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Scalable Bayesian inference for coupled
hidden Markov and semi-Markov models

Panayiota Touloupou, Bärbel Finkenstädt Rand, and Simon E. F. Spencer

Department of Statistics, University of Warwick

Abstract

Bayesian inference for coupled hidden Markov models frequently relies on data
augmentation techniques for imputation of the hidden state processes. Considerable
progress has been made on developing such techniques, mainly using Markov chain
Monte Carlo (MCMC) methods. However, as the dimensionality and complexity of
the hidden processes increase some of these methods become inefficient, either be-
cause they produce MCMC chains with high autocorrelation or because they become
computationally intractable. Motivated by this fact we developed a novel MCMC
algorithm, which is a modification of the forward filtering backward sampling algo-
rithm, that achieves a good balance between computation and mixing properties, and
thus can be used to analyse models with large numbers of hidden chains. Even though
our approach is developed under the assumption of a Markovian model, we show how
this assumption can be relaxed leading to minor modifications in the algorithm. Our
approach is particularly well suited to epidemic models, where the hidden Markov
chains represent the infection status of an individual through time. The performance
of our method is assessed on simulated data on epidemic models for the spread of
Escherichia coli O157:H7 in cattle.

Keywords: Coupled hidden Markov model; Data augmentation; Epidemics; Forward-backward
algorithm; Markov chain Monte Carlo methods.

1 Introduction

Hidden Markov models (HMMs) are among the most widely used approaches for modelling

time series data, when it can be assumed that the observed data are indicative of some

underlying hidden process. In the basic HMM, a single variable represents the state of

the system at any time. However, many interesting systems are composed of multiple

interacting processes, and various extended HMMs have been proposed to solve coupled,
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multiple chain problems. These extensions typically factor the HMM state into a collection

of state variables. We focus on coupled hidden Markov models (CHMMs; Brand, 1997) to

capture the interactions, where the current state of a chain depends on the previous state

of all the chains. This structure implies that the state space of the complete hidden process

grows exponentially with respect to the number of chains and thus exact inference quickly

becomes computationally intractable.

Epidemiological data from infectious disease studies are often gathered longitudinally,

where the same group of individuals are sampled through time. Inferences for this type of

data are complicated by the fact that the data are usually incomplete, in the sense that

the times of acquiring and clearing infection are not directly observed. Coupled hidden

Markov models provide a natural way to model the transmission dynamics of an infectious

disease, where each chain represents the hidden infection status of an individual and the

coupling between chains accounts for infections. Another advantage of this approach is the

ability to account for imperfect diagnostic tests, by assuming that the observed data are

noisy measurements of a true hidden epidemic process.

The inference problem for CHMMs usually includes both hidden state and parameter es-

timation. Early literature on the topic focused on maximum likelihood estimation, achieved

using an EM algorithm. Several variations of the CHMM were proposed (Brand et al., 1997;

Saul and Jordan, 1999; Zhong and Ghosh, 2002) for which inference using this approach

becomes more tractable. The second class of methods consists of MCMC approaches. One

considerable challenge concerns the imputation of the hidden states conditional on the ob-

served data and model parameters, and many techniques have been proposed. The most

popular approach to exact Monte Carlo inference is achieved by converting the CHMM

into an equivalent single HMM and applying the standard Forward Filtering Backward

Sampling (FFBS) algorithm (Carter and Kohn, 1994; Chib, 1996). However, even though

implementation of FFBS is quite efficient for HMMs with a moderately large number of

states, it can be computationally prohibitive for CHMMs with only a small number of

chains. As a result, several alternative methods have been suggested including conditional

single-site (Dong et al., 2012) or block updates designed specifically for epidemic models

(Spencer et al., 2015). While these methods are computationally less demanding than the
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FFBS, they typically produce highly correlated samples.

In this paper we develop two novel algorithms for updating the hidden chains within

a Markov chain Monte Carlo (MCMC) algorithm. In particular, we propose a Gibbs

sampling algorithm for the CHMM which is based on simulating from the full conditional

distribution of a single chain, and a Metropolis-Hastings algorithm where the proposal is an

approximation of the full conditional distribution. Section 3 describes the new algorithms

and compares them with existing literature. In Section 4 we put CHMMs in the context

of modelling the spread of infectious diseases, illustrating the efficiency and computational

requirements of each algorithm using simulation studies. We subsequently describe how

the proposed method can be extended to coupled hidden semi-Markov models (CHSMMs),

where the hidden process persists in the same state for some non-Markov duration. In

Section 5 we conclude with some discussion and possible extensions.

2 Coupled hidden Markov models and notation

A coupled hidden Markov model is a collection of many HMMs, which are coupled through

some temporal dependency structure of the hidden states. There are two conditional inde-

pendence assumptions made about the observations and states. As in HMMs, in the CHMM

each observation is independent of all other states and observations given the value of the

hidden state. The difference with HMMs is that in the CHMM one hidden state is not only

dependent on its own previous state, but also on the previous state of all other chains. The

latter dependence constitutes the interaction between the multiple chains.

The coupling structure of a CHMM is shown in Figure 1. More formally, we use X
[c]
t

to denote the hidden state variable of chain c ∈ {1, 2, . . . , C} at time t ∈ {1, 2 . . . , T}

with a finite set of possible states. For simplicity, we assume that all chains share the

same set of possible states, noting that the method can be trivially extended to the more

general case where chains do not share the same state space. Therefore, we assume that

X
[c]
t ∈ Ω = {s1, s2, . . . , sN}, N ≥ 1. We consider non-homogeneous Markov chains in which

the transition probabilities depend on time given by:

P
(
X

[c]
t = j | X [c]

t−1 = i, X
[−c]
t−1 , θ

)
, (1)
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for all i, j ∈ Ω, where X
[−c]
t−1 denotes

(
X

[1]
t−1, X

[2]
t−1, . . . , X

[C]
t−1

)
with X

[c]
t−1 removed and θ is

the parameter vector of the CHMM model. To fully define the distribution of the hidden

states, an initial distribution for X
[1:C]
1 = (X

[1]
1 , . . . , X

[C]
1 ) must also be specified.

