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1 Introduction

A central endeavour in empirical macroeconomics is the study of the dynamic causal effects

that structural shocks have on macroeconomic variables. Since Sims (1980), this has been

typically accomplished with Structural VARs (SVARs). An almost always maintained

assumption in the SVAR literature is that of ‘invertibility’, or ‘fundamentalness’ of the

structural shocks, given the chosen model. If this assumption holds, all the structural

shocks can be recovered from the current and lagged values of the observables included

in the VAR. In fact, under invertibility the VAR innovations are a linear combination

of all the contemporaneous structural shocks and, given the variance-covariance matrix

of the residuals, causal effects are identified up to an orthogonal matrix that defines

the contemporaneous relationships. A lot of creativity in the SVAR literature has been

devoted to the formulation of appropriate identifying assumptions to inform the choice

of this orthogonal matrix. The structural moving average, obtained by inverting the

identified SVAR, allows inference on the dynamic causal effects of the structural shocks,

represented in the form of impulse response functions (IRFs).

In contrast with standard statistical identifications, an important advancement in the

more recent practice has seen the adoption of instrumental variables for the identification

of structural shocks.1 These instruments – that can be thought of as noisy observations

of the shocks of interest –, can be used either in conjunction with Structural VARs –

as external instruments (SVAR-IV, also called Proxy-SVARs) or as internal instruments

and part of the endogenous information set (sometimes referred to as Hybrid VARs) –, or

with direct regression methods, such as Jordà (2005)’s Local Projections (LP-IV), with

or without controls.

This paper introduces the conditions for identification with external instruments in

Structural VARs under the assumption of partial invertibility of the shock of interest,

which relates to the empirically relevant case in which the researcher is only interested in
1This rapidly expanding research programme, surveyed in Ramey (2016), has produced, among other

applications, a number of instruments for the identification of the effects of monetary policy (e.g. Romer
and Romer, 2004; Gürkaynak et al., 2005; Gertler and Karadi, 2015; Cloyne and Hürtgen, 2016; Miranda-
Agrippino and Ricco, 2017; Paul, 2017; Hansen et al., 2019; Altavilla et al., 2019), fiscal spending (e.g.
Ramey, 2011; Ricco et al., 2016; Ramey and Zubairy, 2018), tax (e.g. Romer and Romer, 2010; Mertens
and Ravn, 2012; Cloyne, 2013; Leeper et al., 2013; Mertens and Montiel-Olea, 2018), government asset
purchases (Fieldhouse and Mertens, 2017; Fieldhouse et al., 2018), oil (e.g. Hamilton, 2003; Kilian, 2008;
Känzig, 2019), productivity news shocks Arezki et al. (2017), and technology news shocks (e.g. Miranda-
Agrippino et al., 2018).
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‘partially’ identifying the system, that is, in estimating the dynamic effects of just one (or

a subset) of the structural shocks that can be assumed to be recoverable from the VAR

residuals. In doing this we generalise results in Stock and Watson (2018) that discuss the

conditions for identification in both SVAR-IV and LP-IV under the assumption of full

invertibility, but also observe that identification can be achieved with IV methods under

partial invertibility.2

We show that, in general, fairly weak conditions are required to achieve identification.

In particular, other than the standard relevance and contemporaneous exogeneity condi-

tions, under partial invertibility the instrument has to fulfil a limited lead-lag exogeneity

condition that ensures that the VAR innovations and the instrument are related only

via the contemporaneous structural shock of interest. Importantly, the condition allows

the instrument to be contaminated by leads and lags of other partially invertible shocks

without compromising the correct identification of the shock of interest. Our results allow

to extend the application of SVAR-IV (and LP-IV with controls) to the many empirically

relevant cases in which while some of the structural disturbances may be non-invertible,

the shock of interest is arguably invertible.

We make three contributions. First, we show that under partial invertibility a covariance-

stationary stochastic vector process admits a ‘semi-structural’ representation that is the

sum of two terms, orthogonal to one another. The first one only depends on the current

realisations of the partially invertible shocks. The second instead combines leads and lags

of the remaining non-invertible shocks. This result implies that if the VAR lag order

correctly captures the autocorrelation structure of the Wold representation, the impulse

response functions obtained from the partially identified structural moving average are

the dynamic causal effects of the shock of interest.

Second, we show that under partial invertibility SVAR-IV methods (and LP-IV with

controls) achieve identification under much weaker conditions on the external instrument

than LP-IV without controls. The existence of a semi-structural representation allows the

instrument to be contaminated by leads or lags (but not contemporaneous realisations)

of any of the other invertible shocks in the system. We call this requirement a limited
2Stock and Watson (2018) note that direct methods, such as local projections, do not need to ex-

plicitly assume invertibility of the system under strict exogeneity of the instrument at all leads and
lags. However, if lagged observables are required as control variables for an instrument that violates the
lead-lag exogeneity condition, then, in general, the same invertibility conditions of a structural VAR are
required. Plagborg-Møller and Wolf (2018b) discuss the cases in which invertibility can be dispensed
with for identification of LP-IV with controls and Hybrid VARs.
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lead-lag exogeneity condition. We also derive an explicit formula for the bias in the IRFs

that arises when the instrument violates the conditions for identification. Finally, we

extend results in Stock and Watson (2018) and Plagborg-Møller and Wolf (2018b) to

show that given an instrumental variable for the shock of interest, Structural VARs and

Local Projection methods achieve indentification under the same set of conditions, albeit

in different settings. Hence, the choice of the empirical specification has to depend on the

bias-variance trade-off of the specific application and sample at hand.

Third, we discuss identification of causal effects in the empirically likely cases in which

the VAR is misspecified along some dimensions – e.g. inappropriate lag order, missing

moving average components, missing variables, and missing higher order terms –, and

hence fails to correctly capture the data generating process. While in these cases the dy-

namic responses will generally be biased, if one can still assume that the VAR is partially

invertible in the shock of interest, the impact effects are correctly identified provided that

the limited lead-lag exogeneity of the instrument hold. This result provides empirical

researchers with a simple heuristic to gauge the contamination of an instrument versus

the misspecification of the chosen model. If one can assume partial invertibility across

different specifications of an empirical model, an instrument that fulfils the conditions

for identification delivers stable impact responses but unstable IRFs across models. In

this case, increasing the number of lags and/or using a larger information set can help

stabilising the dynamics responses by providing a better approximation of the Wold rep-

resentation. Conversely, an instrument that violates the lead-lag exogeneity condition is

likely to deliver also unstable impact responses across different models.

We provide an application of our results using artificial data from a stylised standard

New-Keynesian DSGE model with price stickiness and four shocks – monetary policy,

government spending, technology, and an inflation-specific shock. The simulated system

is by construction partially invertible in the monetary policy shock – i.e. the residuals of

the Taylor rule. However, due to the introduction of technology news (see e.g. Beaudry and

Portier, 2006; Barsky and Sims, 2011), and fiscal foresight (see Ramey, 2011; Leeper et al.,

2013), a VAR in output growth, inflation, government spending and the policy interest

rate fails the ‘poor man’s invertibility condition’ of Fernandez-Villaverde et al. (2007),

and is hence unable to recover all the four shocks. We use this simulated environment to

study the identification of monetary policy shocks with external instruments. Our results
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validate our discussion. Under partial invertibility, an instrument contaminated by leads

or lags of an invertible shock correctly recovers impacts and dynamic responses to the

shock of interest, provided that the VAR correctly captures the variables’ dynamics. If,

instead, the instrument is contaminated by a non-invertible shock, the degree of distortion

in the estimated IRFs depends on how pervasive the contaminating shock is, that is, on

how much of the variance in the system it accounts for.

Lastly, we provide an empirical application of our results by examining popular in-

struments for the identification of monetary policy shocks in monthly VARs for US data.

We consider two VARs for which we assume partial invertibility of conventional mone-

tary policy shocks, and three variants of the high-frequency instruments popularised by

Gürkaynak et al. (2005). We show that two of these are likely to fail the limited lead-lag

exogeneity condition, and as a consequence recover impact responses of output and prices

that are strongly dependent on the VAR of choice. The third instrument, constructed as

in Miranda-Agrippino and Ricco (2017) with a pre-whitening step to remove correlation

with other shocks, recovers impact responses that are invariant to the VAR specification

and composition.

This paper builds and expands on the econometric literature supporting the use of

IV in macroeconomics. The SVAR-IV techniques were first introduced by Stock (2008),

and then explored in Stock and Watson (2012) and Mertens and Ravn (2013). The use

of instrumental variables for identification in direct regressions (LP-IV), with or without

controls, has been proposed independently by Jordà et al. (2015) and Ramey and Zubairy

(2018). The econometric conditions for instruments’ validity in the direct regression

without control variables have first appeared in lecture notes by Mertens (2014). Stock

and Watson (2018) have provided a unified discussion of the use of external instruments in

macroeconomics, discussed the conditions for instruments validity with control variables

and relation to full invertibility, and explored the connections between SVAR-IV and

LP-IV methods. Recently, Arias et al. (2018) have proposed algorithms for exact finite

sample inference for SVAR-IV when multiple instruments are employed to identify more

than one shock.

