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Abstract11

Differential privacy is a widely studied notion of privacy for various models of computation,12

based on measuring differences between probability distributions. We consider (ε, δ)-differential13

privacy in the setting of labelled Markov chains. For a given ε, the parameter δ can be captured by14

a variant of the total variation distance, which we call lvα (where α = eε).15

First we study lvα directly, showing that it cannot be computed exactly. However, the associated16

approximation problem turns out to be in PSPACE and #P-hard. Next we introduce a new17

bisimilarity distance for bounding lvα from above, which provides a tighter bound than previously18

known distances while remaining computable with the same complexity (polynomial time with19

an NP oracle). We also propose an alternative bound that can be computed in polynomial time.20

Finally, we illustrate the distances on case studies.21
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1 Introduction29

Differential privacy [14] is a security property that ensures that a small perturbation of the30

input leads to only a small perturbation in the output, so that observing the output makes it31

difficult to discern whether a particular piece of information was present in the input. It has32

been shown that various bisimilarity distances can bound the differential privacy of a labelled33

Markov chain, by bounding for example the ε [6, 31] and δ [9] privacy parameters. Bisimilarity34

distances [17, 11] were introduced as a metric analogue of probabilistic bisimulation [23], to35

overcome the problem that bisimilarity is too sensitive to minor changes in probabilities.36

We further the study of bounds to δ by defining new bisimilarity distances. The bisimilarity37

distance of [9], inspired by the work of [31], transpired to be computable in polynomial time38

with an NP oracle. The work of [31] defined distances using the Kantorovich metric and the39

associated bisimilarity distance based on a fixed point; and considered the effect of replacing40

the absolute value function with another metric. For the purposes of (ε, δ)-differential privacy41

the distance required is not a metric, nor even a pseudometric, so their methods are adapted42

in [9] to account for this; resulting in a distance function bdα which can be used to bound43
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10:2 Asymmetric Distances for Approximate Differential Privacy
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Figure 1 Partial order of distances, such that a → b ⇐⇒ a ≤ b. FP is the functional
counterpart of P, where the value of the function can be computed in polynomial time. FPNP

indicates polynomial time with NP oracle. tvα and bdα are introduced in [9] and recalled in
Sections 3 and 6, respectively. The remaining distances are the contribution of this paper.

the δ parameter in differential privacy from above. The function, however, retained the44

symmetry property that bdα(s, s′) = bdα(s′, s). In this paper we further study distances45

to bound differential privacy in labelled Markov chains, but drop this symmetry property46

and discover a tighter bound, which can be computed with the same cost. We also define a47

weaker bisimilarity distance for bounding δ that can be computed in polynomial time.48

The privacy parameter in question, δ, can be expressed as a variant of the total variation49

distance tvα. In particular we define lvα as a single component of tvα (which is a maximum50

over two functions). This distance is a way of measuring the maximum difference of51

probabilities between any two states. Total variation distance is usually expressed using52

absolute difference, but for differential privacy a skew is introduced into this distance. These53

exact distances transpire to be very difficult to compute: we confirm that the threshold54

distance problem, which asks whether the distance is below a given threshold, is undecidable55

and approximating it is #P-hard. We also show that for finite words it can be approximated56

in PSPACE. These results match the results of [22] for standard total variation distances.57

We then bound the distance lvα from above by a distance ldα which will turn out to58

be computable, in a similar manner to how bdα bounds tvα in [9]. We show that ldα can59

be computed in polynomial time with an NP oracle (that is, with the same complexity as60

bdα). We further generalise ldα to a new distance lgdα, computable in polynomial time.61

This new distance, is no smaller than ldα, and we conjecture it might be equal. We can62

then take max{ldα(s, s′), ldα(s′, s)} and max{lgdα(s, s′), lgdα(s′, s)} as sound upper bounds63

on δ. Thus we have defined the first non-trivial estimate of the δ parameter that can be64

computed in polynomial time (trivially, always returning 1 is technically correct). Our results65

show that taking the maximum over two ldα is a better approximation than bdα from [9].66

We confirm this using several case studies, where we also demonstrate, on a randomised67

response mechanism, that the estimates based on ldα can beat standard differential privacy68

composition theorems. The relationships between distances are summarised in Figure 1.69

Research into behavioural pseudometrics has a long history going back to Giacalone et70

al [17]. Our work lies in the tradition of bisimulation pseudometrics based on the Kantorovich71
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distance started by Desharnais et al [11, 12], and builds upon subsequent work on computing72

them [29]. Chatzikokolakis et al [6] generalised the pseudometric framework to handle73

ε-differential privacy, and indeed arbitrary metrics, but did not consider the complexity of74

calculating the distances. We introduced a distance in [9] for (ε, δ)-differential privacy, which75

is improved upon in this paper. As concerns approximation, we are not aware of any related76

work on distances other than the total variation distance [8, 22].77

2 Preliminaries78

Given a finite set X, let Dist(X) be the set of all stochastic vectors in RX . If X is a set of79

symbols then X∗ is the set of all sequences of symbols in X, X+ all sequences of length at80

least one, and Xω all infinite sequences.81

I Definition 1 (labelled Markov chains (LMC’s)). A labelled Markov chain M is a tuple82

〈S,Σ, µ, `〉, where S is a finite set of states, Σ is a finite alphabet, µ : S → Dist(S) is the83

transition function and ` : S → Σ is the labelling function.84

We assume that all transition probabilities are rational, represented as a pair of binary85

integers. size(M) is the number of bits required to represent 〈S,Σ, µ, `〉, including the bit86

size of the probabilities. We will write µs for µ(s).87

In what follows, we study probabilities associated with infinite sequences of labels88

generated by LMC’s. We specify the relevant probability spaces next using standard measure89

theory [5, 2]. Let us start with the definition of cylinder sets.90

I Definition 2. A subset C ⊆ Σω is a cylinder set if there exists u ∈ Σ∗ such that C consists91

of all infinite sequences from Σω whose prefix is u. We then write Cu to refer to C.92