The state of each chain is not directly observable. As in HMMs, an observation Y
[c]
t is

associated with the unobserved state X
[c]
t . The relation between X

[c]
t and Y

[c]
t will differ

depending on the application and Y
[c]
t may be either discrete or continuous. Conditional

on θ and X
[c]
t = i denote the density or probability mass function of Y

[c]
t by

π
(
Y

[c]
t = y

[c]
t | X

[c]
t = i, θ

)
= fi

(
y

[c]
t | θ

)
, i ∈ Ω. (2)

If there is no observation at time t for chain c then y
[c]
t is empty due to missing data and

we set fi

(
y

[c]
t | θ

)
= 1.

x
[1]
t−1 x

[1]
t x

[1]
t+1

y
[1]
t

x
[2]
t−1 x

[2]
t x

[2]
t+1

y
[2]
t

x
[3]
t−1 x

[3]
t x

[3]
t+1

y
[3]
t

x
[1]
t−2

y
[1]
t−2

x
[1]
t+2 x

[1]
t+3

y
[1]
t+3

x
[2]
t−2

y
[2]
t−2

x
[2]
t+2 x

[2]
t+3

y
[2]
t+3

x
[3]
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Figure 1: An example of a coupled hidden Markov model represented as a dynamic Bayesian

network, with three hidden chains (C = 3) and possibly several missing observations (here

at t−1, t+1, t+2). Circle nodes denote hidden states, square nodes denote observations, and

the arrows between nodes reflect the probabilistic dependencies between random variables.
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3 Bayesian analysis and MCMC methods

3.1 Overview

One considerable challenge on estimating CHMMs is that the likelihood function of the

observed data given the model parameters is computationally intractable for even moderate

numbers of states or interacting chains. This is because the likelihood involves summation

over all possible configurations of the hidden state variables, where the dependencies within

the state process make this calculation highly involved. One of the most popular methods

adopted to overcome this issue is the use of data augmentation, in which the hidden states

are treated as additional parameters and are imputed from the data. In the Bayesian

framework this is facilitated by the use of MCMC algorithms, which enable the imputation

of the hidden states and parameter estimation to be performed simultaneously.

For a prior π(θ), this approach yields a joint posterior density for the unobserved states

and the model parameters that is known up to proportionality,

π
(
θ,X

[1:C]
1:T | Y

[1:C]
1:T

)
∝ π(θ)P

(
X

[1:C]
1 | θ

) ( T∏
t=2

C∏
c=1

P
(
X

[c]
t | X

[c]
t−1, X

[−c]
t−1 , θ

))

×

(
T∏
t=1

C∏
c=1

π
(
Y

[c]
t | X

[c]
t , θ

))
, (3)

where we adopt the following conventions X
[1:C]
t =

(
X

[1]
t , X

[2]
t , . . . , X

[C]
t

)
and X

[1:C]
1:t =(

X
[1:C]
1 ,X

[1:C]
2 , . . . ,X

[1:C]
t

)
with similar notation applied to Y

[1:C]
t and Y

[1:C]
1:t .

Samples from the joint posterior of the model parameters and the hidden states are

generated by iteratively alternating between updating θ, conditional on the current values

of X
[1:C]
1:T , and X

[1:C]
1:T conditional on θ. The main interest in this paper lies in the update

of the hidden process which is the most computational demanding part. Before discussing

the details of our new approaches in Section 3.3, we first briefly describe the standard

algorithms for the CHMMs within this framework.

3.2 Existing methods

The most popular approach to exact Monte Carlo inference can be achieved by converting

the CHMM into an equivalent HMM withNC states, where X
[1:C]
t =

(
X

[1]
t , X

[2]
t , . . . , X

[C]
t

)
∈
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ΩC = {s1, s2, . . . , sN}C denotes the state of the model at time t, as shown in Figure 2(a). In

this case, the whole hidden state process can be updated from its full conditional, denoted

by π
(
X

[1:C]
1:T | Y

[1:C]
1:T ,θ

)
, in a single block by applying the standard forward filtering back-

ward sampling algorithm (Carter and Kohn, 1994; Chib, 1996). This algorithm is based

upon a forward recursion which calculates the filtered probabilities P
(
X

[1:C]
t | Y[1:C]

1:t ,θ
)

for

t = 1, 2, . . . , T . This is followed by a backward simulation step that first generates X
[1:C]
T

from P
(
X

[1:C]
T | Y[1:C]

1:T ,θ
)

and then simulates the remaining X
[1:C]
t ’s by progressing back-

wards, simulating in turn X
[1:C]
t from P

(
X

[1:C]
t | X[1:C]

t+1 ,Y
[1:C]
1:t ,θ

)
, for t = T−1, T−2, . . . , 1.

We refer to this method as the fullFFBS.

The computational complexity of the fullFFBS algorithm is of the order O(TN2C).

Thus, particularly for a reasonably large number of chains or possible states, this method

will be computationally demanding. As a result, several alternative methods have been

proposed to solve the problem. The simplest approach to update the hidden states is to

draw each one of the C × T state variables from its full conditional distribution. Such

approach is referred to as single-site updates (see for example, Dong et al. 2012). Thus we

need to calculate C × T variables and each one requires O(N) time to compute giving an

overall complexity of O(TNC). Despite being easy to implement, it has been shown by

Scott (2002) that the single-site update algorithm can lead to extremely slow mixing in the

resulting MCMC chains, due the high temporal dependence in the hidden state process.