This paper adds to the small but important econometric literature that has strived to

clarify the conditions and limits under which macroeconomic structural shocks and their

dynamic effects can be identified in empirical reduced form models (for a recent discus-
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sion see Canova and Ferroni, 2019). A strand of this literature has focused on the link

between the conditions for invertibility of structural shocks and the information included

in VARs, e.g. Giannone and Reichlin (2006), Forni and Gambetti (2014), and Canova and

Hamidi Sahneh (2017). A more recent literature has furthered our understanding of the

identification problem when the system is not fully invertible but the shocks of interest

can be revealed by linear combinations of current and past observations (i.e. are ‘partially

invertible’), can be revealed only to some degree of approximation (i.e. are ‘approximately

invertible’, as in Sims and Zha, 2006), or can be recovered using future observables as well

(the ‘recoverability’ concept proposed by Chahrour and Jurado, 2017). Our work slots

into this effort by clarifying conditions for IV identification in SVAR models under partial

invertibility (our results readily generalise to the case of approximate invertibility). In

doing this, this paper is close in spirit to Forni et al. (2019) that studies the conditions

under which a SVAR is informative enough to estimate the dynamic effects of a shock,

and to Plagborg-Møller and Wolf (2018b) that clarify the equivalence of SVAR and LP

methods, and address the validity of external instrument identification in the invertible

and non-invertibile cases. While we share the emphasis on partial invertibility (referred to

in Forni et al. 2019 as informational sufficiency), our paper focuses on the recent debate

on the use of IV in empirical macro, and on its interaction with misspecifications in the

modelling choices. Differently from Plagborg-Møller and Wolf (2018b), we focus on the

conditions under which partially invertible shock are identifiable with SVAR with external

instruments. However, we do not discuss the important issue of the inference on forecast

variance decompositions with instrumental variables, for which bounds are provided by

Plagborg-Møller and Wolf (2018a).

The paper is organised as follows. In Section 2 we review the concepts of full in-

vertibility and fundamentalness and some other useful results in the literature; a reader

familiar with these concepts can skip the section. Sections 3 to 5 collect our main results.

In Section 3 we discuss partial invertibility, and prove the existence of a semi-structural

representation for covariance-stationary vector processes. We lay out the conditions for

the identification of structural shocks in SVAR-IV under partial invertibility of the shock

of interest in Section 4, while Section 5 compares the conditions for SVAR-IV with those

required in LP-IV with controls. In Section 6 we discuss the challenges to identification

and estimation of the IRFs in the case of misspecified systems. We apply the concepts dis-
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cussed in this paper to artificial data from a NK-DSGE in Sections 7, and in an empirical

application in Section 8. Finally, Section 9 concludes.

2 Non-Fundamental Representations

To introduce the concept of non-fundamentalness, let us consider a covariance-stationary

n×1 vector stochastic process Yt, for t ∈ Z, with rational spectral density and belonging to

a Hilbert space L2(Ω,F , P ) for some probability space (Ω,F , P ).3 We define the Hilbert

space generated by all the observations of Yt up to time t as HY
t = span{Yt−j, j ≥ 0}.

The process Yt is a linear process and a VARMA(p,q) if it is stationary solution of the

stochastic difference equation

Φ(L)Yt = Ψ(L)ut ut ∼ WN (0,Σu) , (1)

where Φ(L) and Ψ(L) are generic autoregressive (AR) and moving average (MA) filters

of order p and q respectively

Φ(L) =

p∑
i=0

ΦiL
i , Ψ(L) =

q∑
i=0

ΨiL
i, (2)

and ut are the stochastic disturbances of the data generating process (i.e. the ‘struc-

tural shocks’ in the economic jargon), generally assumed to be orthogonal or orthonormal

processes. If the process is causal – i.e., det(Φ(L)) has all roots outside the unit circle,

det(Φ(z)) 6= 0 ∀z = ζi such that |ζi| < 1 –, then it can be written as a (possibly infinite)

MA in the structural shocks ut

Yt = Θ(L)ut, ut ∼ WN (0,Σu). (3)

Definition 1 (Invertibility and Fundamentalness). Let Yt be defined as in Eq. (1),

and with structural MA representation as in Eq. (3).
3In the economic literature, the issue of non-fundamentalness (see Rozanov, 1967; Hannan, 1970)

was first pointed out by Hansen and Sargent (1980, 1991) in a purely theoretical setting, while Lippi
and Reichlin (1993, 1994) provided the first empirical application. Other more recent contributions on
fundamentalness in macro models are in Chari et al. (2004), Christiano et al. (2007) and Fernandez-
Villaverde et al. (2007). A useful review is in Alessi et al. (2011).
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(i) If det(Ψ(z)) – and hence det(Θ(z)) – has all roots outside the unit circle, i.e.

det(Θ(z)) 6= 0, ∀z = ζi s.t. |ζi| < 1, (4)

then the process in Eq. (1) is said to be invertible, and ut are said to be Yt-

fundamental (i.e. HY
t = Hu

t and the stochastic disturbances can be recovered from

current and past realisation of the process Yt). Yt can be written in VAR form as

A(L)Yt = Θ0ut , (5)

where Θ0 is an n-dimensional matrix.

(ii) If det(Θ(z)) has at least one root inside the unit circle, then the process in Eq. (1)

is ‘non-invertible’, and ut is said to be Yt–non-fundamental (i.e. HY
t ⊂ Hu

t ).

(iii) If det(Θ(L)) has at least one root on the unit circle, the process is said to be non-

invertibile, but ut are Yt-fundamental (HY
t = Hu

t ).

The Wold Representation Theorem guarantees that Yt always admits a Wold decom-

position of the form

Yt = C(L)νt νt ∼ WN (0,Σν), (6)

where C(L) =
∑

j CjL
j is a causal (i.e. no terms with Cj 6= 0 for j < 0), time-

independent, square summable filter with C0 = In.4 νt is the Wold innovation process –

an uncorrelated sequence – to Yt

νt = Yt − Proj(Yt|Yt−1, Yt−2, . . . ) , (7)

that, by definition, belongs to the space generated by present and past values of Yt (i.e.

Hν
t = HY

t , since we are assuming Yt to be a purely non-deterministic process). Given the

invertibility of C(L), we can rewrite Eq. (6) in VAR form

A(L)Yt = νt A0 = In . (8)
4The Wold Theorem guarantees that any weakly stationary process Yt can be written as Yt = ηt +

C(L)νt, where ηt is a purely deterministic component. Without loss of generality, in what follows we
disregard the possible presence of deterministic terms in order to focus on purely non-deterministic
processes.

8



If the Wold representation has absolute summable coefficients, then it admits a VAR

representation with coefficient matrices that decay to zero rapidly; hence, it can be well

approximated by a finite order VAR. This is always the case for causal finite-order ARMA

processes.

If the structural shocks ut are Yt–fundamental, then ut and νt generate the same space

(Hu
t = Hν

t , ∀t). This implies that

νt = Θ0ut , (9)

where Θ0 is non-singular. Hence, the structural disturbances ut can be determined from

current and lagged values of Yt

ut = Proj(ut|Yt, Yt−1, . . . ) . (10)

If, however, the process is not invertible, and ut is not Yt–fundamental, the space

generated by the VAR innovations does not coincide with that spanned by the structural

shocks, i.e. Hν
t ⊂ Hu

t .5 The following result guarantees that the Wold and the structural

MA representations (Eq. 3) are connected by a class of transformations generated by

means of Blaschke matrices.

Theorem 1 (Non-fundamental Representations). Let Yt be a covariance-stationary

vector process with rational spectral density, i.e. an ARMA process. Let Yt = C(L)νt be

a fundamental representation of Yt, i.e.

(i) νt is a white noise vector;

(ii) C(L) is a matrix of rational functions in L with no poles of modulus smaller or equal

to unity (Causality);

(iii) det(C(L)) has no roots of modulus smaller than unity (Invertibility).

Let Yt = Θ(L)ut be any other MA representation, i.e. one which fulfils (i), and (ii), but

not necessarily (iii). Then

Θ(L) = C(L)B(L) ,

where B(L) is a Blaschke matrix.
5Non-fundamentalness also naturally arises in systems in which the dimension of the vector Yt (and

hence of νt) is smaller than that of ut. We provide a discussion of a related case when examining the
implications of misspecifications in VAR models in Section 6.
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Blaschke matrices are filters capable to flip the roots of a fundamental representation

inside the unit circle (see Lippi and Reichlin, 1994). A complex-valued matrix B(z) is

a Blaschke matrix if: (i) It has no poles inside the unit circle; (ii) B(z)−1 = B∗
′
(z−1),

where ∗ indicates the complex conjugation.6 The following result guarantees that any

Blaschke matrix can be written as the product of orthogonal matrices, and matrices with

a Blaschke factor as one of their entries.

Theorem 2 (Blaschke Factors). Let B(z) be an n× n Blaschke matrix, then ∃m ∈ N

and ∃ ζi ∈ C for i = 1, . . . ,m such that

B(z) =
m∏
i=1

K(ζi, z)Ri , (11)

where Ri are orthogonal matrices, i.e. RiR
′
i = In, and

K(ζi, z) =

In−1 0

0
z − ζi

1− ζ∗i z

 , (12)

are matrices with a Blaschke factor as one of the entries.

The above results indicate that in general we can connect the structural and the Wold

representation using a Blaschke matrix B(L), that is

Yt = Θ(L)ut = Θ(L)B(L)−1B(L)ut = C(L)νt, (13)

where B(L) flips the roots of the Wold fundamental representation inside the unit circle

to obtain the structural MA. Hence,

νt = B(L)ut , (14)

where we incorporate incorporate into B(L) possibly also a constant scale matrix. In the

case in which the structural representation is invertible, B(L) is just Θ0.

It is important to observe that, as it is clear from Eqs. (11-12), Blaschke factors may

be acting only on a subset of the shocks. The remaining shocks can be recovered from

current and past realisations of the variables, and are hence invertible. We discuss this
6See Lippi and Reichlin (1994) for a proof of Theorems 1 and 2.
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relevant case in the next section.

3 Partial Invertibility

The property of invertibility guarantees identifiability of the dynamic effects of all the

structural disturbances in a correctly specified VAR. In such a case, the problem of iden-

tification amounts to finding the correct matrix Θ0 that connects the VAR residuals to the

structural shocks as in Eq. (9). However, phenomena such as anticipation and foresight

of economic shocks, which are often a feature of rational expectation models, can generate

non-invertible representations (see e.g. Leeper et al., 2013). In such cases, the search for

the correct Blaschke matrix can be a daunting problem (see Lippi and Reichlin, 1994).

