function (total) tuple (L0,L0) --> int(0..)

given vehicleCap : int $ Uniform vehicle capacity

letting totalW be sum([weight | (_,weight) <- weights])

letting mV be totalW/vehicleCap + toInt(totalW % vehicleCap != 0) $ Min number of vehicles

find plan : set (minSize mV, maxSize N) of sequence (maxSize N, injective, minSize 1) of L1

minimising sum r in plan . (sum([costs(tuple(r(i-1), r(i))) | i : int(2..N), i<=|r|])

+ costs((0, r(1))) + costs((r(|r|), 0))) $ from depot to first location, and back from last

$ Capacity restriction

such that forAll route in plan . vehicleCapacity >= sum (_,order) in route . weights(order),

$ Every order delivered exactly once:

allDiff([l | r <- plan, (_,l) <- r]), N = sum p in plan . |p|

Figure 1: Capacitated vehicle routing in ESSENCE

Yuck 2 analyse the constraints in a problem to derive a set
of invariants – for example, the values assigned to a subset
of the variables must be all different. They generate neigh-
bourhoods that maintain these invariants. For example, given
a satisfied all different constraint, swapping the values of the
variables under the all different will not violate the constraint.

Explanation-based [Prud’homme et al., 2014] and
propagation-guided [Perron et al., 2004] large neighbourhood
search (LNS) are both built upon a standard systematic con-
straint solver. Given an assignment that forms a feasible solu-
tion, the solver creates a neighbourhood by selecting a subset
of the variables to be unassigned. The solver then performs a
systematic search on these unassigned variables.

A unifying feature of these solvers is that they derive neigh-
bourhoods from a low level constraint model where the only
variable types are int or bool. As ATHANOR constructs
neighbourhoods directly from an ESSENCE specification, the
derived neighbourhoods are more semantically meaningful.
The rich variety of high level types in ESSENCE mean that
most problems are described in only one or two ESSENCE

variables with much of the problem constraints already en-
forced by the variables’ type invariants. As demonstrated in
Section 8, more complex neighbourhoods can be generated
from highly structured/nested variable types.

Structured Neighbourhood Search [Akgün et al., 2018] is
also based on a standard systematic constraint solver. It gen-
erates neighbourhoods from ESSENCE specifications (as we
do in this paper) then applies CONJURE and SAVILE ROW to
refine them (alongside the model) into the input language of a
backtracking constraint solver. SNS uses an adapted version
of the MINION solver that applies the neighbourhoods in a
similar way to LNS. SNS contrasts with the work described
in this paper as ATHANOR directly operates on unrefined ab-
stract ESSENCE variables. This leads to a more scalable ap-
proach, especially due to the dynamic creation and deletion
of values and constraints (discussed in Section 5).

2https://github.com/informarte/yuck

3 Incremental Evaluation

During search, in order to decide whether or not to accept a
move, ATHANOR must evaluate if it results in an improved
assignment. To evaluate a move efficiently, ATHANOR must
update the state of the solver incrementally, avoiding the need
to recompute the entire state of the solver.

ATHANOR represents an ESSENCE specification as a pair
of abstract syntax trees (ASTs), one representing the con-
straints in the specification, the other representing the objec-
tive function. The leaves of these trees represent the abstract
variables in the specification, which are assigned a value from
their domain. Hence the constraint AST can be evaluated to
a single Boolean value and the objective AST can be evalu-
ated to a single integer. When a variable is reassigned to a
new value, all its ancestors (the nodes on the path from the
associated leaf back to the root) are reevaluated.

At the start of the search, the solver begins by assigning
a random value to each variable and performing a full eval-
uation of the AST. Afterwards, in order to facilitate incre-
mental evaluation, every node in the AST attaches a trigger
to each of its children, which is used to notify the parent of
changes to the child nodes that might affect its value. Ev-
ery type of node (int, set, etc.) generates a different set of
trigger events. All nodes can generate valueChanged(),
notifying the parent that the value assigned to the child has
changed. However, for higher level types such as set or
sequence, giving more exact changes allows for much bet-
ter incremental evaluation. Therefore, high level types pro-
vide more descriptive trigger events. For example, set also
supports the triggers valueAdded(), valueRemoved()
and memberValueChange(). Incremental evaluation is
further supported by allowing constraints to only observe trig-
ger events generated by a single element of a container such
as a sequence or set.