Cylinder sets play a prominent role in measure theory in that their finite unions can be93

used as a generating family (an algebra) for the set FΣ of measurable subsets of Σω (the94

cylindrical σ-algebra). Where clear from context we will omit Σ in the subscript of F . What95

will be important for us is that any measure ν on (Σω,FΣ) is uniquely determined by its96

values on cylinder sets [5, Chapter 1, Section 2][2, Section 10.1]. Next we show how to assign97

a measure νs on (Σω,FΣ) to an arbitrary state of an LMCM.98

I Definition 3. Given M = 〈S,Σ, µ, `〉, let µ+ : S+ → [0, 1] and `+ : S+ → Σ+ be the99

natural extensions of the functions µ and ` to S+, i.e. µ+(s0 · · · sk) =
∏k−1
i=0 µsi(si+1) and100

`+(s0 · · · sk) = `(s0) · · · `(sk), where k ≥ 0 and si ∈ S (0 ≤ i ≤ k). Note that, for any101

s ∈ S, we have µ+(s) = 1. Given s ∈ S, let Pathss(M) be the subset of S+ consisting of all102

sequences that start with s.103

I Definition 4. LetM = 〈S,Σ, µ, `〉 and s ∈ S. We define νs : FΣ → [0, 1] to be the unique104

measure on (Σω,FΣ) such that for any cylinder Cu we have νs(Cu) =
∑
µ+(p) where the105

summation is over p ∈ Pathss(M) such that `+(p) = u.106

I Example 5 (transition-labelled LMC’s). Like in [29, 7, 1, 27, 9], Definition 1 features107

labelled states. However, Markov chains with labelled transitions can also be described in108

the framework of that definition.109

In particular, suppose we are given a chainM of the form 〈S,Σ, T 〉, where S is a finite set110

of states, Σ is a finite alphabet and T : S → Dist(S ×Σ) is the transition function. We write111

each transition as q p−→
a
q′, meaning that T (q)(q′, a) = p. From this transition-labelled LMC,112

we create an equivalent state-labelled Markov chainM′: for each state and each label, add113
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10:4 Asymmetric Distances for Approximate Differential Privacy

new state (q, a) labelled with a, such that, when q p−→
b
q′, we have µ(q,a)((q′, b)) = p for every114

a ∈ Σ. Technically, this delays reading of the first character until the second state visited.115

To account for this, introduce an additional character, say `, so that νs(Cw) = ν′(s,`)(C`w),116

where ν and ν′ refer to the measures associated withM andM′ respectively (Definition 4).117

I Example 6 (finite-word LMC’s). We can also describe labelled Markov chains over finite118

words. These chains have a set of final states F , which have no outgoing transitions. We119

require positive probability of reaching a final state from every reachable state. We define the120

function νs(w) =
∑
µ+(p), where the summation is over p ∈ Pathss(M) such that `+(p) = w121

and p|w| ∈ F , so that we only consider paths which end in a final state. The function can be122

extended to sets of words E ⊆ Σ∗ (which are countable) by νs(E) =
∑
w∈E νs(w).123

Such machines can also be represented by infinite-word Markov chains. One can simulate124

the end of the word by an additional character, say $ such that, for q ∈ F , µq(q) = 1 and125

`(q) = $, so that the only trace that can be observed from q is $ω. Then, for a word w ∈ Σ∗,126

we rather study w$$$ . . . , corresponding to the cylinder Cw$. In the translated infinite-word127

model, the event Cu corresponds to the event {w ∈ Σ∗ | prefix(w) = u} in the original128

finite-word model. Some of our arguments will be carried out in the finite-word setting, as129

hardness results that apply to these chains also apply to infinite-word Markov chains. Other130

arguments will only be possible in the finite-word setting.131

Let us return to the general definition of Markov chains (Definition 1). Our aim will132

be to compare states from the point of view of differential privacy. Any two states s, s′133

can be viewed as indistinguishable if νs(E) = νs′(E) for every E ∈ F . More generally,134

the difference between them can be quantified using the total variation distance, defined135

by tv(ν, ν′) = supE∈F |ν(E) − ν′(E)|. GivenM = 〈S,Σ, µ, `〉 and s, s′ ∈ S, we shall write136

tv(s, s′) to refer to tv(νs, νs′). Ensuring such pairs of measures (νs, νs′) are ‘similar’ is137

essential for privacy, so that it is difficult to observe which of the states was the originating138

position. To measure probabilities relevant to differential privacy, we will need to study a139

more general variant lvα of the above distance, which we introduce shortly.140

3 (ε, δ)-Differential Privacy141

Differential privacy is a mathematically rigorous definition of privacy due to Dwork et al [14];142

the aim is to ensure that inputs which are related in some sense lead to very similar outputs.143

Formally it requires that for two related states there only ever be a small change in output144

probabilities, and therefore discerning which of the two states was actually used is difficult,145

maintaining their privacy. We rely on the definition of approximate differential privacy in146

the context of labelled Markov chains, as per [9].147

I Definition 7. Let M = 〈S,Σ, µ, `〉 be a labelled Markov chain and let R ⊆ S × S be a148

symmetric relation. Given ε ≥ 0 and δ ∈ [0, 1], we say thatM is (ε, δ)-differentially private149

w.r.t. R if, for every s, s′ ∈ S such that (s, s′) ∈ R, we have νs(E) ≤ eε · νs′(E) + δ for every150

measurable set E ∈ F .151

What it means for two states to be related, as specified by R, is to a large extent domain-152

specific. In general, R makes it possible to spell out which states should not appear too153

different and, consequently, should enjoy a quantitative amount of privacy.154

Note that each state s ∈ S can be viewed as defining a random variable Xs with155

outcomes from Σω such that P[Xs ∈ E] = νs(E). Then the above can be rewritten as156

