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Abstract

This paper investigates the problem of testing implementations of uniformity statistics. In

this paper, we used metamorphic testing to address the oracle problem of checking the out-

put of one or more test executions, for uniformity statistics. We defined a partial oracle that

uses regression analysis (a regression model–based metamorphic relation). We investigated

the effectiveness of our partial oracle. We found that the technique can achieve mutation

scores ranging from 77.78 to 100% and tends towards higher mutation scores in this range.

These results are promising and suggest that the regression model–based metamorphic rela-

tion approach is a viable method of alleviating the oracle problem in implementations of

uniformity statistics, and potentially other classes of statistics, e.g. correlation statistics.

Keywords Uniformity statistics · Oracle problem · Non-testable systems · Metamorphic

testing · Regression model–based metamorphic relation · Metamorphic relation

1 Introduction

Testing is a verification process that consists of the following steps: (1) generate a test case,

(2) predict the outcome of the test case, (3) execute the system under test (SUT) with the test

case to obtain the actual outcome and (4) compare the predicted outcome against the actual

outcome to obtain a pass/fail verdict. The oracle problem describes scenarios in which either

it is impossible to carry out steps 2 or 4 or these are prohibitively expensive. This issue

was initially discussed by Weyuker, who used the term ’untestable programs’ (Weyuker

1982). It has been observed that many real systems suffer from the oracle problem, such

as bioinformatics systems (Chen et al. 2009), service-oriented architectures (Chan et al.

2007) and systems that implement graph theory, computer graphics and compilers (Zhou

et al. 2004). One might expect a system to suffer from the oracle problem if the required

relationship between the input and output is highly complex and the problem being solved

by the system is such that we do not know the answer in advance.
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Since the oracle problem is a pervasive and non-trivial problem, it has inspired a large

amount of research. Numerous techniques have been proposed as solutions to the oracle

problem, including assertions, metamorphic testing, statistical hypothesis testing, N-version

testing and machine learning oracles (Patel and Hierons 2017). However, the main focus

has been on metamorphic testing, an approach/term introduced by T.Y. Chen (1998, 2003).

Metamorphic testing (MT) is based on a conceptually simple but powerful idea. Essen-

tially, in metamorphic testing we have a metamorphic relation that is an expected property

of the SUT, with this property mentioning a number of inputs and corresponding outputs.

Let us suppose, for example, that we are to test an implementation f of the sine function.

We have a number of properties of this, such as sin(x) = −sin(−x). Thus, for example, if

f (0.346) �= −f (−0.346) then we can deduce that f is faulty even though we do not know

the values of sin(0.346) and sin(−0.346). In metamorphic testing, we typically run the SUT

on a number of inputs x1, . . . , xk , observe outputs y1, . . . , yk , and on the basis of these, we

then choose a next input1 xk+1 to use. We then apply xk+1, record the resultant output yk+1

and check that the inputs x1, . . . , xk+1 and outputs y1, . . . , yk+1 satisfy the metamorphic

relation (for recent surveys on MT, see Chen et al. (2018) and Segura et al. (2016)).

In this paper, we consider the problem of testing an implementation of a uniformity

statistic. A sample is a collection of data points, such as Sample1 = {1, 2, 2, 3, 4, 5} or

Sample2 = {1, 2, 3, 4, 5, 6}, that was produced by some stochastic process such as a random

number generator. The distribution of the stochastic process is said to be uniform if every

element has an equal chance of being randomly selected. Uniformity statistics are a means

of measuring the extent to which a sample is uniformly distributed. Our initial interest in

uniformity statistics was motivated by two aspects of software engineering. First, it has

been observed that test suites with highly diverse test cases are often effective in finding

faults, at least when compared with less diverse test suites (see, for example, Feldt et al.

2008). There are test generation approaches, such as adaptive random testing (Chen et al.

2004), that aim to generate highly diverse test suites but if we can measure uniformity then

there is potential, for example, to incorporate a uniformity statistic as a fitness function in

search-based software testing. The second motivation is that in experiments we would like to

uniformly sample from a space of subjects/examples; we might use uniformity statistics to

either check the sampling mechanism used or to drive sampling. Note also that if we can test

for uniformity then we can also test samples against other types of distributions (Marhuenda

et al. 2005).

Uniformity statistics play an important role in many software engineering research areas.

For example, in the context of software quality, Chen (2013) used the Kolmogorov-Smirnov

test to evaluate the uniformity of measures of defect density. In the context of software

testing, Dutra et al. (2018) developed an algorithm that can generate a set of test cases, such

that this set is uniformly distributed, and each test case in the set satisfies some constraint.

They used the χ2 uniformity statistic to evaluate their tool.

Consider a genetic algorithm that implements a crossover operator with a crossover prob-

ability of 40%. This crossover operator might be implemented as follows: a number between

0 and 1 is randomly sampled from a uniform distribution; if this number is less than or equal

to 0.4, then the crossover operator will be invoked. A fault might exist in this implementation

that causes the distribution to be non-uniform; in particular, the distribution might be pos-

itively skewed. The existence of such a fault would mean that the probability of crossover

1There may be more than one ‘next input’.
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is greater than 40%, and assuming that 40% is the optimal crossover rate, this would lead

to the genetic algorithm performing suboptimally. This demonstrates that the correctness of

uniform distributions is important for tools and techniques that rely on them and by impli-

cation software engineering research that uses these tools. Examples of such tools include

random number generators and Monte Carlo simulations (Harrison 2010), adaptive random

testing (Liu et al. 2010), an algorithm that was proposed by Claessen et al. (2014) that gen-

erates test data that complies with the uniform distribution and a set of constraints, the cross

entropy–based test case generation approach proposed by Chockler et al. (2007) and met-

rics for measuring information loss in a system, which were developed by Androutsopoulos

et al. (2014). Confidence in the correctness of a uniform distribution can be ascertained by

uniformity statistics.