Figure 2 gives an example AST state during incremental
evaluation, using a snippet of one of the constraints found
in the CVRP problem (Figure 1). While set variables are
unordered in ESSENCE, they are given an arbitrary order in
ATHANOR, so we can refer to their elements.

When adding 3 to the 2nd member of plan, incremental



sum p in plan

. |p|

sum=3

size1:|plan1|=2 size2:|plan2|=1

plan1=seq(1,2) plan2=seq(1)

Figure 2: AST evaluation, sum of the sizes of sequences, given
plan = {seq(1, 2), seq(1)}

evaluation proceeds as follows:

• 3 is added to plan2. Its value is now seq(1,3).

• valueAdded() is sent to the parent: size2.

• size2 updates its value to 2, the event
valueChanged() is sent to its parent: sum.

• sum updates its value by subtracting the old value 1 and
adding the new value 2 3.

• The sum node now has the value 4, the event
valueChanged() is forwarded to its parent.

4 Violation Counts

In Section 3 we described how non-Boolean types are incre-
mentally updated. A similar procedure is used for Boolean
expressions, except that Booleans also store a violation count.
A violation count is an integer which indicates the magnitude
of the change required to satisfy a Boolean expression. Our
method for calculating violations is inspired by [Hentenryck
and Michel, 2009]. For example, given two integers x and y
and the constraint c(x = y), the violation of c is |x − y|. A
violation count is also attached to each ESSENCE variable in
the scope of a constraint. These violation counts are used to
indicate to what extent each variable is responsible for con-
straint violations. This helps to guide the solver when se-
lecting which ESSENCE variable to modify while searching
for a feasible solution. In ATHANOR we extend violation
counts to support variables with highly nested types, by al-
lowing violation counts to be attached to elements contained
in structured variables. Consider the example shown in Fig-
ure 3. ATHANOR must consider how violations are attributed
when elements in s violate the constraint c. These violation
counts guide ATHANOR to the cause of violated constraints.

find s : set of τ

such that forAll i in s . c(i)

Figure 3: Constraint on a nested type, c(i) is a constraint on i

When a violation is attributed to an element i of a contain-
ing structure s such as a set or sequence, the same viola-
tion is added to s and successively the structure that contains
s, and so on to the outermost structure. Therefore the viola-
tion on any containing structure s is the sum of the violations

3The sum node caches the values of its children.

directly attributed to s and the violation count of the elements
of s.

Considering the constraint |s| = 1, if this constraint is vi-
olated, all the elements in s are equally to blame. Therefore,
we do not attribute the violation to the elements in s, but to s
as a whole. However, for a constraint like that shown in Fig-
ure 3, ATHANOR assigns a violation to only those elements
in s that are causing the violation. The set s itself inherits
the violation of its elements so that it may be distinguished
from other variables; it is natural to consider a set with two
violating elements to have a larger violation than a set with
one violating element.

5 Dynamic Unrolling of Quantifiers

Although ESSENCE specifications have a fixed number of
abstract variables, these variables are usually of container
types (e.g. set, sequence and partition). The values
of such variables can vary in size as elements are introduced
or deleted during search. ESSENCE also allows quantifica-
tion over such containers, applying a constraint to each of
the elements of such types. Pre-generating all possible values
and constraints, as is done in low-level local search solvers,
is often infeasible. For example in the optimisation variant
of the Social Golfers (Figure 4) where the size of sched

must be maximised, a small instance (g = 8, s = 8) per-
mits approximately 4.5× 1047 possible partitions. Low level
solvers can neither support variables with such large domains,
nor allow quantification over sets which can grow to such
a large size. In contrast, ATHANOR performs no such pre-
generation of values or constraints. Instead, the solver dy-
namically adds and deletes elements of structured variables
along with the constraints on such elements during search,
allowing ATHANOR to scale to much larger domains.