In most empirical applications, however, often only one or a subset of the structural

innovations is of interest. For example, one may want to identify only a monetary policy

shock, or an oil price shock. This is the case of ‘partial identification’, when only a subset

of the column entries of the matrix that maps the Wold residuals into the structural

shocks has to be recovered. In such a setting, the relevant condition is that of partial

invertibility in the subset of the shocks of interest.

Definition 2 (Partial Invertibility). Let Yt be a covariance-stationary n × 1 vector

stochastic process, with rational spectral density, solution to the ARMA equation Φ(L)Yt =

Ψ(L)ut, where ut is an n × 1 vector of stochastic disturbances (structural shocks) with

ut ∼ WN (0, In). Yt admits a Wold representation of the form Yt = C(L)νt for a vector

of innovations νt ∼ WN (0,Σν). Without loss of generality, let u1t denote the first entry

of ut. The structural shock u1t is invertible and Yt–fundamental if

u1t = Proj(u1t |Yt, Yt−1, . . . ) . (15)

Hence, u1t is a linear combination of the innovations νt, that is, there exists an n-

dimensional vector λ such that

u1t = λ′νt . (16)

For a given VAR model, the property of partial invertibility guarantees that one or,

more generally, some of the structural shocks, u1:mt = (u1t , . . . , u
m
t )′ for m < n, can be
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correctly recovered as a linear combination of the estimated innovations.7 While seldom

acknowledged, partial invertibility is always implicitly assumed in the empirical macroe-

conomic literature concerned with evaluating the effects of a specific type of shock – e.g.

monetary policy shocks, spending shocks, etc.

The following proposition guarantees the existence of a representation for the covari-

ance stationary vector process Yt as an infinite moving average of the invertible shocks

u1:mt , and of the n −m linear combinations of the Wold innovations orthogonal to u1:mt .

This is a key result that allows for the study of the propagation of structural shocks in

reduced-form VAR models.

Proposition 1 (Semi-structural Moving Average Representation). Let the n-

dimensional covariance stationary vector process Yt be solution to

Φ(L)Yt = Ψ(L)ut ut ∼ WN (0, In) , (17)

where ut is an n-dimensional vector of structural innovations, and let Ψ(L) be a non-

invertible moving average filter, i.e. det(Ψ(z)) = 0 for some ζi such that |ζi| < 1. Let the

Wold representation of Yt be equal to

Yt = C(L)νt νt ∼ WN (0,Σν). (18)

where Σν is the positive definite variance-covariance matrix of Wold innovations. If the

system is partially invertible in the shocks uit, for i = 1, . . . ,m, i.e. there exist m vectors

λi such that λ′iνt = uit, then Yt admits a semi-structural moving average representation of
7The notion of partial invertibility – i.e. uit = Proj(uit|HYt ) – can be generalised by considering a

continuous measure of the degree of invertibility – i.e. approximate invertibility – that is the case in
which 0 6= uit − Proj(uit|HYt ) 6= uit (see Sims and Zha, 2006 and Forni et al., 2019). In such a case, a
measure of the degree of invertibility is provided by

δi =
V ar(uit)− V ar(Proj(uit|HYt ))

V ar(uit)
.

For values close to 1 (i.e. close to partial invertibility), the IRFs obtained from a VAR model can be close
the the true ones. A even weaker condition than invertibility is that of recoverability uit = Proj(uit|HY∞),
i.e. the shock of interest is recoverable from all leads and lags of the endogenous variables (see Chahrour
and Jurado, 2017).
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the form

Yt = C(L)Σν

m∑
i=1

λiu
i
t + C(L)Σνλ̃ξt , (19)

where ξt is an (n − m) × 1 vector of linear combinations of Wold innovations that is

orthogonal to all uit for i = 1, . . . ,m, i.e. E(uitξ
′
t) = 0.

Proof. Let us consider a non singular n × n matrix Λ =
(
λ λ̃

)
, where λ is an n × m

matrix, and λ̃ is an n× (n−m) matrix such that

Λ′νt =

λ′
λ̃′

 νt =

u1:mt
ξt

 (20)

and

Λ′ΣνΛ = Λ′E [νtν
′
t] Λ = E

u1:mt
ξt

(u1:m′t ξ′t
) = In . (21)

Eq. (20) allows Λ to enforce the partial invertibility of νt in u1:mt , while Eq. (21) guarantees

that Λ performs an orthogonalisation of the Wold innovations, such that E [uitξ
′
t] = 0 ∀i =

1, . . . ,m.

It is possible to constructively prove the existence of such a matrix Λ. Since Σν is a

symmetric positive-definite real matrix, we can use the Spectral Theorem to write (see,

e.g., Sudipto and Roy, 2014)

Σν = QDQ′ ,

whereD is a diagonal matrix with the n distinct eigenvalues of Σν along the main diagonal,

and Q is an orthogonal matrix whose columns are the corresponding eigenvectors. Given

that all the eigenvalues are positive, we can further decompose Σν as

Σν = QD1/2H(QD1/2H)′ ,

for a generic orthogonal matrix H, parametrised by n(n − 1)/2 free parameters. Hence,

a generic matrix Λ can be expressed as Λ = QD−1/2H.

It is always possible to choose a column of Λ to be equal to λ1, by fixing n− 1 of the

free parameters in H. The assumptions of partial invertibility and of unit variance of the

structural shocks impose a constraint on λ1, i.e. λ′1Σνλ1 = λ′1E[νtν
′
t]λ1 = E[u1t ] = 1. This

leaves (n − 1)(n − 2)/2 free parameters of H spanning the residual group of rotations.

13



It is possible to proceed in a similar manner to fix the remaining m − 1 columns in

the sub-matrix λ. In fact, the assumption of partial invertibility of the second shock u2t
imposes the constraint λ′2Σνλ2 = 1, while the assumption of orthogonality with the shock

u1t imposes an additional constraint λ′2Σνλ1 = 0, hence it is necessary to employ n− 2 of

the residual parameters of H, leaving a residual group of rotation with (n− 2)(n− 3)/2

parameters. Proceeding in similar steps for the remainingm−2 partially invertible shocks,

one obtains the desired matrix Λ.8 The remaining (m − 1)(m − 2)/2 free parameters of

H span the O(m − 1) residual group of rotations in the subspace of Rn formed by the

vectors λ̃i, i = 1, . . . ,m − 1 conjugate to all the λi with respect to Σν , i.e. such that

λ′Σνλ̃i = 0. Hence, while Λ always exists, it is not unique.

Since Σν = (ΛΛ′)−1, it follows that ΣνΛΛ′ = In. Using this identity, it is possible to

write

Yt = C(L)νt = C(L)ΣνΛΛ′νt = C(L)Σνλu
1
t + C(L)Σνλ̃ξt ,

that is the representation in Eq. (19).

Proposition 1 guarantees that any covariance-stationary vector process Yt that is so-

lution to Eq. (17) admits the semi-structural MA representation in Eq. (19). In their

paper, in Definition 4, Forni et al. (2019) propose a moving average equation similar to

Equation (19) in the m = 1 case. Differently from this definition, Proposition 1 is a rep-

resentation result that guarantees the existence of such a moving average representation

of the process.

The first term of Eq. (19) depends on the realisations of the invertible shocks uit
for i = 1, . . . ,m. The second term is instead a function of n − m linear combinations

of the Wold innovations orthogonal to the invertible shocks, ξt. Due to the action of

the Blaschke factors, ξt will be a convolution of past, current and future non-invertible

shocks. It is worth stressing that, while the requirement that ξt and the invertible shocks

u1:mt are orthogonal is important, ξt does not need to span the space of all the non

invertible structural shocks. Hence, while the representation in Eq. (19) always exists,
8More generally, any T such that

T ′ΣνT =

(
D 0
0 M

)
for D diagonal and M = M ′ will produce a decomposition of the form of Eq. (19). It is possible to
construct such a matrix from the matrix Λ defined above as T = WΛ, for any W such that W ′W =(
D 0
0 M

)
.
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it is not unique, since ξt can be redefined by selecting different values for the residuals

(m− 1)(m− 2)/2 free parameters of H.

Importantly, this result implies that if the VAR has a correctly specified lag order,

under partial invertibility, the ‘partially’ identified SVAR impulse response functions

C(L)Σνλiu
i
t are the dynamic causal effects of the identified m invertible shocks.

Remark 1. Under partial invertibility, the map between structural shocks and Wold in-

novations is of the form

νt = B(L)ut =
(
b1 b2(L)

)
ut , (22)

where b1 is a n×m matrix, and b2(L) is a matrix of dimensions n× (n−m) that contains

Blaschke factors, and m is the number of partially invertible shocks.

Proof. This is a straightforward, since

νt = B(L)ut = ΣνΛ

u1:mt
ξt

 = (b1 b2(L))ut

where the first equality follows from Theorem 1, while the second from Proposition 1.

Since b1 has to be equal to the first m columns of ΣνΛ = (Λ′)−1, it follows that it is a

vector of constants, while b2(L) contains Blaschke factors mapping non-invertible shocks

into the Wold residuals.

4 IV Identification under Partial Invertibility

Let us consider a partially invertible VAR with reduced-form representation as in Eq. (8),

repeated below for convenience

A(L)Yt = νt A0 = In . (8)

Given an external instrument zt, it is possible to identify u1t and its effects on Yt+h, h =

0, . . . , H, under the conditions in the following proposition.