Implementations of uniformity statistics suffer from the oracle problem because it is

often infeasible to predict the expected value of a test statistic. This paper investigates a

metamorphic testing and machine learning–based approach for overcoming the oracle prob-

lem for this class of SUT. Metamorphic testing was chosen because it has been found to

be effective in many areas (Chen et al. 2018; Segura et al. 2016). We believe that imple-

mentations of many other types of statistics (e.g. correlation statistics) also suffer from the

oracle problem, and we hope that the work outlined in this paper will feed into the develop-

ment of testing techniques for other such statistics. We are not aware of any work that has

used MT for the testing of implementations of statistics. However, MT has been applied to

the problem of checking the output of stochastic programs (Guderlei and Mayer 2007). In

this previous work, statistical hypothesis testing was used to check properties (e.g. mean,

standard deviation) of samples produced with different (but related) inputs.

Others have investigated means of enhancing metamorphic testing with the use of

machine learning techniques. For example, Chan et al. (2010) formulated a hybrid tech-

nique, where a machine learning oracle is applied to a set of test cases. If this oracle

detects a failure, then the hybrid approach concludes that the system is faulty. However,

if this oracle does not detect a failure, then the test cases that were evaluated by this

oracle are then used for metamorphic testing. Another example includes Kanewala and

Bieman’s technique (Kanewala and Bieman 2013, 2015), which uses machine learning to

identify whether target code exhibits a particular metamorphic relation. Such applications

of machine learning in the context of metamorphic testing differ from our own.

The approach developed in this paper is motivated by the following observation: a normal

distribution, with a mean of 0.5, which has a higher standard deviation, has a ‘flatter’ distri-

bution in the region [0, 1], and so samples that are drawn from such distributions in the range

[0, 1] should adhere more strongly to uniformity. In other words, there is a positive corre-

lation between standard deviation and uniformity, when considering normal distributions.

Regression analysis (which is a form of machine learning) can be used to build predictive

models based on such correlations. We developed a metamorphic relation, which we call

the regression model–based metamorphic relation, which operates by comparing the imple-

mentation of a uniformity statistic to such a predictive model; comparisons that reveal a

discrepancy between the implementation and model are an indication that a fault might be

present in the uniformity statistic.

This approach can be seen as an instance of metamorphic testing, if one uses the recent

generalised definition of metamorphic testing (Chen et al. 2018), since we utilise the results

of previous test executions in checking the outcome of a test, assuming that the train-

ing data is obtained from the SUT. Training data might be obtained from the SUT in the

context of regression testing, or might be obtained by other means e.g. from a reference

implementation, in other contexts.
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The proposed technique was evaluated by applying it to implementations of 18 different

uniformity statistics. As we explain in Section 4, these uniformity statistics were chosen

since they are representative of different approaches to checking for uniformity. The results

of the evaluation were promising; the proposed technique obtained an average mutation

score of 92.96% and can obtain a false positive rate of 0, and the predictive models were

reasonably accurate.

The main contributions made in this paper are:

1. A new type of metamorphic relation called regression model–based metamorphic

relation

2. 18 regression model–based metamorphic relations for uniformity statistics

3. An investigation of the effectiveness of regression model–based metamorphic relations

for uniformity statistics.

The remainder of this paper is structured as follows. Section 2 outlines background mate-

rial, and Sections 3 introduces the proposed technique. Section 4 describes the experimental

design; Section 5 presents the results of the experiments, and Section 6 explores threats to

validity. Finally, Section 7 draws conclusions and outlines future work.

2 Background

2.1 The oracle problem

The oracle problem refers to situations in which it is infeasible to predict the test outcome or

verify the program’s output against the predicted test outcome (Weyuker 1982). A number

of techniques have been proposed to alleviate the oracle problem, including metamorphic

testing, statistical hypothesis testing, N-version testing and machine learning oracles (Patel

and Hierons 2017; Chen et al. 1998, 2003). This section briefly introduces these techniques.

A metamorphic test group (MG) is a sequence of test cases (Chen et al. 2018). Each test

case in a metamorphic test group can be classified as either a source test case or a follow-up

test case. Source test cases are produced by some, possibly arbitrary, test case generation

method, whilst follow-up test cases are generated based on source test cases and possibly

also the response of the SUT to these inputs (Chen et al. 2018). For example, consider a

sorting algorithm. A source test case, tcs , might be a randomly generated sample, and a

follow-up test case, tcf , might be the result of reversing the order of tcs . A metamorphic

relation (MR) is an expected relation between source and follow-up test cases and their

resulting outputs. For example, one would expect that the sorting algorithm would produce

the same outputs for tcs and tcf .

There are a number of factors that can affect the effectiveness of a metamorphic rela-

tion (Patel and Hierons 2017). For example, Cao et al. (2013) discovered that the diversity

of paths taken by test cases in a metamorphic test group is an important determinant of

effectiveness. Another factor is the tightness of an MR (Liu et al. 2014), which refers to how

much an MR constrains behaviour. For example, suppose that two MRs, MRt and MRl ,

were developed for the max function, max(a, b). MRt might check that max(a, b) × 2 =

max(a × 2, b × 2), whilst MRl might check max(a, b) < max(a × 2, b × 2) (for positive

a and b). MRt is tighter than MRl because if we fix one side of the equation then only one

value can satisfy MRt , whilst an infinite number of values could satisfy MRl . Finally, if we

use multiple MRs then it is desirable to use a diverse set of MRs (Liu et al. 2014; Chen et al.

2015).
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N-version testing, which is also referred to as back-to-back testing, involves comparing

the outputs of the SUT against the outputs of reference implementations (Weyuker 1982).

One of the main issues is that a reference implementation may not be available. A number

of approaches have been developed to overcome this obstacle, e.g. testability transforma-

tions (McMinn 2009), component harvesting (Hummel et al. 2006) and using previous

versions of the SUT as reference implementations (Zhang et al. 2009).

