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Abstract

We exhibit an exact simulation algorithm for the supremum of a stable

process over a �nite time interval using dominated coupling from the past

(DCFTP). We establish a novel perpetuity equation for the supremum (via the

representation of the concave majorants of Lévy processes [27]) and apply it to

construct a Markov chain in the DCFTP algorithm. We prove that the number

of steps taken backwards in time before the coalescence is detected is �nite.

We analyse numerically the performance of the algorithm (the code, written in

Julia 1.0, is available on GitHub).

Keywords: random variate generation; perpetuities; simulation; perfect simu-

lation; dominated coupling from the past; stable process
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1. Introduction

This paper describes an algorithm for generating exact samples of the extrema of a stable process

(see Algorithm 1 below) based on dominated coupling from the past (DCFTP), a coupling method

for exact simulation from an invariant distribution of a Markov chain on an ordered state space

(cf. [21] and the references therein). The chain in Algorithm 1 is based on a novel characterisation
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for the law of the supremum of a stable process at a �xed time in Theorem 1.1. Perpetuity (1.1) is

established via the stochastic representation for concave majorants of Lévy processes [27] and the

scaling property of stable laws (see Section 2 below for the proof of Theorem 1.1).

Theorem 1.1. Let Y = (Yt)t∈[0,∞) be a stable process with the stability and positivity parameters

α and ρ, respectively (see Appendix A). De�ne Y 1 = sups∈[0,1] Ys and let
(
B,U, V, S, Y 1

)
be a

random vector with independent components, where U, V are uniform on (0, 1), B is Bernoulli with

parameter 1− ρ and S has the law of Y1 conditioned on being positive. Then the following equality

in law holds:

Y 1
d
= Λ

1
α

(
U

1
αY 1 + (1− U)

1
α S
)
, (1.1)

where Λ = 1 +B(V
1
ρ − 1). Furthermore, the law of Y 1 is the unique solution to (1.1).

The universality of stable processes makes them ubiquitous in probability theory and many areas

of statistics and natural and social sciences (see the monograph [30] and the references therein). The

problem of e�cient simulation of stable random variables in the context of statistics was addressed

in [14]. Among the path properties, the running supremum Y t = sups∈[0,t] Ys
d
= t1/αY 1 of a stable

process is of special interest (cf. [29, 1, 22, 16]) as it arises in application areas such as optimal

stopping, the prediction of the ultimate supremum and risk theory (cf. [2, 29]).

In general, one has no access to the density, distribution or even characteristic function of Y 1,

making a rejection sampling algorithm (see [11, Sec. II.3]) for Y 1 di�cult to construct. More

precisely, if Y has no positive jumps, the strong Markov property and the fact that Y does not

jump over positive levels imply that Y 1 has the same law as Y1 conditioned on being positive [25].

In all other cases, the law of Y 1 is not accessible in closed form and the information about it in the

literature is obtained via analytical methods based on the Wiener-Hopf factorisation. If Y has no

negative jumps, [1] gives an alternating series expression for the density, while [22, 16] give a double

series representation for a dense class of parameters. The coe�cients in these representations are

complicated and it is not immediately clear how one could use them to design a simulation algorithm.

Moreover, in the general case, when α is rational the series representation is proved to be convergent

for �nitely many ρ only [23]. Our simulation algorithm is based on purely probabilistic methods

(it may be regarded as a generalization of the exact simulation algorithm for Vervaat perpetuities

in [18]) and as such covers the entire class of stable processes.
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1.1. Exact Simulation Algorithm

The perpetuity in (1.1) above gives rise to an update function x 7→ φ(x,Θ) of a Markov chain

on (0,∞), where the components of the random vector Θ are the random variables in Theorem 1.1

(see (3.1) below for the precise de�nition of φ). The invariant distribution (i.e. invariant probability

measure as de�ned in [24, p. 229]) for the chain X ′ = {X ′n}n∈Z, de�ned by X ′n = φ(X ′n−1,Θn−1)

with {Θn}n∈Z a sequence of independent copies of Θ, equals that of Y 1. However, since x 7→ φ(x,Θ)

is strictly increasing in x with probability one, no coalescence occurs, making X ′ unusable for

DCFTP purposes. Fortunately, the structure of the perpetuity in (1.1) is such that the update

function φ can be modi�ed to a multigamma coupler [26] x 7→ ψ(x,Θ), which is constant on a

subinterval in (0,∞) with positive probability and globally non-decreasing. The de�nition of ψ,

given in Lemma 3.1 below, was inspired by [18] where such a modi�cation was applied to Vervaat

perpetuities. The construction requires an addition of a single independent uniform random variable

to the vector Θ and yields a Markov chainX = {Xn}n∈Z on (0,∞) viaXn = ψ (Xn−1,Θn−1), where

{Θn}n∈Z are independent copies of Θ. The invariant distribution of X equals that of Y 1 and the

coalescence occurs at every step with positive probability. The former follows from Theorem 1.1

and the fact that the chains X and X ′ have the same transition probabilities (see Lemma 3.1 below)

and the latter is a consequence of the structure of ψ.

Our aim is to sample X0, whose law equals that of Y 1. By construction of ψ it follows that

ψ (x,Θ) = ψ (a (Θ) ,Θ) for any x ∈ (0, a (Θ)], where θ 7→ a (θ) is a positive deterministic function

explicitly given in (3.3) of Lemma 3.1 below. The coalescence for X occurs every time the inequality

Xn ≤ a (Θn) is satis�ed, since, if −σ is such a time, then X−σ+1 = ψ (a (Θ−σ) ,Θ−σ) disregards

the value X−σ and hence the entire trajectory of X prior to time −σ + 1.

The task now is to detect whether the event {Xn ≤ a (Θn)} occurred without knowing the value

of Xn (if we had access to Xn for any n ∈ Z, we would have a sample from the law of Y 1!).

DCFTP [21] suggests to look for a process D = {Dn}n∈Z satisfying Dn ≥ Xn for all n ∈ Z, which

can be simulated backwards in time (starting at 0) together with the i.i.d. sequence {Θn}n∈Z. It

is possible to de�ne such a process D, which turns out to be stationary but non-Markovian, by

�unwinding� the recursion for X backwards in time and bounding the terms (see (3.8) in Sec. 3).

The backward simulation of {(Dn,Θn)}n∈Z in step 1 of Algorithm 1 is discussed in Section 4

below. It relies on two ingredients: (A) the simulation of the indicators of independent events

with summable probabilities and (B) the simulation of a random walk with negative drift and its
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Algorithm 1 Exact sampling from the law of Y 1

1: Starting at 0, sample {(Dn,Θn)}n∈Z backwards in time until −σ = sup{n ≤ 0 : Dn ≤ a(Θn)}

2: Put X−σ+1 = ψ(a(Θ−σ),Θ−σ)

3: Compute recursively Xn = ψ(Xn−1,Θn−1) for n = −σ + 2, . . . , 0

4: return X0

future supremum. By the Borel-Cantelli lemma, only �nitely many indicators in (A) are non-zero.

A simple and e�cient algorithm for the simulation of the entire sequence is given in Section 4.1

below. The algorithm for (B) has been developed in [4, Sec. 4]. For completeness, in Section 4.2

below we present the algorithm from [4, Sec. 4] applied to the speci�c random walk that arises in

de�nition (3.8) of our dominating process D. The algorithm in [4, Sec. 4] requires the simulation

of the walk under the original measure as well as under an exponential change of measure. In

our case the increments of the random walk in question are shifted negative exponential random

variables. This makes the dynamics of the walk explicit and easy to simulate under both measures

(see Section 4.2 below for details), making the implementation of Algorithm 1 quite fast. More

precisely, Algorithm 9 below (a version of Algorithm 1) was implemented in Julia, see the GitHub

repository [19] for the code and a simple user guide. This implementation outputs approximately

104 samples every 1.15 seconds (see Section 5 for details).

Note that the random time σ in Algorithm 1 dictates the number of simulations, as steps 2-4 in

the algorithm require only deterministic computation. In order to prove that σ is �nite, we couple

D with a dominating process D′, which is a component of a multi-dimensional positive Harris

recurrent Markov chain Ξ (see (3.9) for the de�nition of D′ and Lemma 3.2 of Section 3 below).

Note that we need not be (and in fact are not) able to simulate D′. We apply the general state

space Markov chain theory [24, 28] to prove the following result (see Section 3 below for details).

Theorem 1.2. The random time σ in Algorithm 1 is �nite a.s. Moreover, E[σ|Ξ0] <∞ a.s.

In [18, Thm 5.1] the authors provide a sharp estimate on E[σ] for an analogous algorithm in the

context of Vervaat perpetuities. Their analysis is based on the fact that their dominating process D

is a birth-death Markov chain and is hence time-reversible with skip-free increments and an explicit

invariant distribution (shifted geometric). In the context of Theorem 1.2, the dominating process

D is non-Markovian, its increments are di�use, have heavy tails and the multi-dimensional Markov

chain Ξ used to bound D has a non-explicit invariant probability measure π (which also has heavy



Exact Simulation of Stable Suprema 5

tails). These heavy tails make the chain frequently take large values, which in turn makes the

coalescence events and probabilities harder to trace, bound and control. Moreover, the law of the

time-reversal of Ξ (with respect to π) is very di�erent from that of Ξ. The key step in the proof

of Theorem 1.2 is provided by [28, Thm 8.1.1], which allows us to conclude that the time-reversed

chain has a Harris recurrent modi�cation. However, a quantitative bound on the expected number

of steps taken backwards in time in Algorithm 1 remains an open problem.

