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Running title: Tolerance induction to GRP allografts

Abbreviated summary

White matter repair through allotransplantation of glial progenitors is now feasible in immune-

deficient animals. However, immunological barrier precludes its clinical translation. We describe 

a strategy based on costimulation blockade inducing immunological hyporesponsiveness and 

supporting long-term functionality of allotransplanted myelinating oligodendrocytes.

Abstract

The immunological barrier currently precludes the clinical utilization of allogeneic stem cells. 

Although glial-restricted progenitors have become attractive candidates to treat a wide variety of 

neurological diseases, their survival in immunocompetent recipients is limited. In this study, we 

adopted a short-term, systemically applicable costimulation blockade-based strategy using 

CTLA4-Ig and anti-CD154 antibodies to modulate T cell activation in the context of allogeneic 

glial-restricted progenitor transplantation. We found that costimulation blockade successfully 

prevented rejection of allogeneic glial-restricted progenitors from immunocompetent mouse brains. 

The long-term engrafted glial-restricted progenitors myelinated dysmyelinated adult mouse brains 

within one month. Furthermore, we identified a set of plasma miRNAs whose levels specifically 

correlated to the dynamic changes of immunoreactivity and as such could serve as biomarkers for 

graft rejection or tolerance. We put forward a successful strategy to induce alloantigen-specific 

hyporesponsiveness towards stem cells in the central nervous system, which will foster effective 

therapeutic application of allogeneic stem cells.
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Introduction

Neurological disorders are the most compelling targets of cell-based therapy due to the very limited 

capacity of the central nervous system (CNS) to undergo spontaneous regeneration. This 

particularly accounts for glial diseases, as the initially preserved neuronal cytoarchitecture is 

believed to foster white matter repair (Boltze et al., 2017). A broad variety of stem cell populations 

being capable of differentiating into oligodendrocytes including neural and oligodendrocyte 

progenitor cells, as well as glial-restricted progenitors (GRPs) have been investigated (Goldman, 

2016). Moreover, oligodendrocytes directly derived from induced pluripotent stem cells, were 

shown to rapidly myelinate the newborn and adult CNS (Ehrlich et al., 2017). 

GRPs arise from neural stem cells and can differentiate into both oligodendrocytes and astrocytes 

under appropriate conditions (Rao and Mayer-Proschel, 1997; Rao et al., 1998). Apart from 

leukodystrophies or multiple sclerosis, GRPs become promising candidates to treat a wide variety 

of neurological diseases (Goldman et al., 2012; Goldman, 2016). Human GRPs (hGRPs) were 

shown to extensively migrate and myelinate the congenitally dysmyelinated newborn mouse brains 

and prolong the lifespan of the animals (Windrem et al., 2004; Windrem et al., 2008; Wang et al., 

2013; Lyczek et al., 2017). These cells also preserve electrophysiological function in focal 

inflammatory spinal cord demyelination (Walczak et al., 2011), support regeneration after spinal 

cord injury (Haas and Fischer, 2013), replenish depleted precursor pools, generate new myelin, and 

reverse radiation-induced behavioral defects in adult rats (Piao et al., 2015).

Since cell treatments in future clinical scenarios will require very well-defined, thoroughly 

characterized, and standardized cell populations, the use of allogeneic grafts is believed to be the 

most likely approach. This is also advantageous when treating inherited diseases and acute injury 

Page 4 of 71

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

5

for which autologous cell generation and differentiation paradigms are not suitable. However, to 

date, the immunological barrier represents an unsurmountable challenge to widespread clinical 

application of allogeneic cells. In case of GRPs, robust rejection in less than three weeks after 

transplantation into white matter of immunocompetent adult recipients (Janowski et al., 2014; 

Srivastava et al., 2016) strongly limits GRP migration potential and therapeutic effects, so far 

demanding conventional immunosuppression regimens. Besides their low efficacy, risk of 

infection and tumor formation, immunosuppression-inherent effects, as well as associated cellular 

and systemic toxicities complicate preclinical studies and preclude successful clinical translation 

(Diehl et al., 2017) of GRP-based treatments. Thus, novel immunomodulatory strategies are 

imperative.

Since T cells play a central role in the immune response toward allografts, an emerging 

immunomodulatory strategy targets costimulatory molecules involved in T cell activation 

(Verbinnen et al., 2010; Kinnear et al., 2013; Marino et al., 2016). One of the most important 

costimulatory interactions are that of CD80/CD86 found on antigen presenting cells (APCs) 

interacting with CD28 located on T cells, and CD40 on APCs engaging CD154 on T cells (Lafferty 

et al., 1983). CTLA4-Ig blocks the CD80/CD86-CD28 interaction. It prevents complete T cell 

activation with consecutive T cell anergy, thus protecting allografts in various small and large 

animal solid organ (Shiraishi et al., 2002; Graves et al., 2009) and cell transplantation models 

(Lenschow et al., 1992). The concept has been successfully introduced into the clinic (Masson et 

al., 2014). In addition, despite some initial setbacks, preclinical studies have demonstrated the 

potency of anti-CD154 antibody (MR-1) treatment targeting the CD40-CD154 axis for allograft 

rejection prevention (Webber and Vincenti, 2016). The combination of CTLA4-Ig and MR-1 has 

also been shown to induce long-term survival of skin and cardiac allografts (Larsen et al., 1996) as 
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well as human embryonic stem cell-derived pancreatic endoderm xenografts in rodents (Szot et al., 

2015). However, it remains largely unknown whether the blood brain barrier (BBB) and microglial 

response may limit systemic costimulation blockade-based tolerance induction for allogeneic 

GRPs using CTLA4-Ig and MR-1. 

One of the key obstacles in clinical translation of cell therapies is the lack of biomarkers that could 

indicate the status of transplanted cells (Bohmig et al., 2010). Cellular imaging offers limited 

sensitivity and specificity (Berman et al., 2011), so there is growing interest in exploiting  

miRNAs, lipids or proteins as blood biomarkers for intracerebral graft surveillance (Hamdorf et 

al., 2017). MiRNAs are small, non-coding RNAs that act as key regulators of B- and T-cell 

differentiation, maturation, and proliferation. They also play a role in regulatory T cell (Treg) 

function and antigen signaling (Hoefig and Heissmeyer, 2008; Gaudet et al., 2017). Their 

sensitivity, conserved expression and relative tissue specificity have triggered their potential utility 

as biomarkers for neuroinflammation (Hoefig and Heissmeyer, 2008; Gaudet et al., 2017; Sajja et 

al., 2017). 

In the present study, we transplanted fully histocompatibility complex-mismatched GRP allografts 

into the mouse brain parenchyma and studied allograft survival and function by non-invasive 

imaging techniques and histological investigation. We showed that short-term costimulation 

blockade induced indefinite engraftment of GRP allografts in the mouse CNS. Moreover, several 

classes of circulating miRNAs were identified to be sensitive biomarkers for graft 

rejection/acceptance.
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Materials and methods

Mice

Five/one cohorts of immunocompetent C57BL/6 albino (B6, male, 8-week-old, Jackson 

Laboratory) mice were used for allogeneic/xenogeneic GRP survival studies. Two cohorts of 

genetically dysmyelinated shiverer (male, 6-week-old, Jackson Laboratory) mice were included to 

examine the myelination capacity of allogeneic mouse GRPs (mGRPs) in adult brains treated with 

costimulation blockade (CoB). Immunodeficient, graft-accepting mice served as controls for cell 

or transplantation-related failures (scid mice control for B6 mice, and shiverer-rag2 mice control 

for shiverer mice). Every cohort of animals contained three groups: immunocompetent 

animals+CoB group, immunocompetent animals+phosphate buffer saline (PBS, control group), 

and immunodeficient animals (n=5/group). Detailed animal assignment, measurements, and 

dropouts are listed in Table 1. Drop-outs were not replaced. All mice were micro-chipped, 

randomly assigned into different groups, as well as manipulated and analyzed in a blinded manner. 

Animals were housed under an artificial light-dark (12 h/12 h) cycle and had access to food and 

water ad libitum. 

Isolation and characterization of GRPs

Allogeneic GRPs were isolated from the spinal cord of a proteolipid protein (PLP)-green 

fluorescent protein (GFP) (for detection of differentiated oligodendrocytes)/β-actin-luciferase (for 

detection of engrafted cells via bioluminescent imaging) transgenic mouse strain at embryonic day 

13.5 as described (Phillips et al., 2012). Cells were maintained in serum-free Dulbecco’s modified 

Eagle’s medium (DMEM)/F12 (Life Technologies) supplemented with N2 (Life Technologies), 
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B27 (Life Technologies), bovine serum albumin (Sigma-Aldrich), heparin (Sigma-Aldrich), and 

basic fibroblast growth factor (bFGF, PeproTech) (Lepore et al., 2006). 

Primary hGRPs were derived from midgestation fetuses and thoroughly characterized as described 

elsewhere (Sandrock et al., 2010) (Q Therapeutics). Cells were immortalized using lentivirus 

encoding the SV40 large T-antigen, and were selected with puromycin. They were maintained in 

serum-free DMEM/F12 medium supplemented with N2, B27, bovine serum albumin, and bFGF 

(Janowski et al., 2013). Without hGRP indication, transplantations were performed with mGRPs.

Allogeneic mGRPs were characterized immunocytochemically. Briefly, cells were fixed in 4% 

paraformaldehyde for 20 min, blocked by 10% donkey serum in 0.1% Triton X-100-PBS for 2 h 

at room temperature. Cells were incubated with appropriate dilutions of primary antibodies in 

blocking solution overnight at 4°C, rinsed with PBS, and incubated with corresponding secondary 

antibodies (Alexa Fluro-594, Life Technologies-A11058) in blocking buffer for 1 h at room 

temperature. The culture was rinsed three times with PBS, counterstained with 4', 6-diamidino-2-

phenylindole (DAPI, Sigma-Aldrich-D9542, 5 µg/ml), and imaged using a Zeiss AX10 

fluorescence microscope. Primary antibodies were: anti-PDGFRα (1:1000, Abcam-ab61219), anti-

A2B5 (1:500, Life Technologies-433110), anti-Olig1 (1:500, Millipore-AB15620), anti-Olig2 

(1:500, Millipore-AB9610), anti-NG2 (1:500, Millipore-AB5320), anti-MBP (1:1000, AbD 

Serotec-MCA409S), anti-GFAP (1:1000, DAKO-Z0334), anti-Iba1 (1:500, Wako-SAN3725), 

anti-CD11b (1:500, BioLegend-101202), anti-βIII-Tubulin (1:500, Covance-PRB-435P), anti-

Nestin (1:500, Millipore-MAB535), anti-CXCR4 (1:300, Abcam-ab1670), and anti-FGFR1 

(1:200, Cell Signaling Technology-9740).