Proposition 2 (Identification in SVAR-IV under Partial Invertibility). Let u1:mt
denote the m invertible structural shocks in the system, and um+1:n

t the remaining n−m

non-invertible shocks. Let zt be an instrument for the shock of interest u1t , and define

z⊥t = zt − Proj
(
zt|HY

t−1
)
. If zt satisfies the following conditions:
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(i) E[u1t zt] = α (Relevance)

(ii) E[u2:nt z⊥t ] = 0 (Contemporaneous Exogeneity)

(iii) E[um+1:n
t−j z⊥t ] = 0 for all j 6= 0 for which E[um+1:n

t−j ν ′t] 6= 0. (Limited Lead-Lag

Exogeneity)

then the instrument can be used to estimate dynamic causal effects of u1t onto Yt, up to a

scale.

Proof. Recall that ΣνΛΛ′ = In, for Λ defined as in Proposition 1, and let λ1 denote the

first column of Λ. Using the property of partial invertibility in Eq. (20) we can write

E[νtzt] = E [ΣνΛΛ′νtzt] = ΣνΛE




u1t

u2:mt

ξt

 zt

 = Σν

(
λ1 . . . λm λ̃

)
E[u1t zt]

E[u2:mt zt]

E[ξtzt]

 .

Conditions (i) and (ii) set E[u1t zt] = α and E[u2:mt z⊥t ] = E[u2:mt zt] = 0 respectively. We

now need to prove that E[ξtzt] = 0. Recall first that E[ξtu
1:m
t ] = 0, which follows directly

from the definition of Λ. Second, note that E[ξtu
i
t−j] = 0 for i = 1, . . . ,m and ∀ j 6= 0

since E[ξtu
i
t−j] = λ̃′E[νtν

′
t−j]λ

′
i = 0. This follows from the Wold theorem that guarantees

that the innovations νt are an uncorrelated white noise sequence. Hence, ξt and zt do

not correlate via past or future realisations of the invertible shocks. Finally, observe

that Condition (ii) and (iii) together require that E[um+1:n
t−j z⊥t ] = 0 for all j for which

E[um+1:n
t−j ν ′t] 6= 0. Since ξ⊥t = ξt − Proj(λ̃′νt|HY

t−1) = ξt by the definition of νt, it follows

that E[ξtzt] = E[ξ⊥t zt] = E[ξ⊥t z
⊥
t ] = 0. Hence, ξt and zt do not correlate via leads or lags

of the non-invertible shocks either, leading to E[ξtzt] = 0. It follows that

E[νtzt] = αΣνλ1.

Given the assumption of partial invertibility, the system can be written in the semi-

structural representation of Eq. (19) in Proposition 1. Hence the SVAR-IV correctly

estimates the relative dynamic causal effects of u1t onto Yt (i.e. up to a relative scale

α).

Conditions (i) and (ii) are the conventional validity conditions for instrumental vari-

ables (IV) that are standard in the micro and macro literatures (see Stock and Watson,
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2018). Condition (iii) arises because of the dynamics, and requires that if there are any

non-invertible shocks, they do not correlate with the component of the instrument that

is orthogonal to past Yt, at any leads and lags. Conversely, leads and lags (but not con-

temporaneous values) of other partial invertible shocks can contaminate the instrument

without compromising the identification of the impact effects Σνλ1, since they do not

enter the VAR residuals.9

If the system is invertible in all the structural shocks and the VAR correctly captures

the data generating process of Yt, then the third condition is trivially satisfied, since νt

are a linear combination only of the contemporaneous structural shocks ut. Conversely,

when all the remaining shocks are non-invertible, Condition (iii) implies a stronger lead-

lag exogeneity condition that applies to all the shocks but the partially invertible one.

In the more general case in which only some of the remaining shocks are non-invertible,

Proposition 2 ensures that identification with an external instrument is possible as long as

the instrument is contaminated only by the past and future realisations of the invertible

shocks. It is worth stressing that while Condition (iii) is a relatively stronger condition

than that required for a fully invertible SVAR (where lead-lag exogeneity is not required),

it is still a much weaker one than the strong lead-lag exogeneity condition required for

identification in LP-IV without controls.

When Conditions (ii) or (iii) are violated, the instrument is contaminated by the

contemporaneous realisations of any other shock or by leads and lags of some of the non-

invertible shocks. This results in a bias in the estimated impulse response functions. We

formalise this observation in the following remark.10

Remark 2 (Violation of the Exogeneity Conditions). Let zt be an instrument for

the invertible shock u1t that satisfies Condition (i) but possibly fails Condition (ii) and

Condition (iii) of Proposition 2, due to contamination by lags, leads or contemporaneous

realisations of a non-invertible shock u�1t , i.e.

zt = αu1t +
∑
k∈K

βku�
1
t−k . (23)

9Interestingly, leads, lags or even contemporaneous realisations of the non-invertible shocks can con-
taminate zt, but only via their ‘projectable’ component Proj(um+1:n

t |HYt−1) 6= um+1:n
t that lives in the

space spanned by past realisations of Yt.
10A related result is in Plagborg-Møller and Wolf (2018a) that discuss the bias that arises in SVAR-IV

methods when the shock of interest is non-invertible.
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Given a well specified VAR, the innovations of the Wold representation can be mapped

into the structural shocks as

νt =
(
b1 b2(L)

)
ut ,

where b1 is n×m and b2(L) is an n× (n−m) matrix that incorporates Blaschke factors,

due to the presence of non-invertible shocks. The estimated IRFs for variable i, to shock

1, at horizon h, are biased and of the form

ĨRF
h

i1 = IRF h
i1 +

[
Ch
∑
j∈J

∑
k∈K

b2,j,�1
βk
α
δjk

]
i

, (24)

where IRF h
i1 are the IRFs to the shock u1t at horizon h, and the second term is a bias. Ch

are the matrix coefficients of the Wold representation at lag h, and b2,j,�1 is the �1 column

of the matrix of coefficients of the polynomial b2(L) at lag j. δjk is the Kronecker’s delta.

Proof. Given a well specified VAR, the Wold representation is

Yt = C(L)νt ,

where

νt = ΣνΛ

u1:mt
ξt

 = (b1 b2(L))ut

from Theorem 1 and Proposition 1. In this case

E[νtzt] = ΣνΛ

E[u1:mt zt]

E[ξtzt]

 = αb1,1 +
∑
j∈J

∑
k∈K

b2,j,�1βkδjk ,

where the Kronecker’s delta singles out the common leads or lags of u�1t that appear both

in the instrument and the column �1 of the matrix b2(L). By normalising for the coefficient

of correlation α and multiplying for the matrix Ch of lag h of the Wold representation

one finds

ĨRF
h

i1 =

[
Chb1,1 + Ch

∑
j∈J

∑
k∈K

b2,j,�1
βk
α
δjk

]
i

,

which is the expression in Eq. (24).

A few elements of Eq. (24) are worth highlighting. First, all else equal, the size of

the bias in the estimated IRFs depends on how much the instrument correlates with the
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(leads, lags and contemporaneous realisations of the) contaminating shock as compared

to the shock of interest – i.e. on the ratios βk
α
. Second, the bias depends on the number

of lags that are common to those contaminating the instrument (Eq. 23) and those that

appear in the Blaschke matrix b2(L). Finally, and importantly, the bias depends on the

relative order of magnitude of the coefficients b2,j,�1 as compared to b1. These relate to the

variance of variable i that is accounted for by the shock of interest and the contaminating

shock. For example, very small values of b2,j,�1 relative to b1 imply that shock u�1t explains

a small share of the variance of the variable i, and hence the distortion is likely to be

small.

For comparison, if the instrument correlated with leads, lags and contemporaneous

realisations of another invertible shock, the equivalent of Eq. (24) would read

ĨRF
h

i1 = IRF h
i1 +

[
Chb1,�1

β0
α

]
i

, (25)

for u�1t invertible. In fact, only a violation of Condition (ii) would matter, i.e. the contam-

ination by contemporaneous realisations.

5 SVAR-IV under Partial Invertibility and LP-IV

In empirical applications, when doubts arise regarding the correct VAR specification, a di-

rect estimation approach in the form of local projections (LP) is often suggested. However,

as discussed in Stock and Watson (2018), in LP without control variables identification is

achieved only under a strict lead-lag exogeneity condition (i.e. E[u2:nt−jzt] = 0 for all j 6= 0)

that is potentially violated in practice.

In the empirically likely case in which the instrument satisfies the contemporaneous

exogeneity condition but is not strictly lead-lag exogenous due to correlation with past

shocks, the standard practice is to incorporate lagged macro variables in the LP regression,

in order to control for these lagged shocks (LP-IV⊥). In this case, Stock and Watson

(2018) provide a ‘no-free lunch’ result, by showing that the conditions for validity of

IV identification are in general equivalent to assuming full invertibility of a VAR that

incorporates the same information set. In this section we generalise this result to the case

of partial invertibility, and show that LP and SVAR methods generally identify shocks

under the same conditions.
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Consider the standard set up for LP-IV with controls

Yi,t+h = Θh,i1Ŷ
1
t + γ′hWt + ζhi,t+h , (26)

where Wt denotes a generic set of control variables, Θh,i1 are the causal responses of

Yi,t+h to u1t at horizon h, Ŷ 1
t is the fitted value of Y 1

t from the first-stage regression on

the external instrument zt, and ζhi,t+h are serially correlated projection residuals. The

conditions for identification in the LP-IV⊥ case are (see Stock and Watson, 2018)

(i) E[u1,⊥t z⊥t ] = α (Relevance)

(ii) E[u2:n,⊥t z⊥t ] = 0 (Contemporaneous Exogeneity)

(iii) E[u⊥t−jz
⊥
t ] = 0 for all j 6= 0 (Lead-Lag Exogeneity)

where x⊥t = xt − Proj(xt|Wt) for a given xt, and Wt = span{Wt}.