An alternative method developed specifically for epidemic models was proposed by

Spencer et al. (2015), which changes blocks of state components within a single chain,

based on their current values. This method is a modification of O’Neill and Roberts (1999)

and Gibson and Renshaw (1998), applied to discrete time models, and builds on the fact

that individuals (represented by a single chain) remain in the same epidemic state for

long periods. Briefly, for each chain successively one block of states r is chosen, and then

one of three possible changes is proposed: Add, Remove or Move. In an “Add” step, a

period during which the individual does not change their state is identified and a subset of

this period is proposed to have an alternative status. Likewise a “Remove” step proposes

an alternative state for an entire episode in which the status is unchanged, joining two

neighbouring periods. A “Move” step moves an endpoint of such a block. Each of these
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changes proposes a new vector r∗, and the change is accepted with the usual Metropolis-

Hastings acceptance probability.

The efficiency of the algorithm depends on the size of the blocks that are proposed to

be updated. The main advantage of this method is that the computational requirement is

very small since most of the hidden states are not updated. However, the downside is that

this results in very slow mixing and requires many iterations in order to obtain sufficiently

independent samples.

Assuming a sparse transition matrix is one way to speed up the FFBS algorithm, and

such a method is proposed by Sherlock et al. (2013), where inference for each individual

chain is performed conditioning on the hidden state vectors in all other chains. In this

work, the authors impose a structure on each chain’s transition matrix with transition

probabilities depending on covariates through logistic regression. These covariates include

the states of the other chains and other external factors. The approach presented here

is similar to the one in Sherlock et al. (2013), however their work requires the structure

of transition matrices to be estimated or known in advance. In contrast, our approach

explicitly takes into account the interaction between chains without imposing any structure

on the transition matrix.

3.3 Proposed methods

3.3.1 Individual FFBS Gibbs sampler

We propose a novel extension of the FFBS algorithm, where the hidden states are sampled

individually per chain conditionally on the hidden states of the remaining chains, as opposed

to the standard FFBS algorithm where sampling is done for all chains jointly. Under the

conditional independence assumptions of our model, the full conditional distribution of

X
[c]
1:T , for each c = 1, 2, . . . , C, can be factorised as:

P
(
X

[c]
1:T | X

[−c]
1:T ,Y

[1:C]
1:T ,θ

)
= P

(
X

[c]
T | X

[−c]
1:T ,Y

[1:C]
1:T ,θ

) T−1∏
t=1

P
(
X

[c]
t | X

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)
,

where Bayes Theorem implies:

P
(
X

[c]
t = x

[c]
t | X

[c]
t+1 = x

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)
7



∝ P
(
X

[c]
t+1 = x

[c]
t+1 | X

[c]
t = x

[c]
t ,X

[−c]
t ,θ

)
P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)
, (4)

since the states of all chains at time t+ 1 depend only on states at time t.

The rest of the calculation is concerned with determining the second mass function

in Equation (4), which can be determined recursively for all t starting with t = 1. We

refer to this term as the modified conditional filtered probability. The forward recursion is

initialised at t = 1 with:

P
(
X

[c]
1 = x

[c]
1 | X

[−c]
1:2 ,Y

[c]
1 ,θ

)
∝ P

(
X

[c]
1 = x

[c]
1 | θ

)
f
x
[c]
1

(
y

[c]
1 | θ

)[∏
c′ 6=c

P
(
X

[c′]
2 = x

[c′]
2 | X

[c′]
1 = x

[c′]
1 , X

[−c′]
1 ,θ

)]
︸ ︷︷ ︸

Transition probabilities of the
remaining chains at time t = 2

. (5)

Since Ω is finite, the normalizing constant is given by the sum of the terms in the right

hand side of Equation (5). Then, for t = 2, 3, . . . , T − 1, we repeat the following two steps:

Step 1. Compute the one-step ahead modified conditional predictive probabilities:

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)
=
∑
i∈Ω

P
(
X

[c]
t = x

[c]
t | X

[c]
t−1 = i,X

[−c]
t−1 ,θ

)
P
(
X

[c]
t−1 = i | X[−c]

1:t ,Y
[c]
1:t−1,θ

)
. (6)

Step 2. Compute the modified conditional filtered probabilities:

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1 = x

[−c]
1:t+1,Y

[c]
1:t,θ

)
∝ P

(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)
f
x
[c]
t

(
y

[c]
t | θ

)
×

[∏
c′ 6=c

P
(
X

[c′]
t+1 = x

[c′]
t+1 | X

[c′]
t = x

[c′]
t , X

[−c′]
t = x

[−c′]
t ,θ

)]
︸ ︷︷ ︸

Transition probabilities of the
remaining chains at time t+ 1

, (7)

where computing the normalising constant π(Y
[c]
t ,X

[−c]
t+1 | X

[−c]
1:t ,Y

[c]
1:t−1,θ) requires us to

sum the right hand side of (7) over the N possible values of X
[c]
t . Note that the last term

in (7) is calculated given X
[c]
t and occurs due to X

[c]
t connecting to X

[c′]
t+1 in the graph of

Figure 2(b), for c′ 6= c.
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The forward recursion is terminated at t = T with:

P
(
X

[c]
T = x

[c]
T | X

[−c]
1:T ,Y

[c]
1:T ,θ

)
=

P
(
X

[c]
T = x

[c]
T | X

[−c]
1:T ,Y

[c]
1:T−1,θ

)
f
x
[c]
T

(
y

[c]
T | θ

)
∑
i∈Ω

P
(
X

[c]
T = i | X[−c]

1:T ,Y
[c]
1:T−1,θ

)
fi

(
y

[c]
T | θ

) . (8)