1.2. Related literature

Exact simulation algorithms for various instances of a general perpetuity equation X d
= A0X+A1

(with (A0, A1) and X independent) have been developed in the literature.

Paper [18] studies the case A0 = A1 ≥ 0, E[A0] < 1, specialising to the Vervaat perpetuity for

A0 = U1/β with U uniform on (0, 1) and β ∈ (0,∞), see also [9, 12]. Brie�y put, [18] �rst identi�es

the update function and constructs a multigamma coupler. The identi�ed dominating process is a

simple random walk with a partially absorbing barrier and whose invariant law is that of a shifted

geometric random variable. A sped up version of a DCFTP algorithm [12] in the case β = 1 (i.e.

when X follows the Dickman distribution) is given in [13].

In [15], the authors develop the double CFTP algorithm in the case A0 = V and A1 = (1−V )Z,

where V takes values in [0, 1] (and has a computable density) and Z is independent of V with

support in an interval [0, c] for some c < ∞. This structure appears similar to perpetuity (2.1)

of Propostion 2.1 below, where A0 = U1/α and A1 = (1 − U)1/α max{Y1, 0} with Y1 an α-stable

random variable independent of the uniform U . Proposition 2.1 provides a key step in the proof of

Theorem 1.1 above, which in turn is the cornerstone of Algorithm 1. The upper bound c on the

support of Z in [15] is inversely proportional to the coalescence probability of the chain in the double

CFTP algorithm, making its direct application to perpetuity (2.1) impossible, since max{Y1, 0} not

only has in�nite support but also a heavy tail. Moreover, even if we could construct a stochastic

(rather than constant) upper bound on the relevant support, this bound would necessarily still have

a heavy tail making the coalescence in a generalisation of the algorithm in [15] unlikely. This would

then yield long (possibly in�nite) running times for such a generalisation.

Paper [10] studies the generalised Vervaat perpetuity where A1 = A0A2 for independent A2 and

A0 = U1/β with U uniform on (0, 1). By calculating the Laplace transform from the perpetuity, it

is shown in [10] that X has the law of the marginal of a pure jump Lévy process at time β with
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Lévy density ν(dx) = |x|−1(P(A2 > x)1x>0 + P(A2 < −x)1x<0)dx. Techniques similar to those

in [6], based on in�nite divisibility, are used to devise the simulation algorithm under the conditions

A2 ≥ 0 and limx↓0 P(A2 ≤ x)/x <∞, without relying on Markov chain techniques. The calculation

of Laplace transforms based on perpetuities (2.1) or (1.1), yields complicated equations for the

Laplace transform. Furthermore, even if we could solve for the Laplace transform of Y 1, we could

not follow the simulation approach from [10] as Y 1 is typically not in�nitely divisible.

In [4] the authors use a version of a multigamma coupler, allowing A1 to have a heavy tail

but assuming the independence of A0 and A1, a requirement clearly violated by perpetuities (1.1)

and (2.1) in the present paper. Moreover, a certain domination condition [4, Eq. (2) in Assump-

tion (B)] for the density of A1 is stipulated, which plays an important role in constructing the

coalescence probability. This dominating condition is hard to establish for the density of a stable

law conditioned on being positive, appearing in perpetuity (1.1). Thus, even if one could remove

the assumption on the independence of A0 and A1 in [4], this technical requirement would make it

hard to apply directly the sampling algorithm from [4] in our setting.

The structure of the multigamma coupler used in the present paper is closer to the one in [18]

(see also Section 1.1 above and Lemma 3.1 below) than the one in [4]. Despite the di�erences

between the samplers in [4] and the one used here, the construction of our dominating process

was inspired by the one presented in [4]. However, we were unable to use directly the dominating

process V +
k in [4, Eq. (9)], which appears to be bounded from below by the deterministic function

k 7→ eak/2/(1 − e−a/2) (for all positive integers k and some constant a > 0) tending to in�nity

exponentially fast and hence suggesting a positive probability of never detecting coalescence. It

appears that this issue could be circumvented in the general context of [4] by a simple adaptation

of our dominating process de�ned in (3.8) below, which is based on the idea of adaptive bounds

(cf. Figure 4.1).

A perpetuity can be understood as the special case of the stochastic �xed point equation X d
=

f(X , U) in a general state space for independent X and U and some measurable function f . See

the monograph [20] for a comprehensive survey on the variety of Markov chain techniques, such as

CFTP and DCFTP, used to obtain exact samples of X .

The problem of the exact simulation of the �rst passage event of a spectrally positive stable

process (resp. a Lévy process with in�nite activity and �nite variation) is addressed in [8] (resp. [7]).

Algorithm 1 solves this problem for all stable processes as follows: for any x > 0, de�ne the �rst
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passage time τx := inf{t > 0 : Yt ≥ x} and note that the equality of events {τx > t} = {Y t < x}

for all t ∈ (0,∞) and the scaling property yield the equality in law τx
d
= (x/Y 1)α.

We conclude the introduction by noting that Proposition 2.1 easily implies the asymptotic

behaviour at in�nity of the distribution function of Y 1 stated in [3, Prop. VIII.1.4, p. 221]. Excluding

the spectrally negative case, perpetuity (2.1) and the Grincevi�cius-Grey theorem [5, Thm 2.4.3]

yield limx→∞ 2P
(
Y1U

1/α > x
)
/P
(
Y 1 > x

)
= 1. By Breiman's lemma [5, Lem. B.5.1] we have

limx→∞ 2P
(
Y1U

1/α > x
)
/P (Y1 > x) = 1, implying limx→∞ P

(
Y 1 > x

)
/x−α = Γ(α) sin(παρ)/π

via the classical tail behaviour of the stable law [30, Sec. 4.3].

The remainder of the paper is structured as follows. In Section 2, we establish perpetuity (2.1)

and apply it in the proof of Theorem 1.1. In Section 3 we de�ne the update function ψ (in

Lemma 3.1), construct the dominating process and prove Theorem 1.2 above. Section 4 discusses

the backward simulation of {(Dn,Θn)}n∈Z. Finally, a numerical performance analysis is found in

Section 5.

2. Stochastic Perpetuities

Let Y be a stable process with stability and positivity parameters α and ρ, respectively (see

Appendix A below for de�nition). Since Y0 = 0 and the scaling property yield Y t = sups∈[0,t] Ys
d
=

t1/αY 1 for all t ∈ [0,∞), we may restrict our attention to Y 1. Let S (α, ρ) and S (α, ρ) denote the

laws of Y1 and Y 1, respectively. Since P (Yt > 0) = ρ for any t > 0, the extreme cases ρ ∈ {0, 1}

are excluded from our analysis as they correspond to Y having monotone paths. Let U(0, 1) denote

the uniform law on (0, 1) and de�ne x+ = max{x, 0} for any real number x ∈ R.

Proposition 2.1. Let
(
Y 1, Z, U

)
∼ S (α, ρ)×S (α, ρ)×U (0, 1). Then the law of Y 1 is the unique

solution of the following perpetuity:

Y 1
d
= U

1
αY 1 + (1− U)

1
α Z+. (2.1)

To prove this result, we need the next de�nition. For any a < b, the concave majorant of

a function f : [a, b] → R is de�ned as the smallest concave function c : [a, b] → R, such that

c (t) ≥ x (t) for every t ∈ [a, b]. The proof of Proposition 2.1 exploits the fact that the supremum of

a function lies on its concave majorant, at the end of all (if any) faces with positive slope. Following

the classical result for the complete description of a concave majorant of random walks, [27] describes
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the continuous time analogue of these results for Lévy processes ([27] is phrased in terms of the

convex minorant, but through a change of sign their results cover the concave majorant). The idea

is as follows: �x a sample path of Y and pick a random face of its concave majorant above an

independent uniform point in [0, 1]. The length of the chosen face is distributed as V ∼ U(0, 1)

and its height is distributed as the increment of a stable process over a time interval of duration

V . Moreover, after removing this face (together with the path underneath it) the remainder of

the concave majorant behaves like a concave majorant of a stable process over the time interval

[0, 1− V ], see [27]. This recursive relation and the scaling property of Y will yield the perpetuity

in (2.1).

Proof. A stick-breaking process {`n}n≥1 on [0, 1] is de�ned recursively as follows:

`n = Vn (1− Ln−1) , n ≥ 1,

where Ln−1 = `1 + · · · + `n−1, L0 = 0 and {Vn}n≥1 is a sequence of i.i.d. random variables with

law U(0, 1) (independent of Y ). Let C = (Ct)t∈[0,1] be the concave majorant of the Lévy process

Y . Let (dn − gn, Cdn − Cgn)n≥1 be the lengths and heights of the faces of C picked at random,

uniformly on lengths and without replacement (gn and dn denote the beginning and end times for

the n-th face). [27, Thm. 1] asserts the equality in law

(dn − gn, Cdn − Cgn)n≥1

d
=
(
`n, YLn − YLn−1

)
n≥1

.