Cell transplantation
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Anesthesia was induced with 5% isoflurane and maintained with 2% isoflurane in room air and 

oxygen mixed at 3:1 ratio. Mice were shaved and stabilized in a Cunningham adaptor mounted on 

a stereotactic frame (both Stoelting). A 7.0-mm skin incision was made along the midline of the 

skull. The skull bone was carefully exposed and Bregma was identified. A burr hole was placed 

according to the targets (B6 and scid mice: AP=1.7 mm; ML=0.7 mm; DV=2.0 mm). Cells were 

loaded into a 10-μl gastight Hamilton syringe (#1701) with an attached 31-gauge needle (Hamilton) 

and lowered into the brain according to the coordinates. Four microliters of mGRP suspension 

(100,000 cells/μl in PBS) were injected at a rate of 1 μl/min using a nano-injector (Stoelting). The 

needle was kept in place for 2 min after injection to minimize backflow and was then withdrawn 

slowly. The syringe was removed and the wound was closed with sutures (Silk 3.0; Ethicon). 

Shiverer and shiverer-rag2 mice received three injections targeting the corpus callosum to 

investigate the myelination capacity with 3 μl of mGRPs each through one hole (AP=0 mm; 

ML=2.1 mm). The first injection was placed vertically with a 2.0-mm depth. The second injection 

had a 30° angle with the vertical line to the rostral. The third injection had a 45° angle with the 

vertical line to the caudal.

Costimulation blockade

CTLA4-Ig (ORENCIA, Bristol-Myers Squibb Company) was intraperitoneally administered at 

500 μg/mouse in combination with 500 μg/mouse anti-CD154 mAbs (MR-1, BioXCell) at the time 

of transplantation and on post operation day (POD)2, 4, and 6, based on previous tolerance 

induction protocol in rodents (Larsen et al., 1996; Szot et al., 2015). Booster CoB mice received 

additional 500 μg/mouse CTLA4-Ig on POD30, 60, and 90.
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Bioluminescent imaging (BLI) of transplanted GRPs in vivo

Bioluminescence images were acquired using an IVIS Spectrum/CT instrument. Animals were 

anesthetized by 2% isoflurane gas in oxygen, with 150 mg/kg D-luciferin (Gold Biotechnology) 

injected intraperitoneally. BLI was initiated the day after cell transplantation and continued on 

POD3, 7, 10, and then weekly until the endpoints. Images were quantified by drawing regions of 

interest (ROIs) over the mouse brains or backs, with data expressed as total photon flux (photons/s). 

Cell survival curves were generated as logistic graphs. A drop in BLI signal to the background 

level (signal generated by other parts of the body) was interpreted as rejection of transplanted cells 

(Janowski et al., 2014; Srivastava et al., 2016).

Adoptive transfer experiment

For adoptive transfers, single-cell suspensions were prepared from the spleen of B6 mice (one pair 

of 154-day post intracerebral mGRP transplanted CoB and control B6 mice, one age-matched naïve 

mouse). Two million purified T cells were injected into the retro-orbital blood sinus of scid mice 

(5 groups, n=4/group). Four days later, one million mGRPs were subcutaneously transplanted into 

the back of each scid mouse and the survival of allografts was monitored by BLI. 

Mixed lymphocyte reaction (MLR)

T cell isolation was performed via negative selection for B cells, NK cells, 

monocytes/macrophages, dendritic cells, erythrocytes, and granulocytes from splenocytes of 

recipient mice using magnetic bead sorting. Briefly, splenocytes were incubated with purified rat 

anti-mouse B220, Gr-1, TER-119, I-A/I-E, CD11b, and CD16/32 (eBioscience) and subsequently 
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incubated with anti-rat IgG Dynabeads (Dynabeads® Untouched™ Mouse T Cells, Life 

technologies) leading to a T cell enriched population following magnetic selection. Two micromole 

of CFSE (Vybrant CFSE SE cell tracer kit, Life technologies) was applied for tracking 

proliferation.

Dendritic cells (DC) were generated from both donor matched (FVBN) and third party derived 

(Balb/c) bone marrow after cultured for 7 days with IL-4 and GM-CSF in a 37°C incubator. DCs 

were activated with a 1:5000 diluted lipopolysaccharides 24 h prior to MLR plating. CD11c-

positive DCs were then isolated using positive magnetic sorting according to the manufacturer’s 

protocol (Mouse CD11c Positive Selection Kit, STEMCELL Technologies). 

CFSE-labeled T cells and DCs were cultured together with either intact mGRPs or ultrasonicly 

minced mGRPs for 4 d in 37°C, collected, and stained with Fixable Viability Dye (eBioscience) 

according to the manufacturer’s protocol. Samples were stained for CD4 and CD8 and acquired on 

a LSRII flow cytometry (BD Biosicence). Data were analyzed using FlowJo software (Tree Star 

Inc.) and normalized to the proliferation of naïve cells within each individual experiment.

Cytokine assay

The Bioplex 200 platform (Biorad) was used to efficiently determine the concentration (in pg/ml) 

of multiple target proteins in mGRP-engrafted B6 and scid mouse serum, according to the 

manufacturer’s protocols using the supplied cytokine standards. The concentration was determined 

using a 5-parameter log curve fit using the supplied software. The Mouse Group I 23 plex panel 

was used to measure IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 
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(p70), IL-13, IL-17A, Eotaxin, G-CSF, GM-CSF, IFNγ, KC, MCP-1, MIP-1α, MIP-1β, RANTES 

and TNFα. The levels of TGFβ were assessed separately (Biorad).

Treg analysis

Intracellular cytokine staining was performed according to the manufacturer’s protocol. Briefly, 

cells were washed, stained for surface markers, fixed with BD Cytofix/Cytoperm, permeabilized, 

and incubated with antibodies against intracellular markers for 40 min on ice. Flow acquisition was 

performed on a LSRII flow cytometry (BD Biosicence), and data were analyzed using FlowJo 

software (Tree Star Inc.). Fluorochrome-tagged antibodies were: CD4-PB (eBioscience-RM4-5), 

CD8-FITC (BD Pharmingen-53-6.7), CD25-PE (BD Pharmingen-PC61), and FoxP3-PerCP-Cy5.5 

(eBioscience-JFK-16s).

MiRNA analysis

RNA isolation was performed with mouse plasma using a miRCURY RNA Isolation Kit Biofluids 

(Exiqon) according to the manufacturer’s protocol. For isolation, 100 μl of plasma was used and 

one step of DNase treatment was added. RNA Spike-in U6 template was added to the mixture as 

an internal control. Purity and quantity of the isolated miRNA were measured with NanoDrop 

photometry. The RNA samples were diluted with nuclease-free water to concentration of 5 ng/μl 

and 2 μl of RNA was used for synthesis of first-strand cDNA using a miRCURY LNA Universal 

RT microRNA PCR kit (Exiqon) according to the manufacturer’s protocol. Real-Time PCR was 

performed with ExiLENT SYBR-Green master mix with LNA Primers specific for miRNAs (let 

7a/7c, miR-125b, miR-146, miR-150, miR-223) (Exiqon). Results determined the changes in 
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steady-state miRNA levels of a gene across multiple samples, and were expressed relatively to the 

pre-transplantation levels and the levels of an internal control RNA.

Supplementary methods

The Supplementary Materials provide further details for immunohistochemical analysis, MRI, 

erichrome cyanin staining, transmission electron microscopy and g-ratio measurement, and 

miRNA in situ hybridization.

Statistical analysis

Data are expressed as mean ± standard deviation (SD) or median [interquartile range]. No animals 

(despite dropouts) or samples were excluded from the analysis. For investigation of GRP survival 

and cytokine assay, regression analysis was reported as type III tests of fixed effects, with the 

lowest mean square (LMS) difference test used for comparison between means (PROC MIXED, 

SAS 9.2). A coefficient of determination was calculated, and the BLI data were subjected to logistic 

transformation to maximize the model fit. CD45, Iba-1 and CD68 immunohistochemical analysis 

and GFP-MBP co-localization were assessed using a 2-sided Kruskal-Wallis test with Bonferroni’s 

adjustment. One way ANOVA with Bonferroni’s adjustment was used for T cell infiltration and 

miRNA analysis, and an independent t-test (2-tailed) was performed for mixed lymphocyte 

reaction and Treg analysis. Mann-Whitney test for g-ratio analysis (SPSS 22.0). Sample size, 

statistical methods, and p values are given in figure legends. Significance was defined at p<0.05.
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Study approval

All experimental procedures were in accordance with the guidance provided in the Rodent Survival 

Surgery Manual and were approved by Johns Hopkins Institutional Animal Care and Use 

Committee (MO14182).

Data availability

The authors declare that all data supporting the findings of this study are available within the article 

and its Supplementary Materials, or from the authors upon reasonable request.
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Results 

Costimulation blockade induces engraftment of GRP allografts in immunocompetent adult 

B6 mice.

Allogeneic GRP survival was first assessed in immunocompetent adult B6 mouse brains and the 

phenotypic identity of mGRPs was verified by immunocytochemistry with different cell lineage 

markers. These cells expressed high levels of A2B5, PDGFRα, NG2, Nestin, Olig1 and Olig2. 

They were negative for Iba-1, CD11b, β-tubulin and MBP. Some cells were GFAP-positive 

reflecting the bidirectional differentiation capacity of GRPs (Rao et al., 1998) (Supplementary Fig. 

1). Membrane proteins PDGFRα (Tsai et al., 2016), NG2 (Biname et al., 2013), PLP (Harlow et 

al., 2014; Harlow et al., 2015) (Supplementary Fig. 1), CXCR4 (Tsai et al., 2016), and FGFR 

(Bribian et al., 2006) (Supplementary Fig. 2) were reported to mediate oligodendrocyte precursor 

migration and were positive in mGRPs.