We illustrate ATHANOR’s dynamic unrolling through an
example shown in Figure 5. In the AST representation, we
have a forAll node, representing the quantification. The
forAll node has one child for each item in s. It also stores
the expression (i%2=0) applied to each element of s. This
expression is a template, meaning that it is represented by an
incomplete AST. The AST is incomplete as i in the expres-
sion is a placeholder. We call this an iterator. When a new
element is added to s, a child is added to the forAll node,
the expression template is copied into this new child and the
placeholder is replaced with the newly added element. The
AST subtree representing the copied expression is then eval-
uated in a similar fashion to the evaluation of the entire AST
at the start of the search. The nodes in the subtree then begin
triggering on their children as per Section 3.

6 Neighbourhood Construction

The method by which ATHANOR derives neighbourhoods
from an ESSENCE specification is inspired by the neigh-
bourhood generation rules used by Structured Neighbour-
hood Search [Akgün et al., 2018]. ATHANOR makes use of
a set of neighbourhood templates. Each template contains a
set of criteria which is matched against every variable type
present in an ESSENCE specification. If the type and domain



given w, g, s : int(1..)

letting Golfers be new type of size g * s

find sched : set (size w) of partition (regular, numParts g, partSize s) from Golfers

such that forAll g1, g2 : Golfers, g1 != g2 .

(sum week in sched . toInt(together({g1, g2}, week))) <= 1

Figure 4: Social Golfers in ESSENCE

find s : set of int(1..5)

such that forAll i in s. i % 2 = 0

Figure 5: Quantifying over a set

of a variable satisfy the criteria for a neighbourhood tem-
plate, the template is instantiated into a neighbourhood that
is used to alter the value of the variable. Since each neigh-
bourhood is directly linked to a variable type and domain,
ATHANOR’s neighbourhoods are able to preserve type invari-
ants – for example, the uniqueness of elements in a set. We ar-
gue that this allows for neighbourhoods that are more seman-
tically meaningful, reducing the time spent on finding assign-
ments to highly structured variables (set of partition

(regular, numParts 3)) and instead focusing on satisfy-
ing problem constraints or improving the objective.

ATHANOR’s neighbourhoods are divided into three cate-
gories, direct, synchronised and higher-order. Direct neigh-
bourhoods only examine the outer structure of a type. Ev-
ery supported domain has at least one direct neighbour-
hood which simply generates a random value from that do-
main. While assigning a random value is sufficient for in-
teger and boolean variables, we also want neighbourhoods
that can make more incremental changes to higher level
types. For example, given a set type, neighbourhoods
such as setAdd (add a value), setRemove (remove a
value) and setSwap (swap one value for another) are gen-
erated. Similar neighbourhoods are also produced for the
ESSENCE type sequence. However, since the sequence
type encodes an order of elements, neighbourhoods that fo-
cus on changing the element order are also generated such
as sequenceReverseSub (reverse a sub-sequence) or
sequencePositionsSwap (swap positions of elements).

Synchronised neighbourhoods operate on multiple vari-
ables simultaneously. For example, setMove (moving an
element from one set to another) or sequenceCrossOver
exchanging elements between two sequences. Higher-order
neighbourhoods select one or more elements of type τ from
a set, a sequence or any container type c and apply any
of the neighbourhoods for τ on the selected elements of c.
For example, given the type set of sequence of ..., a
higher-order neighbourhood can select one sequence from
the set and apply the sequenceReverseSub neighbour-
hood on that sequence. Higher-order neighbourhoods are
particularly useful when combined with synchronised neigh-
bourhoods, where a higher-order neighbourhood selects two
elements from a container and the synchronised neighbour-
hood causes the elements to interact. For example, given

a type multiset of set of ..., a higher-order neigh-
bourhood may select two sets from the multi-set and then use
the synchronised neighbourhood setMove to move an ele-
ment from one set to the other. This means that given a type
τ1 of τ2 of ... of τn, the combination of higher-order,
direct and synchronised neighbourhoods allow every level of
a variable’s values to be manipulated.