The concave majorant (Ct)t∈[0,1] is piecewise linear, with the corresponding slopes forming a

non-increasing piecewise constant function in t. Hence Y 1 is always contained in the image of the

function C. Moreover, the supremum equals the sum of all the positive heights of C:

Y 1 =

∞∑
n=1

(Cdn − Cgn)
+ d

=

∞∑
n=1

(
YLn − YLn−1

)+
.

Conditional on {Ln}n≥1, the random variables
{
YLn − YLn−1

}
n≥1

are independent and have the

same distribution as the respective Y`n . Hence, for an independent i.i.d. sequence {Zn}n≥1 with

law S (α, ρ) we have (
`n, YZn − YZn−1

)
n≥1

d
=
(
`n, `

1
α
n Zn

)
n≥1

,

implying

Y 1
d
=

∞∑
n=1

(
YLn − YLn−1

)+ d
=

∞∑
n=1

`
1
α
n Z

+
n . (2.2)



Exact Simulation of Stable Suprema 9

It is well-known that
{

`n
1−`1

}
n≥2

is a stick-breaking process on [0, 1], independent of `1 ∼ U(0, 1)

(and {Zn}n≥1). Hence by (2.2) we �nd the equality in law

Y 1
d
=

∞∑
n=2

(
`n

1− `1

) 1
α

Z+
n ,

which, together with (2.2), implies the perpetuity

Y 1
d
= `

1
α
1 Z

+
1 + (1− `1)

1
α Y 1.

Finally, the uniqueness of solution follows from [5, Thm 2.1.3]. �

Let S+ (α, ρ) denote the law of Y1 conditioned on being positive. For n,m ∈ Z de�ne the sets

Zn = {k ∈ Z : k < n} , Znm = Zn\Zm. (2.3)

Proof of Theorem 1.1. Note that the random variable Z+ in Propostiion 2.1 behaves like the

product of a Bernoulli random variable and a stable random variable conditioned on being positive,

i.e., if B ∼ Ber (ρ) and S ∼ S+ (α, ρ) are independent, then Z+ d
= BS. Since P (Z+ = 0) = 1−ρ >

0, the idea behind the proof of Theorem 1.1 is to iterate perpetuity (2.1) backwards in time until

the �rst time we observe Z+ > 0.

More precisely, by Proposition 2.1 and Kolmogorov's consistency theorem we can construct a

stationary Markov chain {(Un, Zn, ζn)}n∈Z1 with invariant law U (0, 1)× S (α, ρ)× S (α, ρ), where

{(Un, Zn)}n∈Z1 is an i.i.d. sequence with law U (0, 1)× S (α, ρ) and

ζn+1 = U
1
α
n Z

+
n + (1− Un)

1
α ζn, n ∈ Z0.

De�ne V0 = 1 and Vn =
∏
m∈Z0

n
(1− Um) for n ∈ Z0. Then the following equality holds

ζ0 =
∑
m∈Z0

n

(UmVm+1)
1
α Z+

m + V
1
α
n ζn for all n ∈ Z0. (2.4)

Let τ = sup
{
n ∈ Z0 : Zn > 0

}
(with convention sup ∅ = −∞) be the last time we see a positive

value in the sequence {Zn}n∈Z0 . Substituting n = τ in equation (2.4), we get

ζ0 = V
1
α
τ+1

(
(1− Uτ )

1
α ζτ + U

1
α
τ Zτ

)
. (2.5)

This equality of course yields the same equality in law. It will hence imply the perpetuity in (1.1),

if we prove that the random variables involved have the desired laws and independence structure.
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The events {Zn > 0}, n ∈ Z0, are independent with probability ρ, making τ a geometric random

variable on Z0 with parameter ρ. By construction, the coordinates of the vector (Un, Zn, ζn) are

independent for any n ∈ Z0. Hence we have (Uτ , Zτ , ζτ ) ∼ U (0, 1)×S+ (α, ρ)×S (α, ρ). Moreover,

(Uτ , Zτ , ζτ ) is independent of (τ, Vτ+1). Hence (2.5) will imply the perpetuity in the theorem if we

prove that Λ has the same law as Vτ+1. Put di�erently, as τ and U0 are independent, it is su�cient

to prove the following equality in law

Vτ+1
d
= 1τ=−1 + 1τ 6=−1U

1
ρ

0 = 1 + 1τ 6=−1

(
U

1
ρ

0 − 1

)
. (2.6)

Since − log (1− U1) ∼ Exp (1) is exponential with mean one, − log (Vn) is gamma distributed

with density x 7→ x−n−1e−x/(−n− 1)! for any n ∈ Z0. Hence, on the event {τ 6= −1}, the density

of the conditional law − log (Vτ+1)| τ is given by x 7→ x−τ−2e−x/(−τ − 2)!. Thus, the conditional

law − log (Vτ+1)| {τ 6= −1} is exponential with density

x 7→ 1

1− ρ

∞∑
k=2

ρ (1− ρ)
k−1 xk−2

(k − 2)!
e−x = ρe−ρx, x > 0. (2.7)

Since − log (Vτ+1) takes the value 0 when τ = −1, which happens with probability ρ, and is

otherwise exponential with mean 1/ρ, the distributional identity in (2.6) follows.

Finally, the uniqueness of the solution for perpetuity (1.1) follows from [5, Thm 2.1.3]. �

3. The Markov chain X and the dominating process D in Algorithm 1

Let A = (0,∞)× (0, 1)× (0, 1)× (0, 1] and de�ne the function φ : (0,∞)×A → (0,∞) by

φ (x, θ) = λ
1
α

(
u

1
αx+ (1− u)

1
α s
)
, x ∈ (0,∞) , θ = (s, u, w, λ) ∈ A. (3.1)

Note that the map x 7→ φ (x, θ) is increasing and linear in x for all θ ∈ A and does not depend

on w. Let W ∼ U (0, 1) be independent of random variables S, U , and Λ de�ned in Theorem 1.1.

Then, by Theorem 1.1, we have ζ
d
= φ (ζ,Θ), where ζ ∼ S (α, ρ) is independent of Θ = (S,U,W,Λ).

Hence a Markov chain with the update function φ has the correct invariant law but does not allow

for coalescence: if for any x, y ∈ (0,∞) we have φ(x,Θ) = φ(y,Θ), by (3.1) it follows x = y. But

the structure of φ and the additional randomness in W allow us to modify the update function

x 7→ φ(x, θ) so that coalescence can be achieved, while keeping the law of the chain unchanged.
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Lemma 3.1. De�ne the functions ψ : (0,∞)×A → (0,∞) and a : A → (0,∞) by the formulae

ψ (x, θ) = 1{a(θ)≥x}w
1
αρ (1− u)

1
α s+ 1{a(θ)<x}λ

1
α

(
u

1
αx+ (1− u)

1
α s
)
, (3.2)

a (θ) =
(
λ−

1
α − 1

)(1− u
u

) 1
α

s. (3.3)

The map x 7→ ψ(x, θ) is non-decreasing in x for all θ ∈ A. Moreover, for ζ and Θ as in the

paragraph above, we have φ (x,Θ)
d
= ψ (x,Θ) for all x > 0 and S (α, ρ) is the unique solution of the

distributional equation ζ
d
= ψ (ζ,Θ).

Proof. The function ψ takes constant value of w
1
αρ (1− u)

1
α s for x ∈ (0, a (θ)] and increases

linearly on the interval (a (θ) ,∞) with the right limit satisfying limx↘a(θ) ψ (x, θ) = (1− u)
1
α s >

ψ (a (θ) , θ). Hence the desired monotonicity follows.

We now prove that φ (x,Θ)
d
= ψ (x,Θ) for all x > 0, i.e the transition probabilities for the update

functions φ and ψ coincide. Pick x > 0 and note that {φ (x,Θ) = ψ (x,Θ)} ⊃ {a (Θ) < x}. Thus,

for any y > 0 we have P (φ (x,Θ) ≤ y, a (Θ) < x) = P (ψ (x,Θ) ≤ y, a (Θ) < x). De�ne

v (u, s) =

(
(1− u)

1
α s

u
1
αx+ (1− u)

1
α s

)αρ
∈ (0, 1) ,

and note that {a (Θ) ≥ x} = {Λρ ≤ v (U, S)}. On this event, the de�nition of Λ in Theorem 1.1

implies the inequality Λ < 1, in which case Λρ is uniform on (0, 1). Hence the conditional law of

Λ, given (U, S) and {a (Θ) ≥ x}, is uniform on the interval (0, v (U, S)). Moreover, the conditional

law of v (U, S)W , given (U, S) and on {a (Θ) ≥ x}, is also uniform on (0, v (U, S)). Hence for any

y > 0 the following equalities hold:

P (φ (x,Θ) ≤ y, a (Θ) ≥ x|U, S) = P

(
Λρ ≤

(
y

U
1
αx+ (1− U)

1
α S

)αρ
, a (Θ) ≥ x

∣∣∣∣∣U, S
)

= P

(
v (U, S)W ≤

(
y

U
1
αx+ (1− U)

1
α S

)αρ
, a (Θ) ≥ x

∣∣∣∣∣U, S
)

= P
(
W

1
αρ (1− U)

1
α S ≤ y, a (Θ) ≥ x

∣∣∣U, S)
= P (ψ (x,Θ) ≤ y, a (Θ) ≥ x|U, S) .

