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ABSTRACT

Inferring socioeconomic attributes of social media users such as

occupation and income is an important problem in computational

social science. Automated inference of such characteristics has ap-

plications in personalised recommender systems, targeted computa-

tional advertising and online political campaigning. While previous

work has shown that language features can reliably predict socioe-

conomic attributes on Twitter, employing information coming from

users’ social networks has not yet been explored for such complex

user characteristics. In this paper, we describe a method for predict-

ing the occupational class and the income of Twitter users given

information extracted from their extended networks by learning

a low-dimensional vector representation of users, i.e. graph em-

beddings. We use this representation to train predictive models

for occupational class and income. Results on two publicly avail-

able datasets show that our method consistently outperforms the

state-of-the-art methods in both tasks. We also obtain further sig-

niicant improvements when we combine graph embeddings with

textual features, demonstrating that social network and language

information are complementary.
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1 INTRODUCTION

The daily interaction of billions of users with online social plat-

forms such as Facebook and Twitter has made available enormous

amounts of user generated content. The plethora and diversity of

this data (e.g. text, images or interactions with other users such

as ‘retweets’ or ‘likes’) enables studies in computational social sci-

ence [10, 26] to analyse human behaviour on a large scale and

automatically infer user latent attributes.

Automatic inference of user characteristics includes studies on

inferring age and gender [5, 39, 40], location [8, 11, 16], personality
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traits [21, 38, 45] and political orientation [9, 33, 44] inter alia. ℧ore

recently, there has been a particular focus on inferring complex user

socioeconomic characteristics such as occupational class [18, 27, 36],

income [37, 45] and socioeconomic class [24, 31]. Apart from their

importance in computational social science, such methods are also

useful in downstream applications such as targeted advertising and

online political campaigning.

Following the hypothesis that language is indicative of the so-

cial status of a person [3, 4, 23], previous research analysed user

generated written content to derive text based features such as

bag-of-words or clusters of words. These features are used to train

predictive models for inferring socioeconomic attributes [27, 36].

Despite the fact that these methods have proved to perform well,

they have not considered any relations and interactions between

users. ℧oreover, there is a large proportion of inactive users that do

not produce any content. For example, previous studies have shown

that only around two thirds of the users are active (i.e. posted at

least twice) on Twitter [19, 28]. This makes it impossible to solely

utilise language based models to infer socioeconomic or other char-

acteristics of inactive users.

A diferent approach to the problem is to include information

from the social network structure. Socioeconomic status can be

indicated by looking into the range and the composition of the

social network of a person [6]. That is because people who belong

to the same social circles often share common characteristics. This

is known as social network homophily, i.e. the inclination of people

towards developing social ties with similar others [25, 29]. Despite

expected diferences to real life social networks, it has been shown

that online social networks, e.g. Facebook and Twitter, exhibit some

levels of homophily [1, 21]. People that follow each other on Twitter

usually share common topical interests [22, 46]. Previous work

utilised the social network structure to infer user attributes such as

gender and age, personality traits and sentiment [1, 21, 35, 41, 42],

but not any socioeconomic attributes.

In this paper, we focus on using social network information to

infer user’s occupational class and income. Following that direction,

we explore two hypotheses using data from Twitter: (1) a user’s

social network is indicative of their income and occupational class;

and (2) the information from the social network structure and tex-

tual information are complementary. To answer these hypotheses,

we extract information from a user’s social network and encap-

sulate it in user graph embeddings [34, 43]. Graph embeddings

place Twitter users in a vector space where similar users are likely

to be close to each other. The user graph embeddings are treated

as features to train linear and non-linear supervised models for

predicting income and occupational class.

The major contributions of our paper are:
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• To the best of our knowledge, this work is the irst to

introduce neural graph embeddings to predict income and

occupational class on Twitter.

• Our model can be used to infer complex socioeconomic

characteristics of inactive users, exploiting the fact that

user graph embeddings do not rely on any textual infor-

mation.

• We show that a user’s social network and written content,

i.e. tweets, contain complementary information. This is

demonstrated by trainingmodels that combine both feature

sets. Our evaluation on two standard, publicly available

datasets of Twitter users that are labelled with occupational

class and income shows that they outperformmodels using

solely language or solely network information.

• Our proposed model achieves state-of-the-art performance

in these two datasets of income and occupational class

signiicantly outperformingmodels introduced by Preoţiuc-

Pietro et al. [36, 37].