The following proposition shows that an instrument that correctly identifies the shock

of interest (up to a normalisation) in a SVAR-IV under partial invertibility, will also

generally identify the same shock in LP-IV⊥ whenWt ≡ HY
t−1, and vice versa. Conversely,

an instrument that identifies a non-invertible shock in LP-IV⊥ will also identify that same

shock in a SVAR if used as an internal instrument, i.e. in a SVAR specified on (z′t Y
′
t )
′

(see also Plagborg-Møller and Wolf, 2018b). This specification is sometimes referred to

as hybrid VAR (SVAR-H) in the empirical literature (see e.g. Ramey, 2016).

Proposition 3 (Relation between SVAR-IV under Partial Invertibility and

LP-IV⊥). Let Z be the set of scalar stochastic processes zt that satisfy LP-IV Condi-

tions (i) and (ii) – i.e. E[u1t zt] = α and E[u2:nt zt] = 0 –, but satisfy Condition LP-IV (iii)

E[ut−jzt] = 0 only for j < 0 and not for j > 0. Let Z̃ ⊆ Z be such that any zt ∈ Z̃

satisfies the LP-IV⊥ conditions for Wt ≡ HY
t−1. Assume that Proj(ut|HY

t−1) = 0. zt is an

element of Z̃ if and only if it identifies the shock of interest in a Structural VAR in Yt.

Proof. Let us consider the LP-IV⊥ conditions for Wt ≡ HY
t−1. Condition LP-IV⊥ (ii) is

trivially equivalent to Condition SVAR-IV (ii), since E[u2:n,⊥t z⊥t ] = E[u2:nt z⊥t ]. Condition

LP-IV⊥ (iii) holds in its stronger LP-IV (iii) form, i.e. E[ut−jzt] = 0, for j < 0, by as-

sumption. For all the invertible shocks i in the system, LP-IV⊥ (iii) is trivially satisfied,
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since uit−j = Proj(uit−j|HY
t−1), and hence ui,⊥t−j = 0, for all j > 0. In this case, LP-IV⊥

(iii) does not enforce any restriction on zt, which can hence correlate with the lags of

the invertible shocks. This corresponds to the case in which SVAR-IV (iii) is not active,

since E[uit−jν
′
t] = 0. In the case of the non-invertible shocks, uit−j 6= Proj(uit−j|HY

t−1)

for j ≥ 1. Thus, E[u⊥t−jz
⊥
t ] = 0 implies that zt can only correlate with the ‘pro-

jectable component of the shock’ i.e. Proj(uit−j|HY
t−1). In this case, LP-IV⊥ (iii) implies

E[ui,⊥t−jz
⊥
t ] = E[uit−jz

⊥
t ] = 0, and coincides with SVAR-IV (iii) for E[uit−jν

′
t] 6= 0. Hence,

conditions (ii) and (iii) for LP-IV⊥ and SVAR-IV are equivalent.11 Condition LP-IV⊥ (i)

requires E[u1,⊥t z⊥t ] = E[(u1t − Proj(u1t |HY
t−1))zt] = α. If u1t is invertible, this is equivalent

to E[u1t zt] = α. Hence, under invertibility of the shock of interest, and with Wt ≡ HY
t−1,

the conditions for LP-IV⊥ and SVAR-IV are equivalent.

If u1t is non-invertible, Proj(u1t |HY
t ) 6= u1t while Proj(u1t |HY

t−1) = 0 by assumption.12

In such a case, the conditions for identification in LP-IV⊥ are satisfied, while those for

SVAR-IV are violated. It is easy to realise that zt correctly identifies the impact effects

when used as an external instrument in a Structural VAR since z⊥t correlates with u1t only

at time t. However, a SVAR-IV would not correctly capture the dynamic effects of the

non-invertible shock due to the presence of the Blashke factor b(L). In this case, correct

identification of the IRFs can still be obtained with a Cholesky identification in a VAR

that includes the instrument as an endogenous variable ordered first (see discussion in

Plagborg-Møller and Wolf, 2018b).13 Indeed, the shock of interest becomes invertible in

a VAR that includes zt.

Table 1 summarises the content of the proposition and the previous discussion and

compares SVARs and LP methods in terms of their ability to correctly estimate the

relative impulse response functions of the shock of interest u1t on a given set of variables

Yt, given an instrumental variable zt. The rows in the table consider different properties
11This is almost trivial, since both methods require that z⊥t does not correlate with the residuals of

the projection of Yt onto its past via any other shock except for the one of interest.
12Two cases are in principle possible: (a) Proj(u1t |HYt−1) 6= 0; and (b) Proj(u1t |HYt−1) = 0. Case (a)

implies that u1t affects past realisations of Yt or, equivalently, that Yt depends on future realisations of
u1t . This is not an econometrically interesting case – the shock at time t would have affected Y before
time t –, and one could just redefine the t index to allow the shock to affect the system only from time t
onwards.

13The intuition was first proposed in Ramey (2011) by observing that the inclusion of a measure of
fiscal news shock in a standard VAR can make shocks that are non-invertible in a small information set,
invertible in a larger one.
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Table 1: Estimation of the Dynamic Causal Effects of u1t

u1t invertible u1t non-invertible

Strong Lead-Lag Exogeneity

E[uit−jzt] = 0 ∀ i & j 6= 0 LP-IV LP-IV

SVAR-IV SVAR-H

SVAR-H

Limited Lead-Lag Exogeneity but Contamination by Past
Shocks

E[uit−jzt] 6= 0 for some j > 0 (= 0 for j < 0) LP-IV⊥ LP-IV⊥

but E[uit−jz
⊥
t ] = 0 and E[uit−jν

′
t] = 0 SVAR-IV SVAR-H

SVAR-H

Limited Lead-Lag Exogeneity but Contamination by Fu-
ture Shocks

E[uit−jzt] 6= 0 for some j < 0 SVAR-IV –

but E[uit−jz
⊥
t ] = 0 and E[uit−jν

′
t] = 0

Violation of Limited Lead-Lag Exogeneity

E[uit−jz
⊥
t ] 6= 0, j > 0 and i s.t. E[uit−jν

′
t] 6= 0 – –

Note: The table reports the methods that are able to correctly estimate the dynamic effects of u1t on a
given vector Yt depending on whether u1t is invertible or not, and on the properties of the instrument zt
(in rows). ⊥ denotes orthogonality with respect to HYt−1. It is assumed that the conditions of Relevance(
E[u1t zt] = α

)
and Contemporaneous Exogeneity

(
E[u2:nt zt] = 0

)
hold throughout.

of zt, while the columns of the table distinguish between the cases in which u1t is invertible

or not. It is understood that invertibility of any uit, i = 1, . . . , n, is to be intended relative

to HY
t−1.

A few comments are in order. First, conditional on the same choice of the information

set and instrument, generally SVAR-IV and LP-IV with controls can identify a shock

under the same set of conditions. We think of this as a ‘no free lunch’ result as in Stock

and Watson (2018). Hence, the choice between LP and SVAR methods should not be

based on considerations relative to the instrument, but rather on the specific empirical

constraints dictated by the availability of the sample and variables of interests, and in

light of the different finite-sample bias-variance properties of the two methods, as observed

by Plagborg-Møller and Wolf (2018b).
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Second, SVAR-IV allow for identification under partial invertibility also in those cases

in which the instrument correlates with future invertible shocks, while this is never possible

for LP-IV with or without controls (nor for SVARs that include the instrument ordered

first). However, these cases are empirically unlikely.

Third, the three available methods, LP-IV with controls, SVAR-IV and SVAR with

internal instruments should deliver similar responses in most but not all of the relevant

empirical situations. Hence, they could in principle be used to test for violations of the

conditions for identification.

6 An Observation on VAR Misspecifications

In Section 4, we discussed how the contamination of the instrument biases both the impact

and the dynamic responses. In this section, we show that as long as partial invertibility and

the conditions for identification of Proposition 2 hold, model misspecification biases the

dynamic responses but does not prevent the correct identification of the impact effects of

the shock of interest. Canova and Ferroni (2019) provide a background to and complement

our discussion by analysing how VAR misspecification challenges the identification of

structural shocks, and provide detailed examples using DSGE models.

Let us consider a purely nondeterministic, stationary VARMA(p,q) process Yt =

(y′1,t y
′
2,t)
′ Φ11(L) Φ12(L)

Φ21(L) Φ22(L)

y1,t
y2,t

 =

Ψ11(L) Ψ12(L)

Ψ21(L) Ψ22(L)

u1,t
u2,t

 . (27)

Fitting a VAR(k) to y1,t corresponds to imposing some or all of the following restrictions

Φ11,i = 0, i = k + 1, k + 2, . . . p, (28)

Φ12,i = 0, i = 1, 2, . . . p, (29)

Ψ11,i = 0, i = 1, 2, . . . q, (30)

Ψ12,i = 0, i = 1, 2, . . . q. (31)

Let us consider the case in which only some of these restrictions are not reflected in

the data generating process. The first restriction (conditional on the others being true)

corresponds to understating the VAR lag order, with k < p. The second restriction
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instead implies the exclusion of relevant variables y2,t. This is also a trivial case of non-

invertibility due to the number of variables being smaller than the number of shocks.

Finally, the last two restrictions correspond to disregarding the MA structure of the

process. Braun and Mittnik (1993) discuss and quantify the asymptotic biases resulting

from these misspecifications.

We now examine what these misspecifications imply for the identification of the shock

of interest u1t , under the assumption of partial invertibility. Let us assume that a condition

of partial invertibility for u1t on the subvector y1,t holds, i.e.

u1t = Proj(u1t |y1,t, y1,t−1, . . . ) . (32)

This condition guarantees that u1t can be obtained from the linear projection of y1,t onto

its lags (potentially infinitely many).