Taking expectations in this identity yields the unconditional equality P (φ (x,Θ) ≤ y, a (Θ) ≥ x) =

P (ψ (x,Θ) ≤ y, a (Θ) ≥ x). Hence we get P (φ (x,Θ) ≤ y) = P (ψ (x,Θ) ≤ y) for all y > 0, implying

the equality in law φ (x,Θ)
d
= ψ (x,Θ) for arbitrary x > 0.
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Pick y > 0. Since Θ and ζ are independent, by Theorem 1.1 we have

P (ζ ≤ y) = P (φ (ζ,Θ) ≤ y) =

∫
[0,∞)

P (φ (x,Θ) ≤ y)P (ζ ∈ dx)

=

∫
[0,∞)

P (ψ (x,Θ) ≤ y)P (ζ ∈ dx) = P (ψ (ζ,Θ) ≤ y) ,

implying ζ
d
= ψ (ζ,Θ). Moreover, if there exists some ζ ′ (independent of Θ) satisfying ζ ′

d
= ψ (ζ ′,Θ),

this calculation implies the equality ζ ′
d
= φ (ζ ′,Θ). By Theorem 1.1 we get ζ ′

d
= ζ, as claimed. �

By Lemma 3.1 and Kolmogorov's consistency theorem, there exists a probability space supporting

a sequence {Θn}n∈Z of independent copies of Θ and a stationary Markov chain {Xn}n∈Z, satisfying

Xn+1 = ψ (Xn,Θn) for all n ∈ Z. In the remainder of the paper, {(Xn,Θn)}n∈Z denotes the

corresponding Markov chain on (0,∞)×A. In order to detect coalescence in Algorithm 1, we now

construct a dominating process {Dn}n∈Z.

With this in mind, �x constants δ and d satisfying 0 < δ < d < 1
αρ . Let I

n
k = 1{Sk>eδ(n−1−k)} for

all n ∈ Z, k ∈ Zn (see (2.3) above), where Sk ∼ S+(α, ρ) is the �rst component of Θk (see the �rst

paragraph of Section 3). Fix γ > 0 such that ESγ1 <∞ (see (A.2)). Markov's inequality implies

p (m) = P
(
S1 ≤ eδm

)
≥ 1− e−δγmESγ1 , m ≥ 0, (3.4)

and hence
∑∞
m=0(1−p (m)) <∞. Since {Sk}k∈Z are independent, the Borel-Cantelli lemma ensures

that, for a �xed n ∈ Z, the events
{
Sk > eδ(n−1−k)

}
= {Ink = 1} occur for only �nitely many k ∈ Zn

a.s. Let χn be the smallest time beyond which the indicators Ink are all zero:

χn = (n− 1) ∧ inf {k ∈ Zn : Ink = 1} , (3.5)

with convention inf ∅ =∞. Note that −∞ < χn ≤ n− 1 holds a.s. for all n ∈ Z. Since the integers

are countable, we have n− 1 ≥ χn > −∞ for all n ∈ Z a.s.

De�ne the i.i.d. sequence {Fn}n∈Z by Fn = d+ 1
α log (ΛnUn), where Un and Λn are the second and

fourth components of Θn, respectively (see the �rst paragraph of Section 3). Note that d− Fn has

the same law as a sum of (random) geometrically many independent exponential random variables

and is hence exponentially distributed with mean E[d− Fn] = 1
αρ . Let C = {Cn}n∈Z be a random

walk de�ned by C0 = 0 and

Cn+1 = Cn − Fn, n ∈ Z. (3.6)
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Recall de�nition (2.3) and let R = {Rn}n∈Z be the re�ected process of the walk {Cn}n∈Z, that is

Rn = sup
k∈Zn+1

Ck − Cn, n ∈ Z. (3.7)

For any n ∈ Z, de�ne the following random variables

Dn = exp (Rn)

e(d−δ)(χn−n)

1− eδ−d
+
∑

k∈Znχn

e−(n−1−k)dSk (1− Uk)
1
α

 , (3.8)

D′n = exp (Rn)

(
1

1− eδ−d
+D′′n

)
, where D′′n =

∑
k∈Zn

e−(n−1−k)dSk. (3.9)

The sum in (3.8) is taken to be zero if Znχn = ∅, i.e. if χn = n. Note that the series in D′′n

is absolutely convergent by the Borel-Cantelli lemma, but D′n cannot be simulated directly as it

depends on an in�nite sum. Finally, de�ne the random element Ξn = (Θn, Rn, D
′
n) for any n ∈ Z.

Lemma 3.2. (a) Xn ≤ Dn ≤ D′n for all n ∈ Z a.s.

(b) The processes R = {Rn}n∈Z and Ξ = {Ξn}n∈Z are Markov, stationary and ϕ-irreducible (see

de�nition [24, p. 82]) with respect to the respective invariant distributions.

Proof. (a) Since EF1 < 0, by the strong law of large numbers we have C−n → −∞ a.s. as

n→∞. Hence Rn <∞ for all n ∈ Z a.s. and a direct termwise comparison yields D′n ≥ Dn for all

n ∈ Z. It remains to prove that Xn ≤ Dn for all n ∈ Z.

Recall that the function θ 7→ a(θ) is de�ned in (3.3). Let τn = sup {k ∈ Zn : Xk ≤ a (Θk)} (with

convention sup ∅ = −∞) be the last time the coalescence occurred before n ∈ Z. If τn > −∞, the

value X1+τn does not depend on Xτn , and neither do the values of the chain taken at subsequent

times. In particular,

Xn = ψ (Xn−1,Θn−1) = ψ

(
· · ·ψ︸ ︷︷ ︸

n−1−τn

(
W

1
αρ
τn (1− Uτn)

1
α Sτn ,Θτn+1

)
, · · · ,Θn−1

)
.

In general, by (3.2) and (2.3), Xn can be expressed as

Xn =
∑

k∈Znτn+1

exp

 1

α

∑
j∈Znk+1

log (ΛjUj)

Λ
1
α

k (1− Uk)
1
α Sk (3.10)

+ 1{τn>−∞} exp

 1

α

∑
j∈Znτn+1

log (ΛjUj)

W
1
αρ
τn (1− Uτn)

1
α Sτn ,
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where sums over empty sets in (3.10) are de�ned to be equal to zero and, if τn = −∞, we de�ne

Znτn+1 = Zn. A termwise comparison then yields

Xn ≤
∑
k∈Zn

eCk+1−Cn−(n−1−k)d (1− Uk)
1
α Sk

≤ eRn
∑
k∈Zn

e−(n−1−k)d (1− Uk)
1
α Sk for all n ∈ Z a.s. (3.11)

Recall that Sk (1− Ink ) ≤ eδ(n−1−k) (1− Ink ) for all k ∈ Zn. Since Ink = 0 for k < χn, we get∑
k∈Zn

e−(n−1−k)d (1− Uk)
1
α Sk ≤

∑
k∈Zχn

e−(n−1−k)(d−δ) (1− Uk)
1
α +

∑
k∈Znχn

e−(n−1−k)d (1− Uk)
1
α Sk

≤ e(χn−n)(d−δ)

1− eδ−d
+
∑

k∈Znχn

e−(n−1−k)d (1− Uk)
1
α Sk. (3.12)

The inequalities in (3.11)�(3.12) and the de�nition in (3.8) imply Xn ≤ Dn for all n ∈ Z a.s.

(b) Note that Ck − Cn =
∑n−1
i=k Fi for all k ∈ Zn. Hence Rn = sup{Ck − Cn : k ∈ Zn+1} and Fn

are independent and the Markov property for {Rn}n∈Z follows from

Rn = max

{
sup
k∈Zn

Ck − Cn, 0
}

= max {Rn−1 + Fn−1, 0} .

By (3.9) we haveD′′n = Sn−1+e−dD′′n−1. Hence (Rn, D
′
n) is a function of Ξn−1 =

(
Θn−1, Rn−1, D

′
n−1

)
(recall that Sn−1 is the �rst component of the random vector Θn−1). Since the random elements

Ξn−1 and Θn are independent, the process {Ξn}n∈Z is Markov.

The vector Ξn = (Θn, Rn, D
′
n) is in a bijective correspondence with (Θn, Rn, D

′′
n).

Since {Θn}n∈Z are i.i.d., the following equality in law holds

(
Rn+1, D

′′
n+1

)
=

 sup
j∈Z1

∑
k∈Z1

j

Fn+k,
∑
k∈Z1

ekdSn+k

 d
=

 sup
j∈Z1

∑
k∈Z1

j

Fk,
∑
k∈Z1

ekdSk

 ,

implying the stationarity of {(Θn, Rn, D
′′
n)}n∈Z and hence of R and Ξ.

The process R can jump to 0 in a single step and has positive jumps of size at most 1/(αρ)− d,

both with positive probability. Hence it will hit any subinterval of its state space [0,∞) from any

starting point in a �nite number of steps with positive probability, making it ϕ-irreducible [24,

p. 82] with respect to its invariant law.