Finally, ATHANOR’s neighbourhood templates also detect
attributes used in the type constructors to further tailor the
neighbourhoods. For example, ATHANOR will not generate
neighbourhoods which change the cardinality of a multiset
with a fixed size attribute. Similarly, given a sequence with
the injective attribute, ATHANOR will ensure that the gen-
erated neighbourhoods always maintain that the elements of
the sequence are distinct.

Examples of the high performing neighbourhoods gener-
ated by ATHANOR in our experiments are given in Section 8.1
and Section 8.2.

7 Search

Once a set of neighbourhoods has been automatically con-
structed, the search algorithm of ATHANOR uses standard lo-
cal search techniques. Neighbourhoods are treated as black
boxes, each of which has the potential to improve on either
the violation or the objective. A regret minimisation multi-
armed bandit [Auer et al., 2002] is used to track which neigh-
bourhoods are successful, biasing the search towards neigh-
bourhoods which have previously improved the assignment.

There is a single global variable assignment which is acces-
sible by all parts of the ATHANOR solver, and five functions
which access this global assignment:

• OBJECTIVEG(): The objective value of the global as-
signment (smaller is better).

• VIOLATIONG(): The violation of the global assignment.

• SETRANDOMASSIGNMENT() : Set the global assign-
ment to a random value.

• MABAPPLYNEIGHBOURHOOD(Q) : Using a MAB
(Multi-armed Bandit), choose a neighbourhood to ap-
ply. Then, use the violation counts to choose where
to apply that neighbourhood. If the violation counts
are all zero, choose randomly with even probability. Q
switches between two different MABs, one for finding
a non-violating assignment, and one for finding an opti-
mal solution.

• UNDOLASTNEIGHBOURHOOD() : Undo the last call to
MABAPPLYNEIGHBOURHOOD. This also marks this
choice of neighbourhood as “failed” for the MAB.



Algorithm 1 presents the entire search procedure used in
the current version of ATHANOR. Search begins with the pro-
cedure ATHANOR, which first tries to find a solution that vio-
lates no hard constraints, and then from this solution searches
for other solutions which improve the optimisation function.

The RUN procedure contains the main search loop of
ATHANOR. RUN alternates between hill climbing (CLIMB)
and exploration by random walk (RANDOMWALK). If climb-
ing fails to improve the solution we increase the length of the
random walk (nr) by Z (1.3 in ATHANOR), and if the length
of the random walk gets longer than a constant L (500 in
ATHANOR), we reset the length of the random walk and the
current target objective β. Once a solution with no violations
is found, no violations are permitted during either hill climb-
ing or the random walk phase. We leave for future works the
investigation of using more advanced search strategies, and
the tuning of the constants used in ATHANOR’s algorithm.

8 Case Studies

Our hypothesis is that ATHANOR derives its performance
from the presence of high level (nested structured) vari-
ables in a specification, as they lead to more complex neigh-
bourhoods being generated. We have therefore split prob-
lem classes into two categories. Structured problems are
those that contain variables with a nested structure, for ex-
ample set of sequence of int. Unstructured problems
are those which have little nesting of types – for example,
function int --> int.

We compare the performance of ATHANOR against six
other solvers. Three of them are constraint-based local
searches, including Oscar-CBLS [Björdal et al., 2015], Yuck,
and Structured Neighbourhood Search (SNS) [Akgün et al.,
2018]. We also compare against both explanation-based
(LNSEB) [Prud’homme et al., 2014] and propagation-guided
(LNSPG) [Perron et al., 2004] large neighbourhood search
in Choco 4.0.9. Finally, Chuffed 4 (a systematic constraint
solver) was used as a performance baseline for the local
search solvers.