Once the filtered probabilities have been calculated and stored in a forward sweep, the

hidden states for a given chain c can be simulated in a backward sweep, starting with X
[c]
T

from the modified filtered probability in Equation (8). Then for t = T − 1, T − 2, . . . , 1 we

iteratively sample a value for X
[c]
t given our simulated value for X

[c]
t+1, from:

P
(
X

[c]
t = x

[c]
t | X

[c]
t+1 = x

[c]
t+1,X

[−c]
1:t+1,Y

[c]
1:t,θ

)
=

P
(
X

[c]
t+1 = x

[c]
t+1 | X

[c]
t = x

[c]
t ,X

[−c]
t ,θ

)
P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)
∑
i∈Ω

P
(
X

[c]
t+1 = x

[c]
t+1 | X

[c]
t = i,X

[−c]
t ,θ

)
P
(
X

[c]
t = i | X[−c]

1:t+1,Y
[c]
1:t,θ

) .
This forward-backward procedure provides the full conditional distribution of the hidden

Markov chain c, denoted by P
(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
, in closed form. Therefore we can

use a Gibbs sampler where each chain is updated conditional on the current values of

the remaining chains, the model parameters and the observed data. The algorithm is

presented in Algorithm 1 and Figure 2(b) illustrates our proposed method, termed as

iFFBS (individual FFBS) when the hidden states of chain c are updated.

In general, the scalability of the iFFBS algorithm is dictated by Equations (6) and (7).

In Equation (6) a sum of N terms is calculated N times for each timepoint and individual,

giving a scaling of O(CN2T ). In Equation (7), a product with C − 1 terms is evaluated N

times. Once all C individuals have been updated within the MCMC, this equation becomes

quadratic in C to evaluate and so the iFFBS algorithm scales like O(C2N2T ). However

in most epidemic examples the product in Equation (7) can be rewritten as product over

the N2 transition probabilities (e.g. probability of infection, recovery etc.), raised to the

power of the number of times the transition occurs. This is evaluated for each of the N

possibilities for x
[c]
t . For such models, ie. models with joint transition probabilities that

can be written as functions of sufficient statistics (which can be calculated initially and

updated in O(1) time as each individual is updated), the iFFBS algorithm becomes linear

in the number of individuals C. In this case the iFFBS algorithm scales as O(CN3T ).
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Algorithm 1: MCMC algorithm for the Markov model with iFFBS method.

1 Initialise: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ P

(
X

[1:C]
1:T | θ

)
;

2 for j = 1, 2, . . . , J do

3 for c = 1, 2, . . . , C do

4 Draw X
[c]
1:T ∼ π

(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
with iFFBS;

5 end

6 Perform suitable MCMC update to sample θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

7 end

3.3.2 iFFBS Metropolis-Hastings sampler

An important difference between the FFBS and iFFBS methods is that evaluating the

filtered probabilities of chain c at time t < T for iFFBS involves the calculation of the

transition probabilities of the remaining chains calculated at the next time point. Note

that if these extra terms are omitted, then the iFFBS reduces to the standard FFBS

applied to a single chain. This latter approximation was used by Sherlock et al. (2013)

for modelling interactions of different diseases and by Fintzi et al. (2017) as part of an

algorithm for updating the infection status of individuals in a continuous time epidemic

model. We call this method the uncorrected-iFFBS because such an approximation can

be made exact by introducing an extra Metropolis-Hastings (MH) step to correct for the

fact that the hidden states are not sampled from their full conditionals. Note that failing

to include the MH step may lead to poor behaviour of the resulting MCMC chains; an

example is presented in Supplementary Material A.

Motivated by epidemic examples, where the within chain dependence is much stronger

than the between chain dependence, we propose using the uncorrected-FFBS applied to a

single chain as a proposal distribution within a MH algorithm. More precisely we assume

in Equation (7) that for all c′ 6= c, P(X
[c′]
t+1 | X

[1:C]
t ,θ) ≈ P(X

[c′]
t+1 | X

[−c]
t ,θ). This assumption

implies the Bayesian network shown in Figure 2(c). Given the assumption of independence,

the product terms in Equations (5) and (7) cancel out, and so the modified conditional
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filtered probabilities in the proposal distribution reduce to:

Q
(
X

[c]
1 = x

[c]
1 | X

[−c]
1:2 ,Y

[c]
1 ,θ

)
=

P
(
X

[c]
1 = x

[c]
1 | θ

)
f
x
[c]
1

(
y

[c]
1 | θ

)
∑
i∈Ω

P
(
X

[c]
1 = i | θ

)
fi

(
y

[c]
1 | θ

) ,
for the initial state and

Q
(
X

[c]
t = x

[c]
t | X

[−c]
1:t+1,Y

[c]
1:t,θ

)
=

P
(
X

[c]
t = x

[c]
t | X

[−c]
1:t ,Y

[c]
1:t−1,θ

)
f
x
[c]
t

(
y

[c]
t | θ

)
∑
i∈Ω

P
(
X

[c]
t = i | X[−c]

1:t ,Y
[c]
1:t−1,θ

)
fi

(
y

[c]
t | θ

) .
However, since we overlooked some between-chain dependencies our proposal Q is an ap-

proximation of the true full conditional. Therefore, we need to correct for the error of

the approximation with a MH acceptance step. The detailed algorithm can be found in

Algorithm 2. We refer to this proposed algorithm as MHiFFBS.
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(a) fullFFBS.
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(b) iFFBS.
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(c) MHiFFBS.

Figure 2: Strategies for simulating the hidden states in a coupled hidden Markov model: (a)

standard FFBS algorithm where sampling is done for all chains jointly, (b) proposed iFFBS

algorithm where the hidden states are sampled individually per chain conditionally on the

rest, and (c) proposed MHiFFBS algorithm where sampling is also done individually per

chain conditionally on the hidden states of the remaining chains, however a MH acceptance

step is introduced to correct for the fact that we deleted some between-chain arrows.
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Algorithm 2: MCMC algorithm for the Markov model with MHiFFBS method.