Since Θn is independent of (Rn, D
′′
n), the ϕ-irreducibility of {Ξn}n∈Z follows if, starting from

an arbitrary point, we can prove that the process {(Rn, D′′n)}n∈Z hits any rectangle in the product
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[0,∞) × (0,∞) with positive probability. Since we already know that R hits intervals and has

(arbitrarily) small positive jumps with positive probability, the independence of {D′′n}n∈Z and R,

together with the fact that D′′n has a positive density, imply the �nal statement of the lemma. �

Proof of Theorem 1.2. By Lemma 3.2(ii), Ξ is π-irreducible, where π denotes the invariant law

of Ξ. Hence, by [24, Prop. 10.1.1], Ξ is recurrent, meaning that the expected number of visits of

the chain Ξ to any set charged by π is in�nite for all starting points. By [24, Thm 9.0.1], the chain

Ξ is Harris recurrent on a complement of a π-null set. Put di�erently, for any starting point, the

number of visits Ξ makes to any set charged by π is in�nite almost surely.

Consider the Markov chain Ψ = {Ψn}n∈N, where N = {0, 1, . . .} and Ψn = Ξ−n. In the

language of [28], Ψ is a chain dual to Ξ with respect to π. In particular, the invariant law of

Ψ equals π. Since Ξ is Harris recurrent on a state space with a countably generated σ-algebra,

[28, Thm 8.1.1] implies that there exists a modi�cation of Ψ (again denoted by Ψ) that is also

Harris recurrent. Since P
(
a (Θ−n) ≥ D′−n

)
> 0 for any n ∈ N, it follows that the Ψ-stopping time

σ′ = inf
{
n > 0 : a (Θ−n) ≥ D′−n

}
is �nite almost surely. Moreover, by [24, Thm 11.1.4] we have

E[σ′|Ψ0] <∞ almost surely.

Recall that σ = inf {n > 0 : a (Θ−n) ≥ D−n} is the number of steps taken backwards in time in

Algorithm 1. By Lemma 3.2(i) we have σ ≤ σ′. Since, by de�nition Ψ0 = Ξ0, the claim follows. �

4. Backward Simulation of {(Dn,Θn)}n∈Z

A key step in Algorithm 1 consists of simulating the process {(Dn,Θn)}n∈Z backwards in time

until the random time σ = inf {n > 0 : a(Θ−n) ≥ D−n} (see (2.3) and (3.3) for the de�nitions of

Z1 and a(θ), respectively). The forthcoming Algorithm 2 is responsible for this step. Recall that

{Θn}n∈Z is an i.i.d. sequence with Θn = (Sn, Un,Wn,Λn) having independent components, where

Sn, Un and Λn are distributed as in Theorem 1.1 and Wn ∼ U(0, 1).

At time n ∈ Z, the dominating process D in (3.8) depends on three components: the sequence(
χn, {Sk}k∈Z0

χn

)
, the all-time maximum supk∈Zn+1{Ck} and Cn (via the re�ected process R,

see (3.6)-(3.7)) and the uniform random variables {Uk}k∈Z0
χn
. The time χn in (3.5) is the last time

before n the random variables {Sk}k∈Z0 exceed a certain adaptive exponential bound. Algorithm 3

for sampling
(
χn, {Sk}k∈Z0

χn

)
is given in Section 4.1 below. A sample for (Rn, Cn) requires the

joint forward simulation of the dual random walk −C and its ultimate maximum. This problem
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was solved in [4]. The algorithm in [4], stated for completeness as Algorithm 7 of Section 4.2 below

for the random walk C in (3.6), requires the simulation of the walk under the exponential change

of measure.

Since the increments of C are shifted negative exponential random variables under the original

measure, they remain in the same class under the exponential change of measure, making the

simulation in Algorithm 7 simple. Finally, heaving simulated (R,C) backwards in time, we need

to recover the random variables Λk and Uk, conditional on the values of increments Fk = d +

(1/α) log(UnΛn) we have observed. Algorithm 8 in Section 4.3 below describes this step.

Algorithm 2 Backward simulation of
(
σ, {(Dn,Θn)}n∈Z0

−σ

)
1: Sample χ−1 and {Sk}k∈Z0

χ−1
. Algorithm 3

2: Sample {(Rk, Ck,Λk, Uk)}k∈Z0
N−1

for some N−1 ≤ χ−1 . Algorithms 7 & 8

3: Bundle up {Θk}k∈Z0
χ−1

and compute D−1

4: Put n := −1

5: while Dn > a(Θn) do

6: Put n := n− 1

7: Sample χn and {Sk}k∈Zχn+1
χn

conditional on (χn+1, {Sk}k∈Zχn+1
χn

) . Algorithm 3

8: Sample {(Rk, Ck,Λk, Uk)}
k∈Z

Nn+1
Nn

for some Nn ≤ χn . Algorithms 7 & 8

9: Bundle up {Θk}k∈Zχn+1
χn

, and compute Dn

10: end while

11: Put σ = −n

12: return (σ, {Θk}k∈Z0
−σ

)

The number of steps N−1 (resp. Nn) in line 2 (resp. 8) of Algorithm 2 is random since

Algorithm 7, which outputs the all-time maximum of the random walk, may need more values

of the random walk than required to recover the previous value of the dominating process D−1

(resp. Dn). (In the notation of Section 4.2 below, the integers Nn take the form ∆ (τm).) The

running time of Algorithm 3 is random but has moments of all orders (see Lemma 4.1 in Section 4.1

below). Algorithm 8 executes a loop of length equal to the number of steps in the random walk C

the algorithm is applied to, with each step sampling one Poisson and one Beta random variables

(see Section 4.3 below). Hence both Algorithms 3 and 8 are fast (see Section 5). Algorithm 7 of [4]
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(see Section 4.2 below) runs sequentially Algorithms 4, 5 and 6. Each of these algorithms is reliant

on rejection sampling and has a �nite expected running time, which is easy to quantify in terms of

the increments of the walk C.

4.1. Simulation of
(
χn, {Sk}k∈Z0

χn

)
Consider independent Bernoulli random variables {Jn}∞n=1 with computable pn = P(Jn = 0),

n ≥ 1, satisfying
∑∞
n=1(1− pn) <∞. By the Borel-Cantelli Lemma the random time τ = sup{n ≥

0 : Jn = 1}+ (with convention sup ∅ = −∞) satis�es τ ∈ N a.s. Clearly, Jn = 0 for all n > τ ,

and {τ < n} =
⋂∞
k=n{Jk = 0} implies P(τ < n) =

∏∞
k=n pk. If there exists n∗ ≥ 1 such that

for all n ≥ n∗ we have a positive computable lower bound qn ≤
∏∞
k=n pk, then we can simulate

(τ, {Jk}k∈{0,...,τ}) as follows.

De�ne the auxiliary function F : (0, 1)× (0, 1)→ {0, 1} × (0, 1) by the formula

F (u, p) =


(

0, up

)
if u ≤ p,(

1, u−p1−p

)
if u > p.

The following observation is simple but crucial: for any p ∈ (0, 1) and U ∼ U (0, 1), the components

of the vector (J, V ) = F (U, p) are independent, J is Bernoulli with P(J = 0) = p and V ∼ U (0, 1).

Sample {Jn}n∈Zn∗1
and an independent U (n∗) ∼ U (0, 1). Let

(
Jn∗ , U

(n∗+1)
)

= F
(
U (n∗), pn∗

)
.

Hence Jn∗ has the correct distribution and is independent of U (n∗+1) ∼ U(0, 1). Thus, Jn∗ is inde-

pendent of F
(
U (n∗+1), pn∗+1

)
=
(
Jn∗+1, U

(n∗+2)
)
. De�ne recursively

(
Jn, U

(n+1)
)

= F
(
U (n), pn

)
for n ≥ n∗+2 and note that the sequence {Jn}n∈N of Bernoulli random variables is i.i.d. Moreover,

the sequence {U (n)}n≥n∗ detects the value of τ since
{
U (n) ≤ qn

}
⊆
{
U (n) ≤

∏∞
k=n pk

}
= {τ < n}.

Algorithm 3 samples a single uniform random variable and performs a binary search. Its running

time ς = inf
{
n ≥ n∗ : U (n) ≤ qn

}
≥ τ+1 (with convention inf ∅ =∞) has the following properties.

Lemma 4.1. (a) If limn→∞ qn = 1 then P(ς <∞) = 1.

(b) If
∑∞
n=n∗ (1− qn) <∞ then Eς <∞.

(c) If
∑∞
n=n∗ (1− qn) etn <∞ for some t > 0, then Eetς <∞.

(d) If qnpn−1 ≥ qn−1 for n > n∗, then the converses of (a), (b) and (c) are also true.

Remark 4.1. At the cost of additional operations, one may always construct a sequence {q′n}∞n=n∗

that satis�es (d). Indeed, let q′n∗ = qn∗ and de�ne recursively q′n = max{qn, q′n−1/pn−1} for n > n∗,
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Algorithm 3 Simulation of (τ, {Jk}k∈{1,...,τ})
1: Sample J1, . . . , Jn∗−1 and put n := n∗ − 1

2: Sample U ∼ U(0, 1)

3: loop

4: Put n := n+ 1

5: if U > pn then

6: Put Jn := 1 and update U := U−pn
1−pn

7: else if U ≤ qn then

8: Compute τ from J1, . . . , Jn−1 and exit loop

9: else

10: Put Jn := 0 and update U := U
pn

11: end if

12: end loop

13: return (τ, {Jk}k∈{1,...,τ})

then these satisfy condition (d), are computable and inductively satisfy q′n ≤
∏∞
k=n pk for n ≥ n∗.