The third approach that we consider in this section is statistical hypothesis testing. Statis-

tical hypothesis testing involves executing the SUT multiple times to obtain a set of outputs,

and then conducting a statistical test, e.g. t test, to compare the distribution of this set to

an expected distribution (Guderlei and Mayer 2007). One issue with this approach is that

it assumes that the expected distribution is already known (Mayer 2005), which might not

necessarily be true. It is sometimes possible to combine this with MT, by comparing the

properties of samples produced using different (but related) inputs (Guderlei and Mayer

2007). Another issue is the need to tune parameters, e.g. it is necessary to tune the signifi-

cance threshold of statistics that are used by a statistical hypothesis test (Patel and Hierons

2017).

Finally, machine learning oracles are predictive models or classifiers that can be used as

test oracles (Patel and Hierons 2017). For example, a machine learning oracle might be an

approximation of the SUT and so can predict the output of a given input or might be able to

classify a test case as passed or failed, based on patterns that can be observed in the execu-

tion trace. Machine learning oracles are derived from machine learning algorithms that have

been applied to training datasets. Similar issues to those that were discussed for statistical

hypothesis testing are relevant for machine learning oracles (Patel and Hierons 2017). For

example, some machine learning oracles have tunable parameters (Patel and Hierons 2017).

One also requires a training dataset; again one might alleviate this assumption by procuring

a dataset from a domain expert or a reference implementation (Chan et al. 2006).

2.2 Uniformity statistics

In this paper, we considered five statistics that are empirical distribution function statistics:

D+
n , D−

n , Vn, W 2
n and U2

n . For a given value x, an empirical distribution function2, which

is associated with a particular sample, returns the probability that a value that is chosen

at random from the associated sample will be less than or equal to x. Empirical distri-

bution function statistics operate by comparing the cumulative distribution function to the

empirical distribution function (Marhuenda et al. 2005).

We also considered eight order statistics (Marhuenda et al. 2005): C+
n , C−

n , Cn, Kn, T1,

T2, T
′

1 and T
′

2 . Let Sampleo be a sample {U(1), U(2), ..., U(n)}, which has been arranged in

ascending order. The core intuition behind order statistics is to compare each element of the

sample U(i) with its expected value. In the case of the former 6 statistics, the expected value

of U(i) is defined as i/(n + 1), where n is the sample size. The expected value of U(i) for

the latter two statistics is (i − 1)/(n − 1).

Spacings statistics (G(n) and Q) are computed based on spacings (Marhuenda et al.

2005). Spacing is defined to be the difference between two adjacent elements in an ordered

(ascending order) sample. There are two exceptions to this; firstly, a spacing is defined to

be the value of the first element of the sample, if the two adjacent elements are the first

2Empirical distribution functions are also referred to as ‘empirical cumulative distribution functions”.
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element of the sample and the non-existent element that is adjacent left of the first element,

e.g. in the case of Sampleo, the spacing for U(0) and U(1) would be U(1). Similarly, if the

two adjacent elements are the last element of the sample, and the non-existent element that

is adjacent right of the last element, then the spacing is the difference between 1 and the

value of the last element of the sample. In continuation of the previous example, the spacing

for U(n) and U(n+1) would be the difference between 1 and U(n).

S
(m)
n , A∗(n) and Em,n are uniformity statistics that are referred to as higher order spac-

ing statistics. In the context of higher order spacings statistics, a spacing is defined to be

the difference between two elements from an ordered (ascending order) sample. Unlike

the definition of a spacing used by the spacings statistics, the elements are not necessarily

adjacent—they are separated by m − 1 elements, where m is a user-defined parameter. To

illustrate, consider the following sample and value for m: sample = {1, 2, 3, 4, 5, 6, 7, 8}

and m = 3 respectively. Examples of spacings include the difference between elements 1

and 4, 2 and 5, and 3 and 6 (because in all cases, there is a gap of m − 1 i.e. 2 elements).3

Higher order spacing statistics are computed based on spacings (Marhuenda et al. 2005).

3 Regressionmodel–basedmetamorphic relation

3.1 Intuition

Let US denote an implementation of a uniformity statistic. Also let training data be a set

of pairs, 〈SDi , T SVi〉, such that SDi is the standard deviation of a sample, Sampi , and

T SVi is the result of computing US on Sampi . A predictive model, PMUS can be obtained

through a regression analysis of training data. PMUS can predict the output of US for a

given standard deviation value.

Our partial oracle operates by first generating a set of samples and executing US with

these samples to obtain a set of outputs. It then computes the standard deviation of each of

these samples and executes PMUS with these standard deviations to obtain another set of

outputs. Finally, it uses the Wilcoxon signed rank test to compare the first set of outputs

against the second set of outputs. A significant difference indicates failure.

Our partial oracle is an example of a metamorphic relation. The remainder of this section

illustrates this by superimposing metamorphic testing jargon on to the description above.

PMUS can be derived from information about previous executions; thus, inputs for PMUS

can be conceptualised as source test cases. Inputs into US are akin to follow-up test cases.

A comparison is performed between the outputs of the source and follow-up test cases

(facilitated by the Wilcoxon signed rank test), to determine whether the system is faulty.

3.2 The approach

The standard deviation is intrinsically linked to the values of test statistics. We realised that

it might be possible to use regression analysis,4 which is a form of machine learning, to

learn the precise nature of the relationship between the standard deviation and a given test

statistic and derive a formula that describes the relationship.