After mGRP transplantation to the forceps minor of the corpus callosum, a location known for its 

capacity of robustly rejecting GRP allografts (Janowski et al., 2014), scid, CoB and control mice 

all displayed BLI signal decline within the first three weeks. There was a complete signal loss in 

control mice, but scid and CoB mice exhibited a persistent mGRP signal until the endpoint of the 

study (203 days). Both scid and CoB groups showed a statistically significant difference from 

control group (p<0.05) from POD14 onwards (Fig. 1A). To investigate whether additional CTLA4-

Ig-based treatment may enhance the survival of mGRPs, five randomly selected CoB mice (booster 

group) received monthly CTLA4-Ig treatment, mimicking a clinically effective 

immunosuppression maintenance strategy (Kirk et al., 2014). No difference in graft survival was 

observed between non-booster (CTLA4-Ig and MR-1 treatment on POD0, 2, 4 and 6) and booster 

(additional CTLA4-Ig treatment on POD30, 60, 90) groups (Supplementary Fig. 3).
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To test systemic hyporesponsiveness against donor antigens, secondary subcutaneous injections of 

mGRPs isolated from the donor of the original brain grafts were performed after 120 days of 

primary intracerebral grafting in randomly selected CoB (n=3) and scid mice (n=3). Resembling 

the survival curve of primary intracerebral transplantation, naïve B6 controls (n=5) rejected 

subcutaneously transplanted mGRPs within three weeks. Scid and CoB mice, however, accepted 

both primary (brain) and secondary (subcutaneous) mGRP allografts (Fig. 1B). After 17 days of 

secondary subcutaneous transplantation (POD137 of intracerebral transplantation), BLI signals 

were significantly higher in both CoB and scid mice compared to naïve controls (p<0.001 on all 

time-points examined). Signals were detectable for 83 days after secondary transplantation until 

animals were sacrificed for post-mortem assessment (=overall 203 days of investigation, the 

endpoint of the study) (Fig. 1B, C).

Adoptive-T cell transfer experiments were performed to provide evidence for systemic 

hyporesponsiveness rather than sequestration of the grafts behind the BBB. T cells were isolated 

from a naïve B6 mouse, CoB, and control mice (POD154 of intracerebral mGRP transplantation, 

indefinite engraftment was regarded to be established), and were retro-orbitally injected into scid 

mice with different donor configurations (n=4/group). Four days later, mGRPs were 

subcutaneously transplanted to the back of these scid mice. BLI revealed that scid mice receiving 

naïve T cells showed a significant drop in BLI signal 7 days after mGRP transplantation, indicating 

a fast rejection process. Scid mice receiving control T cells exhibited more robust rejection 

indicating a priming effect upon mGRP inoculation. However, the BLI signals in scid mice 

receiving T cells from the CoB-treated mouse was maintained, demonstrating donor-specific 

hyporesponsiveness towards mGRPs primarily engrafted in the brain (Fig. 1D). 

Page 16 of 71

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

17

Histological examination performed to confirm cell survival and identification revealed strong 

expression of GFP under the oligodendrocyte-specific PLP promoter in CoB and scid mouse brains 

(POD154). Elaborate processes indicated maturation of grafted cells towards myelinating 

oligodendrocytes. There was no leukocyte recruitment in CoB brains as examined by CD45 

staining (Fig. 1E).

Human GRPs were transplanted into B6 brains to investigate whether costimulation blockade was 

effective in protecting intracerebral xenografts. Earlier rejection of hGRPs than mGRPs was 

observed in control group starting from POD3, and was completed within two weeks post 

transplantation. In contrast, hGRPs survived well in CoB group by POD19, the endpoint of the 

study. There was no difference in hGRP survival between CoB and scid mice (Supplementary Fig. 

4).

Costimulation blockade prevents immune reaction against GRP allografts.

To characterize the underlying immune response allowing for allogeneic GRP survival, the extent 

and type of cellular infiltrate at the location of intracerebral mGRP injection were evaluated by 

panleukocyte marker CD45, T cell marker CD3, microglial/macrophage marker Iba-1, and active 

phagocyte marker CD68 immunostaining. Mouse brains were harvested at the peak of rejection as 

monitored by rapidly diminishing BLI signals in the control group (POD19). As expected, intense 

immune cell infiltration was detected around the mGRP grafts in control brains, yet only limited 

immune cell recruitment was observed in scid and CoB-treated mouse brains (Fig. 2A). 

Quantitative analysis of CD45 infiltration by both CD45 positive area (Fig. 2B, C) and fluorescent 

intensity (Fig. 2B, D) revealed statistically significant differences between control and CoB group, 

the latter being at a comparative level to scid brains. Of note, mGRPs in control brains were clotted 

and exhibited necrotic morphology on POD19. In contrast, mGRPs in CoB-treated and scid mouse 
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brains appeared vital and extended multiple processes, suggesting the integration of grafts into the 

host brain structure (Fig. 2A and Supplementary Fig. 5).

Excellent graft survival in scid mice revealed the pivotal role that T cells play in immune rejection. 

Investigations on infiltration of the graft site by T cells were performed after intracerebral mGRP 

transplantation. Not surprising, a large number of CD3-positive cells were detected encompassing 

the grafts in the control group. In contrast, T cells were absent in CoB and scid groups as shown 

by quantitative analysis of cell counts (Fig. 2E, F). Accordingly, the Foxp3 staining was negative 

in CoB and scid brains (data not shown). Interestingly, the proportion of Foxp3+ Tregs among 

CD4+ T cells was significantly decreased in CoB spleen on POD5 as compared to control mice, 

which further decreased on POD12 (Supplementary Fig. 6). These data implied that the CoB-

mediated immunomodulation was not Treg dependent.

Quantitative analysis of Iba-1 immunofluorescence at POD19 was performed to identify local 

inflammatory and immune reactions. Although Iba-1 intensity was not different between CoB and 

control groups (Fig. 3A, B), control brains had a much larger Iba-1-positive area surrounding the 

grafts compared to CoB and scid brains (Fig. 3C) being indicative of extensive phagocyte 

recruitment to control brains, which was abrogated by CoB treatment. Next, we further analyzed 

the phagocytic activity by CD68 fluorescent staining, which revealed significantly weaker intensity 

(Fig. 3D, E) and smaller areas (Fig. 3D, F) in CoB brains than in control brains. There was no 

difference in CD68 intensity and positive area between CoB and scid brains.

We further analyzed the peripheral cytokine profiles by a high throughput multiplex bead-based 

immunoassay to investigate the molecular mechanism mediating allograft acceptance (from early 

graft implantation to complete rejection in control mice). Out of 20 cytokines that were within the 

detection range, both the pro-inflammatory IL-1β, IL-5, IL-12(p70), MCP-1, MIP-1β, MIP-1α, IL-
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17, and TNFα, and anti-inflammatory IL-10 and IL-13 were increased in CoB sera as compared to 

control sera on POD5 while IL-1α (pro-inflammation) levels were decreased in CoB sera. The 

differences between CoB and control mice regarding these cytokine levels diminished gradually 

on POD11 and POD17. The expression levels of IL-1β, IL-12(p70), and MIP-1β in control mice 

exceeded those in CoB mouse on POD25, and there was more chemokine RANTES in control sera 

than in CoB sera on POD25 indicating a pro-inflammatory transition in the control group. 

Moreover, the dynamic changes of IL-12(p70) in CoB mice resembled the scid pattern, but was 

different from the control levels which were low in the early post-implantation period, but 

gradually elevated and exceeded the CoB and scid levels by POD17 and 25, respectively. The 

levels of IL-12(p40), antagonist of IL-12(p70), were higher in control mice when compared to CoB 

mice at all time-points examined. IL-10, a major anti-inflammatory cytokine, was expressed at 

similar and elevated levels in CoB and scid mice on POD5 as compared to control mice 

(Supplementary Fig. 7, a clustered heatmap shown in Supplementary Fig. 8). These results 

indicated that the transplantation induced pro-inflammatory cytokine profile was mitigated by 

costimulation blockade.

Costimulation blockade-protected allogeneic GRPs myelinate adult shiverer mouse brains.

We further aimed to utilize the costimulation blockade strategy for allogeneic GRP treatment. 

MGRPs were injected into unilateral corpus callosum of adult myelin basic protein (MBP) deficient, 

thus congenitally hypomyelinated, shiverer (Lachapelle et al., 1983) and immunodeficient shiverer 

(shiverer-rag2-/-, shiverer-rag2) mice. Longitudinal BLI revealed that mGRPs could not survive in 

immunocompetent shiverer mice and were depleted from the host brains within three weeks after 

transplantation, replicating the dynamics shown in our wild-type animal mGRP transplant 
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experiments (Fig. 1). Despite an initial cell loss in shiverer-CoB and shiverer-rag2 mice during the 

first three weeks after transplantation, mGRP signals were consistently detected until the end of 

the natural lifespan of shiverer mice (POD90). Statistical differences were observed between 

shiverer-control and shiverer-CoB groups in mGRP survival from POD14, with no further changes 

in BLI thereafter. In addition, the survival of mGRPs in shiverer-CoB mice was at comparable 

levels to that in immunodeficient shiverer-rag2 mice (p>0.05 at all time-points examined, Fig. 4A, 

B). 

Mixed lymphocyte reactions were carried out to assess systemic T cell responsiveness upon 

costimulation blockade in shiverer mice on POD33. T cells were isolated from naïve shiverer, 

shiverer-CoB and shiverer-control mouse spleen (n=3/group) and cultured together with mGRPs 

(either intact or minced (to expose the intracellular antigens)) in the presence of either donor-

matched allogeneic or third party derived dendritic cells serving as APCs. Both CD4+ and CD8+ T 

cells obtained from shiverer-CoB mice showed reduced proliferation when co-cultured with either 

intact or minced mGRPs in the presence of donor-matched or third party derived APCs as 

compared to shiverer-control levels. These data indicated that CoB induces T cell 

hyporesponsiveness against mGRP antigens both in vivo and in vitro (Fig. 4C, D).