This consideration shows that our conditions are sharp.

Proof. (a) For all n ≥ n∗ we have {ς ≤ n} ⊇
{
U (n) ≤ qn

}
, then P(ς > n) ≤ P(U (n) > qn) =

1− qn. Hence P(ς =∞) = limn→∞ P(ς > n) ≤ limn→∞(1− qn) = 0 and the su�ciency follows.

(b) Similarly, Eς =
∑∞
n=0 P (ς > n) ≤ n∗ +

∑∞
n=n∗ (1− qn) <∞ and the claim follows.

(c) Note that (et − 1)
∑n−1
m=0 e

tm = etn−1. Exchanging the order of summation in the third equality

of the following estimate implies (c):

Eetς =

∞∑
n=0

P (ς = n) etn =

∞∑
n=0

P (ς = n)

(
1 +

(
et − 1

) n−1∑
m=0

etm

)

= 1 +
(
et − 1

) ∞∑
m=0

etmP (ς > m) ≤ etn
∗

+
(
et − 1

) ∞∑
n=n∗

(1− qn) etn <∞.

(d) Condition (d) and the relation (τ+1)∨n∗ = inf{k ≥ n∗ : U (k) ≤
∏∞
j=k pj} imply for n ≥ k ≥ n∗,

{(τ + 1) ∨ n∗ = k, ς ≤ n} =


{
U (k−1) ∈

[
pk−1, pk−1 + (1− pk−1)qn

∏
j∈Znk

pj

]}
k > n∗,{

U (n∗) ∈
[
0, qn

∏
j∈Zn

n∗
pj

]}
k = n∗.
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Thus, a simple calculation yields

P(ς ≤ n) = qn
∏

j∈Zn
n∗

pj +
∑
k∈Zn

n∗

qn(1− pk)
∏

j∈Znk+1

pj = qn,

and the result follows from standard probability theory. �

In Algorithm 2 we are required to sample
(
χ0, {Sk}Z0

χ0

)
, and then, iteratively for n ∈ Z0, χn and

the remaining {Sk}k∈Zχn+1
χn

, given the known values
(
χn+1, {Sk}k∈Z0

χn+1

)
. To apply Algorithm 3,

we need a computable lower bound on the product of probabilities p (m) = P(S1 ≤ eδm), m ∈ N.

Recall the exponential lower bound on p (m) in (3.4) and de�ne m∗ =
⌊

1
δγ logESγ1

⌋+

+ 1 (here

bxc = sup{n ∈ Z : n ≤ x} for any x ∈ R). Note that for any m ≥ m∗ we have e−δγmESγ1 < 1 and

may hence de�ne p (m) = exp
(
− 1

1−e−δγ
e−δγmESγ1

1−e−δγmESγ1

)
∈ (0, 1). The inequality in (3.4) implies

∞∏
j=m

p (j) ≥
∞∏
j=m

(
1− e−δγjESγ1

)
= exp

 ∞∑
j=m

log
(
1− e−δγjESγ1

)
= exp

− ∞∑
j=m

∞∑
k=1

1

k
e−δγjk (ESγ1 )

k

 ≥ exp

(
−
∞∑
k=1

e−δγmk (ESγ1 )
k

1− e−δγk

)
≥ p (m) .

Since for any k ∈ Z0
χ0

we have P(I0
k = 0) = P(Sk ≤ e−(k+1)δ) = p(−(k + 1)), Algorithm 3 can be

applied (with n∗ = m∗) to sample the sequence
{
I0
k

}
k∈Z0

χ0

. Moreover, for m ∈ N we get

p (m∗ +m) ≥ exp
(
−re−δγm

)
≥ 1− re−δγm, where r =

e−δγm
∗ESγ1

(1− e−δγ) (1− e−δγm∗ESγ1 )
> 0.

Hence, for any t ∈ (0, δγ), Lemma 4.1(c) implies that the running time ς satis�es E[eςt] < ∞ and

therefore possesses moments of all orders. Having obtained

(
χ0,
{
I0
k

}
k∈Z0

χ0

)
, for k ∈ Z0

χ0
, we

sample Sk as S+ (α, ρ) conditional on Sk ≤ e−δ(k+1) (if I0
k = 0) or Sk > e−δ(k+1) (if I0

k = 1),

yielding a sample of
(
χn, {Sk}k∈Z0

χn

)
.

Assume now that we have already sampled
(
χn+1, {Sk}k∈Z0

χn+1

)
. The adaptive exponential

bounds in the indicators In+1
k and Ink are di�erent (see Figure 4.1) and the relevant probabilities

take the form

p′ (m) = P
(
S1 ≤ eδm

∣∣S1 ≤ eδ(m+1)
)
, m ∈ N.

Since {S1 ≤ eδm} ⊂ {S1 ≤ eδ(m+1)}, the inequality p′ (m) ≥ p (m) holds for any m ∈ N. Thus
∞∏
j=m

p′ (j) ≥
∞∏
j=m

p (j) ≥ p (m)
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and Algorithm 3 can be applied with n∗ = max{m∗, n−χn+1}. The same argument as above shows

that the running time ς has moments of all orders.

χ0χ−1χ−2

S−2

S−7
S−10

k

{Sk}k 7→ e−δ(k+1)

k 7→ e−δ(k+2)

k 7→ e−δ(k+3)

Figure 4.1: The adaptive exponential bounds k 7→ eδ(n−k−1) for n ∈ {0,−1,−2} with the corresponding stable

random variables conditioned to be positive {Sk}k∈Z0 and the times {χk}k∈Z1 used for the construction of the

dominating process {Dn}n∈{0,−1,−2} in (3.8).

4.2. Simulation of the Random Walk and Its Re�ected Process from [4]

In this section we present an overview of the algorithm in [4] for the joint simulation of (C,R)

de�ned in (3.6)-(3.7). We refer to [4] and [17] for the proofs (the latter paper contains the simulation

algorithm for the ultimate maximum of a random walk with negative drift and provides a basis for

the simulation algorithm in [4]).

Let η = η(d) be the unique positive root of ψd(η) = 0, where ψd(t) = log(EetF0) = dt −

log(1 + t/(αρ)). Note that ψ′d(η) = d − 1
αρ+η > 0 and η = −αρ −W−1

(
−αρde−αρd

)
/d, where

W−1 is the secondary branch of the Lambert W function. Since E[exp(ηFn)] = 1 for all n ∈ Z,

the process {exp(ηCn)}n∈Z1 is a positive backward martingale started at one, thus inducing a

probability measure Pη on σ-algebras σ
(
Ck; k ∈ Z1

n

)
, n ∈ Z1, by the formula Pη(A) = E[1Ae

ηCn ]

where A ∈ σ
(
Ck; k ∈ Z1

n

)
. Under Pη, the process C remains a random walk with i.i.d. increments

satisfying (αρ + η)(d − Fn) ∼ Exp(1). Hence Eη[C−1] = ψ′d (η) > 0, implying limn→−∞ Cn = ∞,

Pη-a.s. by the strong law of large numbers.

For any k ∈ Z de�ne (with convention sup ∅ = −∞)

T kx =

sup
{
n ∈ Zk : Cn − Ck > x

}
if x > 0,

sup
{
n ∈ Zk : Cn − Ck < x

}
if x < 0.

(4.1)

For ease of notation we let Tx = T 0
x . Let E be an independent exponential random variable with
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mean one. Then, for x > 0, we have P (R0 > x) = Pη
(
LE/η > x

)
, where Lx = inf

{
y ≥ 0 : CTy > x

}
is the right inverse of x 7→ CTx , see e.g. [17]. Hence for x ∈ (0, x′), where x′ ≤ ∞, sampling

1{R0>x} = 1{Tx>−∞}, conditional on 1{R0≤x′} = 1{Tx′=−∞}, in �nite time amounts to sampling E

and C−1, . . . , CTE/η under Pη, see Algorithm 4 below.

Algorithm 4 Simulation of 1{R0>x} conditional on {R0 ≤ x′}

Require: ∞ ≥ x′ > x > 0

1: loop

2: Sample E ∼ Exp(1)

3: if E/η ≤ x then

4: return 0

5: else

6: Sample C0 = 0, C−1, . . . , CTE/η under Pη

7: Compute LE/η

8: if LE/η ≤ x′ then . Accept sample

9: return 1{LE/η>x}

10: end if

11: end if

12: end loop

Remark 4.2. Since Lx ≤ x, then the condition E/η ≤ x implies LE/η ≤ x, thus identifying

1{LE/η>x} = 0 (see line 3) and saving the computational e�ort of running all subsequent lines.

This algorithm repeats independent experiments with success probability Pη(LE/η ≤ x′) > 0.

The expected runtime of each iteration in the loop is bounded above by (η−1 + d)/ψ′d(η), see [17,

Eq. (2.3)]. Hence the expected running time of Algorithm 4 is �nite.