3Throughout this paper, we set m = 3. This choice of m was deemed to be appropriate for our samples sizes.
4We used Microsoft Excel to carry out the regression analysis.
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Table 1 Mathematical models

Statistic Mathematical model

C−
n 2.2662 × StandardDeviation2 − 2.1899 × StandardDeviation + 0.4863

C+
n 2.214 × StandardDeviation2 − 2.1799 × StandardDeviation + 0.4861

Cn 2.1619 × StandardDeviation2 − 2.1431 × StandardDeviation + 0.4866

W 2
n 912.54 × StandardDeviation2 − 550.32 × StandardDeviation + 82.977

S
(m)
n 569048 × exp(−16.13 × StandardDeviation)

D−
n 2.2127 × StandardDeviation2 − 2.1802 × StandardDeviation + 0.4871

D+
n 2.2648 × StandardDeviation2 − 2.1902 × StandardDeviation + 0.4873

G(n) −52.351 × StandardDeviation3 + 33.843 × StandardDeviation2

−7.2088 × StandardDeviation + 0.5087

T
′

1 −0.2665 × StandardDeviation2 − 0.7551 × StandardDeviation + 0.2491

T
′

2 0.9125 × StandardDeviation2 − 0.5509 × StandardDeviation + 0.0831

Kn 4.4802 × StandardDeviation2 − 4.3698 × StandardDeviation + 0.9724

Em,n 0.3241 × StandardDeviation−1.014

Q −44.946 × StandardDeviation3 + 30.612 × StandardDeviation2

−6.8491 × StandardDeviation + 0.508

A∗(n) −22015 × StandardDeviation3 + 15305 × StandardDeviation2

−3454.2 × StandardDeviation + 254.07 T1 −0.8204 × StandardDeviation + 0.2513

T2 0.9126 × StandardDeviation2 − 0.5498 × StandardDeviation + 0.0828

Vn 4.4775 × StandardDeviation2 − 4.3704 × StandardDeviation + 0.9744

U2
n 912.05 × StandardDeviation2 − 550.42 × StandardDeviation + 82.98

A test case for a uniformity statistic is a sample that contains 1000 elements, drawn from

a normal distribution5 parameterised with a mean of 0.5 and a standard deviation between 0

and 0.28, such that each element is a value between 0 and 1. We generated 20,000 test cases

and calculated the standard deviation of each test case (sample). Our rationale for selecting

these values can be found in Section 4.4.

The following procedure can be used to acquire a formula that describes the rela-

tionship between the test statistic and the standard deviation, for a given uniformity

statistic. We evenly divided the range 0 to 0.3 into 60 subranges Subranges =

{[0, 0.005], [0.005, 0.01], ..., [0.295, 0.3]} (these subranges were chosen because they

enable effective regression analysis to be conducted for our dataset). Each test case was

assigned to a subrange, such that the standard deviation of the test case was greater than or

equal to the lower bound of the subrange and less than the upper bound of the subrange. We

calculated the test statistic values (using our implementations of the statistics) of all of the

test cases in a given subrange and averaged these values. This average test statistic value

was then associated with the midpoint of the subrange, e.g. 0.0025 is the midpoint of the

first subrange in Subranges. This was repeated for all of the subranges. Finally, a regression

analysis was performed based on these averages and midpoints, resulting in a mathematical

formula that gives a relationship between the test statistic and the standard deviation.

5Implemented in Python using the numpy random.normal method.



Software Quality Journal

We adopted this procedure for each test statistic (see Table 1), with the exception of

Em,n, where the subrange with the range of 0–0.005 was omitted, since the behaviour in this

range is uncharacteristic; excluding this subrange improved the accuracy of the regression

analysis.

These formulas served as predictive models (partial oracles) that can be used to check

the output of the implementation of a test statistic.

3.3 Using the regressionmodel basedmetamorphic relation

Algorithm 1 describes the regression model–based metamorphic relation. Lines 1 and 2

of algorithm 1 create two empty lists, TestStatisticValues and ModelValues. Lines 3–9 then

generate NumberOfTestCases test cases and, for each of these test cases, calculates the test

statistic value and model value and stores them in the aforementioned lists. Thus, in the

program state of the regression model based metamorphic relation, just before the execu-

tion of line 10, TestStatisticValues and ModelValues will contain NumberOfTestCases test
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statistic values and NumberOfTestCases model values respectively. Line 10 then performs

a Wilcoxon signed rank test to compare TestStatisticValues and ModelValues, to determine

whether the difference is statistically significant. Finally, lines 11–15 report a failure verdict,

if the difference is statistically significant or otherwise report a pass verdict.

4 Experimental design

The experiments described in this section were designed to address the research questions

in Section 4.1.

4.1 Research questions

RQ1. How accurate are the models that are used by the regression model–based meta-

morphic relation? We inspected the accuracy of the models, to gain insights into the

effectiveness of the regression model–based metamorphic relation.

RQ2. How many false alarms does our technique raise? We evaluated the soundness of

the partial oracle, based on its false positive rate, i.e. the likelihood that it will incorrectly

report that failure is present.

RQ3. How effective is the regression model–based metamorphic relation at detecting

faults? We measured the effectiveness of our technique, by quantifying the proportion of

mutants it kills.

RQ4. To what extent does the output of the mutant have to deviate from the output of the

model, in order for our technique to detect the difference? We estimated the sensitivity

of the regression model–based metamorphic relation.

RQ5. What impact would changing the alpha value have on the results? We conducted a

sensitivity analysis to determine the impact of changing the alpha value.

RQ6. Why didn’t the regression model–based metamorphic relation achieve a mutation

score of 100%? The partial oracle did not kill all of the mutants. We attempted to identify

the main root causes.

4.2 Experimental subjects

Our experimental subjects were implementations of 18 uniformity statistics (see Section 2)

that were programmed in Python 3.6 by the authors, based on the technical details that were

expressed in an article authored by Marhuenda et al. (2005). The Appendix gives pseu-

docode for these statistics. These were chosen because they are examples of four different

types of statistics (Marhuenda et al. 2005).

The representativeness of the experiment was the key motivating factor for our choice of

uniformity statistics. In particular, a sample of 18 statistics was deemed to be large enough

to enable conclusions about generalisability to be drawn. Additionally, these statistics are

representative of several different types of uniformity statistics, i.e. empirical distribution

function, order, spacings and higher order spacing statistics (Marhuenda et al. 2005).