Shiverer mice were subjected to MR scanning to non-invasively visualize the behavior of 

allogeneic GRPs in vivo and to investigate whether immunoprotected mGRPs integrate 

functionally into the hosts and generate mature myelin. While T2-weighted images showed 

excellent white-gray matter contrast in age-matched rag2-/- mice (Fig. 5A), the T2 contrast was 

practically absent (except for the vertical needle tracts) in shiverer-control mice on POD60 and 

POD90. There was no visible discrimination of white matter on POD60 in shiverer-CoB and 

shiverer-rag2 brains, neither. However, on POD90, shiverer-CoB and shiverer-rag2 brains 

Page 20 of 71

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

21

displayed hypointensities along the corpus callosum in the injection side in T2 weighted images 

indicating mGRP-induced myelination (Fig. 5B).

Next, we examined MBP immunostaining in mGRP transplanted shiverer mouse brains. On 

POD33, allogeneic GRPs survived and migrated along the corpus callosum in shiverer-CoB mouse 

brains, and MBP was re-expressed in shiverers being co-localized with PLP-GFP-positive mGRPs 

(co-localization parameters shown in Supplementary Table 1). Furthermore, mGRP derived 

oligodendrocytes and MBP expression widely spread across the injection sites and the ipsilateral 

corpus callosum in shiverer-CoB and shiverer-rag2 brains on POD90. On the contrary, there was 

neither allogeneic GRPs nor MBP expression in shiverer-control brains on POD90 (Fig. 5C, D).

Erichrome cyanin staining was performed to examine the hydrophobic compartment within myelin 

proteins and lipid molecules to verify the myelin integrity in mGRP-engrafted shiverer mice. 

Although MBP could be detected on POD33 in shiverer-CoB mice, erichrome staining was 

negative in these animals indicating that myelin was not yet generated. On POD73 and POD90, 

mature myelin formation could be verified by erichrome-positive staining along the ipsilateral 

corpus callosum in shiverer-CoB and shiverer-rag2 mice (Fig. 6A).

Transmission electron microscopy was carried out to confirm allogeneic mGRP-derived myelin 

formation in shiverer mice. Numerous normally compact myelin sheaths were observed in shiverer-

CoB mouse corpus callosum on POD90. There were few myelinated axons with thin myelin 

sheaths being loosely wrapped in shiverer-control brains (Fig. 6B). The thickness of myelin, 

assessed by g-ratio, was 0.9214[0.873-0.9482] and 0.8071[0.706-0.898] in shiverer-control and 

shiverer-CoB brains, respectively (p<0.0001). This is consistent with previous reports (Gansmuller 

et al., 1986). 
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Circulating miRNAs are potential biomarkers for early detection of graft status.

As costimulation blockade provided a new strategy for intracerebral graft acceptance, we compared 

the expression of several immunoreactivity-linked miRNAs (Hoefig and Heissmeyer, 2008; 

Schjenken et al., 2016; Gaudet et al., 2017) in CoB and control B6 mouse plasma after intracerebral 

mGRP transplantation to explore potential graft rejection/acceptance biomarkers. A number of 

miRNAs were differently expressed between control and CoB mice. For instance, MiR-146 was 

upregulated gradually in control B6 mice after mGRP transplantation, reaching an approximately 

17/12-fold expression level by POD12/19, the time of active rejection. However, in CoB mice, 

miR-146 levels were clearly downregulated, reaching undetectable levels on POD5/12 and 

recovered to sham-transplantation levels on POD19. Likewise, MiR-223 was increasingly 

upregulated in graft-rejecting control mice with statistical difference between POD5 and POD12, 

while its expression decreased in CoB mice after POD2. The opposite trend was observed for Let 

7a/7c for which expression steadily increased in CoB mice until POD19 with reduction observed 

in rejecting control mice until POD12. Levels returned to those observed in vehicle-transplanted 

mice when rejection was close to completion on POD19. While the expression of miR-150 did not 

show differences between different observation days in control mice, it was downregulated 

gradually in CoB group. The levels of miR-125b in the plasma decreased gradually in control mice 

from POD2 to POD12. Its levels in CoB mice remained lower than in control mice (Fig. 7B-F). 

The vehicle-transplanted CoB group and sham-operation group did not show temporal differences 

in these miRNA levels, which excluded the costimulation blockade or surgery induced miRNA 

changes. In situ hybridization revealed higher peri-graft miRNA-146 in control than in CoB brains 

(relative fluorescent intensity 1.551 vs. 1.000, p<0.0001), while neither higher expression nor inter-

group difference were observed for miRNA-233 (Supplementary Fig. 9).
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Discussion 

Thus far, the use of allogeneic stem cells to restore cerebral cytostructure and function is precluded 

by a lack of efficacy due to graft rejection, as well as negative effects of required 

immunosuppression protocols in attempts ensuring graft survival. In the current study, combined 

costimulation blockade using CTLA4-Ig and MR-1 successfully prevented allograft rejection from 

adult mouse brains. Furthermore, immunoprotected allogeneic GRPs differentiated and initiated 

myelination in the dysmyelinated adult mouse brain within one month, which could potentially 

represent an attractive option for patients with dysmyelinating diseases. In addition, several 

microRNAs including miR-146, miR-223, and let 7a/7c were identified as promising graft 

acceptance/rejection biomarkers.

In modern transplantation medicine, immunomodulatory strategies have entered the clinical arena 

to achieve graft survival with reduced toxicity or even immunosuppression-free stages (Diehl et 

al., 2017). Our study showed that costimulation blockade in immunocompetent hosts resulted in 

long-term allogeneic GRP survival matching that in immunodeficient mice. These results align 

well with previous reports on the prevention of rejection in small and large animal models of organ 

transplantation using CTLA4-Ig and MR-1 (Larsen et al., 1996; Bluestone et al., 2006; Gilson et 

al., 2009; Szot et al., 2015; Webber and Vincenti, 2016). Several cell transplantation studies used 

costimulation blockade approaches for intracerebral transplantation of human embryonic stem cell-

derived neural stem cells with cell survival for up to 56 days after grafting (Pearl et al., 2011). 

CTLA4-Ig has also been applied to prevent rejection of human CD34+ hematopoietic cells. Good 

cell survival at 56 days was achieved when mice were injected with blocking antibodies over 27 

days after grafting, but cells were rejected when treatment was maintained for only 13 days (Oh et 

al., 2017). We successfully push forward this strategy and observe intracerebral mGRP survival 
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for more than 200 days with functional integration. However, while this study sought to investigate 

the survival and myelination capacity of allogeneic GRPs under the protection of costimulation 

blockade, we transplanted GRPs to unilateral corpus callosum, with the contralateral hemisphere 

serving as an internal control. The small amount of locally transplanted GRPs were not sufficient 

to rescue the phenotype of shiverer mice that exhibit global demyelination. The therapeutic dose 

as well as the optimal route of GRP transplantation await detailed investigation.

Costimulation blockade effectively prevented local immune reactions with significantly less 

phagocyte reactivity and T cell infiltration around the mGRP allografts in CoB-treated mice 

compared to untreated immunocompetent controls. However, it is important to expand our 

investigation into the nature of the immunomodulatory effects and answer whether costimulation 

blockade effects are elicited exclusively in the CNS or, alternatively, in a systemic fashion. This is 

particularly relevant since peripheral maladaptive immune responses are already in place in many 

demyelinating disorders such as MS. We showed that subcutaneous injection of donor-matched 

GRPs into recipients with primary, intracerebrally-engrafted GRPs resulted in good cell survival 

in the CoB group with rejection in the controls supporting a state of systemic hyporesponsivness 

rather than a protective effect of the BBB. This is important as otherwise any local BBB breach in 

the course of brain injury or inflammation could trigger rejection processes. Evidence of systemic 

tolerance is also encouraging in the context of repetitive therapeutic application of 

immunologically matched stem cells. 

We have demonstrated here that CoB is also effective in protecting xenografted human GRPs. This 

is highly significant as it allows studying behavior of human cells in various available transgenic 

mouse models or disease systems where adaptive immunity plays important role such as stroke or 

multiple sclerosis. We have recently shown that similar strategy with CoB can be used for modeling 
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human glioblastoma in immunocompetent mice (Semenkow et al., 2017) further demonstrating 

universal utility of this method.

Costimulation blockade induced dynamic changes in the serum cytokine network during systematic 

allograft acceptance. It has been reported that inhibition of CD28-B7 interaction could alter 

cytokine profiles from Th1 to Th2 (Lin et al., 1997). Moreover, Th1 and Th2 cells were 

differentially regulated by CD28-B7 versus CD154-CD40 costimulation pathways in vivo 

(Kishimoto et al., 2000). While the serum cytokine expression differences between CoB and 

control groups diminished gradually after initial elevation on both Th1 and Th2 cytokines in CoB 

group, IL-1β, IL-12(p70), RANTES and MIP-1β levels steadily increased in control group and 

exceeded the CoB levels at POD25. Together with IL-12(p40) expression, whose levels were 

sustained high in control group, transition to pattern of Th2 cytokine expression might be a major 

player mediating costimulation blockade dependent immune tolerance induction. 

Although Tregs are important regulators for alloimmune responses (Adams et al., 2016) in organ 

and cell transplantation (Camirand and Riella, 2017), the effects of costimulation blockade on 

Tregs is still unclear. It was assumed that co-stimulation blockade inhibits Treg survival and 

function (Adams et al., 2016), and an in-vitro study showed that CTLA4-Ig inhibited Treg 

proliferation (Levitsky et al., 2013). Tolerance induced by costimulation blockade for human 

embryonic stem-cell-derived pancreatic endoderm was shown to be independent on Tregs (Szot et 

al., 2015). Flowcytometric analysis indicated that CTLA4-Ig did not induce Treg expansion in 

peripheral blood of transplanted patients (Chavez et al., 2007). We show that GRP allografts were 

not negatively affected although Tregs were decreased in CoB-treated recipients. In addition, we 

could not detect infiltrating T cells as well as Foxp3 T cells into the CoB brain after GRP 

engraftment. Due to limited studies regarding Treg activities in the brain as well as across the BBB, 
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the role of systemic Treg cells on the intracerebral mGRP allografts needs further mechanistic 

studies.

This study yields highly encouraging results on potential peripheral surrogate miRNAs for graft 

rejection as their specific temporal pattern correlated with survival or rejection of allogeneic GRPs. 