1 Initialize: Draw θ ∼ π(θ) and generate X
[1:C]
1:T ∼ P

(
X

[1:C]
1:T | θ

)
;

2 for j = 1, 2, . . . , J do

3 for c = 1, 2, . . . , C do

4 Propose X
[c] ∗
1:T ∼ Q

(
· | Y[c]

1:T ,X
[−c]
1:T ,θ

)
;

5 Compute

a = min

1,
Q
(
X

[c]
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

)
Q
(
X

[c] ∗
1:T | Y

[c]
1:T ,X

[−c]
1:T ,θ

) × π
(
X

[c] ∗
1:T ,X

[−c]
1:T ,θ | Y

[1:C]
1:T

)
π
(
X

[c]
1:T ,X

[−c]
1:T ,θ | Y

[1:C]
1:T

)
;

6 Draw u ∼ Uniform(0,1);

7 if u ≤ a then

8 Set X
[c]
1:T = X

[c] ∗
1:T ;

9 else

10 Set X
[c]
1:T = X

[c]
1:T ;

11 end

12 end

13 Perform suitable MCMC update to sample θ ∼ π
(
θ | Y[1:C]

1:T ,X
[1:C]
1:T

)
;

14 end

4 Analysis of longitudinal epidemic data

4.1 Epidemic model for Escherichia coli O157:H7

In this section, we demonstrate how CHMMs can be embedded within an individual-based

epidemic model for the spread of infection among a population of individuals partitioned

into groups. The example is based on a longitudinal study of Escherichia coli (E. coli)

O157:H7 in cattle assigned into pens of the same size (Cobbold et al., 2007). We employ a

discrete-time Susceptible-Infected-Susceptible (SIS) model (Anderson and May, 1991) for

the spread of infection in a pen, where each individual in the population is assumed to

belong to one of two states, susceptible or infected, for each day in the study.

More precisely, let X
[c, p]
t ∈ Ω = {0, 1} denote the true infection status of individual

12



c ∈ {1, 2, . . . , C} in pen p ∈ {1, 2, . . . , P} at day t ∈ T = {1, 2, . . . , T}, where X
[c, p]
t = 0

represents the susceptible state, X
[c, p]
t = 1 the infected state and T is the last day of the

study. The transition probabilities for individual c in pen p are defined as:

P
(
X

[c, p]
t = x

[c, p]
t | X[1:C, p]

t−1 = x
[1:C, p]
t−1 , α, β,m

)

=



1− exp
{
− α− β

C∑
c′=1

x
[c′, p]
t−1

}
if x

[c, p]
t−1 = 0 and x

[c, p]
t = 1,

exp
{
− α− β

C∑
c′=1

x
[c′, p]
t−1

}
if x

[c, p]
t−1 = 0 and x

[c, p]
t = 0,

m− 1

m
if x

[c, p]
t−1 = 1 and x

[c, p]
t = 1,

1

m
if x

[c, p]
t−1 = 1 and x

[c, p]
t = 0,

(9)

for t = 2, 3, . . . , T . The parameter m ≥ 1 denotes the mean infectious period and param-

eters α > 0 and β > 0 denote the external and within-pen infection rates respectively,

implying that pens are independent of one another. A generalisation of the model that

allows for transmission between pens is considered in Touloupou (2016). The first and last

case in Equation (9) correspond to the infection (0 7→ 1) and clearance (1 7→ 0) prob-

abilities, respectively. This parameterisation defines a non-homogeneous Markov model

since it allows the probability of infection to depend on a sufficient statistic of the previous

state of all individuals, namely the number of infected individuals. Finally, we assume

that at the beginning of the study each animal is infected independently with probability

P
(
X

[c, p]
1 = 1 | ν

)
= ν.

The underlying infection process is not directly observed. Instead, for each individual

we obtain the results of two diagnostic tests, taken at pre-specified times. Let O ⊆ T

denote the set of pre-scheduled observations times. Let Y
[c, p]
t =

(
R

[c, p]
t , F

[c, p]
t

)
be the ob-

served results, possibly misclassified, of the diagnostic tests, R
[c, p]
t for Recto-Anal Mucosal

Swab (RAMS) and F
[c, p]
t for faecal sample, where 1 denotes a positive and 0 a negative test

result. Following Spencer et al. (2015), we assume that the observed test results are condi-

tionally independent Bernoulli variables, with the success probabilities θRX
[c,p]
t and θFX

[c,p]
t

given an individual with infection status X
[c,p]
t . Here, θR = P

(
R

[c, p]
t = 1 | X [c, p]

t = 1
)

is
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the sensitivity of the RAMS test and θF is the sensitivity of the faecal test. Both test

specificities are assumed to be 100%.

In the remainder of this Section we perform a series of simulations to assess the efficiency

of existing and proposed methods for updating the hidden infection states. Particular focus

is given on how these methods are affected by dimensionality that is, when the total number

of individuals in the population and the study period increase. In Section 4.2 we apply

the methods to data simulated from the Markov model in Equation (9) with a Geometric

distribution for the infection period (see also Supplementary Material A). In Section 4.3

we relax the Markovian assumption by allowing the duration to have a Negative Binomial

distribution. This leads to a semi-Markov model in which the duration of infection depends

on how long an individual has been infected. Finally, in Section 4.4 the performance of our

methods is assessed on the real E. coli O157 dataset, considering both Markov and semi-

Markov models. The simulations, analyses, and graphics rely upon the foreach (Microsoft

and Weston, 2017), doParallel (Corporation and Weston, 2018), ggplot2 (Wickham, 2016)

and tools available in the standard R distribution (R Core Team, 2016).