2 USER NEURAL GRAPH EMBEDDINGS

User neural graph embeddings are dense vector representations

that position similar users close together in a high-dimensional Eu-

clidean space. Neural embeddings are popular in natural language

processing for learning vector representations of words [2, 30].

The only inputs required to learn word embedding models are

sequences of words in documents and so the concept can be ex-

tended to network structured data using random walks to create

sequences of vertices. In our case, vertices represent Twitter users

and edges represent a follower/followee relationship, and we treat

edges as if they were undirected. This is justiied because Twitter is

predominantly an interest graph [14] and a large body of research

has shown that the homophily principle applies to users who ex-

press similar interests in social networks [7, 21, 42]. By treating the

graph as undirected we ensure that all users that follow a common

account (indicative of an interest) have a maximum path distance of

two. Vertices are embedded by treating them exactly analogously to

words in the text formulation of the model [34]. Extensions varying

the nature of the random walks have been explored in LINE [43]

and Node2vec [13]. The main justiication for this idea is that social

networks are a form of noisy measurement of a true underlying

network. Random walks have been shown extensively to mitigate

for false edges and infer the presence of missing ones [32].

2.1 Generating User Sequences and Contexts

Given a network of users connected with unweighted edges, ran-

dom walks are generated by repeatedly sampling an integer uni-

formly from {1,2,. . . , Dv } where Dv is the vertex degree and moving

to a new vertex. Concretely, for a random walk starting at vertex

v0 we would sample x ∼ U ({1, 2, . . . ,Dv0 }) where U is a uniform

distribution and Dv0 is the degree of v0. If x = 1 we move to the

lowest indexed neighbour of v0, append that vertex to the random

walk and repeat the process at vertex v1.

2.2 The Skipgram Model on User Sequences

After we have sampled user sequences with random walks, we

can use them to train user embeddings. There are several related

N -dim hidden layer

V -dim input layer

WV×N

W
′

N×V

C × V -dim output layer

xk

hi

[y1j , ..., yCj ]

y1j yCjy2j

Figure 1: The Skipgram model uses two vector representa-

tionsW andW
′ to predict the context vertices from a single

input vertex.

embedding models, i.e. SkipGram and Continuous Bag of Words

[30]. Here we adopt the SkipGram with Negative Sampling (SGNS)

model that is depicted in Figure 1. The igure shows a shallow

neural network with a single hidden layer and two separate vector

representations labelled as W and W’. The input to SGNS is a

sequence of users, which are mapped to (input, context) pairs by

sliding a context window over the input sequences. The input user

representation is in W and the neighbouring (i.e. context) users

share a representation inW’. Users are initially randomly allocated

within the two vector spaces and then the model is trained using

Stochastic Gradient Descent (SGD). The objective function gives

the probability of the context users given the input user, which is

modelled by a softmax. We optimise the negative log likelihood

given by

L = − logp(wo,1, wo,2, wo,3, ..., wo,C |wI ) (1)

= − log

C
∏

c=1

exp v
′T
c vI

∑V
j=1 exp v

′T
j vI

(2)

wherew(.) is a user and v(.) and v
′

(.)
are the input and output vector

representations of that user and C is the context size, typically ten.

In practice, it is expensive to evaluate Equation (2) as the sum in the

denominator is over all of the users in the network. Instead we use

negative sampling, which is a form of Noise Contrastive Estimation

(NCE) [15], to estimate the function by only evaluating a small

number of negative samples in addition to the observed positive

example. The gradient descent update rules for a user pair (wI ,wO )

with vector representations (vI , v
′
O
) are found by applying the

chain rule to Equation (2) and are given by

v
′new
j =

{

v
′old
j − η(σ (v

′T
j vI ) − tj )vi , w j ∈ χ

v
′old
j , otherwise

(3)

where χ = {wO } ∪Wneд . For the output representation and

v
new
I = v

old
I − η

∑

j :w j ∈χ

(σ (v
′T
j vI ) − tj )v

′
j (4)

for the input representation. In these equations tj is an indicator

variable that is one if and only if w j = wO and zero otherwise, η

is the SGD learning rate andWneg is the set of negatively sampled

users. We follow [30] and drawWneg from the distribution of users

in the random walks raised to the power of 3
4 .
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C Title U

1 ℧anagers, Directors and Senior Oicials 461

2 Professional Occupations 1615

3 Associate Profess. and Technical Occupations 950

4 Administrative and Secretarial Occupations 168

5 Skilled Trades Occupations 782

6 Caring, Leisure and Other Service Occup. 270

7 Sales and Customer Service Occupations 56

8 Process, Plant and ℧achine Operatives 192

9 Elementary Occupations 131

Total 4625

Table 1: Distribution of users (U) across occupational classes

(C).