Table 2 shows the number of lines of code in each subject program. The sizes of these

subject programs are representative of the typical size of an implementation of a uniformity

statistic.
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Table 2 Number of lines of code (LOC) in each subject program

Subject LOC Subject LOC Subject LOC

program program program

Cn 46 D+
n 24 Q 40

C−
n 25 G(n) 25 A∗(n) 28

C+
n 25 T ′

1 24 T1 25

W 2
n 24 T ′

2 24 T2 25

S
(m)
n 28 Kn 54 Vn 41

D−
n 24 Em,n 29 U2

n 30

(a) (b) (c)

4.3 Faults

Mutation testing is a technique that can make small syntactic changes to a system (Offutt

1992) to simulate a fault. For example, suppose that mutation testing was applied to a sys-

tem Syso and that the technique modified abs(x) + 4 to abs(x) − 4; let Sysn denote the

modified version of Syso. In mutation testing, abs(x) − 4 is referred to as a mutation, Sysn

is called a mutant, and if a testing technique reports a failure whilst being evaluated on Sysn,

Sysn is said to have been killed, or is otherwise said to have survived. Mutation testing is

a widely used method for procuring large samples of mutants, and some evidence suggests

that mutants are representative of real faults (Andrews et al. 2005).

We applied a well-known, automated mutation testing tool called Mutmut (Hovmöller

2017) to all of the subject programs, to obtain a sample of mutants. In the context of black

box testing, a mutant that has the same input-output mapping as the original program for

a given test suite is equivalent to the original program with respect to that test suite. Such

mutants could confound the results because it is not possible for an oracle to detect a differ-

ence between the original and mutant programs; thus, these were removed from the sample.

As will be discussed in Section 4.4, we used a total of 5000 test cases. These 5000 test

cases were used to conduct strong mutation testing on each mutant. Mutants were classified

as equivalent if they were not killed by strong mutation testing. We also removed mutants

that crash and time out (120 seconds), because testing techniques are not required to detect

such mutants, and so these mutants can confound the results. After removing the equiva-

lent, crashed and timed out mutants, a total of 291 mutants remained. We used all of these

mutants in our experiments.

Tables 3 a, b and c show how the mutants are distributed across the subject programs.

4.4 Test suites

We initialised the regression model–based metamorphic relation with the following input

values:SizeLowerbound = 1000, SizeUpperbound = 1000, Distribution = Normal,

MeanLowerbound = 0.5, MeanUpperbound = 0.5, StandardDeviationLowerbound = 0,

StandardDeviationUpperbound = 0.28 and NumberOfTestCases = 5000 (see algorithm 1).

Since the regression model–based metamorphic relation for uniformity statistics exploits

the relationship between the standard deviation and test statistic value, it is natural to restrict

oneself to samples that only vary in terms of the standard deviation. This was our rationale
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Table 3 Number of mutants for each subject program

Statistic Mutants Statistic Mutants Statistic Mutants

A∗(n) 25 Em,n 17 T ′
1 15

Cn 16 G(n) 16 T2 15

C−
n 9 Kn 17 T ′

2 17

C+
n 9 Q 27 U2

n 27

D−
n 9 S

(m)
n 16 Vn 14

D+
n 7 T1 13 W 2

n 22

(a) (b) (c)

for initialising the regression model–based metamorphic relation, such that the sample size,

distribution and mean are the same across all samples, but the standard deviation varies.

Our reasons for choosing the specific values for the sample size, distribution, and mean

and standard deviation are as follows. A sample size of 1000 was chosen, because large sam-

ples are more likely to achieve the target standard deviation. Many statistical tests assume

a normal distribution; thus, generating samples that conform to a normal distribution could

enable us to experiment with alternative statistical tests. Since every element in a given sam-

ple is a value between 0 and 1, it was natural to fix the mean at 0.5—the midpoint of an

element’s value range. Recall that the regression model–based metamorphic relation sam-

ples values in the range [0, 1]; this restriction makes the random generation of samples with

higher standard deviation values increasingly unlikely. Our choice of the standard devia-

tion’s upper bound was informed by this observation. As an aside, we should note that the

uniformity statistics that are covered in this paper assume that the sample is being drawn

from [0, 1], which is why our sample elements are always restricted to values in the range

[0, 1].

We decided to use a test suite that consisted of 5000 test cases, because this test suite size

was deemed to be large enough to enable us to draw meaningful conclusions. It should be

noted that the same 5000 test cases were used for each subject program, and that these test

cases are different from the ones that were used in Section 3.2.

4.5 Measures

One of the main measures that was used throughout this paper is the mutation score

(MS) (see, for example, Wu et al. 2005). The mutation score can be calculated as follows

(equivalent mutants were not counted):

NumberOfKilledMutants

TotalNumberOfMutants

We also used the false positive rate (FPR). The FPR can be determined by executing the

test suite on a correct version of the SUT, recording the number of test cases that reported

failures, NumberOfFalsePositiveTestCases and finally calculating:

NumberOfFalsePositiveTestCases

TestSuiteSize
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4.6 Alpha

Recall that the regression model–based metamorphic relation performs a significance test

(see algorithm 1). We used an alpha value of 0.000005 for this significance test. Our moti-

vation for choosing such a low significance threshold is to reduce the sensitivity of the test

to account for potential inaccuracies in the models.

5 Results and discussion

In this section, we address the research questions that were outlined in Section 4.1.

5.1 RQ1. How accurate are themodels that are used by the regressionmodel based
metamorphic relation?

Each figure in Fig. 1a–r is a scatterplot for one subject program. Each interval of the X-axis

pertains to a test case, and intervals of the Y-axis correspond to uniformity statistic values.

Black dots on the scatterplot represent the correct test statistic value and grey dots represent

the model’s prediction.