P[Xs ∈ E] ≤ eε P[Xs′ ∈ E] + δ, which matches the definition from [14], where one would157
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consider Xs, Xs′ neighbouring in some natural sense. In the typical database scenario, one158

would relate database states that differ by exactly one entry. In our setting, we refer to159

states of a machine, for which we would like it to be indiscernible as to which was the start160

state, assuming that the states are hidden and the traces are observable.161

When δ = 0, we use the term ε-differential privacy, which amounts to measuring the162

ratio between the probabilities of possible outcomes. When one cannot expect to achieve this163

pure ε-differential privacy, the relaxed approximate differential privacy is used [24]. When164

ε = 0, δ is captured exactly by the statistical distance (total variation distance) tv .165

Our aim is to capture the value of δ required to satisfy the differential privacy property166

for a given ε. That is, given a LMC M, a symmetric relation R and α = eε ≥ 1, we167

want to determine the smallest δ such that M is (ε, δ)-differentially private with respect168

to R. We can measure the difference between two measures ν, ν′ on (Σω,F) as follows:169

tvα(ν, ν′) = supE∈F ∆α(ν(E), ν′(E)) where ∆α(a, b) = max{a − αb, b − αa, 0} [3]. When170

used on νs, νs′ and α = eε, tvα(s, s′) gives the required δ between states s, s′ [9].171

In this paper we observe that significant simplification occurs by splitting the two main172

parts of the maximum, taking only the ‘left variant’. Whilst ∆α is symmetric, we break173

this property to introduce a new distance function Λα (similarly to [4]). Then we define an174

analogous total variation distance lvα, which will be our main object of study.175

I Definition 8 (Asymmetric skewed total variation distance). Let α ≥ 1. Given two measures176

ν, ν′ on (Σω,F), let lvα(ν, ν′) = supE∈F Λα(ν(E), ν′(E)), where Λα(a, b) = max{a− αb, 0}.177

We will write lvα(s, s′) for lvα(νs, νs′). Note that it is not required to take the maximum178

with zero, that is lvα(ν, ν′) = supE∈F ν(E) − αν′(E), since there is always an event such179

that ν′(E) = 0, in particular ν(∅) = 0. Observe that ∆α and Λα are not metrics as180

∆α(a, b) = 0 6=⇒ a = b, and in fact not even pseudometrics as the triangle inequality does181

not hold. Our new distance Λα (and lvα) is not symmetric, while ∆α and tvα are.182

If α = 1, then lv1 = tv1 = tv, since if ν, ν′ are probability measures and we have183

ν(E) = 1−ν(E) then supE∈F |ν(E)−ν′(E)| = supE∈F ν(E)−ν′(E) = supE∈F ν′(E)−ν(E),184

i.e., despite the use of the absolute value in the definition of tv, it is not required.185

We can reformulate differential privacy in terms of tvα and lvα.186

I Proposition 9. Given a labelled Markov chainM and a symmetric relation R ⊆ S × S,187

the following properties are equivalent for α = eε:188

M is (ε, δ)-differentially private w.r.t. R,189

max(s,s′)∈R tvα(s, s′) ≤ δ, and190

max(s,s′)∈R lvα(s, s′) ≤ δ.191

We now focus on computing lvα, since this will allow us to determine the ‘level’ of192

differential privacy for a given ε. Henceforth we will refer to eε as α. For the purposes of our193

complexity arguments, we will only use rational α with O(size(M))-bit representation.194

4 lvα is not computable195

tv(s, s′) turns out to be surprisingly difficult to compute: the threshold distance problem196

(whether the distance is strictly greater than a given threshold) is undecidable, and the197

non-strict variant of the problem (“greater or equal”) is not known to be decidable [22]. The198

undecidability result is shown by reduction from the emptiness problem for probabilistic199

automata to the threshold distance problem for finite-word transition-labelled Markov chains.200

Recall that such chains are a special case of our more general definition of infinite-word201

state-labelled Markov chains. Thus, the problem is undecidable in this case also.202
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M

`(q)
q

`(q′)

q′

B
s

B
s′

C
⊥

1

1

α

α− 1

α 1

Figure 2 Markov chainM′ in the reduction from tv(q, q′) to lvα(s, s′)

Since tv = lv1, we know that lv1(s, s′) > θ is undecidable. We show that this is not203

special, that is, the problem remains undecidable for any fixed α > 1. In other words, no204

value of the privacy parameter ε makes it possible to compute the optimal δ exactly.205

I Theorem 10. Finding a value of tv reduces in polynomial time to finding a value of lvα.206

Proof. Given a labelled Markov chain M = 〈Q,Σ, µ, `〉, and states q, q′ for which we207

require the answer tv(q, q′), we construct a new labelled Markov chain M′, for which208

lvα(s, s′) = tv(q, q′).209

We defineM′ = 〈Q∪{s, s′,⊥},Σ′, µ′, `′〉, with `′(s) = `′(s′) = B, `′(⊥) = C, `′(x) = `(x)210

for all x ∈ Q, Σ′ = Σ ∪ {B,C},211

µ′s(q) = 1, µ′s′(q′) = 1
α
, µ′s′(⊥) = α− 1

α
, and µ′x(y) = µx(y) for all x, y ∈ Q.212

The reduction, sketched in Figure 2, adds three new states, so can be done in polynomial213

time. We claim lvα(s, s′) = tv(q, q′).214

Consider E ∈ FΣ, observe that νq(E) = νs(E′) and νq′(E) = ανs′(E′), where E′ =215