Figure 2: Distribution of users and income. Income is calcu-

lated in British pounds (£).

3 EXPERIMENTAL SETUP

3.1 Data

We experiment using two publicly available datasets that con-

tain Twitter users mapped to their occupational class and income

[36, 37]. The datasets contain the same group of 5,191 users in

total. However, some of the accounts are not considered in our

experiments since we were not able to extract their social network

information. These accounts may have been deleted or become pri-

vate since the release of the datasets. Therefore, we report results

on a subset of the original set of users, i.e. 4,625 users, that are still

publicly available.

Occupational Class. Users are mapped with an occupation using

the Standard Occupation Classiication (SOC) taxonomy devised

by the Oice of National Statistics in the UK, based on skill re-

quirements. The SOC taxonomy has a hierarchical structure with 9

major groups (e.g managers or elementary occupations). Users in

the dataset have been mapped to one of these major groups. Table 1

shows the distribution of users across the nine occupational classes.

The Pearson’s correlation between the original distribution of users

and our subset distribution is 0.93.

Income. The occupational class of users has further been used as

a proxy to infer their income from the Annual Survey of Hours and

Earnings. The income represents the mean yearly earnings for 2013

in British Pounds (GBP) for each occupational class. Figure 2 shows

the distributions of users and income in the dataset. The mean user

income in the original dataset is 32, 509.74, while the mean of the

subset we use in our experiments is 32, 727.92.

3.2 Implementation of the Graph Embeddings

To construct graph embeddings we downloaded the Twitter IDs of

everyone followed by the 4, 625 accounts. This produced a set of

3, 925, 702 users in total. We considered only accounts followed by

at least 10 users, which reduced the number of the unique accounts

to 53, 199. To produce sequences of users we treat the edges of

the Twitter graph as undirected and take 80 step random walks

initiated at each vertex in this network.

The dimensionality of the embedding afects the performance in

predictive tasks.We experimentedwith dimensionalities of 16, 32, 64

and 128 and chose the optimal value following a nested 10-fold cross-

validation approach as in Preoţiuc-Pietro et al. [36, 37]. We found

that the best performing embedding1 dimensionality is 32. The user

embeddings and the code to generate them are available to down-

load from https://github.com/melifluos/income-prediction.

3.3 Predictive Models

Occupational Class. Predicting the occupational class of a user is

deined as a 9-way classiication task. Given a user feature repre-

sentation, our goal is to assign the most probable class label. For

that purpose, we use the graph embeddings as features and a con-

catenation of the graph embeddings with the topics introduced in

[36] to train Logistic Regression (LR) [48], Support Vector ℧achines

(SV℧) [20] and Gaussian Process Classiiers (GPC) [47]. All of the

classiiers2 are trained following the one-vs-all approach3.

Income. Inferring income is deined as a regression task. Given

the user feature representation as input, we try to predict a real

value representing the user’s income. The goal is to minimise the

absolute error between the actual and inferred income.We also com-

pare three popular models: (1) linear regression (LR), (2) Support

Vector Regression (SVR) [12], and (3) Gaussian Process Regression

(GPR) [47].

4 RESULTS AND DISCUSSION

Tables 2 and 3 show the results obtained by the proposed mod-

els using the graph embeddings (Graph) and their combination

(Graph+Topics) as feature representations for users. Note that mod-

els using Topics (i.e. word frequency of user’s tweets in a set of 200

precomputed word clusters) and Temporal Orientation as features

are the baseline methods presented in Preoţiuc-Pietro et al. [36, 37]

and Hasanuzzaman et al. [17].4 To compare against Preoţiuc-Pietro

et al. [36, 37], we retrain these models using the user accounts in

the dataset that are publicly available (see Subsection 3.1).

1During initial experimentation, we noticed that varying the length of the random
walk between 40 and 100 did not substantially afect the quality of the embeddings.
2The Gaussian Process models are trained using GPy (http://github.com/Sheield℧L/
GPy). All the other models are trained using Scikit-learn (http://scikit-learn.org/).
3All the hyperparameters of the baseline predictive models using Topics as features
are identical to the models presented in [36, 37]. We tune the hyperparameters of
our proposed models (Graph and Topics+Graph) performing a nested 10-fold cross-
validation, identical to the data splits used in previous work.
4Replicating the method of Hasanuzzaman et al. [17] was not possible, hence we report
results only for income from their paper.

https://github.com/melifluos/income-prediction
http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
http://scikit-learn.org/
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Occupational Class

Method Accuracy (%)

℧ajority Class 35.00

Preoţiuc-Pietro et al. [36]

LR-Topics 46.57

SV℧-Topics 49.47

GP-Topics 49.64

Ours

LR-Graph 46.24

SV℧-Graph 50.14

GP-Graph 50.44

LR-Graph+Topics 48.84

SV℧-Graph+Topics 52.002

GP-Graph+Topics 51.462

Table 2: Accuracy of models in predicting user occupational

class.† denotes statistical signiicant diferent (t-test, p <

0.01) method to GP-Topics.