Let us now consider the case of a too short lag order. In this case, the autoregressive

coefficients are biased and inconsistent. However, if the system contains sufficiently many

lags to fulfil the partial invertibility condition in Eq. (32), then identification of the impact

effects is still obtained. Hence, while impact responses of the variables to the shocks of

interest are correctly estimated, their dynamics are distorted even asymptotically. Exactly

the same logic applies to the case of a misspecified moving average component, that can

always be mapped into a VAR with infinitely many lags. It is worth observing that while

in the first case (Eq. 28) more lags trivially resolve the issue, in the second case (Eqs.

30-31) longer lags only asymptotically approximate the correct Wold representation.

Consider now the case of omitted variables (Eq. 29). If Eq. (32) holds for the subset of

variables y1,t, then also in this case the impact effect are correctly retrieved, while the IRFs

at longer horizons are distorted. However, interestingly, in this case too longer lags would

asymptotically capture the correct dynamics of the system, and hence asymptotically

recover the true IRFs. To see this, note that the Wold Representation Theorem implies

that also y1,t has an invertible MA representation. For the n1-dimensional subprocess

y1,t = JYt, where Jt = (In1 0n−n1) is a selector matrix, we can write

Φ11(L)y1,t = −Φ12(L)y2,t + Ψ1(L)ut . (33)

If Yt is covariance-stationary, y1,t is also covariance stationary, with first and second
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moments respectively equal to E(y1,t) = JE(Yt), and Γy1(h) = JΓY (h)J ′, where Γ(h)

is the autocovariance of Yt at lag h. The Wold Representation Theorem also guarantees

the existence of an ARMA representation of the form

Φ̃1(L)y1,t = Ψ̃1(L)ν1,t . (34)

The structural innovations ut are trivially non-invertible in y1,t. In fact, the n innovations

ut are compounded and reduced to the n1 < n innovations ν1,t, which do not have a

meaningful structural interpretation. If, however, the system is partially invertible and

Eq. (32) holds, then the impact effects of the shock of interest u1t are correctly estimated;

moreover, the existence of a Wold representation guarantees that the dynamics of the

system are asymptotically approximated by infinitely many lags of y1,t only. It is worth

noting that direct methods with controls (Jordà, 2005) can in principle be used to improve

over VAR estimates in all these cases in which VARs can only asymptotically approximate

the true dynamics of the system.

Interestingly, these observations provide a simple way to gauge the contamination of

an instrument versus the misspecification of the chosen model – two dimensions along

which structural identification may be problematic and deliver unstable results. In fact, if

one can assume partial invertibility across different specifications of an empirical model,

an instrument that fulfils the conditions for identification of Proposition 2 delivers stable

impact responses but unstable IRFs across models. In this case, increasing the number of

lags and/or selectively adding variables that may be of importance for the transmission

of the shock should help stabilising the dynamics responses. The intuition for this is

that additional controls may be important for the transmission of the structural shocks.

Conversely, an instrument that violates the lead-lag exogeneity condition is likely to also

deliver unstable impact responses across different models.14 In principle, a formal statis-

tical test could be devised to discriminate between the two cases; this, however, is beyond

the scope of this paper. We provide empirical support to these remarks in the following

sections.
14In this case, the use of a much larger information set can help resolving the issue. The intuition is

that structural shocks are likely to be fundamental and invertible in larger models, hence improving the
performance of contaminated instruments (see Giannone and Reichlin, 2006).
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7 Partial Invertibility in a Simulated System

We use a stylised New Keynesian DSGE model that features (i) a representative infinitely-

lived household that chooses between consumption and leisure; (ii) firms that produce a

continuum of goods using a Cobb-Douglas technology to aggregate capital and labour;

(iii) a government that consumes a share of output for wasteful public spending; and

(iv) a central bank that sets the interest rate using a Taylor rule with smoothing. There

are four stochastic disturbances that generate fluctuations in the economy, namely, a

monetary policy shock urt , a government spending shock ugt , a technology shock uat , and

an inflation-specific shock uπt .

The processes for technology, spending, inflation, and the policy rate are defined as

follows. Log technology at evolves with a news component as

at = ρa at−1 + σau
a
t|t−4 , (35)

where uat is an i.i.d. normally distributed technology news shock. Similarly, an element

of fiscal foresight characterises the spending process gt, that evolves according to

gt = ρg gt−1 + ugt−4 , (36)

where ugt is an i.i.d. normally distributed spending shock. The monetary authority sets

the nominal interest rate using a Taylor rule with smoothing

rt = ρr rt−1 + (1− ρr)
(
φππt + φy∆yt

)
+ σru

r
t , (37)

where πt is the average inflation rate over the last four periods, ∆yt is the average growth

rate of output, and urt is a white noise i.i.d. normally distributed monetary policy shock.

Finally, price dynamics are governed by a New Keynesian Phillips Curve, as follows

πt = γππt−1 + βEtπt+1 +
(1− θπ)(1− θπβ)

θπ
mct + uπt , (38)

where mct are marginal costs, and uπt is an i.i.d. normally distributed inflation-specific

shock. All the model details, including the calibrated parameters, are reported in Ap-

pendix A.
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Table 2: Degree of Invertibility

urt uat ugt uπt

δi 0.069 0.799 0.494 0.343

Note: Degree of invertibility of the structural shocks in the model. δi = 0 denotes invertibility; δu = 1
denotes insufficient information for shocks invertibility. VAR(4).

We consider a VAR(4) in the policy rate, inflation, output, and government spending.

Under the chosen set of parameters, the model fails the ‘poor man’s invertibility condition’

of Fernandez-Villaverde et al. (2007), hence, the four structural shocks cannot all be

recovered from a VAR in the observables. However, the specification of the Taylor rule

ensures that the monetary policy shock is partially invertible from a VAR(4) in [rt, πt, yt]
′.

Table 2 reports the degree of invertibility δi of each of the structural shocks in the model,

as defined in Sims and Zha (2006) and calculated following Forni et al. (2019) as

δi = var[uit − Proj(uit|HY
t )]/σ2

ui
, (39)

where σ2
ui

denotes the variance of the shock uit, and HY
t denotes the space spanned by the

vector of observables Yt and its lags. δi is a deterministic function of the model’s deep

parameters, and measures the unexplained variance of the orthogonal projection of each

of the structural shocks onto the VAR residuals. A value of 0 implies that the shock is

invertible from the VAR, whereas increasing values of δi imply non-fundamentalness and

an increasing degree of non-invertibility.

Table 2 shows that the value of δi for technology is very close to 1, confirming the

inability of the VAR to recover this structural shock. The inflation and spending shocks

are also non-invertible, but with a higher degree of invertibility. The monetary policy

shock is the only invertible shock in the system. The four shocks play a different role in

driving economic fluctuations in the model. Table 3 reports the share of variance of the

four observables that is accounted for by each of the four shocks in the model. We note

that the government spending shock plays a negligible role.

In Figure 1 we report the distribution of δi for each of the shocks across simulations

from the model, and compare it against the model implied ones (green dashed lines).

Specifically, we simulate from the model 5,000 economies each of sample size T = 300

periods. For each set of simulated data, we then estimate a VAR(4) in the four observ-
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Table 3: Variance Decomposition

urt uat ugt uπt

output yt 16.45 77.01 0.98 12.95
spending gt 0.00 0.00 61.91 0.00
inflation πt 9.07 51.34 0.01 67.03
policy rate rt 25.32 19.81 0.15 14.47

Note: Share of variance accounted for by each shock. Numbers may not add up to 100 due to non-zero
correlation of simulated shocks in small samples.

Figure 1: Degree of Invertibility of the Structural Shocks
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Note: Distribution of δi across 5000 simulated economies. δi = 0 denotes invertibility; δi = 1 denotes
insufficient information for shocks invertibility. VAR(4). Green dashed lines are the model-implied
values of δi.

ables – output, inflation, spending and the policy interest rate –, and we calculate δi by

projecting on the residuals of each VAR. In all cases, the distribution of the simulated δi

has most of its mass concentrated around the true, model-implied value.

We use the same set of simulated data to identify the monetary policy shock from

VARs using the following four external instruments:

z0,t = urt , (40)

z1,t = 0.7urt − 0.5urt−2 + ςt , (41)

z2,t = 0.7urt − 0.5
(
ugt−1 + ugt−2 + ugt−3

)
+ ςt , (42)

z3,t = 0.7urt + 0.5
(
uat−1 + uat−2 + uat−3

)
+ ςt . (43)

In Eq. (40) the shock is perfectly observable. This is the case discussed in Stock and

Watson (2018). The instrument in Eq. (41) is contaminated by classic white noise mea-

surement error, and the second lag of the monetary policy shock. The instruments in

Eqs. (42-43) both fail the limited lead-lag exogeneity condition of Proposition 1. In fact,
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Figure 2: Impact Responses to Monetary Policy Shock
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Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(4) in four observables. z0,t: observed shock case; z1,t:
instrument correlates with monetary policy shock only; z2,t: instrument also correlates with past
spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical lines are 2
standard deviations error bars from the distribution of impact responses across 5,000 simulated
economies of sample size T = 300 periods. True impact (blue circle), median across simulations (orange
square), minimum distance from median (best) simulation (green triangle).

while z2,t is contaminated by lagged spending shocks, z3,t correlates with lagged technol-

ogy shocks. In all cases, ςt is a normally distributed random measurement error with zero

mean and variance equal to that of the structural shocks. A VAR(4) is partially invertible

in the monetary policy shock and also captures the model’s dynamics sufficiently well.