The refined models were generated by CONJURE [Akgün
et al., 2011; Akgün et al., 2013] – an automated modelling
tool for ESSENCE– and were further tailored for the target
solvers by SAVILE ROW [Nightingale et al., 2014; Nightin-
gale et al., 2017; Nightingale et al., 2015]. The MiniZinc
backend of SAVILE ROW along with MiniZinc 2.1.7 [Nether-
cote et al., 2007] were used to produce FlatZinc inputs for
Chuffed, Oscar-CBLS and Yuck. Models were hand crafted
for LNS. We ensure that they were as close as possible to
the models given to the other solvers. Unlike ATHANOR,
modelling for local search or systematic solvers involves a
choice of whether or not to include symmetry-breaking con-
straints. Both symmetry-broken and non-symmetry-broken
models were given to all solvers5 and the best performing
model for each problem is reported.

The instances used in this work come from popular bench-
marking datasets whenever possible, and are randomly gen-

4https://github.com/chuffed/chuffed
5Oscar-CBLS had issues running some of the symmetry broken

models. On these problems we used the no symmetry model.

Algorithm 1 Search algorithm of ATHANOR

procedure ATHANOR

SETRANDOMASSIGNMENT( )
RUN(VIOLATIONG) ⊲ Move to feasible solution
RUN(OBJECTIVEG) ⊲ optimise objective

procedure RUN(Q: function)
I ← 10, Z ← 1.3, L← 500 ⊲ algorithm constants
nr ← I ⊲ number of random moves to take
β ← Q() ⊲ Quality to beat
while time limit not reached do

CLIMB(Q)
if Q() = 0 and Q = VIOLATIONG then

return ⊲ found feasible solution
if Q() < β then ⊲ found a better assignment

β ← Q(), nr ← I
else

nr ← nr × Z

RANDOMWALK(Q,nr)
if nr > L then ⊲ Reset random walk length and β

β ← Q(), nr ← I

procedure CLIMB(Q)
o← OBJECTIVEG( ), v ← VIOLATIONG( )
i← 0 ⊲ iterations spent without improving
while i ≤ limit do ⊲ limit is a tunable parameter

MABAPPLYNEIGHBOURHOOD(Q)
o2 ← OBJECTIVEG( ), v2 ← VIOLATIONG( )
if (v 6= 0 ∧ v2 ≤ v) ∨ (v = 0 ∧ o2 ≤ o) then

(o, v)← (o2, v2) ⊲ New solution accepted
i← 0

else
i← i+ 1
UNDOLASTNEIGHBOURHOOD( )

procedure RANDOMWALK(Q,r)
i← 0
while i ≤ r do

MABAPPLYNEIGHBOURHOOD(Q)
if Q = OBJECTIVEG ∧ violation > 0 then

⊲ No violations if improving objective
UNDOLASTNEIGHBOURHOOD( )

else
i← i+ 1

erated otherwise. The instances for TSP, CVRP, Knapsack
and Social Golfers are taken from TSPLIB [Reinelt, 1995],
VRP-REP [Mendoza et al., 2014], Pisinger’s hard knapsack
[Pisinger, 2005], and CSPLib [Miguel et al., 2000], respec-
tively. For Sonet and MEB, a parameterised instance gen-
erator is manually created for each problem, and non-trivial
instances are generated using the automatic algorithm config-
uration tool irace [López-Ibáñez et al., 2016] to search in the
parameter space of the generator. The number of instances
ranges from 30 to 60 per problem class. All instances or ref-
erence links to them are available in the github repository of
ATHANOR

6.
For each problem class, all solvers were run ten times (ex-

6https://github.com/athanor
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Figure 6: Normalised objective value of the best version (with/without symmetry breaking) of each solver on five optimisation problems:
CVRP with set (maxSize ...)of sequence (injective, ...)of int, SONET with set (maxSize ...)of set

of int, TSP with sequence of int, Knapsack with set of int and MEB with function int --> int.
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Figure 7: The Social Golfers Problem. The cumulative number
of instances solved by each solver in less than the corresponding
time point, showing the best of with/without symmetry breaking for
solvers other than ATHANOR. LNS and SNS are omitted as they do
not support satisfaction problems.