In addition, our results are supported by previous studies showing that miR-223 and miR-146 were 

both overexpressed, while let 7 levels were downregulated, in renal biopsies with confirmed T-cell 

mediated acute rejection compared to normal allografted patients (Anglicheau et al., 2009). In rat 

liver transplantation settings, miR-223 and miR-146 levels were also significantly increased in 

allografts with acute rejection (Hu et al., 2013; Morita et al., 2014). Moreover, MiR-223 levels 

were reported to be highly predictive of acute renal rejection and strongly linked to the intragraft 

expression of CD3 mRNA (Sui et al., 2008; Betts et al., 2014). MiR-146 and miR-223 are produced 

by activated macrophages and are key anti-inflammatory miRNAs (Gaudet et al., 2017). Their 

upregulation during rejection may reflect a negative feedback for inflammatory responses. The 

increased intragraft miR-146 expression and good graft survival confirmed its tolerance promotion 

property. The Let 7 miRNA family promotes both anti- and pro-inflammatory actions (Gaudet et 

al., 2017). The miR-125b-let 7c-miR-99a cluster buffers against aberrant self-renewal and 

differentiation of hematopoietic stem cells by simultaneously targeting TGFβ and WNT1 signaling 

and plays a role in the development of Th1 cells (Mehta and Baltimore, 2016). Thus, dynamic 

profiles of miRNAs could be evaluated as potential biomarkers for monitoring graft survival and 

may help to improve the overall prognosis of patients with neurological disorders undergoing GRP 

transplantation.

In conclusion, this study demonstrates the efficacy of a combined costimulation blockade-based 

immunomodulatory protocol to achieve survival and retain (re)myelination capacity of allogeneic 
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GRPs transplanted directly into the murine CNS. In addition, we show that miRNAs may represent 

a meaningful tool for monitoring allograft viability, specifically in anatomical areas inaccessible 

to conventional methods. These encouraging data may foster the advancement of allogeneic GRPs’ 

potential to enhance functional recovery in dysmyelination disorders in both translational large 

animal models and humans.
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Supplementary Materials

Supplementary Methods

Immunohistochemical analysis

Mice were anesthetized and perfused intracardially with 5% sucrose followed by PBS-buffered 4% 

paraformaldehyde. Brains were taken out, postfixed overnight at 4°C in 4% paraformaldehyde, 

dehydrated in 30% sucrose (Sigma-Aldrich), snap-frozen, and cryosectioned (Thermo Scientific 

HM 550 Cryostat) into 30-µm coronal sections. Nonspecific binding was blocked by incubating 

with 10% donkey serum in 0.1% Triton X-100-PBS for 1 h at room temperature. Appropriate 

dilutions of primary antibodies were then applied in blocking solution overnight at 4°C. After three 

washes, the corresponding secondary antibodies (in blocking solution, Alexa Fluro-594, Life 

Technologies-A11058) were incubated for 1 h at room temperature. Sections were then rinsed with 

PBS, counterstained with DAPI, and mounted with aqueous non-fluorescence mounting medium 

(Immu-mount, Thermo Scientific). Images were acquired with a Zeiss AX10 fluorescence 

microscope using the same exposure time and quantified with Image J. Primary antibodies were: 

anti-CD45 (1:500, Serotec-MCA1388); anti-Iba-1 (1:250, Wako-SAN3725); anti-CD3 (1:200, 

R&D-MAB4841); anti-CD68 (1:100, Abcam-ab31630); anti-MBP (1:1000, Serotec-MCA409S); 

anti-human cytoplasmic marker STEM121 (1:250, StemCells-AB-121-U050). The co-localization 

parameters between GFP and MBP was analyzed using Image-Pro Plus 6.0.

MRI

In-vivo MRI was performed on a horizontal 11.7 Tesla MR scanner (Bruker Biospin) with a triple-

axis gradient (maximum gradient strength=74 Gauss/cm). During imaging, mice were anesthetized 
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with 1% isoflurane in room air and oxygen mixed at 3:1 ratio via a vaporizer, and positioned in an 

animal holder containing circulating warm water (Bruker Biospin). Respiration was monitored via 

a pressure sensor (SAII, Stony Brook) and maintained at 40-60 breath/min. After imaging, animals 

recovered within 5 min.

Image acquisition was performed using a quadrature transmit volume coil (70-mm diameter) and 

a 4-channel mouse brain receive-only phased array coil (Bruker Biospin). Multi-slice T2-weighted 

images were acquired using the rapid acquisition with refocused echoes (RARE) sequence with an 

echo time (TE) of 50 ms, a repetition time (TR) of 3600 ms, four signal averages, echo train length 

of eight, field of view (FOV) of 15x15 mm, 32 slices, and a native resolution of 0.078x0.078x0.50 

mm.

Erichrome cyanin staining

Slides were oven-dried at 50°C for 3 h, hydrated in 95% and 70% ethanol. After rinsing with 

distilled water twice, the sections were stained with an erichrome cyanine solution consisting of 

0.4% FeCl3, 0.2% erichrome cyanine (Sigma-Aldrich) and 0.5% H2SO4. Section development was 

performed by alternating exposure to 0.1% NH4OH for 3-7 s and rinsing in distilled water for 30 s 

until the blue background was reduced and cells turned faintly pink but still had blue shading. After 

the last rinse in water, sections were dehydrated in 70%, 95%, and 100% ethanol (two changes), 

and three changes of xylene for 10 min each before being processed for microscopy.

Transmission electron microscopy and g-ratio measurement
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Perfused shiverer mouse brains were placed under a fluorescent dissection microscope. A 3-mm 

diameter cube was dissected from the mGRP transplanted corpus callosum and fixed in 4% 

glutaraldehyde following postfixation in OsO4, and embedded in Epon. Thin sections of 70 nm 

were stained with citrate/uranyl acetate as recently described (Lyczek et al., 2017). Images were 

acquired using a Zeiss Libra transmission electron microscope from the upper left field and then, 

in a “zigzag” fashion with equidistant movement. G-ratio was measured as inner/outer diameter of 

the myelin sheath (300 axons per animal).

MiRNA in situ hybridization

In situ hybridization (ISH) for miR-223 and miR-146 (miRCURY LNA miRNA probes, Exiqon) 

was performed using miRCURY LNA microRNA ISH Kit (Exiqon) according to manufacturer’s 

protocol. In brief, cryosections were air dried at room temperature and treated with Proteinase-K 

for 10 min, washed twice in PBS. Hybridization mix was then applied for 60 min at 52°C following 

washes in descending concentrations of SSC buffers. Next, sections were incubated sequentially in 

blocking solution for 15 min and anti-DIG reagent conjugated with rhodamine (Roche) for 60 min. 

After three washes with PBS and counterstained with DAPI, slides were mounted with Floro-Gel 

Mounting Media (EMS) and imaged with ZEISS AX10 fluorescence microscope.

Supplementary Figure legends

Supplementary Fig. 1. Spinal cord-derived mGRPs express macroglial lineage but not 

neuronal markers. PLP-GFP-positive mGRP cells were isolated from E13.5 mouse spinal cord 

Page 30 of 71

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain



For Peer Review

31

and cultured in selection medium for 10 days. Immunocytochemistry was performed against 

multiple marker antigens indicated at the upper right corners of each images. Scale bar: 50 µm.

Supplementary Fig. 2. Immunocytochemistry for migration-mediating molecules. PLP-GFP-

positive mGRP cells were isolated from E13.5 mouse spinal cord and cultured in selection medium 

for 10 days. Immunocytochemistry was performed with (A) CXCR4 and (B) FGFR antibodies. 

Scale bar: 50 µm.

Supplementary Fig. 3. Additional CTLA4-Ig application does not further enhance graft 

survival. Logarithmic BLI values of non-booster group (MR-1 and CTLA4-Ig treatment on POD0, 

2, 4, 6, n=5), booster group (additional CTLA4-Ig application on POD30, 60, 90, n=5), and control 

group of B6 mice (n=5) that received intracerebral mGRP transplantation. There was no statistical 

difference between booster and non-booster group at any time-point examined. Both booster (*, 

p<0.05) and non-booster group BLI signals (#, p<0.05) were significantly higher than in the control 

group from POD14 onwards. Regression analysis was reported as type III tests of fixed effects, 

with the lowest mean square (LMS) difference test used for comparison between means (PROC 

MIXED, SAS 9.2). A coefficient of determination was calculated, and the BLI data were subjected 

to logistic transformation to maximize the model fit.

Supplementary Fig. 4. Costimulation blockade protects xenogeneic GRPs from immune 

rejection. Intracerebral hGRP engrafted B6 mice were subjected to longitudinal BLI and the 

logarithmic total flux over their heads were plotted. The statistically significant difference between 
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CoB and control group (*, p<0.05, n=5) started from POD9 and lasted till POD19. There were no 

BLI signal differences between CoB and scid groups (p>0.4, n=5). Regression analysis was 

reported as type III tests of fixed effects, with the lowest mean square (LMS) difference test used 

for comparison between means (PROC MIXED, SAS 9.2). A coefficient of determination was 

calculated, and the BLI data were subjected to logistic transformation to maximize the model fit. 

(B) Immunohistochemistry on B6 and scid mouse brain specimens was performed with STEM121 

antibodies and DAPI staining on POD19. Scale bar: 100/10 µm in low/high magnificent images.

Supplementary Fig. 5. GRPs are vital after 19 days of intracerebral transplantation with 

costimulation blockade treatment. Confocal microscopy for PLP-GFP-positive mGRPs being 

transplanted into CoB, scid and control mouse brains on POD19. Cell nuclei were stained with 

DAPI. Note that mGRPs extended complex processes in CoB and scid brains indicating the 

integration into host brains, but displayed moribund morphology in control brains. Scale bar: 10 

µm.

Supplementary Fig. 6. Peripheral Treg population is decreased in costimulation blockade 

treated mice. T cells isolated from naïve, control and CoB B6 mouse spleens were analyzed for 

the proportion (A) and absolute number (B) of CD4+, FoxP3+ Tregs by flow cytometry. Control 

mice had significantly more Tregs residing in the spleen than CoB mice on both POD5 (p<0.0001) 

and POD12 (p=0.0016). There was no difference in neither CD4+ cell proportion (C) nor absolute 

numbers (D). Independent two sample t-test (SPSS 22.0).
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Supplementary Fig. 7. Costimulation blockade mitigates the post-transplantation pro-

inflammatory cytokine profile. Sera from intracerebrally mGRP transplanted CoB, control, and 

scid mice were drawn on POD5, 11, 17, 25 and subjected to a high throughput cytokine analysis. 