Figure 1 a–r reveal that for many subject programs, the test statistic and model are almost

indistinguishable, e.g. W 2
n (Fig. 1d). These models are therefore incredibly accurate. Recall

that the models were created by analysing the relationship between the test statistic value

and one factor, i.e. the standard deviation. The existence of cases where the statistic and

model are less similar, e.g. S
(m)
n (Fig. 1e), suggests that other factors might also be impor-

tant. Thus, there may be scope to improve the accuracy of the models by considering such

factors. Interestingly however, despite the dissimilarities between the statistics and models

in these cases, one can observe that the grey dots largely overlap with the cluster of black

dots. This indicates that the model can provide reasonably accurate predictions for even

these statistics.

We conducted one Mann-Whitney U test per scatterplot in Fig. 1a–r to compare the

actual values against the predicted values. We also applied Benjamini-Hochberg correction

to all of the p values that were returned by these tests. Promisingly, with the exception of

Mann-Whitney U tests for four uniformity statistics (S
(m)
n , G(n), Q and A∗(n)), none of the

Mann-Whitney U tests reported a significant difference. This supports our observation that

most models are relatively accurate, and that some models are more accurate than others.

The inaccuracy of some models may make partial oracles that are based on these models

more susceptible to false positives. We investigate this possibility in the next section.

5.2 RQ2. Howmany false alarms does our technique raise?

Only four of the subject programs reported false positives—T
′

2 , Em,n, Q and A∗(n).

An investigation revealed that the cause of these false positives was an inappro-

priate use of alpha values. We found that changing the significance criteria to be

less than 3.8921426976752E-39, 1.09300719274052E-12, 2.08955179387564E-07 and

4.13728711820944E-09, for T
′

2 , Em,n, Q and A∗(n) respectively, eliminates all false posi-

tives and makes no difference to any mutant classifications for T
′

2 , Q and A∗(n) and only

affects 2/17 of the mutant classifications for Em,n (these mutant classifications will be dis-

cussed in the next section). These results demonstrate that the appropriate choice of alpha

value is important.
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Fig. 1 A series of comparisons between each statistic and its respective model

Given that our approach incorporates stochastic sample generation, it is possible for it

to produce and process extreme/uncharacteristic samples. Such samples could potentially

cause false positives. The above results demonstrate that, given an appropriate choice of

alpha value, the technique is very robust despite this. This suggests that the probability of

such samples being generated is low and/or that such samples are unlikely to have signifi-

cant influence. This can be attributed to the large number of samples that were used and the

large sizes of these samples.

5.3 RQ3. How effective is the regressionmodel basedmetamorphic relation
at detecting faults?

Figure 2 is a bar chart in which each interval of the Y-axis pertains to one subject program.

The X-axis communicates the number of mutants that were used to exercise the regression
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Fig. 1 (continued)

model–based metamorphic relation. Each bar was partitioned into the number of mutants

that were killed (stripe fill) and the number of mutants that survived (solid fill).

Table 4 provides another lens on the data in Fig. 2. Figure 2 and Table 4 demonstrate

that the regression model–based metamorphic relation was very effective for all of the sub-

ject programs, achieving an average mutation score of 92.96%. Even though there is some

variation in the technique’s effectiveness across the subject programs, the technique is rela-

tively consistent. These results are promising and suggest that the regression model–based

metamorphic relation is an effective and reliable approach to solving the oracle problem in

implementations of uniformity statistics.
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Fig. 2 Total number of mutants killed by the regression model–based metamorphic relation

5.4 RQ4. To what extent does the output of themutant have to deviate
from the output of themodel in order for our technique to detect
the difference?

The following procedure can be applied to a mutant, Mut. Let T S be a set of pairs 〈Outputi,

Predictioni〉, where Outputi is the output of Mut for a given test case tci and Predictioni is

the model’s corresponding prediction. For each pair, 〈Outputi, Predictioni〉, the absolute dif-

ference between Outputi and Predictioni can be computed. Let AbsDiffs denote all of these

absolute differences. The following tuple can be obtained by calculating the descriptive

statistics of AbsDiffs: (Mean, StandardDeviation, Skewness, Kurtosis, Min, Max).
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Table 4 Mutation score of each subject program

Subject MS Subject MS Subject MS

program program program

Cn 87.50% D+
n 100.00% Q 100.00%

C−
n 77.78% G(n) 100.00% A∗(n) 100.00%

C+
n 88.89% T ′

1 93.33% T1 92.31%

W 2
n 81.82% T ′

2 94.12% T2 100.00%

S
(m)
n 93.75% Kn 82.35% Vn 100.00%

D−
n 100.00% Em,n 100.00% U2

n 81.48%

(a) (b) (c)

The aforementioned procedure can be applied to all of the killed mutants of

a program, Prog, to obtain a set of tuples, ProgKilledTuples, and applied to the

original program to obtain one more tuple, ProgOriginalTuple. The absolute differ-

ence between each tuple in ProgKilledTuples and ProgOriginalTuple can be computed.

Let Meank, StandardDeviationk, Skewnessk, Kurtosisk, Mink, and Maxk be the small-

est absolute differences that were observed during this iterative process. Similarly, let

ProgSurvivedTuples be the result of applying the aforementioned procedure to all of the sur-

vived mutants of Prog. The absolute difference between each tuple in ProgSurvivedTuples and

ProgOriginalTuple can be computed. Let Means, StandardDeviations, Skewnesss, Kurtosiss,

and Mins, and Maxs be the largest absolute differences that were observed during this iter-

ative process. Finally, the following boolean values can be calculated for Prog: Meank ≤

Means , StandardDeviationk ≤ StandardDeviations , Skewnessk ≤ Skewnesss , Kurtosisk ≤

Kurtosiss , Mink ≤ Mins and Maxk ≤ Maxs . A boolean value of “True” indicates that there

exists at least one killed mutant that is at least as close (if not closer) to the original pro-

gram, than at least one survived mutant, based on the descriptive statistic that the boolean

value corresponds to. Alternatively, a boolean value of “False” means that all of the sur-

vived mutants were closer to the original program than all of the killed mutants, based on

the descriptive statistic that the boolean value corresponds to. Table 5 presents these boolean

values for each subject program that did not have a mutation score of 100% and did not

report a false positive.