Hence, we use p = 4 as the benchmark case.15

Impact responses for output and inflation recovered from the four instruments and a

VAR(4) are in Figure 2.16 In each subplot, we use blue circles for the model’s responses

(true), orange squares for the median across simulations, and green triangles for the

simulation which is the closest to the median (best).17 The error bars are two standard

deviations intervals constructed from the distribution across simulations. A few elements

are worth highlighting. As also noted in Stock and Watson (2018), when the shock

is observable (z0,t), the assumption of full invertibility can be dispensed with for the

validity of SVAR-IV. However, the shock is correctly recovered also under the milder

conditions introduced in Proposition 2. In fact, correct impact responses are recovered

also with z1,t. The introduction of a measurement error in z1,t widens the distribution of
15In the Appendix we also report the extreme cases of p = 1 and p = 2 where the model is more

severely misspecified and the identification becomes more challenging.
16IRFs are normalised such that the impact response of the policy rate to a monetary policy shock

equals that of the model.
17We select the simulation whose IRFs minimise the sum of square deviations from median IRFs over

the first 12 periods. The choice allows to put more weight at shorter horizons where responses display
richer dynamics. Changing the truncation horizon yields qualitatively similar results.

29



impact responses across simulations, but recovers the correct impact effects. The picture

changes substantially when we consider the case of z3,t. In this case, the instrument

correlates with lagged non-invertible technology shocks which the data in the VAR cannot

provide sufficient information for by construction. This results in severely biased impact

responses. An interesting case arises when the instrument also correlates with lagged

spending shocks (z2,t). The spending shock is not invertible in the system; however, as

noted, it is responsible for a negligible share of the variance of the simulated variables.

In this case the impact responses recovered are close to the true ones, consistently with

what observed in Remark 2.

The argument extends in an equivalent way to responses at farther away horizons.

Figure 3 reports IRFs over 48 periods estimated using z1,t (Panel A, top), z2,t (Panel B,

centre), and z3,t (Panel C, bottom). In the first two cases the model responses lie within

the bands generated across the simulations. Conversely, the responses of all variables lie

outside of the simulation confidence regions when the shock is identified using z3,t.

In this exercise we have used data simulated from a NK-DSGE to show that if the

conditions in Proposition 2 are satisfied, full invertibility is not necessary for the identifi-

cation of invertible shocks in SVAR-IVs. Furthermore, even when the instrument violates

the limited lead-lag exogeneity condition, the extent to which the estimated IRFs are dis-

torted depends on the share of variance that is accounted for by the non-invertible shocks

that contaminates the instrument.
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Figure 3: Responses to Monetary Policy Shock – Simulation
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(a) z1,t: external instrument correlates with monetary policy shock only
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(b) z2,t: external instrument also correlates with lagged spending shocks
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(c) z3,t: external instrument also correlates with lagged technology shocks

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(4) in four observables. Instrument correlates with
monetary policy shock only (Panel A). Instrument correlates with monetary policy shock and lagged
spending shocks (Panel B). Instrument correlates with monetary policy shock and lagged technology
shocks (Panel C). Grey shaded areas denote 90th quantiles of the distribution of IRFs across 5,000
simulated economies of sample size T = 300 periods. Model responses (true, blue solid), median across
simulations (orange dashed), minimum distance from median (best) simulation (green dash-dotted).
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8 IV Identification of Monetary Policy Shocks

In this section, we look at the empirical identification of monetary policy shocks and

use the results in the previous sections to shed light on the distortions to both the im-

pact effects and the dynamic responses that arise from either the contamination of the

instrument, or the misspecification of the chosen VAR. In particular, we consider differ-

ent instruments for monetary policy shocks, some of which may be contaminated, and

different VARs, some of which are likely to be misspecified.

We consider three external instruments, all constructed from the high-frequency sur-

prises of Gürkaynak et al. (2005), that measure monetary policy innovations through the

surprise reactions of federal funds futures markets around FOMC announcements, follow-

ing the insight of Kuttner (2001). The first of these instruments is constructed by mea-

suring high-frequency surprises around all the scheduled FOMC meetings between 1990

and 2012. This is equivalent to the instrument used in e.g. Stock and Watson (2018) and

Caldara and Herbst (2018), and we denote it by zA,t. The second instrument is a monthly

moving average of high-frequency surprises around all FOMC announcements from 1990

to 2012. This is the instrument originally proposed in Gertler and Karadi (2015), de-

noted zB,t. The third external instrument is the residual of a projection of high-frequency

surprises around all FOMC meetings onto their lags and Fed Greenbook forecasts from

1990 to 2009. This is the instrument in Miranda-Agrippino and Ricco (2017), denoted

zC,t. This projection can be seen as a pre-whitening step that removes the contamination

by other past and contemporaneous shocks related to the state of the economy induced

by the presence of a signalling channel of monetary policy (see e.g. Melosi, 2017).

Table 4 reports Granger causality tests for the three instruments on the first ten

macroeconomic and financial factors estimated from the monthly dataset in McCracken

and Ng (2015). For each instrument we estimate the following regression

zt = θ0 + θ1zt−1 +
10∑
j=1

θfjfj,t−1 + vt (44)

at monthly frequency and over the sample 1990-1:2009-12. The numbers in the table are

Wald test statistics for the null that the factors’ coefficients are jointly equal to zero, i.e.

H0: θf1 = . . . = θf10 = 0. Test results suggest a possible contamination of the instruments

zA,t and zB,t by lagged macroeconomic shocks, with p-values well beyond the rejection
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Table 4: Contamination of Monetary Policy Instruments

zA,t zB,t zC,t

F(10,227) 2.12
(0.0240)

F(10,226) 3.52
(0.0002)

F(10,215) 1.77
(0.0669)

N 239 238 227

Note: Wald test statistics. Regressions include a constant and one lag of the dependent variable.
Sample 1990:2009. p-values in parentheses.

region. This serves as motivation for our next exercise.

We evaluate the effect of the instruments’ contamination on the estimation of the IRFs

in an empirical setup that encompasses standard monetary VARs such as those in Coibion

(2012) and Gertler and Karadi (2015). Our benchmark VAR is monthly and estimated

with 12 lags from 1979-1 to 2012-12. The variables included are the one-year government

bond rate as the policy variable, an index of industrial production, the unemployment rate,

the consumer price index, a commodity price index, and the excess bond premium (EBP)

of Gilchrist and Zakrajšek (2012).18 Stock and Watson (2018) show that in this system

there is no statistically significant evidence against the null hypothesis of invertibility.19

We also consider a VAR estimated over the same sample that omits the unemployment

rate, the EBP variable, and the commodity price index, and includes only 2 lags. This

VAR is likely to be misspecified, but is compatible with a central bank setting the interest

rate using a simple Taylor rule, hence conventional monetary policy shocks are potentially

invertible in this smaller VAR. In all cases, we estimate the impact responses from a

regression of the VAR innovations onto one of the above instruments, while IRFs are

retrieved from the coefficients of the VAR. Responses are normalised such that the policy

rate increases by 1% on impact.

We start by looking at the impact responses retrieved by the three instruments in the

two VARs, reported in Figure 4. The top row collects results for the baseline VAR, while
18Data for bond yields, industrial production, and the consumer price index are from the St Louis

FRED Database, the commodity price index is from the Commodity Research Bureau, the EBP data are
from the Federal Reserve Board.

19Stock and Watson (2018) do not reject the null of invertibility in a system that includes industrial
production, the index of consumer prices, the one year interest rate and the excess bond premium variable.
The test is however sensitive to the number of lags included (Plagborg-Møller and Wolf, 2018b).
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Figure 4: Impact Responses to Monetary Policy Shocks – 1979:2012
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(a) Baseline VAR
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(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables, bottom
panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases uses the full
length of the instruments. zA,t: high-frequency surprises at scheduled FOMC meetings; zB,t: moving
average of high-frequency surprises within the month; zC,t: residuals of zA,t on Fed Greenbook forecasts.
Shaded areas denote 90% posterior coverage bands.

the misspecified VAR is in the bottom row. Comparing the impact responses for each given

instrument across VARs we note that while those estimated with zC,t are stable across

models, those recovered under either zA,t or zB,t vary and are statistically different. Modal

impact responses of production to a contractionary monetary policy shock go from being

not significant to strongly positive at almost 2% under zB,t, and from -1% to essentially

zero under zA,t. The impact response under zC,t is largely unchanged.

We then turn to the full dynamic responses reported in Figure 5. Despite the differ-

ences in the estimated impact effects, the responses in the baseline VAR are qualitatively

coherent; all instruments identify a monetary policy shock that eventually triggers an eco-

nomic recession and lowers prices. However, the picture changes quite materially when

the misspecified VAR is used (bottom row of Figure 5).20

20These findings hold across different samples. Figure B.4 in the Appendix reports IRFs from VARs
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Figure 5: Responses to Monetary Policy Shocks – 1979:2012
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(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables, bottom
panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases uses the full
length of the instruments. zA,t: sum of high-frequency surprises within the month; zB,t: moving average
of high-frequency surprises within the month; zC,t: residuals of zA,t on Fed Greenbook forecasts. Shaded
areas denote 90% posterior coverage bands.

Using the simple heuristic developed in Section 6, we can infer that the dependence of

the impact effects on the model specification is likely due to both zA,t and zB,t violating the

limited lead-lag exogeneity condition, i.e. they correlate with other shocks, likely related

to developments in financial markets and the real economy, that the trivariate VAR(2)

is not able to control for.21 In fact, a possible interpretation for these results is that the

instruments zA,t and zB,t may be contaminated by structural shocks that are non-invertible

in the trivariate VAR, but which become invertible in the larger system. In such a case,

the IRFs obtained in the smaller system are distorted due to the bias induced by the

estimated from 1990-1, date that coincides with the start date of the three instruments.
21The first factor used in Table 4 is typically regarded as a synthetic measure of economic activity, see

e.g. McCracken and Ng (2015). Other than a barometer for financial markets’ health levels, the EBP
has strong predictive power for an array of measures of economic activity, and is hence likely to account
also for other omitted variables (see e.g. Gilchrist and Zakrajšek, 2012; Gertler and Karadi, 2015).
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violation of both the limited lead-lag and the contemporaneous exogeneity conditions,

as in Eq. (24). By adding financial variables to the system, some of the non-invertible

shocks become invertible. Hence, the extent of the bias is much reduced and only due to

the violation of the contemporaneous exogeneity conditions, as in Eq. (25).