Cytokines that were within the detection range are presented with absolute values and standard 

deviation at different time-points examined. One-way ANOVA with LSD post hoc corrections. 

*p<0.05 between CoB and control mice, &p<0.05 between CoB and scid mice, #p<0.05 between 

scid and control mice (n=5 in each group). 

Supplementary Fig. 8. Clustered heatmaps of the serum cytokines after intracerebral mGRP 

transplantation. Sera from intracerebral mGRP transplanted CoB, control, and scid mice were 

drawn on POD5, 11, 17, 25 and subjected to a high throughput cytokine analysis. Cluster analysis 

was performed with NCSS Statistical Software based on the quantitative data presented in 

Supplementary Fig. 7.

Supplementary Fig. 9. Costimulation blockade upregulates intragraft miR-146 expression 

post mGRP transplantation. In situ miRNA hybridization with DAPI counterstaining was 

performed for mGRP transplanted CoB and control mouse brains on POD19. (A) Mouse brain 

cryosections were hybridized with miR-146 probes and note its increased expression co-localizing 

with mGRPs in CoB brains. Control brains were negative for miR-146 hybridization. (B). Mouse 

brain cryosections were hybridized with miR-223 probes. There was no positive hybridization in 

neither CoB nor control brains. Scale bar: 50 µm.

Supplementary Table 1. GFP-MBP co-localization parameters.
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Table 1. Animal assignment and measurements.

Animal number

B6

CoB

B6

control
scid

Endpoint

(day)

Measurements

5A + 5B 5C 5D 203 • mGRP allograft survival (BLI)

•secondary mGRP allograft survival (BLI)

•adoptive transfer 

•immunohistochemistry

•cytokine analysis

5 5 5 19 •IHC

5 5 5 •miRNA analysis, Treg analysis

5 5 12 •miRNA analysis, Treg analysis

10E 10E 19 •miRNA analysis

5 5 5 19 •hGRP xenograft survival (BLI)

Shiverer

-CoB

Shiverer

-control

Shiverer

-rag2

5 5 5 33 •BLI, MLR, IHC, Erichrome staining

5 5 5 90 •BLI, MRI, Erichrome staining, IHC, EM

Anon-booster: CTLA4-Ig+MR-1 on POD0, 2, 4, 6. One sacrificed (on POD154). Bbooster: CTLA4-

Ig+MR-1 on POD0, 2, 4, 6 and monthly CTLA4-Ig. One died (POD50). C: One died (POD57. One 

sacrificed (POD154). D: One died (POD28). One died (POD126). E: Five with mGRP transplantation.
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Figure legends

Fig. 1. Costimulation blockade induces long-term engraftment of allogeneic GRPs. B6 and 

scid mice were recipients for luciferase-expressing mGRPs. (A) Logarithmic BLI total flux over 

the mouse heads was plotted longitudinally for 203 days. Statistically significant difference 

between CoB and control group (*, p<0.05, n=5), and scid and control group (#, p<0.05, n=5) 

started from POD14. (B) On POD120, three CoB and three scid mice received a second, 

subcutaneous mGRP transplantation to their back. Five naïve B6 mice served as controls. BLI 

values were plotted and the statistical difference between CoB and control group started from 

POD17 (*, p<0.05). (C) BLI image of mice that received both intracerebral and subcutaneous 

transplantation of mGRPs (POD203 of intracerebral transplantation). BLI intensity scale is shown 

on the right. (D) T cells isolated from one naïve B6 mouse, one CoB, and one control mouse on 

POD154 were retro-orbitally injected into scid mice with five different combinations (n=4). Four 

days after T cell inoculation, these scid mice received subcutaneous mGRP injection into their back 

and subsequent serial BLI. BLI signals were significantly different between CoB and control group 

on POD7 (p<0.0001). Regression analysis was reported as type III tests of fixed effects, with the 

lowest mean square (LMS) difference test used for comparison between means (PROC MIXED, 

SAS 9.2). A coefficient of determination was calculated, and the BLI data were subjected to logistic 

transformation to maximize the model fit. (E) Immunohistochemistry with anti-CD45 antibodies 

(leukocytes) and DAPI for CoB, control and scid mouse brains on POD154. Note the absence of 

CD45-positive cells in CoB brain. Scale bar: 50 µm.

Fig. 2. T cell recruitment elicited to GRP allografts is abrogated by costimulation blockade. 

(A) CD45 immunostaining was performed for B6 and scid mouse brains on POD19. Scale bar: 
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100/20 µm in low/high magnificent images. (B) Schematic diagram showing the area of mGRP 

engraftment and immune cell infiltration assessment outlined with a red line and covered by a 0.05 

X 0.1 cm rectangle (grey). The red fluorescence intensity in the transplanted side was measured 

and normalized to a corresponding area at the contralateral side (second rectangle) of each mouse. 

(C) Statistical difference was revealed between CoB and control group in CD45-positive areas (*, 

p=0.011), but not between CoB and scid group (p=1.000), n=5. (D) A statistically significant 

difference was revealed between CoB and control group in CD45 intensity (*, p=0.001), but not 

between CoB and scid group (p=0.231), n=5. Independent samples Kruskal-Wallis (2-sided) test 

with Bonferroni’s adjustment (SPSS 22.0). (E) Immunohistochemistry was performed for B6 and 

scid mouse brains with CD3 antibodies and DAPI staining on POD19. T cells were robustly 

recruited around the mGRP allografts in the control group but were absent in CoB and scid groups. 

Scale bar: 50/10 µm in low/high magnificent images. (F) Counting of CD3-positive cells in the 

total brain slices showed that statistically less T cells were recruited to both CoB brains and scid 

brains as compared to control brains (scid versus control, p=0.042, CoB versus control, *, p=0.046) 

and there was no difference between CoB group and scid group (p=1.000), n=5. One way ANOVA 

with Bonferroni’s adjustment (SPSS 22.0).  

Fig. 3. Phagocytic activity against allografts is prohibited by costimulation blockade. (A) Iba-1 

immunostaining was performed for B6 and scid mouse brains on POD19. Scale bar: 50 µm. (B) 

There was no statistical difference between any two groups in Ibal-1 intensity, n=5. (C) Statistical 

difference was revealed between CoB and control group for Iba-1-positive areas (*, p=0.033, n=5), 

but not between CoB and scid group (p=1.000), n=5. (D) CD68 immunostaining was performed 

for B6 and scid mouse brains on POD19. Scale bar: 50 µm. (E) There was statistical difference in 

CD68 intensity between CoB and control group (*, p=0.021), scid and control group (p=0.026), 
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but not between CoB and control group (p=1.000), n=5. (F) Statistical difference was revealed 

between CoB and control group for CD68-positive area (*, p=0.003, n=5), but not between CoB 

and scid group (p=1.000), n=5. Independent samples Kruskal-Wallis (2-sided) test with 

Bonferroni’s adjustment (SPSS 22.0).

Fig. 4. Costimulation blockade induces long-term survival of GRPs in dysmyelinated shiverer 

mice. (A) MGRP engrafted shiverer mice were subjected to longitudinal BLI and the logarithmic 

total flux were plotted. The statistically significant difference between shiverer-CoB and shiverer-

control groups (*, p<0.05, n=5) as well as shiverer-rag2 and shiverer-control groups (#, p<0.05, 

n=5) started from POD14 and lasted until POD90. There were no BLI signal differences between 

shiverer-CoB and shiverer-rag2 groups (p>0.4, n=5). Regression analysis was reported as type III 

tests of fixed effects, with the lowest mean square (LMS) difference test used for comparison 

between means (PROC MIXED, SAS 9.2). A coefficient of determination was calculated, and the 

BLI data were subjected to logistic transformation to maximize the model fit. (B) BLI image of 

mGRP-transplanted shiverer mice (POD90). (C-D) T cells isolated from shiverer-CoB or shiverer-

control mice were co-cultured with either intact or minced mGRPs in the presence of either APCs 

or third party APCs. The proliferation of CD4+ T cells (C) and CD8+ T cells (D) were analyzed by 

flow cytometry and normalized to age-matched naïve shiverer mouse levels. There was a 

statistically significant difference between control and CoB group when cultured with donor-

matched APC in presence of minced mGRP (CD4+, *, p=0.0277, n=3, CD8+, *, p=0.0364, n=3), 

and when cultured with third party-derived APC in presence of intact mGRP (CD4+, *, p=0.0206, 

n=3, CD8+, p=0.0277, n=3). Independent two sample t-test (SPSS 22.0).
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Fig. 5. GRPs engrafted into shiverer mouse brains differentiate into MBP-positive 

oligodendrocytes. (A) T2-weighted image of a 4-month old rag2-/- (rag2) mouse. Scale bar: 5 

mm. (B) MGRP-transplanted shiverer mice were subjected to T2-weighted MRI. Note the 

hypointensity in shiverer-rag2 and shiverer-CoB brains along the corpus callosum (white arrows) 

on POD90. (C) Immunohistochemistry was performed using MBP antibodies and DAPI for 

mGRP-transplanted shiverer mouse brains on POD33 and POD90 (corresponding to the mice 

imaged in (B)). Note that the MBP-positive region co-localized with the engrafted GFP-expressing 

mGRPs. There was neither green nor red fluorescence in shiverer-control mice on POD90. Scale 

bar: 200 µm. (D) Confocal microscopy of POD90 mGRP engrafted shiverer brain to better 

appreciate the cell morphology and GFP-MBP co-localization. Scale bar: 10 µm.

Fig. 6. Protected by costimulation, allogeneic GRPs form myelin in dysmyelinated shiverer 

brains. (A) Erichrome cyanin staining was carried out for mGRP transplanted shiverer mouse 

brains on POD33, 73, and 90. Positive staining was observed along the corpus callosum on POD73 

and POD90 in shiverer-rag2 and shiverer-CoB brains but was absent in shiverer-CoB brain on 

POD33 and shiverer-control brain on POD90. Scale bar: 500 µm. (B) Transmission electron 

microscopy with shiverer corpus callosum at Bregma level in the transplanted hemisphere on 

POD90. Upper images: mGRP transplanted shiverer-CoB. Lower images: mGRP transplanted 

shiverer-control. Left panel, lower magnification. Right panel, higher magnification. Scale bar: 500 

nm. Side length of upper right insets: 300 nm.