{Bw | w ∈ E} ∈ FΣ′ . Then νq(E)− νq′(E) = νs(E′)− ανs′(E′) and lvα(s, s′) ≥ tv(q, q′).216

Conversely, consider an event E′ ∈ FΣ′ . Since the character C can only be reached from217

s′, any word using it contributes negatively to the difference. Hence intersecting the event218

with BΣω, to remove C, can only increase the difference. The character B must occur (only)219

as the first character of every (useful) word in E′. Let E = {w | Bw ∈ E′ ∩ BΣω} ∈ FΣ,220

then νq(E)− νq′(E) ≥ νs(E′)− ανs′(E′). Thus tv(q, q′) ≥ lvα(s, s′). J221

Since an oracle to solve decision problems for lvα would solve problems for tv , we obtain222

the following result.223

I Corollary 11. lvα(s, s′) > θ is undecidable for α ≥ 1.224

It is not clear that lvα reduces easily to tv . Arguments along the lines of the proof of Theo-225

rem 10 may not result in a Markov chain due to non-stochastic transitions, or modifications226

to the s→ q branch may result in new maximising events.227

5 Approximation of lvα228

Given that lvα cannot be computed exactly, we turn to approximation: the problem, given229

γ > 0, of finding some x such that |x − lvα(s, s′)| ≤ γ. For α = 1, it is known that230
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approximating tv = lv1 is possible in PSPACE but #P-hard [8, 22]. We show that the231

case α = 1 is not special; that is, when α > 1, lvα can also be approximated and the same232

complexity bounds apply.233

I Remark. Typically one might suggest being ε close (|x− lvα(s, s′)| ≤ ε). To avoid confusion234

with the differential privacy parameter, we refer to γ close.235

I Theorem 12. For finite-word Markov chains, approximation of lvα(s, s′) within γ can be236

performed in PSPACE and is #P-hard.237

Proof (sketch). For the upper bound, we show that the ith bit of an x such that |x −238

lvα(s, s′)| ≤ γ can be found in PSPACE. The approach, inspired by [22], is to consider239

the maximising event of lvα(s, s′) = supE⊆Σ∗ νs(E) − ανs′(E), which turns out to be240

W = {w | νs(w) ≥ ανs′(w)}, so that lvα(s, s′) = νs(W ) − ανs′(W ). This choice of the241

maximising event only applies to finite-word Markov chains, thus the proof does not extend242

in full generality to infinite-word Markov chains. The shape of the event is the key difference243

between our proof and [22], which uses events of the form {w | νs(w) ≥ νs′(w)}.244

Let W denote the complement of W and let νs(W ) be approximated by a number X and245

νs′(W ) by a number Y . Normally, one would expect X to be close to νs(W ) and Y to be246

close to νs′(W ). Here, the trick is to require only that νs(W ) +ανs′(W ) be close to X +αY .247

It is then argued that, for specific X,Y with this property, one can find any bit of X + αY .248

For the lower bound, we note that approximating tv is #P-hard [22], by a reduction from249

#NFA, a #P-complete problem [20]. That is, given a non-deterministic finite automaton A250

and n ∈ N in unary, determine |Σn ∩ L(A)|, the number of accepted words of A of length n.251

Since tv can be reduced to lvα (Theorem 10), approximating lvα is #P-hard as well. The252

hardness result applies to finite-word transition-labelled Markov chains, thus also to the253

more general infinite-word labelled Markov chains. J254

6 A least fixed point bound ldα255

We seek to bound lvα from above by a computable quantity, and will introduce a distance256

function ldα for this. We first introduce a variant of the Kantorovich lifting as a technique to257

measure the distance between probability distributions on a set X, given a distance function258

between objects of X. We show that lvα can be reformulated using such a distance over the259

(infinite) trace distributions νs, νs′ . We then define an alternative distance function between260

states, ldα, as the fixed point of the Kantorovich lifting of distances from individual states261

to (finite) state distributions. We will observe that it is possible to compute and acts as a262

sound bound on lvα.263

We use this distance to determine (ε, δ)-differential private w.r.t. relation R by bounding264

δ with max(s,s′)∈R ldα(s, s′). We will show this can be achieved in polynomial time with265

access to an NP oracle, by computing ldα(s, s′) exactly in this time (|R| is polynomial with266

respect to the size ofM). This suggests a complexity lower than approximation (which is267

#P-hard by Theorem 12).268

I Definition 13 (Asymmetric Skewed Kantorovich Lifting). For a set X, given d : X ×X →269

[0, 1] a distance function and measures µ, µ′, we define270

KΛ
α (d)(µ, µ′) = sup

f :X→[0,1]
∀x,x′∈X Λα(f(x),f(x′))≤d(x,x′)

Λα(
∫
X

fdµ,

∫
X

fdµ′)271

where f ranges over functions which are measurable w.r.t. µ and µ′.272
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10:8 Asymmetric Distances for Approximate Differential Privacy

I Remark. The (standard) Kantorovich distance lifts a distance function d over the ground273

objects X to a distance between measures µ, µ′ on the set X. This is equivalent to replacing274

Λα with the absolute distance function (abs(a, b) = |a−b|). We note that KΛ
α (d) is equivalent275

to the standard Kantorovich distance for α = 1 and d symmetric [21, 10]. If |X| < ∞276