Table 5 A comparison between killed and survived mutants

Subject Mean Standard Skewness Kurtosis Min Max

program deviation

Cn True False True False True True

C−
n True True True True True False

C+
n False False False False True False

W 2
n False False False False False False

S
(m)
n False False False False True False

T ′
1 False False False False False True

Kn True True True True True True

T1 False False False False True False

U2
n True True True True True True
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Unsurprisingly, Table 5 shows that for most subject programs, all survived mutants were

closer to the original program than the killed mutants were, based on at least one descrip-

tive statistic. An interesting observation that can be made is that there exists two subject

programs (Kn and U2
n ) in which the following holds true for each descriptive statistic: there

exists at least one killed mutant that is at least as close (if not closer) to the original pro-

gram than at least one survived mutant. Closer inspection of the raw data revealed that for

both of these subject programs, there existed at least one killed mutant that was closer to the

original program in terms of all descriptive statistics than at least one survived mutant.

Non-parametric statistics have been designed to be applicable in a wider range of scenar-

ios than their parametric counterparts. However, the cost of their enhanced generalisability

is a reduction in statistical power, and by implication non-parametric statistics are more

likely to report that there is no effect, when there actually is. Since the Wilcoxon signed rank

test is a non-parametric statistic, this might explain why some killed mutants were closer to

the original program than some survived mutants.

5.5 RQ5. What impact would changing the alpha value have on the results?

Recall that an observation that was made in Section 5.2, was that one’s choice of alpha value

is an important determinant of the partial oracle’s effectiveness. In this section, we explore

this observation further.

A scatterplot in Fig. 3 plots the log of the p value (that was used for the pass/fail verdict)

that was reported for each mutant (black markers) and the log of the p value (that was used

for the pass/fail verdict) that was obtained for the original program (grey markers). The

original program and mutants along the X-axis are organised into ascending order, based on

the p value. Thus, black markers that are on the left-hand side of a grey marker represent

mutants that acquired a lower p value than the original program, and black markers that

are situated on the right-hand side of a grey marker pertain to mutants that have a higher

p value than the original program. A logarithmic scale was used in these scatter plots for

presentation purposes; in these scatterplots, it is assumed that log(0) = 0.

Figure 3 can be used to conduct a sensitivity analysis as follows. One can superimpose a

horizontal line at any point on the graph to represent the alpha value. With the exception of

log(0), black markers that appear below the line represent killed mutants, and black markers

that appear above the line represent survived mutants. Similarly, if the grey marker appears

below the line, then there is a false positive, and if it appears above the line, then there is

not a false positive.

A number of observations can be made from Fig. 3. For example, in every scatterplot,

almost all, if not all mutants have a lower p value than the original program. This is promis-

ing because it demonstrates that the partial oracle can distinguish between mutants and the

original program fairly accurately.

It can also be observed that the p value of the original program varies dramatically across

subject programs. This means that choosing the optimal alpha value for a given subject pro-

gram will be difficult. However, the results that were reported in Section 5.2 demonstrated

that it is possible for the partial oracle to be effective in most cases with an alpha value of

0.000005, thus finding the optimal alpha value is not necessary if one opted to leverage this

alpha value. It’s also worth noting that in most cases, most mutants obtained a p value of 0,

which means that changing the alpha to be arbitrarily close to 0 would have relatively little

impact in most cases. Thus, using such an alpha might be a viable strategy.
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Fig. 3 A series of scatterplots that plot mutants against p values
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5.6 RQ6. Why didn’t the regressionmodel-basedmetamorphic relation achieve
amutation score of 100%?

The regression model–based metamorphic relation was not able to kill all of the mutants.

This section enumerates the key factors that were responsible for this outcome. Firstly,

Sections 5.2 and 5.5 demonstrated that our choice of alpha value had an impact on the

technique’s ability (or lack thereof) to kill a mutant.

We conducted a similar analysis to the one that produced Table 5. This analysis dif-

fered in terms of its definitions of Meank , StandardDeviationk , Skewnessk , Kurtosisk , Mink ,

Maxk . In particular, instead of being defined as the smallest absolute differences between

ProgKilledTuples and ProgOriginalTuple, they are defined as the average absolute differences

between these tuples. Similarly, Means , StandardDeviations , Skewnesss , Kurtosiss , Mins

and Maxs are redefined to be the average absolute differences between ProgSurvivedTuples

and ProgOriginalTuple, instead of the largest absolute differences. Every cell in the newly pro-

duced table was false, which suggests that survived mutants are generally more similar to the

original program than killed mutants. This indicates that the subtlety of mutants is another

important factor.

Recall that some killed mutants were closer to the original program than some survived

mutants (see Section 5.4). Also recall that one explanation for this is that our implementation

of the technique incorporated the Wilcoxon signed rank test, which is a non-parametric

statistic, and so is particularly susceptible to type 2 errors. This is another factor that could

affect our technique’s ability to kill mutants. The use of more robust statistics might alleviate

this factor; we intend to explore the impact of using alternative statistics in future work.

5.7 Discussion

N-version testing is a testing technique, where the output that is produced by the program

under test, in response to test case, tc, is compared with the output of a reference imple-

mentation of the program under test, for tc. N-version testing is a potential alternative to

the regression model–based metamorphic relation; however, it has a number of limitations.

For example, to the best of our knowledge, there are no readily available implementations

available for a large number of the uniformity statistics that are covered in this paper. This

necessitates the development of reference implementations, and thus could introduce corre-

lated failures, i.e. the program under test and reference implementation might have the same

faults and thus produce the same failures.