Fig. 7. Dynamic changes of miRNA could serve as graft tolerance/rejection biomarkers. 

MiRNA was isolated from CoB and control B6 mouse plasma on POD2, 5, 12 and 19 of 
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intracerebral mGRP transplantation and the expression of miR-146, miR-223, let 7a/7c, miR-150, 

and miR-125b was measured and normalized to their pre-transplantation levels. One way ANOVA 

with Bonferroni’s adjustment, *, p<0.05 between two adjacent time-points in GRPs+PBS or 

GRPs+CoB groups. #, GRPs+CoB vs. GRPs+PBS, &, GRPs+PBS vs. surgery+CoB, §, GRPs+PBS 

vs. surgery+PBS, $, GRPs+CoB vs. sugery+CoB, † GRPs+CoB vs. surgery+PBS, p<0.05 

comparison between two groups at identical time-points (t-test).
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Fig. 1. Costimulation blockade induces long-term engraftment of allogeneic GRPs. B6 and scid mice were 
recipients for luciferase-expressing mGRPs. (A) Logarithmic BLI total flux over the mouse heads was plotted 

longitudinally for 203 days. Statistically significant difference between CoB and control group (*, p<0.05, 
n=5), and scid and control group (#, p<0.05, n=5) started from POD14. (B) On POD120, three CoB and 
three scid mice received a second, subcutaneous mGRP transplantation to their back. Five naïve B6 mice 
served as controls. BLI values were plotted and the statistical difference between CoB and control group 

started from POD17 (*, p<0.05). (C) BLI image of mice that received both intracerebral and subcutaneous 
transplantation of mGRPs (POD203 of intracerebral transplantation). BLI intensity scale is shown on the 

right. (D) T cells isolated from one naïve B6 mouse, one CoB, and one control mouse on POD154 were retro-
orbitally injected into scid mice with five different combinations (n=4). Four days after T cell inoculation, 

these scid mice received subcutaneous mGRP injection into their back and subsequent serial BLI. BLI signals 
were significantly different between CoB and control group on POD7 (p<0.0001). Regression analysis was 

reported as type III tests of fixed effects, with the lowest mean square (LMS) difference test used for 
comparison between means (PROC MIXED, SAS 9.2). A coefficient of determination was calculated, and the 
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BLI data were subjected to logistic transformation to maximize the model fit. (E) Immunohistochemistry 
with anti-CD45 antibodies (leukocytes) and DAPI for CoB, control and scid mouse brains on POD154. Note 

the absence of CD45-positive cells in CoB brain. Scale bar: 50 µm. 
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Fig. 2. T cell recruitment elicited to GRP allografts is abrogated by costimulation blockade. (A) CD45 
immunostaining was performed for B6 and scid mouse brains on POD19. Scale bar: 100/20 µm in low/high 

magnificent images. (B) Schematic diagram showing the area of mGRP engraftment and immune cell 
infiltration assessment outlined with a red line and covered by a 0.05 X 0.1 cm rectangle (grey). The red 

fluorescence intensity in the transplanted side was measured and normalized to a corresponding area at the 
contralateral side (second rectangle) of each mouse. (C) Statistical difference was revealed between CoB 
and control group in CD45-positive areas (*, p=0.011), but not between CoB and scid group (p=1.000), 

n=5. (D) A statistically significant difference was revealed between CoB and control group in CD45 intensity 
(*, p=0.001), but not between CoB and scid group (p=0.231), n=5. Independent samples Kruskal-Wallis (2-
sided) test with Bonferroni’s adjustment (SPSS 22.0). (E) Immunohistochemistry was performed for B6 and 
scid mouse brains with CD3 antibodies and DAPI staining on POD19. T cells were robustly recruited around 
the mGRP allografts in the control group but were absent in CoB and scid groups. Scale bar: 50/10 µm in 

low/high magnificent images. (F) Counting of CD3-positive cells in the total brain slices showed that 
statistically less T cells were recruited to both CoB brains and scid brains as compared to control brains (scid 
versus control, p=0.042, CoB versus control, *, p=0.046) and there was no difference between CoB group 

and scid group (p=1.000), n=5. One way ANOVA with Bonferroni’s adjustment (SPSS 22.0). 
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Fig. 3. Phagocytic activity against allografts is prohibited by costimulation blockade. (A) Iba-1 
immunostaining was performed for B6 and scid mouse brains on POD19. Scale bar: 50 µm. (B) There was 

no statistical difference between any two groups in Ibal-1 intensity, n=5. (C) Statistical difference was 
revealed between CoB and control group for Iba-1-positive areas (*, p=0.033, n=5), but not between CoB 
and scid group (p=1.000), n=5. (D) CD68 immunostaining was performed for B6 and scid mouse brains on 
POD19. Scale bar: 50 µm. (E) There was statistical difference in CD68 intensity between CoB and control 

group (*, p=0.021), scid and control group (p=0.026), but not between CoB and control group (p=1.000), 
n=5. (F) Statistical difference was revealed between CoB and control group for CD68-positive area (*, 

p=0.003, n=5), but not between CoB and scid group (p=1.000), n=5. Independent samples Kruskal-Wallis 
(2-sided) test with Bonferroni’s adjustment (SPSS 22.0). 
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Fig. 4. Costimulation blockade induces long-term survival of GRPs in dysmyelinated shiverer mice. (A) MGRP 
engrafted shiverer mice were subjected to longitudinal BLI and the logarithmic total flux were plotted. The 
statistically significant difference between shiverer-CoB and shiverer-control groups (*, p<0.05, n=5) as 
well as shiverer-rag2 and shiverer-control groups (#, p<0.05, n=5) started from POD14 and lasted until 

POD90. There were no BLI signal differences between shiverer-CoB and shiverer-rag2 groups (p>0.4, n=5). 
Regression analysis was reported as type III tests of fixed effects, with the lowest mean square (LMS) 

difference test used for comparison between means (PROC MIXED, SAS 9.2). A coefficient of determination 
was calculated, and the BLI data were subjected to logistic transformation to maximize the model fit. (B) BLI 

image of mGRP-transplanted shiverer mice (POD90). (C-D) T cells isolated from shiverer-CoB or shiverer-
control mice were co-cultured with either intact or minced mGRPs in the presence of either APCs or third 

party APCs. The proliferation of CD4+ T cells (C) and CD8+ T cells (D) were analyzed by flow cytometry and 
normalized to age-matched naïve shiverer mouse levels. There was a statistically significant difference 
between control and CoB group when cultured with donor-matched APC in presence of minced mGRP 

(CD4+, *, p=0.0277, n=3, CD8+, *, p=0.0364, n=3), and when cultured with third party-derived APC in 
presence of intact mGRP (CD4+, *, p=0.0206, n=3, CD8+, p=0.0277, n=3). Independent two sample t-test 

(SPSS 22.0). 
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Fig. 5. GRPs engrafted into shiverer mouse brains differentiate into MBP-positive oligodendrocytes. (A) T2-
weighted image of a 4-month old rag2-/- (rag2) mouse. Scale bar: 5 mm. (B) MGRP-transplanted shiverer 
mice were subjected to T2-weighted MRI. Note the hypointensity in shiverer-rag2 and shiverer-CoB brains 
along the corpus callosum (white arrows) on POD90. (C) Immunohistochemistry was performed using MBP 
antibodies and DAPI for mGRP-transplanted shiverer mouse brains on POD33 and POD90 (corresponding to 
the mice imaged in (B)). Note that the MBP-positive region co-localized with the engrafted GFP-expressing 
mGRPs. There was neither green nor red fluorescence in shiverer-control mice on POD90. Scale bar: 200 

µm. (D) Confocal microscopy of POD90 mGRP engrafted shiverer brain to better appreciate the cell 
morphology and GFP-MBP co-localization. Scale bar: 10 µm. 
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Fig. 6. Protected by costimulation, allogeneic GRPs form myelin in dysmyelinated shiverer brains. (A) 
Erichrome cyanin staining was carried out for mGRP transplanted shiverer mouse brains on POD33, 73, and 

90. Positive staining was observed along the corpus callosum on POD73 and POD90 in shiverer-rag2 and 
shiverer-CoB brains but was absent in shiverer-CoB brain on POD33 and shiverer-control brain on POD90. 
Scale bar: 500 µm. (B) Transmission electron microscopy with shiverer corpus callosum at Bregma level in 
the transplanted hemisphere on POD90. Upper images: mGRP transplanted shiverer-CoB. Lower images: 
mGRP transplanted shiverer-control. Left panel, lower magnification. Right panel, higher magnification. 

Scale bar: 500 nm. Side length of upper right insets: 300 nm. 
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Fig. 7. Dynamic changes of miRNA could serve as graft tolerance/rejection biomarkers. MiRNA was isolated 
from CoB and control B6 mouse plasma on POD2, 5, 12 and 19 of intracerebral mGRP transplantation and 
the expression of miR-146, miR-223, let 7a/7c, miR-150, and miR-125b was measured and normalized to 
their pre-transplantation levels. One way ANOVA with Bonferroni’s adjustment, *, p<0.05 between two 

adjacent time-points in GRPs+PBS or GRPs+CoB groups. #, GRPs+CoB vs. GRPs+PBS, &, GRPs+PBS vs. 
surgery+CoB, §, GRPs+PBS vs. surgery+PBS, $, GRPs+CoB vs. sugery+CoB, †GRPs+CoB vs. surgery+PBS, 

p<0.05 comparison between two groups at identical time-points (t-test). 
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Supplementary Materials

Supplementary Methods

Immunohistochemical analysis

Mice were anesthetized and perfused intracardially with 5% sucrose followed by PBS-buffered 

4% paraformaldehyde. Brains were taken out, postfixed overnight at 4°C in 4% 

paraformaldehyde, dehydrated in 30% sucrose (Sigma-Aldrich), snap-frozen, and 

cryosectioned (Thermo Scientific HM 550 Cryostat) into 30-µm coronal sections. Nonspecific 

binding was blocked by incubating with 10% donkey serum in 0.1% Triton X-100-PBS for 1 h 

at room temperature. Appropriate dilutions of primary antibodies were then applied in blocking 

solution overnight at 4°C. After three washes, the corresponding secondary antibodies (in 

blocking solution, Alexa Fluro-594, Life Technologies-A11058) were incubated for 1 h at room 

temperature. Sections were then rinsed with PBS, counterstained with DAPI, and mounted with 

aqueous non-fluorescence mounting medium (Immu-mount, Thermo Scientific). Images were 

acquired with a Zeiss AX10 fluorescence microscope using the same exposure time and 

quantified with Image J. Primary antibodies were: anti-CD45 (1:500, Serotec-MCA1388); anti-

Iba-1 (1:250, Wako-SAN3725); anti-CD3 (1:200, R&D-MAB4841); anti-CD68 (1:100, 

Abcam-ab31630); anti-MBP (1:1000, Serotec-MCA409S); anti-human cytoplasmic marker 

STEM121 (1:250, StemCells-AB-121-U050). The co-localization parameters between GFP 

and MBP was analyzed using Image-Pro Plus 6.0.