In Algorithm 7 below we need to sample the path of the random walk {Ck}k∈Z1
Tx

conditioned

on the event {R0 ∈ (x, x′)}, where 0 < x < x′ ≤ ∞. By a rejection sampling method under Pη and

Algorithm 4 (see [4, Lemma 3]), this can be achieved as follows.

Remark 4.3. Since Lx ≤ x, we have P(R0 ≤ z) ≥ P(E/η ≤ z) = 1− exp(−zη) for all z ≥ 0. Since

the overshoot CTx − x is in the interval (0, d), the expected running time of Algorithm 5 (i.e. one

over the acceptance probability) is smaller than exp(η(x+d))/(1−exp(−η(x′−x−d)) if x′ > x+d.
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Algorithm 5 Simulation of C0, . . . , CTx conditional on {Tx > −∞ = Tx′}
Require: ∞ ≥ x′ > x > 0

1: loop

2: Sample C0 = 0, C−1, . . . , CTx under Pη

3: Given CTx , sample independent 1{R′0≤x′−CTx} and U ∼ U(0, 1) . Algorithm 4

4: if U ≤ exp(−ηCTx) and 1{R′0≤x′−CTx} = 1 then . Accept sample

5: return {Cn}n∈Z1
Tx

6: end if

7: end loop

In Algorithm 7 we also need to simulate the path of the walk reaching a negative level −x, while

staying below a given positive level forever. Algorithm 6 achieves this (see [4, Lemma 3]). Its

expected running time is bounded above by 1/((1− exp(−η(x′ + x)))P(T−x < Tx′)) <∞.

Algorithm 6 Simulation of C0, . . . , CT−x conditional on {Tx′ = −∞}

Require: x ∈ (0,∞) & x′ ∈ (0,∞]

1: loop

2: Sample C0 = 0, C−1, . . . , CT−x under P

3: Given CT−x , sample an independent 1{R′0≤x′−CT−x} . Algorithm 4

4: if 1{R′0≤x′−CT−x} = 1 and maxn∈Z1
T−x
{Cn} ≤ x′ then . Accept sample

5: return {Cn}n∈Z1
T−x

6: end if

7: end loop

We now give a brief overview of the algorithm in [4] for the simulation of {(Cn, Rn)}n∈Z1 .

Pick κ > max{log(2)/(3η), 1/(αρ)} (see assumption in [4, Prop. 3]). [4] constructs sequences

∆ = {∆ (k)}k≥0 and τ = {τk}k≥0 of decreasing negative and increasing positive times, respectively:

1. at the start of each iteration of the algorithm we are given(
{τk}k∈{0,...,m} , {∆ (k)}k∈{0,...,τm} , {Cn}n∈Z1

∆(τm)
, {Rn}n∈Z1

∆(τm−1)

)
,

2. at each iteration we sample(
τm+1, {∆ (k)}k∈{τm+1,...,τm+1} , {Cn}n∈Z∆(τm)

∆(τm+1)
, {Rn}n∈Z∆(τm−1)

∆(τm+1−1)

)
.
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Note that at the m-th iteration we have ∆ (τm) −∆ (τm − 1) more values of the walk than of the

re�ected process. More precisely, the algorithm starts by setting ∆(0) = 0 and repeats the following

steps: given {τk}k∈{0,...,m} and {∆(k)}k∈{0,...,τm}, then put ∆ (τm + 1) = T
∆(τm)
−2κ . Next, if ∆ (k) is

the last known value of ∆ and if R∆(k) > κ, then put ∆ (k + 1) = T
∆(k)
κ and ∆ (k + 2) = T

∆(k+1)
−2κ .

If instead R∆(k) ≤ κ then put τm+1 = k. Repeat the previous two steps until we can compute

τm+1, that is, until R∆(k) ≤ κ. After computing τm+1 go back and repeat. By construction (see

Proposition 3 in [4]) we have

sup
n∈Z∆(τm)+1

{Cn} ≤ C∆(τm−1) − κ, implying Rn = max
k∈Zn+1

∆(τm)+1

{Ck} − Cn, n ∈ Z∆(τm−1)
∆(τm−1).

Hence, we may computeRn, n ∈ Z1
∆(τm−1), from the simulated values τm, ∆(τm−1), ∆(τm), {Cn}n∈Z1

∆(τm)
.

Algorithm 7 Simulation of the random walk and its re�ected process

Require: κ > max{ log(2)
3η , 1

αρ}, d ∈ (0, 1), ∞ ≥ x > 0 and m ≥ 1 . x is an upper bound for R0

1: Put t := C0 := ∆(0) := τ0 := 0

2: for k ∈ {1, . . . ,m} do

3: Put t := τk−1

4: loop

5: Sample C∆(t)−1, . . . , CT∆(t)
−2κ

conditioned on {R∆(t) < x− C∆(t)} . Algorithm 6

6: Put ∆(t+ 1) := T
∆(t)
−2κ and t := t+ 1

7: Sample 1{R∆(t)>κ} given {R∆(t) < x− C∆(t)} . Algorithm 4

8: if 1{R∆(t)>κ} = 1 then

9: Sample C∆(t)−1, . . . , CT∆(t)
κ

from Pη . Algorithm 5

10: Put ∆(t+ 1) := T
∆(t)
κ and t := t+ 1

11: else

12: Put x := κ+ C∆(t), τk := t and exit loop

13: end if

14: end loop

15: end for

16: Compute {Rn}n∈Z1
∆(τm−1)

17: return
(
{τk}k∈{0,...,m} , {∆ (k)}k∈{0,...,τm} , {Cn}n∈Z1

∆(τm)
, {Rn}n∈Z1

∆(τm−1)

)
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4.3. Sampling (Un,Λn) given Fn

Algorithm 2 requires the knowledge of {(Un,Λn)}n∈Z0 , given the increments {Fn}n∈Z0 of the

random walk C. Since log (UnΛn) = α (Fn − d) for all n ∈ Z, by independence, we may restrict

attention to n = 1. It follows from (2.6) above that Λ1
d
=
∏T
i=2 Ui for an independent geometric

random variable T with parameter ρ on the positive integers (if T = 1 the right-hand side is de�ned

to equal one). Hence, by independence, we have U1Λ1
d
=
∏T
i=1 Ui. By (2.7), − log Λ1 conditioned

on being positive is exponential with mean 1/ρ. Hence for any n ≥ 1 and y > 0 we obtain

P

[
T = n

∣∣∣∣∣−
T∑
i=1

log (Ui) = y

]
=
ρ (1− ρ)

n−1 yn−1e−y

(n−1)!

ρe−ρy
=

[(1− ρ) y]
n−1

e−(1−ρ)y

(n− 1)!
.

Thus the conditional law of T − 1 given
∑T
i=1 log (Ui) = −y is Poisson with mean (1− ρ) y. If

T = 1, then − log(U1) = y and Λ1 = 1. If T > 1, then for x ∈ (0, y) we get

P

[
− log (U1) ∈ dx

∣∣∣∣∣T = n,−
T∑
i=1

log (Ui) = y

]
=
e−x (y−x)n−2e−(y−x)

(n−2)!

yn−1e−y

(n−1)!

dx = (n− 1)
(y − x)

n−2

yn−1
dx.

Hence, conditional on T = n and log
(∏T

i=1 Ui

)
= −y, the law of − 1

y log (U1) is Beta (1, n− 1)

(understood as the Dirac measure δ1 when n = 1). Finally we set Λ1 = exp (α (F1 − d)) /U1.

Algorithm 8 Simulation of {(Uk,Λk)}k∈Znm given {Fk}k∈Znm
Require: {Fk}k∈Znm for m,n ∈ Z and m < n.

1: for k ∈ Znm do

2: Sample T − 1 ∼ Poisson (−α (Fk − d) (1− ρ))

3: Sample L ∼ Beta (1, T − 1)

4: Let Uk := exp (Lα (Fk − d)) and Λk := exp ((1− L)α (Fk − d))

5: end for

6: return {(Uk,Λk)}k∈Znm

5. Implementation

Recall the de�nitions of the process {(Cn, Fn)}n∈Z in 3.6, of {Θn}n∈Z in the �rst paragraph of

Section 4 and of Pη in the second paragraph of Section 4.2. Before providing a concrete and concise

algorithm and testing it, we will introduce a practical improvement based on a simple consideration.
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Note that simulating the iid variables {Θn}n∈Z0 is clearly quicker and easier than employing

the full machinery of our algorithms. Recall that the dominating process was introduced only to

detect coalescence for the chain {Xn}n∈Z0 . Thus, given {Θn}n∈Z0
∆(0)

for some burn-in parameter

∆(0) ∈ Z0 and an upper bound X ′∆(0) = D∆(0) ≥ X∆(0) (recall the de�nition of {Dn} in (3.8)),

one could recursively construct X ′n+1 = ψ(X ′n,Θn) for n ∈ Z0
∆(0) and if any coalescence were

detected, we would be certain that X ′0 = X0. Our objective is hence to take an appropriate ∆(0)

that increases the probability P(X ′0 = X0). Algorithm 9 is a complete and compact simulation

algorithm of X0, which makes use of this.