(for example when X is a finite set of states, S), we have
∫
X
fdµ =

∑
x∈X f(x)µ(x).277

Chatzikokolakis et al [6] considered the case where the absolute value function was replaced278

by any metric d′. Our lifting KΛ
α does not quite fit in this framework, since Λα is not metric.279

The interest in KΛ
α is that it allows us to reformulate the definition of the distance function280

lvα. Our goal is to measure the difference between measures over infinite traces νs, νs′ , and281

so we lift a distance function over infinite words (d : Σω × Σω → [0, 1]). In particular, we lift282

the discrete metric 16= (the indicator function over inequality with 16=(w,w′) = 1 for w 6= w′,283

and 0 otherwise).284

I Lemma 14. lvα(s, s′) = KΛ
α (16=)(νs, νs′).285

Since computing lvα, or now KΛ
α (16=)(νs, νs′), is difficult, we introduce an upper bound286

on lvα, inspired by bisimilarity distances, which we will call ldα. This will be the least287

fixed point of ΓΛ
α, a function which measures (relative to a distance function d) the distance288

between the transition distributions of s, s′ where s, s′ share a label, or 1 when they do not.289

I Definition 15. Let ΓΛ
α : [0, 1]S×S → [0, 1]S×S be defined as follows.290

ΓΛ
α(d)(s, s′) =

{
KΛ
α (d)(µs, µs′) `(s) = `(s′)

1 otherwise
291

The utility of this function is that we are not now using the Kantorovich lifting over infinite292

trace distributions, but rather over finite transition distributions (µs ∈ Dist(S)).293

Note that [0, 1]S×S equipped with the pointwise order, written v, is a complete lattice294

and that Γα is monotone with respect to that order (larger d permit more functions, thus295

larger supremum). Consequently, ΓΛ
α has a least fixed point [28]. We take our distance to be296

exactly that point.297

I Definition 16. Let ldα : S × S → [0, 1] be the least fixed point of ΓΛ
α.298

To provide a guarantee of privacy we require a sound upper bound on lvα.299

I Theorem 17. lvα(s, s′) ≤ ldα(s, s′) for every s, s′ ∈ S.300

The proof of Theorem 17 proceeds similarly to Lemma 2 in [9]. We will see, however, that301

this upper bound on lvα is stronger (or at least no worse) than the bound obtained in [9].302

Recall from [9] that bdα is defined as the least fixed point of303

Γ∆
α (d)(s, s′) =

{
K∆
α (d)(µs, µs′) `(s) = `(s′)

1 otherwise
304

where K∆
α (d) behaves as KΛ

α (d), but uses ∆α(a, b) = max{a − αb, b − αa, 0} rather than305

Λα(a, b) = max{a− αb, 0}.306

I Theorem 18. max{ldα(s, s′), ldα(s′, s)} ≤ bdα(s, s′) for every s, s′ ∈ S.307

Proof. Given a matrix A, let AT be its transpose. Consider bdα and ldα as matrices. bdα is308

the least fixed point of Γ∆
α so Γ∆

α (bdα)(s, s′) = bdα(s, s′). Also notice that ΓΛ
α(bdα)(s, s′) ≤309
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LD-threshold(s, s′, θ) = ∃(di,j)i,j∈S
∧
i,j∈S

(0 ≤ di.j ≤ 1) ∧ ds,s′ ≤ θ

∧
∧

q,q′∈S

{
dq,q′ = 1 `(q) 6= `(q′)
couplingConstraint(d, q, q′) `(q) = `(q′)

couplingConstraint(d, q, q′) = ∃(ωi,j)i,j∈S ∃(γi)i∈S ∃(τi)i∈S ∃(ηi)i∈S

∑
i,j∈S

ωi,j · di,j +
∑
i

ηi ≤ dq,q′ ∧
∧
i,j∈S

(0 ≤ ωi,j ≤ 1) ∧
∧
i∈S


0 ≤ γi ≤ 1
0 ≤ τi ≤ 1
0 ≤ ηi ≤ 1

∧
∧
i∈S

(
∑
j∈S

ωi,j − γi + τi + ηi = µq(i)) ∧
∧
j∈S

(
∑
i∈S

ωi,j + τj − γj
α

≤ µq′(j))

Figure 3 NP Formula for LD-threshold

Γ∆
α (bdα)(s, s′), since KΛ

α (bdα) v K∆
α (bdα). To see this, note that, because bdα = bdT

α, the310

relevant set of functions is the same, but the objective function in the supremum is smaller.311

Hence ΓΛ
α(bdα) v bdα, i.e. bdα is also a pre-fixed point of ΓΛ

α. Since ldα is the least pre-312

fixed point of ΓΛ
α then we know ldα v bdα. By symmetry, bdα = bdT

α giving ldα v bdT
α and313

then ldT
α v bdα. We conclude max{ldα(s, s′), ldα(s′, s)} ≤ bdα(s, s′) for every s, s′ ∈ S. J314

I Remark. Example 32 on page 13 demonstrates the inequality in Theorem 18 can be strict.315

The standard variant of the Kantorovich metric is often presented in its dual formulation.316

In the case of finite distributions, the asymmetric skewed Kantorovich distance exhibits a317

dual form. This is obtained through the standard recipe for dualising linear programming.318

Interestingly, this technique yields a linear optimisation problem over a polytope independent319

of d, and that will prove useful in the computation of ldα.320

I Lemma 19. Let X be finite and given d : X×X → [0, 1] a distance function, µ, µ′ ∈ Dist(X)321

we have322

KΛ
α (d)(µ, µ′) = min

(ω,η)∈Ωα
µ,µ′

( ∑
s,s′∈X

ωs,s′ · d(s, s′) +
∑
s∈X

ηs

)
, where323

324

Ωαµ,µ′ =

(ω, η) ∈ [0, 1]X×X × [0, 1]X |
∃γ, τ ∈ [0, 1]X
∀i :