MRI
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In-vivo MRI was performed on a horizontal 11.7 Tesla MR scanner (Bruker Biospin) with a 

triple-axis gradient (maximum gradient strength=74 Gauss/cm). During imaging, mice were 

anesthetized with isoflurane (1%) in room air and oxygen mixed at 3:1 ratio via a vaporizer, 

and positioned in an animal holder containing circulating warm water (Bruker Biospin). 

Respiration was monitored via a pressure sensor (SAII, Stony Brook) and maintained at 40-60 

breath/min. After imaging, animals recovered within 5 min.

Image acquisition was performed using a quadrature transmit volume coil (70-mm diameter) 

and a 4-channel mouse brain receive-only phased array coil (Bruker Biospin). Multi-slice T2-

weighted images were acquired using the rapid acquisition with refocused echoes (RARE) 

sequence with an echo time (TE) of 50 ms, a repetition time (TR) of 3600 ms, four signal 

averages, echo train length of eight, field of view (FOV) of 15x15 mm, 32 slices, and a native 

resolution of 0.078x0.078x0.50 mm.

Erichrome cyanin staining

Slides were oven-dried at 50°C for 3 h, hydrated in 95% and 70% ethanol. After rinsing with 

distilled water twice, the sections were stained with an erichrome cyanine solution consisting 

of 0.4% FeCl3, 0.2% erichrome cyanine (Sigma-Aldrich) and 0.5% H2SO4. Section 

development was performed by alternating exposure to 0.1% NH4OH for 3-7 s and rinsing in 

distilled water for 30 s until the blue background was reduced and cells turned faintly pink but 

still had blue shading. After the last rinse in water, sections were dehydrated in 70%, 95%, and 
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100% ethanol (two changes), and three changes of xylene for 10 min each before being 

processed for microscopy.

Transmission electron microscopy and g-ratio measurement

Perfused shiverer mouse brains were placed under a fluorescent dissection microscope. A 3-

mm diameter cube was dissected from the mGRP transplanted corpus callosum and fixed in 4% 

glutaraldehyde following postfixation in OsO4, and embedded in Epon. Thin sections of 70 nm 

were stained with citrate/uranyl acetate as recently described (Lyczek et al., 2017). Images were 

acquired using a Zeiss Libra transmission electron microscope from the upper left field and 

then, in a “zigzag” fashion with equidistant movement. G-ratio was measured as inner/outer 

diameter of the myelin sheath (300 axons per animal).

MiRNA in situ hybridization

In situ hybridization (ISH) for miR-223 and miR-146 (miRCURY LNA miRNA probes, 

Exiqon) was performed using miRCURY LNA microRNA ISH Kit (Exiqon) according to 

manufacturer’s protocol. In brief, cryosections were air dried at room temperature and treated 

with Proteinase-K for 10 min, washed twice in PBS. Hybridization mix was then applied for 60 

min at 52°C following washes in descending concentrations of SSC buffers. Next, sections were 

incubated sequentially in blocking solution for 15 min and anti-DIG reagent conjugated with 

rhodamine (Roche) for 60 min. After three washes with PBS and counterstained with DAPI, 

slides were mounted with Floro-Gel Mounting Media (EMS) and imaged with ZEISS AX10 
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fluorescence microscope.

Supplementary Figures and Figure legends
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Supplementary Fig. 1. Spinal cord-derived mGRPs express macroglial lineage but not 

neuronal markers. PLP-GFP positive mGRP cells were isolated from E13.5 mouse spinal cord 

and cultured in selection medium for 10 days. Immunocytochemistry was performed against 

multiple marker antigens indicated at the upper right corners of each images. Scale bar: 50 µm.

Supplementary Fig. 2. Immunocytochemistry for migration-mediating molecules. PLP-

GFP positive mGRP cells were isolated from E13.5 mouse spinal cord and cultured in selection 

medium for 10 days. Immunocytochemistry was performed with (A) CXCR4 and (B) FGFR 

antibodies. Scale bar: 50 µm.

Supplementary Fig. 3. Additional CTLA4-Ig application does not further enhance graft 

survival. Logarithmic BLI values of non-booster group (MR-1 and CTLA4-Ig treatment on 
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POD0, 2, 4, 6, n=5), booster group (additional CTLA4-Ig application on POD30, 60, 90, n=5), 

and control group of B6 mice (n=5) that received intracerebral mGRP transplantation. There 

was no statistical difference between booster and non-booster group at any time point examined. 

Both booster (*, p<0.05) and non-booster group BLI signals (#, p<0.05) were significantly 

higher than in the control group from POD14 onwards. Regression analysis was reported as 

type III tests of fixed effects, with the lowest mean square (LMS) difference test used for 

comparison between means (PROC MIXED, SAS 9.2). A coefficient of determination was 

calculated, and the BLI data were subjected to logistic transformation to maximize the model 

fit.
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Supplementary Fig. 4. Costimulation blockade protects xenogeneic GRPs from immune 

rejection. (A) Intracerebral hGRP engrafted B6 mice were subjected to longitudinal BLI and 

the logarithmic total flux over their heads were plotted. The statistically significant difference 

between CoB and control group (*, p<0.05, n=5) started from POD9 and lasted till POD19. 

There were no BLI signal differences between CoB and scid groups (p>0.4, n=5). Regression 
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analysis was reported as type III tests of fixed effects, with the lowest mean square (LMS) 

difference test used for comparison between means (PROC MIXED, SAS 9.2). A coefficient 

of determination was calculated, and the BLI data were subjected to logistic transformation to 

maximize the model fit. (B) Immunohistochemistry on B6 and scid mouse brain specimens was 

performed with STEM121 antibodies and DAPI staining on POD19. Scale bar: 100/10 µm in 

low/high magnificent images.

Supplementary Fig. 5. GRPs are vital after 19 days of intracerebral transplantation with 

costimulation blockade treatment. Confocal microscopy for PLP-GFP positive mGRPs being 

transplanted into CoB, scid and control mouse brains on POD19. Cell nuclei were stained with 

DAPI. Note that mGRPs extended complex processes in CoB and scid brains indicating the 

integration into host brains, but displayed moribund morphology in control brains. Scale bar: 

10 µm.
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Supplementary Fig. 6. Peripheral Treg population is decreased in costimulation blockade 

treated mice. T cells isolated from naïve, control and CoB B6 mouse spleens were analyzed 

for the proportion (A) and absolute number (B) of CD4+, FoxP3+ Tregs by flow cytometry. 

Control mice had significantly more Tregs residing in the spleen than CoB mice on both POD5 

(p<0.0001) and POD12 (p=0.0016). There was no difference in neither CD4+ cell proportion 

(C) nor absolute numbers (D). Independent two sample t-test (SPSS 22.0).
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Supplementary Fig. 7. Costimulation blockade mitigates the post-transplantation pro-

inflammation cytokine profile. Sera from intracerebrally mGRP transplanted CoB, control, 

and scid mice were drawn on POD5, 11, 17, 25 and subjected to a high throughput cytokine 

analysis. Cytokines that were within the detection range are presented with absolute values and 

standard deviation at different time points examined. One-way ANOVA with LSD post hoc 
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corrections. *p<0.05 between CoB and control mice, &p<0.05 between CoB and scid mice, 

#p<0.05 between scid and control mice (n=5 in each group). 

Supplementary Fig. 8. Clustered heatmaps of the serum cytokines after intracerebral 

mGRP transplantation. Sera from intracerebral mGRP transplanted CoB, control, and scid 
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mice were drawn on POD5, 11, 17, 25 and subjected to a high throughput cytokine analysis. 

Cluster analysis was performed with NCSS Statistical Software based on the quantitative data 

presented in Supplementary Fig. 7.

Supplementary Fig. 9. Costimulation blockade upregulates intragraft miR-146 expression 

post mGRP transplantation. In situ miRNA hybridization with DAPI counterstaining was 

performed for mGRP transplanted CoB and control mouse brains on POD19. (A) Mouse brain 

cryosections were hybridized with miR-146 probes and note its increased expression co-

localizing with mGRPs in CoB brains. Control brains were negative for miR-146 hybridization. 
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(B). Mouse brain cryosections were hybridized with miR-223 probes. There was no positive 

hybridization in neither CoB nor control brains. Scale bar: 50 µm.

Supplementary Table 1. GFP-MBP co-localization parameters.

Manders’ overlap 
coefficient, R

colocalization 
coefficient, m1

colocalization 
coefficient, m2

shiverer-CoB 33d 0.5316±0.1325 0.5793±0.2078 0.9448±0.0468
shiverer-CoB 90d 0.4335±0.1880 0.7489±0.1291 0.8629±0.0917
shiverer-rag2 90d 0.4352±0.1081 0.5355±0.2279 0.8749±0.0929

References:

Lyczek A, Arnold A, Zhang J, Campanelli JT, Janowski M, Bulte JW, et al. Transplanted 

human glial-restricted progenitors can rescue the survival of dysmyelinated mice independent 

of the production of mature, compact myelin. Exp Neurol 2017; 291: 74-86.
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