4.2 Simulation studies: Markov model

The initial simulated dataset consists of observations from P = 20 pens, each containing

C = 8 cattle and the study period is set to T = 99 days as in the real E. coli O157:H7

dataset (Cobbold et al., 2007). First, we generated the hidden infection states according to

the model defined in Equation (9), with an external transmission rate α = 0.009, within-pen

transmission rate β = 0.01, mean infectious period m = 9 days and initial probability of

infection ν = 0.1. We then generate RAMS and faecal tests from the population according

to the actual sampling frame employed in the real dataset; sampling on average twice per

week. Finally, the RAMS and faecal test sensitivities are assumed to be θR = 0.8 and

θF = 0.5, respectively. These parameter values are motivated by the results obtained by

Spencer et al. (2015) who previously analysed the same data.

We then estimated the parameters in the Markov model using the following vague prior

distributions: α, β ∼ Ga(1,1), m − 1 ∼ Ga(0.01, 0.01) and ν, θR, θF ∼ Beta(1,1). We

drew samples from the joint posterior of the hidden states and model parameters with the
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MCMC scheme described in Section 3.1, using each method for updating the hidden states.

The model parameters ν, θR and θF were updated using Gibbs steps and the remaining

parameters were updated jointly using Hamiltonian Monte Carlo (HMC) (Neal, 2011), for

details see Supplementary Material B. For each method, we ran the algorithm for 11,000

iterations, removing the first 1,000 as a burn-in. Each procedure was repeated 200 times

to provide an empirical Monte Carlo estimate of the variation in each approach.

Figure C.1 in Supplementary Material C shows the estimated total number of infected

individuals over time, along with 95% credible intervals, as obtained from the 200 runs.

The five methods provide almost identical results and all of them contain the true total

number of infected individuals within the credible intervals. Therefore, a comparison of the

different approaches can be based on the mixing properties and the required computational

effort of each. Mixing can be measured in terms of autocorrelation of the Markov chains

whereas the computational effort is given by the total time required for one iteration of the

MCMC. In the following results we chose our summary statistic to be the total infection

pressure TIP =
∑P

p=1

∑C
c=1

∑T
t=1 x

[c, p]
t , in order capture the information over all T periods

of the study.

In Figure 3(a) we see the autocorrelation function (ACF) for TIP , averaged across

the 200 different runs in each method. We see that the fullFFBS, iFFBS and MHiFFBS

methods have very good mixing properties since the autocorrelation function drops rapidly.

In contrast, the block proposals and single-site updates produced highly correlated samples

with the ACF being greater than zero even after 30 iterations of the MCMC. For the block

proposals, slow mixing was due to only a few states being updated at each iteration of

the MCMC; for the single-site method slow mixing was caused by the strong correlation

between hidden states. However the block proposal method was the fastest, as can be seen

in Figure 3(b). The computationally most demanding method was fullFFBS due to the

summation over all of the 28 possible states.

Computation efficiency is a combination of mixing and computation time. We use the

relative speed which is defined as follows. First, for each method we calculate the time

normalised effective sample size (tESS), taken as the ratio of effective sample size (ESS)

from 10,000 MCMC iterations and the CPU time required per iteration. Then, we divide
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Figure 3: (a) Autocorrelation function of TIP and (b) CPU time per iteration for the

Markov epidemic model. ACF plots in the left panel are the average across 200 replicates.

Quantiles in the right panel are obtained from the same 200 runs. These plots show that

the fullFFBS, iFFBS and MHiFFBS methods have very good mixing properties but are

more computationally expensive then the remaing methods.

the tESS of each method with the worst observed tESS to obtain the relative speed. Hence,

the relative speed has a minimum value of 1 which corresponds to the computationally

least efficient method, and any number bigger than 1 reflects the gains using a particular

method compared to the worst. In Figure 4(a) we show the relative speed of each method

as obtained from the 200 different runs. We observe that among competing methods, the

iFFBS method best combines the desired properties of mixing and computational speed,

followed by the fullFFBS and the MHiFFBS methods. Using block proposals was the least

efficient method as it had the smallest relative speed in all 200 replicates. This finding is

confirmed in Figure 4(b) where we show the ACF per second.

In the next set of simulations we study how computation time is affected as we vary the

total population size by increasing the cattle size per pen. We use our initial simulation

settings and generate one dataset for different numbers of Markov chains, C = 3, 4, . . . , 11.

Figure 5 illustrates the time taken per iteration of the five different methods as the number

of animals in a pen varies. We see that for the fullFFBS the computational time grows
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Figure 4: (a) Relative speed and (b) ACF per second for TIP for the Markov epidemic

model, based on 200 replications. We observe that the iFFBS method outperforms the

remaining methods when we consider the relative speed as a measure of performance.

exponentially with C. The other methods are only affected linearly when C increases. As

before, we assess computational efficiency with the relative speed. Results are summarised

in Table C.1(a) in Supplementary Material C. Note that despite being the computationally

most efficient for small C, the performance of fullFFBS drops with C and eventually for

C = 11 it has the lowest relative speed. For C > 6, the iFFBS method outperforms the

remaining methods. In order to study the influence of the study length on the performance

of each method, we repeat our simulation study for different values of T . Results are given

in Table C.1(b). Again, the iFFBS method is the one that scores higher in terms of relative

speed, followed in order by fullFFBS, MHiFFBS, single-site and block proposals.

In our simulations so far we have evaluated the performance of the five methods for data

of moderate dimensionality; however, many applications involve datasets with substantially

more individuals. Application of the fullFFBS method quickly becomes computationally

prohibitive and cannot be included. Figure 6 considers simulations with population sizes

between 100 and 1000. As before, the iFFBS outperforms the other methods whereas the

least efficient is the block update method with a relative speed equal to 1 in all scenarios.