cept Chuffed, as it is deterministic). For optimisation prob-
lems (CVRP, Sonet, MEB, TSP, and CVRP) the best objective
found by each solver is logged every second. For satisfaction
problems (Social Golfers), the time to reach the first solution
is recorded. For each problem class p, results are aggregated
and shown in Figures 6 and 7 as follows:

Optimisation problems: for each instance of the problem
class, the objective found at each second is rescaled to a range
[0, 1], where 0 and 1 are the minimum and maximum ob-
jectives (respectively) found across all solvers throughout all
runs on the instance. This allows results to be aggregated
across multiple instances of the same problem class. The
rescaling is necessary as the sizes of instances tested, and
hence the objectives found, cover a significant range. For
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Figure 8: Comparing solvers on large knapsack instances of size
100,000, showing the normalised objective value of the best version
(with/without symmetry breaking) of each solver. Chuffed, Oscar-
CBLS and Yuck fail to find a solution. ATHANOR’s performance
stands out from all the rest, making the lines for other solvers (SNS
and LNS) almost coincide on this plot.

each class, a graph shows the median (rescaled) objective
found by every solver at every second, with ribbons marking
the 95% confidence interval.

Satisfaction problems: we show the number of runs where
each solver found a solution in the given time.

8.1 Structured Problems

CVRP [Fisher, 1995] and Sonet (CSPLib 56) are highly
structured optimisation problems. ATHANOR derives sev-
eral interesting neighbourhoods from the type constructors in
these problems. For CVRP, ATHANOR generates ten neigh-
bourhoods from the set of sequence type. The best-
performing neighbourhoods, which are listed below, are pop-
ularly used by CVRP-specific local search solvers:

• select one sequence and reverse a contiguous portion,
which reflects the famous two-opt move [Croes, 1958];

• select a sequence and swap two locations, which gives



the solver the flexibility to optimise the route of a partic-
ular vehicle;

• select two sequences and move a location from one to
the other, which helps to move costly locations from one
vehicle’s route to another;

• select two sequences and exchange locations between
the two sequences.

For Sonet, ATHANOR understands from the type informa-
tion available (set of set of int) that unlike CVRP, the
order of elements is not relevant to the problem. Therefore,
the neighbourhoods produced focus on adding or removing
elements from the inner sets, exchanging elements between
the inner sets or adding or removing sets from the outer set.
Since the objective of the problem is to minimise the sum of
the sizes of each inner set, it is not surprising that the best per-
forming neighbourhood is about selecting a set and removing
an integer from that set.

ATHANOR outperforms all other solvers throughout the
600 seconds (see Figure 6) in both CVRP and Sonet. Note
that in both CVRP and Sonet, a limit to the size of the outer
set is necessary to model the problem for input to the low level
solvers. Without this size limit, the outer sets would be im-
practically large for the low level solvers. Such solvers must
use enough variables to represent all possible assignments to
the outer set at the start of the search. ATHANOR does not
have such limitations.

Figure 7 shows the relative performance of ATHANOR in
solving the Social Golfers problem, a structured satisfaction
problem. ATHANOR uses the regular and numParts at-
tributes to deduce that neighbourhoods that add a cell, remove
a cell or change the sizes of cells should not be generated. A
partition and its cells are unordered, hence it makes no sense
to reorder cells or elements within a single cell. Therefore,
this leaves one neighbourhood that maintains the invariants of
the variable type: swap elements between two cells of a par-
tition. Once again, the type constructor is able to convey the
structure inherent in the Social Golfers problem – using in-
formation that is not readily available to the low level solvers.
While ATHANOR significantly outperforms the other local
search solvers, Chuffed outperforms all local search solvers.