∑
j ωi,j + τi − γi + ηi = µ(i)

∀j :
∑
i ωi,j + τj−γj

α ≤ µ′(j)

 .325

When we refer to distance between states (X = S) we write Ωαs,s′ to mean Ωαµs,µs′ . We take326

V (Ωαs,s′) to be the vertices of the polytope.327

I Theorem 20. ldα can be computed in polynomial time with access to an NP oracle.328

We first show that the LD-threshold problem, which asks if ldα(s, s′) ≤ θ, is in NP. This329

is achieved through the formula shown in Figure 3, based on Lemma 19 and [30] which used330

a similar formula to approximate bisimilarity distances. The problem can be solved in NP331

as each of the variables can be shown to be satisfied in the optimal solution with rational332

numbers that are of polynomial size (see [9, Theorems 1 and 2]). It suffices to guess these333

numbers (non-deterministically) and verify the correctness of the formula in polynomial time.334
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Since the threshold problem can be solved in NP, we can approximate the value using335

binary search with polynomial overhead to arbitrary accuracy γ, thus we find a value x such336

that |x− ldα(s, s′)| ≤ γ. In fact, one can find the exact value of ldα(s, s′) in polynomial time337

assuming the oracle. We can show the value of ldα is rational and its size is polynomially338

bounded, one can find it by approximation to a carefully chosen level of precision and then339

finding the relevant rational with the continued fraction algorithm [18, Section 5.1][16].340

7 A greatest fixed point bound lgdα341

In the previous section we have used the least fixed point of ΓΛ
α, which finds the fixed point342

closest to our objective lvα. We now consider relaxing this requirement so that we can find a343

fixed point in polynomial time. We will introduce lgdα, expressing the greatest fixed point344

and represent it as a linear program that can be solved in polynomial time. Relaxing to any345

fixed point could of course be much worse than ldα, so we first refine our fixed point function346

(ΓΛ
α) to reduce the potential gap. We do this by characterising the elements which are zero347

in ldα and fixing these as such; so that they cannot be larger in the greatest fixed point.348

Refinement of ΓΛ
α349

In the case of standard bisimulation distances the kernel of ld1, that is {(s, s′) | ld1(s, s′) = 0},350

is exactly bisimilarity. We consider the kernel for ldα and define a new relation ∼α, which351

we call skewed bisimilarity, which captures zero distance.352

I Definition 21. Let a relation R ⊆ S × S have the property353

(s, s′) ∈ R ⇐⇒ ∃ (ω, η) ∈ Ωαs,s′ s.t. (ωu,v > 0 =⇒ (u, v) ∈ R) ∧ ∀u ηu = 0.354

Arbitrary unions of such relations also maintain the property, thus a largest such relation355

exists. Let ∼α be the largest relation with this property.356

I Remark. When α = 1 the formulation corresponds to an alternative characterisation of357

bisimilarity [19, 27], so ∼1 = ∼.358

I Lemma 22. ldα(s, s′) = 0 if and only if s ∼α s′.359

Since ldα(s, s′) = 0 implies lvα(s, s′) = 0, this also provides a way to show that δ is zero,360

that is, to show ε-differential privacy holds. However, note this is not a complete method to361

do this, and there are bisimilarity distances focused on finding ε [6].362

I Lemma 23. If s ∼α s′ then lvα(s, s′) = 0.363

We need to be able to quickly and independently compute which pairs of states are364

related by ∼α. In fact we can do this in polynomial time using a closure procedure, which365

will terminate after polynomially many rounds.366

I Proposition 24. ∼α can be computed in polynomial time in size(M).367

Proof. We present a standard refinement algorithm, let A0 = S × S and compute Ai+1 =368

{(s, s′) ∈ Ai | ∃(ω, η) ∈ Ωα
s,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ Ai)}. To find this, define369

1!Ai , a matrix such that 1!Ai(s, s′) = 0 if (s, s′) ∈ Ai and 1 otherwise. Apply ΓΛ
α to 1!Ai ,370

which amounts to computing n2 linear programs. Take Ai+1 to be indices of the matrix371

where ΓΛ
α(1!Ai) is zero. At each step, we remove at least one element, or stabilise so that the372

set will not change in subsequent rounds. After n2 steps it is either stable or empty.373
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An2 ⊆∼α: after convergence we have some set such that (s, s′) ∈ An2 =⇒ ∃(ω, η) ∈374

Ωαs,s′ : η = 0 ∧ (ωu,v > 0 =⇒ (u, v) ∈ An2). ∼α is the largest such set, so it contains An2 .375

∼α⊆ An2 : by induction we start with ∼α⊆ A0 and only remove pairs not in ∼α. J376

Recall that ldα was defined as the least fixed point of ΓΛ
α. Let us refine ΓΛ

α so the gap377

between the least fixed point and the greatest is as small as possible. We do this by fixing378

the known values of the least fixed point in the function, in particular the zero cases. We let379

Γ′Λα (d)(s, s′) =
{

0 s ∼α s′

ΓΛ
α(d)(s, s′) otherwise

380

and observe that ldα is also the least fixed point of Γ′Λα .381

I Lemma 25. ldα is the least fixed point of Γ′Λα .382

Definition and Computation of lgdα383

Towards a more efficiently computable function, we now study the greatest fixed point.384

I Definition 26. We let lgdα to be the greatest fixed point of Γ′Λα .385

It is equivalent to consider the greatest post-fixed point. It turns out that when α = 1,386

lgd1 = ld1 [7]. We do not know if this holds for α > 1, although conjecture that it might.387