The gains of using the iFFBS algorithm are higher in the first scenario with 100 animals
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Figure 5: CPU time per iteration as a function of the total number of cattle per pen C,

for the Markov epidemic model. The sub-panel provides an enlargement for 3-9 animals in

pen, illustrating more clearly that the fullFFBS algorithm scales poorly.

per pen, where the method has a relative speed of 28.09. However, the differences in

the computational efficiency among methods become less profound as the total number of

individuals per pen increases. For example, in the last scenario (C = 1000) the relative

speed of iFFBS algorithm drops to 10.71. Finally, we investigate the performance of the

MHiFFBS method subject to varying the number of individuals in pen. The results are

summarised in Figure C.2 in Supplementary Material C, where we report the variability in

the median acceptance rate (over all individuals) as obtained from the 200 replications. We

observe a small decline in the acceptance rate as the total number of individuals increases.

In particular, we see that the rates are bigger than 0.84 for all values of C considered.

4.3 Simulation studies: semi-Markov model

In a departure from the previous Markov model, we assume that the time an individual

remains infected has a two-parameter Negative Binomial distribution and hence:

P
(
X

[c, p]
(t+1):(t+s) = 1s, X

[c, p]
t+s+1 = 0 | X [c, p]

t = 0, X
[c, p]
t+1 = 1

)

18



0

10

20

100 200 300 400 500 600 700 800 900 1000

Animals in pen

R
el
at
iv
e
sp
ee
d

Method

Block

Single-site

iFFBS

MHiFFBS

Figure 6: Median relative speed comparison of four methods in the Markov model for large

datasets with values for C = 100, 200, . . . , 1000, based on 200 simulations. As observed

before, iFFBS outperforms the other methods considered.

=

(
κ

κ+m− 1

)κ
Γ(κ+ s− 1)

(s− 1)! Γ(κ)

(
m− 1

κ+m− 1

)s−1

,

where κ > 0 is the shape parameter, m ≥ 1 is the mean duration of infection and 1s is a

vector of s ones. In this semi-Markov model the time remaining until recovery depends on

how long an individual has been infected. The infection probability remains unchanged.

Bayesian inference for the semi-Markov model can proceed as follows. Regarding the

update of the hidden states, the block proposals and the single-site methods can be applied

without any modification. For the fullFFBS and iFFBS methods the necessary Markov

property is not valid, and the two algorithms cannot be applied directly. Therefore, we

extend the methodology for updating the hidden states by considering an independence

sampler within the MCMC algorithm. Our approach takes advantage of the availability

of the full conditionals in the CHMM, by using them as a proposal in the update. More

specifically, proposals are made assuming κ = 1, corresponding to the Geometric distribu-

tion as considered before, and introducing a Metropolis-Hastings acceptance step to correct

for the discrepancy. The efficiency of the algorithm therefore depends on how close the real

value of κ is to 1. The extended algorithms for fullFFBS (called SM-fullFFBS) and iFFBS
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(called SM-iFFBS) are shown in Algorithm D.1 and D.2, respectively and are further de-

tailed in Supplementary Material D.1. The MHiFFBS method can also be applied with

proposals using κ = 1 and since it already includes a MH step, no further corrections are

needed. The mixing of these algorithms for semi-Markov models may be improved through

the introduction of auxiliary states, for example via Erlang’s method of stages (Barbour,

1976) or, more generally, phase-type distributions (Neuts, 1975), but at the price of greater

computation time. For example if κ = 4 the negative binomial distribution can be repre-

sented as a sum of 4 independent and identically distributed geometric distributions, each

represented by a state, and the iFFBS algorithm provides a Gibbs step. However, since the

computational time of iFFBS is quadratic in the number of states the best relative speed

may be obtained by using the SM-iFFBS with a smaller number of states.

In this section we repeat the simulation analyses of Section 4.2 assuming the semi-

Markov model. The shape parameter κ is set to 1.6 as estimated from the real data by

Spencer et al. (2015). We used a Ga(0.01,0.01) prior for κ and estimate it alongside the

remaining parameters in the MCMC. In particular α, β,m and κ are updated jointly with

HMC; see Supplementary Material D.2 for details. As before, we found little difference in

the estimated number of infected individuals across the methods and these estimates were

again close to the real values (Figure E.1 in Supplementary Material E. Figure 7 compares

CPU timings and relative speeds. In this semi-Markov model, both block updates and

MHiFFBS methods could be applied without modification and therefore required approx-

imately the same time per iteration; the remaining methods were slowed down due to the

modifications explained above (see Figure 7(a)). In terms of relative speed, MHiFFBS

had a slightly higher median compared to SM-iFFBS which was second best, followed by

SM-fullFFBS, block proposals and single-site methods, Figure 7(b). However the best two

had overlapping credible intervals depending on how important the missing arrows were; if

the arrows were very important then it is better to use SM-iFFBS and if unimportant then

MHiFFBS may be best. Furthermore, the single-site method appeared to be the least effi-

cient because in the semi-Markov model the history of each individual must be represented

explicitly in the full conditionals leading to a significant increase in computational effort.

Comparing Figure 7(b) with Figure 4(a) we conclude that the gains of using the proposed
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Figure 7: (a) CPU time per iteration and (b) relative speed for the semi-Markov epidemic

model. Quantiles in both left and right panels are obtained from 200 different replicates.

In these scenarios, the least efficient method is the one based on single-site updates.

algorithms drop when we move from the Markov to the more complex semi-Markov model.

For SM-iFFBS this fact is due to the extra MH step introduced within the sampler.