It is known that spectrally negative stable processes of in�nite variation (α > 1 and ρ = 1/α)

satisfy S(α, ρ) = S+(α, ρ) [25, Thm 1]. As a simple application and sanity-check, we now present

a comparison between the empirical distribution function of N = 104 samples against the actual

distribution function in this case. To validate the samples, we compute the Kolmogorov-Smirnov

statistic and test the hypothesis. (These graphs can be replicated following the guide available

in [19].) In all three cases the null hypothesis of all samples coming from their respective distribution

functions is not rejected (see Figure 5.1).
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Figure 5.1: Empirical distribution functions for spectrally negative in�nite variation stable process with parameters

ρ = 1/α and, from left to right, α = 1.1, α = 1.5 and α = 1.9. The top graphs show the empirical distribution

functions FN for N = 104 samples and compare it to the distribution function F = S(α, ρ) = S+(α, ρ) [25, Thm 1].

The bottom graphs show s 7→
√
N(FN ◦F−1(s)−s) on [0, 1] (or equivalently, the curve t 7→ (F (t),

√
N(FN (t)−F (t)))

in R2 for t > 0), which converges weakly to a Brownian bridge. The dashed lines are the 0.05 and 0.95 quantiles of

the Kolmogorov-Smirnov statistic, derived from the distribution of the signed maximum modulus of the Brownian

bridge.
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Algorithm 9 Perfect simulation of X0
d
= Y 1

Require: Parameters 0 < δ < d < 1
αρ , κ > max{ log(2)

3η , 1
αρ}, γ > 0 and ∆(0) ∈ Z0

1: Put x :=∞, t := 1, s := ∆(0) and m := n := ∆(0) + 1 . x is an upper bound on {Ck}k∈Z∆(0)

2: Sample {Θk}k∈Z0
∆(0)

. Recall its de�nition in Section 4, paragraph 1

3: loop

4: Sample
(
χm−1, {Sk}k∈Zsχm−1

)
. Algorithm 3

5: while n = m or ∆(t) > χm−1 do

6: Sample C∆(t), . . . , CT∆(t)
−2κ

conditional on {R∆(t) < x− C∆(t)} . Algorithm 6

7: Put ∆(t+ 1) := T
∆(t)
−2κ and t := t+ 1 . Recall its de�nition in (4.1)

8: Sample 1{R∆(t)>κ} given {R∆(t) < x− C∆(t)} . Algorithm 4

9: if 1{R∆(t)>κ} = 0 then

10: Compute {Rk}k∈Zn
∆(t−1)

and put n := ∆(t− 1) and x := C∆(t) + κ

11: else

12: Sample C∆(t)−1, . . . , CT∆(t)
κ

from Pη . Algorithm 5

13: Put ∆(t+ 1) := T
∆(t)
κ and t := t+ 1

14: end if

15: end while

16: Sample {(Uk,Λk)}k∈Zsχm−1
from {Fk}k∈Zsχm−1

and put s := χm−1 . Algorithm 8

17: Compute Dm−1 and put m := m− 1 . Recall its de�nition in (3.8)

18: if Dm ≤ a(Θm) then

19: return X0 := ψ(· · ·ψ(Dm,Θm), · · · ,Θ−1) . In this case σ = m

20: else if m = ∆(0) then

21: Put X0 := ψ(· · ·ψ(Dm,Θm), · · · ,Θ−1)

22: if coalescence was detected then

23: return X0

24: end if

25: end if

26: end loop
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5.1. Parameter choice and numerical performance

As explicitly stated in Algorithm 9, and if one allows m∗ (recall its de�nition in paragraph 1,

p. 14) to vary over b 1
δγ logESγ1 c+ + N, our simulation procedure has 6 di�erent parameters. A

full theoretical optimisation is infeasible as it heavily depends on, among other things, the way the

algorithm is coded, the computational cost of simulating each variable, the cost of each calculation,

memory accessing cost, the quality and state of the RAM and (α, ρ). However, for the sake of

presenting its practical feasibility, we have implemented the algorithm in the Julia programming

language (see [19]) and ran it on a macOS Mojave 10.14.3 (18D109) with a 4.2 GHz Intel R©CoreTMi7

processor and a 8 GB 2400 MHz DDR4 memory. This implementation is far from optimal, but

still outputs 104 samples in approximately 1.15 seconds (without multithreading) for the suggested

parameters (d, δ, γ, κ,∆(0),m∗) = $ where

$ = $(α, ρ) =

(
2

3αρ
,

1

3αρ
,

19

20
α, 4 + max

{
log(2)

3η( 2
3αρ )

,
1

αρ

}
, 40, 12 +

⌊
60

19
ρ logES

19
20α
1

⌋+
)
.

This performance varies slightly for di�erent choices of (α, ρ). To put things in perspective,

Algorithm 8 outputs, for the parameter choice $, 106 samples in approximately 0.4322 seconds

and drawing 106 samples from S+(α, ρ) takes 0.1833 seconds. On the other hand, the �rst iteration

of Algorithm 3 (which simulates the indicators {I0
k}k∈Z0

χ0
and the conditionally positive stable

random variables {Sk}k∈Z0
χ0
) simulates 104 samples in about 0.8125 seconds and is, although fast,

the most computationally costly component of Algorithm 9. The main sources of this cost are the

calculation of the probabilities {p(m)} (see their de�nition in (3.4)) and the simulation of {Sk}k∈Z0
χ0

conditioned on the values of {I0
k}k∈Z0

χ0
.

Next we show the local marginal behaviour of the number of samples outputted with con�dence

intervals, for a few di�erent choices of parameters (α, ρ). We will see that, although $ may not

be optimal, it is a simple and yet e�cient choice. Moreover, the variation in performance for

parameters close to this one is small, thus showing that this choice is relatively robust.

It should be noted that the data presented in Figure 5.2 is dependent on the characteristics of the

hardware and software used. Hence, these exact numbers are not easily replicated. For instance,

these times scale sub-linearly as a function of the batch size, and are not replicated despite using

the garbage collector and the same random seed. It is readily seen that the exact value of the

parameters d, δ, ∆(0) and m∗ is not too important in so far as they remain at a reasonable distance

from their boundaries (where ∞ is a right-boundary for ∆(0) and m∗). The value of κ is slightly
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more sensitive, as is γ. Other choices of (α, ρ) have slightly di�erent behaviours. The shapes of

these curves are similar, but the apparent minima change. Thus, we argue that $ is a simple yet

sensible choice.
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Figure 5.2: Time taken (in seconds) to simulate N = 104 samples of S(1.3, 1/2) with parameters moving about

$. In each plot, one parameter moves and all others are kept constant at the respective value of $. We took 100

batches of samples, each with N = 104 independent simulations, to construct asymptotic 95% con�dence intervals

based on the central limit theorem.
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Appendix A. Sampling the marginals of stable processes

A Lévy process Y = (Yt)t∈[0,∞) in R is strictly stable with index α ∈ (0, 2] if for any constant

c ≥ 0 the processes (Yct)t∈[0,∞) and
(
c1/αYt

)
t∈[0,∞)

have the same law. For brevity, we call Y a

stable process. Sampling the increments of Y hence reduces to sampling Y1. Using Zolotarev's (C)
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form [30], up to a scaling constant the law of Y1 is parametrised by (α, β) ∈ (0, 2]× [−1, 1] via

EeitY1 = exp
(
− |t|α e−iπα2 θsgn(t)

)
, where t ∈ R, θ = β

(
1α≤1 +

α− 2

α
1α>1

)
, (A.1)

and sgn(t) equals 1 (resp. −1) if t ≥ 0 (resp. t < 0). The Mellin transform of Y1 equals

EY s1 1Y1>0 = ρ
Γ (1 + s) Γ

(
1− s

α

)
Γ (1 + sρ) Γ (1− sρ)

, (A.2)

where ρ = 1+θ
2 and Γ(·) denotes the gamma function (see [30] Section 5.6). Taking s = 0 in (A.2)

implies that the stable law is uniquely determined by α and its positivity parameter ρ = P (Y1 > 0).

If α > 1, the pair (α, ρ) ∈ (0, 2]× [0, 1] must satisfy ρ ∈
[
1− 1

α ,
1
α

]
, since θ ∈ [1− 2

α ,
2
α − 1].

Let S (α, ρ) and S+ (α, ρ) denote the laws of Y1 and Y1 conditioned on being positive, respectively.

As ρ, αρ ∈ [0, 1] and the Mellin transform determines the law uniquely, (A.2) implies that (Z ′/Z ′′)
ρ

follows S+ (α, ρ), where Z ′ ∼ S (αρ, 1) and Z ′′ ∼ S (ρ, 1) are independent. Since P ′B +P ′′ (1−B)

follows S (α, ρ), where P ′ ∼ S+ (α, ρ), P ′ ∼ S+ (α, 1− ρ) and B ∼ Ber (ρ) are independent, we

need only be able to simulate a positive stable random variable with law S (α, 1) for any α ∈ (0, 1].

If α = 1, then by (A.1), Y1 is a constant equal to one. If α ∈ (0, 1), Kanter's factorisation states(
sin (απU)

α
sin ((1− α)πU)

1−α
/ sin (πU)

) 1
α

E1− 1
α ∼ S (α, 1) ,

where E is exponential with mean one, independent of U , which is uniform on (0, 1) (see [30,

Sec 4.4]). For alternative ways of sampling from the laws S (α, ρ) and S+ (α, ρ) we refer to [14].
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