8.2 Unstructured Problems

We also experimented on TSP [Reinelt, 1995], Knap-
sack [Pisinger, 2005] and MEB (CSPLib 48) problems, such
problems have less structure than the CVRP and Sonet prob-
lems. The Knapsack problem contains a single set of int

variable. Given the relatively simple structure, it is not sur-
prising that ATHANOR does not clearly outperform the other
solvers. However, the set does have a variable cardinality
[0 . . . number of knapsack items]. This is important as the in-
stances used in the graphs shown were of size 5,000. An-
other set of Knapsack instances of size 100,000 were gener-
ated using the generator provided by [Pisinger, 2005], and all
solvers are tested on them. As can be seen from fig. 8, the
other solvers struggle to even find an initial solution to the
larger instances. After 30 seconds SNS and LNS find fea-
sible solutions for less than a quarter of the instances while
Yuck, Chuffed and Oscar fail to find any solutions. Once the

solvers have found feasible solutions, they make very little
progress throughout the remaining time. Meanwhile, in 0.01
seconds, ATHANOR finds a feasible solution on all instances
and makes steady progress throughout the entire 600 seconds.
This clearly shows the benefit of ATHANOR’s dynamic value
and constraint construction.

The TSP is modelled using a sequence (injective)

of locations. The refinement of this specification pro-
duces a matrix of integers with an allDifferent constraint.
The allDifferent constraint allows low level local search
solvers to also derive that the locations must be distinct.
Hence, both high level and low level solvers generate neigh-
bourhoods that maintain the distinctness of the elements. The
presence of a sequence variable type is still advantageous as
it strongly conveys the importance of the order of elements.
The experiments show ATHANOR outperforming the other
solvers.

ATHANOR performs competitively on the MEB problem,
producing the highest quality solution until 250 seconds
when Yuck overtakes. ATHANOR cannot derive any addi-
tional information from the type constructor function (

total)int --> int. This reinforces our hypothesis that
ATHANOR derives its performance from the highly structured
types and its scalability from the variable-sized types.

9 Conclusion

We have presented the benefits of ATHANOR, a local search
solver which operates directly on ESSENCE specifications.
ATHANOR uses the types of ESSENCE to construct seman-
tically meaningful and type preserving neighbourhoods. Fur-
thermore, ATHANOR instantiates abstract types directly with-
out having to resort to refinements into primitive types. We
have presented a framework for incremental evaluation of
ESSENCE ASTs whose values change during search. This
includes the dynamic construction and deletion of values
and constraints during search. Our experiments show both
that the high quality neighbourhoods generated by ATHANOR

perform well on a range of structured problems and that
ATHANOR scales to very large instances.
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Stützle. Stochastic local search: Foundations & applica-
tions. Elsevier, 2004.

[Jaszkiewicz, 2002] Andrzej Jaszkiewicz. On the perfor-
mance of multiple-objective genetic local search on the
0/1 knapsack problem-a comparative experiment. IEEE
Transactions on Evolutionary Computation, 6(4):402–
412, 2002.

[Kirkpatrick et al., 1983] Scott Kirkpatrick, C Daniel Gelatt,
and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.
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A problem library for constraints, 2000. Available from
http://http://www.csplib.org/.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J.
Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP
modelling language. In CP, LNCS 4741, pages 529–543.
Springer, 2007.

[Nightingale et al., 2014] Peter Nightingale, Özgür Akgün,
Ian P. Gent, Chris Jefferson, and Ian Miguel. Automati-
cally improving constraint models in Savile Row through
associative-commutative common subexpression elimina-
tion. In CP, LNCS 8656, pages 590–605. Springer, 2014.

[Nightingale et al., 2015] Peter Nightingale, Patrick
Spracklen, and Ian Miguel. Automatically improv-
ing SAT encoding of constraint problems through
common subexpression elimination in Savile Row. In CP,
LNCS 9255, pages 330–340. Springer, 2015.

[Nightingale et al., 2017] Peter Nightingale, Özgür Akgün,
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