Results of relative speed for several values of C and T are shown in Table E.1(a)

and Table E.1(b) respectively, in Supplementary Material E. For the semi-Markov model

the SM-iFFBS approach has similar performance to the MHiFFBS. MHiFFBS had the

highest relative speed in 15 out of the 18 simulated datasets whereas SM-iFFBS was the

most efficient in 2 out of 18 occasions; nevertheless the differences were small on most

occasions. Another interesting observation is that the block update method now produces

a better relative speed than the single-site method in 17 out of 18 simulations. For large

datasets we observe superiority of the two proposed methods in relative speed (Figure E.2

in Supplementary Material E), resulting in a different pattern compared to the Markov case

(Figure 6). This difference occurs because the relative speed is compared to the slowest

method and the single-site update requires considerably more computational effort in the

semi-Markov model.

Finally, we carried out a sensitivity analysis to assess the effect that the additional

parameter κ has on the relative speed values, by simulating datasets with values for κ from
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Figure 8: Median relative speed comparison of the five methods for different values of

κ = 0.5, 1, 1.5, . . . , 10 for the semi-Markov model with 8 individuals. The relative speed

curves for SM-fullFFBS, SM-iFFBS and MHiFFBS are peaked at κ = 1.

0.5 through to 10, increasing by 0.5 each time. For each value of κ we obtained an estimate

of the relative speed, based on 200 simulated datasets. Results are shown in Figure 8.

Comparing the five methods, we see that our two proposed novel methods outperform

the remaining methods and that they give similar estimates of the relative speed for all

scenarios considered. Moreover, for values of κ close to 1 the SM-iFFBS, SM-fullFFBS and

MHiFFBS provided much higher values of relative speed. Additionally, the performance of

SM-fullFFBS drops as κ increases and eventually for κ > 6 it was found to have the lowest

relative speed. This poor performance is due to the fact that the SM-fullFFBS proposes

all of the periods of infection simultaneously, and so deviations from the true infectious

period distribution are noticeable and the acceptance rate is low, as we can see in Figure

E.4 of the Supplementary Material E. However, the SM-iFFBS and MHiFFBS propose

only a small number of infectious periods before each accept/reject step, and so deviations

from the true infectious period distribution are not as important and the acceptance rate

remains high, with a value of roughly 60% for both methods.
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4.4 Summary of E. coli O157:H7 data analysis

In this section we use the existing and proposed methods for the analysis of the real E.

coli O157:H7 dataset presented in Section 4.1. We consider both Markov and semi-Markov

models. A full description of the analysis summarized here can be found at Supplementary

Material F. In terms of parameter estimation, the five methods provide almost identical

estimates (Table F.1 in Supplementary Material F) and in close agreement with results

presented by Spencer et al. (2015) who previously analysed the same data. Overall, our

analyses suggest that the proposed methods outperform the other methods in terms of

computational efficiency as indicated by the median relative speed shown in Figure F.1 in

Supplementary Material F. The same conclusions were reached in the simulation studies.

5 Discussion

In this paper, we have considered the problem of Bayesian estimation of the hidden states in

coupled hidden Markov models, an extension of classical hidden Markov models that allow

for interactions between the hidden states of each chain. In particular, we have compared

existing methods in a real application and introduced two new approaches, the iFFBS and

MHiFFBS algorithms. We have extended the methods to a coupled hidden semi-Markov

model in which the hidden process can remain in a given state for a non-memoryless

duration. The computational efficiency was compared in the context of modelling the

dynamics of an infectious disease using both a Markov and a semi-Markov model for the

duration of infection.

In our simulation studies we found the iFFBS algorithm outperformed the existing

methods. It balances the desired properties of good mixing and low CPU time and thus

proved to be computationally most efficient. This is achieved by exploiting the dependence

structure in the model, where the within chain dependence is much stronger than the

between chain dependence. The findings were stronger for the Markov model but also held

in the semi-Markov case. Additionally, we have also demonstrated that the proposed iFFBS

method can scale well for big datasets with order CN3T for epidemic models and at worst

order C2N2T ; as opposed to the standard FFBS algorithm which scales like O(N2CT ) and
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cannot be applied when the number of chains in the CHMM is growing.

The importance of the proposed approaches is further demonstrated in Touloupou

(2016), where we have illustrated how iFFBS can be used for inference in epidemic models

with more complex dynamics, e.g. a model allowing for interactions between neighbour-

ing pens; some additional terms appear in the full conditional distribution to account for

interactions between animals in different pens. More specifically, the updates for a chain

c are done conditionally not only on the chains of the remaining subjects in the pen but

also conditionally on the chains of individuals in the neighbouring pens. As a result, the

modified filtered probabilities additionally include the transition probabilities of subjects

in neighbouring pens.

There are several ways in which the proposed methodologies can be extended. In the

current approach, we update the states of a single chain given the rest. One alternative is to

apply a block update scheme, where small subsets of chains are jointly sampled from their

full conditionals. This approach would be particularly effective when there is some under-

lying structure between the chains that increases the dependence within the blocks, such

as individuals grouped into households in an epidemic context. Furthermore, in this paper

we have limited our discussion on the deterministic Gibbs sampler, in which individual

chains are sampled iteratively. However the iFFBS algorithm unlocks the possibility of an

adaptive random scan Gibbs sampler ( Latuszyński et al., 2013), that learns the individuals

that need to be updated more frequently. Recent work by Chimisov et al. develops such

an approach and demonstrates substantial improvements in computational efficiency for a

Markov switching model, which is similar in spirit to the coupled Hidden Markov models

discussed here. For small epidemics within large populations, an adaptive iFFBS sampler

for the missing data has the potential for immense improvements in computational effi-

ciency, due to the fact that most individuals do not take part in the epidemic and therefore

need their infection status updated only rarely.
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