Our best performing model using graph based features (Graph)

achieves an accuracy of 50.44% in the occupational classiication

task. In income prediction, the ℧AE is 9, 048 and Pearson’s correla-

tion is 0.63. This implies that graph embeddings carry meaningful

information about user’s socioeconomic attributes making them

an efective user representation. The graph embedding features

perform consistently better than the textual features (Topics) for

the majority of the predictive models on both tasks except for the

LR model. This conirms our irst hypothesis that information from

the network structure of a user is indicative of socioeconomic at-

tributes. Figure 3 shows a 2-d t-SNE plot of the best performing

user embedding, where we observe many distinct ªcommunitiesº of

low and high income users that appear together. This conirms our

assumption about the homophilic nature of the Twitter network.

The combination of user embeddings and topics (Graph+Topics)

outperforms either feature set used individually. ℧ore speciically,

our GPC-Graph+Topics model signiicantly outperforms (t-test, p <

0.01) the previous state-of-the-art method,GPC-Topics introduced in

Preoţiuc-Pietro et al. [36] on occupational classiication. ℧oreover,

our SVR-Graph+Topics model signiicantly outperforms (p < 0.001)

the best baseline method, i.e. SVM+Topics. This conirms our second

hypothesis that network structure and linguistic information are

complementary.

The above indings shed light on the homophilic behaviour of

users on Twitter. That might have further implications on user be-

haviour when selecting friends and forming social networks online.

Our results suggest that a stronger bias might exist towards select-

ing friends with common socioeconomic backgrounds in contrast

to common topics of interest and that needs to be explored further.

Non-linear models (i.e. SV℧, SVR, GPC, GPR) achieve better

results in inferring user socioeconomic attributes than linear (LR)

models. While in the occupational classiication task our best per-

forming model is GPC, the best model in income inference is the

SVR instead of GPR. This implies that model selection is important

in these tasks.

An analysis of the errors in the occupational classiication task

shows that most misclassiications come from adjacent classes.

For example, users in classes 1, 3 and 4 are mistakenly classiied

Income

Method MAE (£) ρ

Preoţiuc-Pietro et al. [37]

LR-Topics 10573 .50

SVR-Topics 9528 .59

GPR-Topics 9883 .60

Hasanuzzaman et al. [17]

LR-Temporal Or. 10850 .45

GP-Temporal Or. 10235 .51

Ours

LR-Graph 10811 .50

SV℧-Graph 90483 .62

GP-Graph 9532 .63

LR-Graph+Topics 10326 .54

SV℧-Graph+Topics 90723 .64

GP-Graph+Topics 9488 .64

Table 3: Mean Absolute Error (MAE) and Pearson’s corre-

lation coeicient (ρ) between actual and predicted income.

‡ denotes statistical signiicant diferent (t-test, p < 0.001)

method to SVM-Topics.

15 10 5 0 5 10 15
x

20
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5

0
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Figure 3: A 2-d t-SNE plot of the best performing user em-

bedding (32D). Black and white represent users with above

and below median income respectively.

as class 2. This happens because adjacent classes contain related

occupations. However, we notice less dispersion of errors caused by

other classes misclassiied as class 2 whenwe use graph embeddings

and the combination of graph embeddings and topics. This might be

explained by the homophily of users’ networks captured by graph

embeddings.

5 CONCLUSIONS

We presented a method to reliably predict user occupational class

and income on Twitter. Information from a user’s social network is

represented by graph embeddings [34, 43] and is used to train pre-

dictive models. To the best of our knowledge, this work is the irst

to introduce graph embeddings for automatically inferring socioe-

conomic characteristics. We also demonstrated that the information

extracted from the user’s social network and their language use are

complementary. That combination signiicantly improves predictive

performance. Finally, our proposed models achieve state-of-the-art

results in two standard datasets of income and occupational class,

signiicantly outperforming previous methods.
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