Whilst it may not necessarily be as tight a bound on lvα as ldα, we can also use lgdα to388

bound lvα, thus the δ parameter of (ε, δ)-differential privacy. Because ldα(s, s′) ≤ lgdα(s, s′)389

for every s, s′ ∈ S, then Theorem 17 implies that lvα(s, s′) ≤ lgdα(s, s′), for every s, s′ ∈ S.390

We will show that lgdα can be computed in polynomial time using the ellipsoid method391

for solving a linear program of exponential size, matching the result of [7] for standard392

bisimilarity distances. Whilst we will not need to express the entire linear program in one go,393

we may need any one constraint at a time, so we need to be able to express each constraint,394

in polynomially many bits. We show that the representation of vertices of Ωαs,s′ is small.395

I Lemma 27. Each (ω, η) ∈ V (Ωα
s,s′) are rational numbers requiring a number of bits396

polynomial in size(M).397

Proof. Consider the polytope:398

Ω′αµ,µ′ =
{

(ω, τ, γ, η) ∈ [0, 1]S×S × ([0, 1]S)3 | ∀i :
∑
j ωi,j + τi − γi + ηi = µ(i)

∀j :
∑
i ωi,j + τj−γj

α ≤ µ′(j)

}
399

Each vertex is the intersection of hyperplanes defined in terms of µ, µ′ (rationals given in400

the inputM), thus vertices of Ω′αµ,µ′ are rationals with representation size polynomial in the401

input. Vertices of Ωαµ,µ′ = {(ω, η) | ∃τ, γ (ω, τ, γ, η) ∈ Ω′αµ,µ′} require only fewer bits. J402

The following linear program (LP) expresses the greatest post-fixed point. It has polyno-403

mially many variables but exponentially many constraints (for each s, s′ one constraint for404

each ω ∈ V (Ωα
s,s′)). Since linear programs can be solved in polynomial time, the greatest405

fixed point can be found in exponential time using the exponential size linear program.406

I Proposition 28. lgdα is the optimal solution, d ∈ [0, 1]S×S of the following linear program:407

maxd∈[0,1]S×S
∑

(u,v)∈S×S du,v subject to: for all s, s′ ∈ S:408

ds,s′ = 0 whenever s ∼α s′,
ds,s′ = 1 whenever `(s) 6= `(s′),
ds,s′ ≤

∑
(u,v)∈S×S

ωu,vdu,v +
∑
u∈S

ηu for all (ω, η) ∈ V (Ωαs,s′) otherwise.
409
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Proof. The s ∼α s′ and `(s) 6= `(s′) cases follow by definition. Observe that by the definition410

of lgdα as a post-fixed point it is required that d(s, s′) ≤ Γ′Λα (d)(s, s′) = KΛ
α (d)(s, s′) =411

min(ω,η)∈Ωα
s,s′

∑
(u,v)∈S×S ωu,vdu,v +

∑
u∈S ηu or equivalently, for all (ω, η) ∈ Ωαs,s′ : d(s, s′) ≤412 ∑

(u,v)∈S×S ωu,vdu,v +
∑
u∈S ηu J413

In the spirit of [7], we can solve the exponential-size linear program given in Proposition 28414

using the ellipsoid method, in polynomial time. Whilst the linear program has exponentially415

many constraints, it has only polynomially many variables. Therefore, the ellipsoid method416

can be used to solve the linear program in polynomial time, provided a polynomial-time417

separation oracle can be given [26, Chapter 14]. Separation oracle takes as argument418

d ∈ [0, 1]S×S , a proposed solution to the linear program and must decide whether d satisfies419

the constraints or not. If not then it must provide θ ∈ Q|S×S| as a separating hyperplane420

such that, for every d′ that does satisfy the constraints,
∑
u,v du,vθu,v <

∑
u,v d

′
u,vθu,v.421

Our separation oracle will perform the following: for every s, s′ ∈ S check that d(s, s′) ≤422

min(ω,η)∈Ωα
s,s′

ω · d + η · 1. This is done by solving min(ω,η)∈Ωα
s,s′

ω · d + η · 1 using linear423

programming. If every check succeeds, return yes. If some check fails for s, s′ return no and424

θu,v =
{
ωu,v − 1 (u, v) = (s, s′)
ωu,v otherwise

where (ω, η) = argmin
(ω,η)∈V (Ωα

s,s′
)
d · ω + η · 1.425

I Lemma 29. θ is a separating hyperplane, i.e., it separates the unsatisfying d and all426

satisfying d′.427

I Theorem 30. lgdα can be found in polynomial time in the size ofM.428

Proof. Checking d(s, s′) ≤ minω,η∈Ωα
s,s′

ω · d+ η · 1 is polynomial time. The linear program429

is of polynomial size, so runs in polynomial time in the size of the encoding of the linear430

program. Similarly finding θ is polynomial time by running essentially the same linear431

program and reading off the minimising result.432

Because pairs (ω, η) are in V (Ωαs,s′), they are polynomial size in the size ofM, independent433

of d, by Lemma 27. Note that, unlike in Chen et al. [7], the oracle procedure is not strongly434

polynomial, so the time to find θ may depend on the size of d, but the output θ and d remain435

polynomial in the size of the initial system.436

We conclude there is a procedure for computing lgdα running in polynomial time [26,437