Interestingly, the dynamic responses obtained with zC,t are largely similar across the

two VARs, which, using the same heuristic, indicates an overall small degree of model

misspecification.

9 Conclusions

This paper provides conditions for identification with external instruments in Structural

VARs under the assumption of partial invertibility. This property requires that only one

or a subset of the structural shocks in the system are invertible, and hence recoverable

from the residuals of the chosen empirical model.

We show that, under partial invertibility, correct identification of the dynamic causal

effects of interest is obtained in SVAR-IV methods (and LP-IV with controls) if the instru-

ment satisfies a limited lead-lag exogeneity condition, on top of the standard IV validity

conditions of relevance and contemporaneous exogeneity. This limited lead-lag exogeneity

condition allows to achieve correct identification even when the instrument correlates with

other invertible shocks in the system. Overall, the conditions for identification used in

this paper are weaker than both the standard full invertibility condition typically required

for SVAR-IV, and also the strong lead-lag exogeneity condition needed for LP-IV with-

out controls. Importantly, they allow to extend the range of empirical settings in which

SVAR-IV and LP-IV with controls can be used.

Lastly, we show that the identification of impact effects is possible even in the presence

of model misspecification of different nature. In this case, an empirical trade-off between

efficiency and accuracy of the impulse response functions arises, and the use of larger

information sets, or of direct methods, can help producing more robust inference.
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Appendix

A Model

The economy is populated by a representative infinitely-lived household seeking to max-

imise

E0

∞∑
t=0

βtU(Ct, Ht) , (A.1)

with a period utility

U(Ct, Ht) =
C1−σ
t

1− σ
− H

1+ 1
ϕ

t

1 + 1
ϕ

, (A.2)

where σ is the risk aversion parameter, ϕ is the Frisch elasticity, and Ht are hours worked.

Ct is a consumption bundle defined as

Ct ≡
(∫ 1

0

Ct(i)
1− 1

ε

) ε
1−ε

, (A.3)

where Ct(i) is the quantity of good i consumed by the household in period t. A continuum

of goods i ∈ [0, 1] exists. The log-linearised households optimality conditions are given by

the Euler equation

ct = E[ct+1]−
1

σ
(rt − E[πt+1]) , (A.4)

and by the labour supply schedule

wt =
1

ϕ
ht + σ ct , (A.5)

where wt is the labour wage on a competitive labour market. Agents maximise their

intertemporal utility subject to a flow budget constraint. Agents can hold bonds or firms

capital, and a no arbitrage condition between bonds and capital holds

1

β
(rt − E[πt+1]) =

1

β − (1− δ)
E[zt+1] , (A.6)

where δ is the rate of depreciation of capital. Firms produce differentiated goods j ∈ [0, 1]

by using a Cobb-Douglas technology to aggregate capital and labour

Yt(j) = AtKt−1(j)
αHt(j)

1−α (A.7)
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where, importantly, log technology at ≡ log(At) has a news component

at = ρa at−1 + σau
a
t−4 , (A.8)

where uat is an i.i.d. normally distributed technology shock. The static optimality condi-

tion on the production inputs delivers the linearised relation

wt + ht = kt−1 + zt . (A.9)

The log-linearised production function of the firms is

yt = at + αkt−1 + (1− α)ht . (A.10)

Firms set prices in a staggered way à la Calvo (1983) with an indexation mechanisms of

the type proposed by Galì and Gertler (1999). Thus, each period, a measure 1 − θ of

firms reset their prices, while prices for a fraction θ of the firms are Pt(j) = Pt−1π
γ
t−1. θ is

an index of price stickiness. The firms that can reset their prices maximise the expected

sum of profits

maxP ∗t (j)

∞∑
τ=0

(βθ)τ
(
P ∗t (j)

(
Pt − 1 + τ

Pt−1

)γ
−MCt+τ

)
Yt+τ (j) , (A.11)

where MCt are the real marginal costs in period t. The first order conditions from this

problem, combined with the aggregate price equation, form a hybrid New Keynesian

Phillips Curve

πt = γ πt−1 + βE[πt+1] + λmct , λ ≡ (1− θ) (1− β θ)
θ

+ uπt , (A.12)

where uπt is an i.i.d. normally distributed inflation-specific shock, and marginal costs

evolve as

mct = α zt + (1− α)wt − at . (A.13)

The linearised law of motion for firms capital is

It = Kt+1 − (1− δ)Kt , (A.14)
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where Kt is physical capital and It is investment. The log-linearisation of this equation

yields22

it = kt − (1− δ) kt−1 . (A.15)

A fiscal authority absorbs a share of output into wasteful government spending

Gt = (1− ρg)G+ ρgGt−1e
ugt−4 (A.16)

the log-linearised equation for government spending is

gt = ρg gt−1 + ugt−4 , (A.17)

where ugt is an i.i.d. normally distributed government demand shock. At the steady state

G = gY . A monetary authority sets the nominal interest rate using a monetary rule with

a smoothing term

rt = ρr rt−1 + (1− ρr)
(
φππt + φy∆yt

)
+ σru

r
t , (A.18)

where πt and ∆yt are, respectively, average inflation and the average rate of output growth

over the last four periods, and urt is a white noise i.i.d. normally distributed monetary

policy shock. The monetary policy innovation can be recovered from current and past

values of the policy rate, inflation and output. Finally, the aggregate economy clears

Y yt = Cct + Iit +Ggt . (A.19)

Table A.1 reports the calibration for this benchmark NK model. For this set of pa-

rameters the model fails the ‘poor man’s invertibility condition’ of Fernandez-Villaverde

et al. (2007).

22In order to have smoother impulse response functions, without introducing autocorrelation in the
shock processes, we added an ad hoc quadratic adjustment of the form it = kt − (1− δ) kt−1 +

(kt − (1− δ) kt−1)
2.

39



Table A.1: Calibrated Parameters

Parameter Value Description

α 0.4 share of capital in output
β 0.99 discount factor
δ 0.025 depreciation of capital
σ 1 risk aversion consumption
ϕ 2 labor disutility
g 0.2 share of public spending in output
θ 0.75 price stickiness
γ 0.2 indexation parameter (NK Phillips curve backward term)
ε 10 substitutability goods
ρr 0.95 monetary policy smoothing
φy 0.5 monetary policy output growth
φr 1.2 monetary policy inflation
ρa 0.5 productivity autocorrelation
ρg 0.95 public spending autocorrelation
σa 10
σr 0.1
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B Additional Charts

Figure B.1: Responses to MP Shock – Simulation & VAR(1)
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(a) Impact Responses: All Instruments

Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(1) in four observables. z0,t: observed shock case; z1,t:
instrument correlates with monetary policy shock only; z2,t: instrument also correlates with past
spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical lines are 2
standard deviations error bars from the distribution of impact responses across 5,000 simulated
economies of sample size T = 300 periods. True impact (blue circle), median across simulations (orange
square), minimum distance from median (best) simulation (green triangle).
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(b) z1,t: external instrument correlates with monetary policy shock only

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(1) in four observables. Instrument correlates with
monetary policy shocks only. Grey shaded areas denote 90th quantiles of the distribution of IRFs across
5,000 simulated economies of sample size T = 300 periods. Model responses (true, blue solid), median
across simulations (orange dashed), minimum distance from median (best) simulation (green
dash-dotted).
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Figure B.2: Responses to MP Shock – Simulation & VAR(2)

Output

z
0,t

z
1,t

z
2,t

z
3,t

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

median
best
true

Prices

z
0,t

z
1,t

z
2,t

z
3,t

#10-3

-10

-8

-6

-4

-2

(a) Impact Responses: All Instruments

Note: Impact responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(2) in four observables. z0,t: observed shock case; z1,t:
instrument correlates with monetary policy shock only; z2,t: instrument also correlates with past
spending shocks; z3,t instrument correlates also with past technology shocks. Grey vertical lines are 2
standard deviations error bars from the distribution of impact responses across 5,000 simulated
economies of sample size T = 300 periods. True impact (blue circle), median across simulations (orange
square), minimum distance from median (best) simulation (green triangle).
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(b) z1,t: external instrument correlates with monetary policy shock only

Notes: Impulse responses to monetary policy shock from partially-invertible DSGE identified with
external instruments and estimated with a VAR(2) in four observables. Instrument correlates with
monetary policy shocks only. Grey shaded areas denote 90th quantiles of the distribution of IRFs across
5,000 simulated economies of sample size T = 300 periods. Model responses (true, blue solid), median
across simulations (orange dashed), minimum distance from median (best) simulation (green
dash-dotted).

42



Figure B.3: Impact Responses to Monetary Policy Shocks – 1990:2012
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(a) Baseline VAR
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(b) Misspecified VAR

Notes: Baseline VAR(12) in all variables, top panel (A). Misspecified VAR(2) in three variables, bottom
panel (B). VARs estimated with standard macroeconomic priors. Identification in all cases uses the full
length of the instruments. zA,t: high-frequency surprises at scheduled FOMC meetings; zB,t: moving
average of high-frequency surprises within the month; zC,t: residuals of zA,t on Fed Greenbook forecasts.
Shaded areas denote 90% posterior coverage bands.
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Figure B.4: Responses to Monetary Policy Shocks – 1990:2012
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(b) Misspecified VAR

Notes: Baseline: VAR(12) in all variables. Misspecified: VAR(2) in three variables. VARs estimated
with standard macroeconomic priors. Identification in all cases uses the full length of the instruments.
zA,t: sum of high-frequency surprises within the month; zB,t: moving average of high-frequency surprises
within the month; zC,t: residuals of zA,t on Fed Greenbook forecasts. Shaded areas denote 90% posterior
coverage bands.
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