Since uniformity statistics operate on floating point numbers, it is necessary to define

a similarity threshold. The relationship between standard deviation and uniformity is not

linear in most cases. This means that an appropriate similarity threshold for one area of the

output domain might not be appropriate for other regions of the output domain. This reduces

the viability of applying N-version testing to uniformity statistics.

Since it can be difficult to obtain reference implementations, the option to use N-version

testing might not be available. In such cases, it is possible for a domain expert to construct a

training dataset for the regression model–based metamorphic relation or obtain this dataset

through simulations. This means that the option to use regression model–based metamor-

phic relation can still be available in situations in which the option to use N-version testing

is not.
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6 Threats to validity

This section outlines the main threats to validity.

6.1 Internal validity

A number of tools were used to create our partial oracles, to carry out the experiments and

to analyse the experimental results, e.g. SPSS (IBM 2015), R (Community 2017), Microsoft

Excel and Mutmut (Hovmöller 2017). These tools might contain errors that could affect our

results. However, all of these tools are widely used and highly reputable, and so it is unlikely

that such faults exist. Additionally, such errors might also exist in our own code, e.g. subject

programs, partial oracles, test case generators and analysis scripts. To reduce the likelihood

of this, we thoroughly tested all of our code. Where possible, we also used automated tools

to reduce the potential for bias to be introduced by the person performing the experiment.

6.2 External validity

There are three main threats to external validity. Firstly, even though steps were taken to

ensure that a diverse range of uniformity statistics were included in our experiments (empir-

ical distribution function, order, spacings and higher order spacing statistics (Marhuenda

et al. 2005)), we did not include discrete uniformity statistics (Steele et al. 2005). Our results

might have been different for such statistics; thus, this may threaten the generalisability of

our results. We will seek to address this in future work.

Secondly, metamorphic testing is often conducted with several metamorphic relations,

but in this paper, we only leveraged one metamorphic relation. Our reasoning is twofold.

Firstly, we were unable to identify any more general metamorphic relations. Even though

it might have been possible to construct metamorphic relations that would be useful for

individual subject programs, such metamorphic relations would be generally less useful.

In our experiments, we only leveraged test cases that were generated from a normal

distribution. Our results might have been different, had we drawn test cases from a different

distribution, e.g. a bimodal distribution. We intend to investigate the impact of changing the

distribution, on our technique, in future work.

Finally, all of the subject programs that were used in our experiments were developed

by the authors. This is a threat to validity, because our implementations might not be repre-

sentative of third-party implementations. We attempted to alleviate this threat by including

third-party implementations in our experiments, but we were unable to find any suitable

implementations. We therefore decided to compare the functionality of some of our imple-

mentations with corresponding R code. In order to do so, we randomly generated 100 test

cases and evaluated stat0064, stat0067, stat0068, stat0069, stat0070, stat0071 and stat0077

from R’s PoweR package (see the documentation on R’s PowerR package for more details),

as well as our implementations of these statistics. We then compared the outputs that were

produced by our implementations and R’s implementations, using the Mann-Whitney U

test. None of the tests produced a significant result at an alpha value of 0.05. This suggests

that our implementations are representative of third-party implementations.

6.3 Construct validity

The two main metrics used in this paper are the mutation score and false positive rate.

These metrics are widely used by the research community. The first of these metrics is
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used so frequently by the research community that some consider them to be a de-facto

standard (Segura et al. 2016).

6.4 Statistical validity

We used a number of statistical tests, including Fisher’s exact test and the Wilcoxon signed

rank test (Pallant 2007) in this paper. These statistical tests are non-parametric and were

used partly because their assumptions had been fulfilled by the data, and also because their

parametric counterparts were not applicable. Given that these statistics were applied a large

number of times in certain analyses, each of these analyses had a high probability of falsely

reporting at least one significant difference. To that end, we applied Benjamini-Hochberg

correction to these analyses to account for this.

7 Conclusions

Implementations of uniformity statistics suffer from the oracle problem because it is infeasible to

predict the test statistic value of a given sample. In this paper, we attempted to address this by

formulating a partial oracle called the regression model--based metamorphic relation.

We also investigated the effectiveness of the regression model–based metamorphic rela-

tion. We discovered that, when appropriate p values are used, the technique can achieve

mutation scores ranging from 77.78 to 100% (tending towards higher mutation scores), and

produce no false alarms. Our experiments also revealed that the models that the regression

model–based metamorphic relation are based on are incredibly accurate. These results are

promising and suggest that the regression model–based metamorphic relation is a viable

means of ameliorating the oracle problem in the implementation of uniformity statistics.

The predictive models used by the regression model–based metamorphic relation were

primarily created based on the relationship between the test statistic value and standard

deviation. There might be scope to incorporate other features of the sample, instead of just

the standard deviation, to improve their accuracy further; improvements in accuracy would

allow us to tune the partial oracles to be more sensitive. Thus, one avenue of future work

might include investigating the viability of these methods.

The regression model–based metamorphic relation is dependent on predictive models

that are learned from a dataset. In practice, one could obtain such a dataset from the SUT, but

models that are derived from such a dataset would only be suitable for regression testing. If

the tester wishes to apply these partial oracles in a more general context, they would either

have to acquire such a dataset from elsewhere, e.g. from a reference implementation, or

request a domain expert to create the model based on their knowledge of the system. Unfor-

tunately, a scenario may exist in which neither a reference implementation, nor a domain

expert are available. In such situations, these partial oracles are rendered inapplicable. This

is an important limitation of the approaches, and one that we wish to address in future work.

We believe that implementations of other classes of statistics, e.g. correlation statis-

tics, might have similar oracle problems. The partial oracles that were presented in this

paper are only suitable for uniformity statistics. Thus, future work that explores methods

of alleviating the oracle problem for implementations of other classes of statistics may be

invaluable.
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