Theorem 14.1, Page 173]. There exists a polynomial ψ where the ellipsoid algorithm solves the438

linear program in time T ·ψ(size(M)), where T is the time the separation algorithm takes on439

inputs of size ψ(size(M)). Since the T ∈ poly(ψ(size(M))) and ψ(size(M)) ∈ poly(size(M))440

then T ∈ poly(size(M)). Overall we have T · ψ(size(M)) ∈ poly(size(M)). J441

8 Examples442

I Example 31 (PIN Checker). We demonstrate our methods are a sound technique for443

determining the δ privacy parameter (given eε, where ε is the other privacy parameter).444

We take as an example, in Figure 4, a PIN checking system from [32, 31]. Intuitively, the445

machine accepts or rejects a code (a or b). Instead of accepting a code deterministically, it446

probabilistically decides whether to accept. The machine allows an attempt with the other447

code if it is not accepted. We model the system that accepts more often on the the pin-code448

a, from state 0, and the system that accepts more often from code b, from state 1. The chain449

simulates attempts to gain access to the system by trying code a then b until the system450

accepts (reaching the ‘end’ state). Pen-and-paper analysis can determine that the system451
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(a) Labelled Markov chain.
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(b) Calculated approximations of δ given ε.

Figure 4 PIN Checker example: each state denotes its label, transition probabilities on arrows.

is (ln( 2809
2209 ), 0)-differentially private, or at the other extreme (0, 200

2503 )-differentially private452

( 2809
2209 ≈ 1.27, 200

2503 ≈ 0.0799). The true privacy, lvα is shown along the orange line (N).453

In the blue line (•) we see the estimate bdα as defined in [9]; which correctly bounds454

the true privacy, but is unresponsive to α. Using the methods introduced in this paper we455

compute ldα on the red line (�) and lgdα on the black line (�), which coincide. We observe456

that this is an improvement and is within approximately 1.5 times the true privacy for457

α ≤ 1.035. In this example observe that ldα = lgdα; suggesting lgdα, which can be computed458

in polynomial time is as good as ldα. Our results do eventually suffer, as increasing α cannot459

find a better δ, despite a lower value existing.460

I Example 32 (Randomised Response). The randomised response mechanism allows a data461

subject to reveal a secret answer to a potentially humiliating or sensitive question honestly462

with some degree of plausible deniability. This is achieved by flipping a biased coin and463

providing the wrong answer with some probability based on the coin toss. If there are two464

answers a or b, answering truthfully with probability β
1+β and otherwise with 1

1+β leads to465

ε-differential privacy where eε = β and such a bound is tight (there is no smaller ε′ such that466

answering in this way gives ε′-differential privacy). However, it can be (ε′, δ)-differentially467

private for ε′ < ε and some δ.468

Let us consider the single-input, single-output randomised response mechanism shown469

in Figure 5a with β = 2, hence ln(2)-differentially private, alternatively it is (ln( 6
5 ), 4

15 )-470

differential privacy (ln( 6
5 ) ≈ ln(2)

4 ). We consider the application of composing automata to471

determine more complex properties automatically.472

Differential privacy enjoys multiple composition theorems [15]. When applied to disjoint473

datasets, differential privacy allows the results of (ε, δ)-differentially private mechanism applied474

to each independently to be combined with no additional loss in privacy. Let us consider the475

two-input, two-output labelled Markov chain (Figure 5b), where we consider each input to476

be from two independent respondents, using our methods verifies that the privacy does not477

increase on the partitioned data. We consider the adjacency relation as the symmetric closure478

of R = {((a, a), (a, b)), ((a, a), (b, a)), ((b, b), (a, b)), ((b, b), (b, a))}. We determine (ln( 6
5 ), 4

15 )-479

differential privacy by computing max(s,s′)∈R ld6/5(s, s′) = 4
15 , verifying there is no privacy480

loss from composition. Because randomised response is finite we can compute lvα for adjacent481

inputs in exponential time for comparison. In this instance, our technique provides the482

optimal solution, in the sense max(s,s′)∈R ld6/5(s, s′) = max(s,s′)∈R lv6/5(s, s′); indicating483

that ldα and lgdα can provide a good approximation.484
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(b) Two-input, two-output

Figure 5 Randomised response. Every second label is the outcome of the randomised response
mechanism and alternately sk (for ‘skip’). The left most state represents the sensitive input.

The basic composition theorems suggest that if a mechanism that is (ε, δ)-differentially485

private is used k times, one achieves (kε, kδ)-differential privacy [13]. However, this is not486

necessarily optimal. More advanced composition theorems may enable tighter analysis,487

although this can can be computationally difficult (#P-complete) [25]. Even this may not488

be exact when allowed to look inside the composed mechanisms. If we assume the responses489

are from two questions answered by the same respondent and let R′ = R ∪ {((a, a), (b, b))},490

naively applying basic composition concludes (ln( 36
25 ), 8

15 )-differential privacy. Our methods491

can find a better bound than basic composition since max(s,s′)∈R′ ld36/25(s, s′) = 103
225 <

8
15 .492

However, in this case, our technique is not optimal either.493

9 Conclusion494

Our results are summarised in Figure 1 on page 2. We are interested in the value of lvα, but495

it is not computable and difficult to approximate. We have defined an upper bound ldα,496

showing that it is more accurate than the previously known bound bdα from [9] and just497

as easy to compute (in polynomial time with an NP oracle). We also defined a distance498

based on the greatest fixed point, lgdα, which has the same flavour but can be computed499

in polynomial time. When considering lvα directly, we approximate to arbitrary precision500

in PSPACE and show it is #P-hard (which generalises a known result on tv). It is open501

whether the least fixed point bisimilarity distance (or any refinement smaller than lgdα) can502

be computed in polynomial time, or even if lgdα = ldα. It is also open whether approximation503

can be resolved to be in #P, PSPACE-hard, or complete for some intermediate class.504
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