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Abstract

Background: Random survival forest (RSF) models have been identified as alternative methods to the Cox
proportional hazards model in analysing time-to-event data. These methods, however, have been criticised for the
bias that results from favouring covariates with many split-points and hence conditional inference forests for
time-to-event data have been suggested. Conditional inference forests (CIF) are known to correct the bias in RSF
models by separating the procedure for the best covariate to split on from that of the best split point search for the
selected covariate.

Methods: In this study, we compare the random survival forest model to the conditional inference model (CIF) using
twenty-two simulated time-to-event datasets. We also analysed two real time-to-event datasets. The first dataset is
based on the survival of children under-five years of age in Uganda and it consists of categorical covariates with most
of them having more than two levels (many split-points). The second dataset is based on the survival of patients with
extremely drug resistant tuberculosis (XDR TB) which consists of mainly categorical covariates with two levels (few
split-points).

Results: The study findings indicate that the conditional inference forest model is superior to random survival forest
models in analysing time-to-event data that consists of covariates with many split-points based on the values of the
bootstrap cross-validated estimates for integrated Brier scores. However, conditional inference forests perform
comparably similar to random survival forests models in analysing time-to-event data consisting of covariates with
fewer split-points.

Conclusion: Although survival forests are promising methods in analysing time-to-event data, it is important to
identify the best forest model for analysis based on the nature of covariates of the dataset in question.

Keywords: Survival analysis, Split-points, Survival trees, Random survival forests, Conditional inference forests

Background
The Cox-proportional hazards model [1] is a popular
choice for analysis of right censored time-to-event data.
The model is convenient for its flexibility and simplicity,
however, it has been criticised for its restrictive pro-
portional hazards (PH) assumption [2–4] which is often
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violated. A number of extensions to the Cox proportional
hazards model to handle time-to-event data where the PH
assumption is not met have been suggested and imple-
mented [5–7]. These extensions often remain dependent
on restrictive functions such as the heaviside functions
that may be difficult to construct and implement or fail to
fit the dataset in question. Other analysis approaches to
handle non-proportional hazards include methods such
as stratification, but these limit the ability to estimate the
effect(s) of the stratification variable(s).
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Survival trees and random survival forests (RSF) are
an attractive alternative approach to the Cox propor-
tional hazards models when the PH assumption is
violated [8]. These methods are extensions of classi-
fication and regression trees and random forests (RF)
[9, 10] for time-to-event data. Survival tree methods
are fully non-parametric, flexible, and can easily han-
dle high dimensional covariate data [11–13]. Drawbacks
of random survival forests include the common draw-
backs of random forests including a bias towards inclu-
sion of variables with many split points [14–17]. This
effect leads to a bias in resulting summary estimates
such as variable importance [15, 17]. Conditional infer-
ence forests (CIF) are known to reduce this selection
bias by separating the algorithm for selecting the best
covariate to split on from that of the best split point
search [15, 17, 18].
Despite the fact that the CIF survival model has been

identified to reduce bias in covariate selection for split-
ting in survival forest models, no study has been done to
compare the predictive performance of the CIFmodel and
random survival forest models on time-to-event data in
the presence of covariates that have many and fewer split-
points. This study for the first time, examines and com-
pares the predictive performance of the CIF and the two
random survival forest models through a simulation study.
Bootstrap cross-validated estimates of the integrated Brier
scores were used as measures of predictive performance
[19]. In total, twenty-two time-to-event datasets were
simulated. Eighteen of the datasets were simulated in
such a way that they either have binary covariates (few
split-points), polytomous covariates (many split-points)
or both. Four of the datasets were simulated in such a way
that they have covariate interactions. Other properties of
these datasets are further described in “Methods” section.
The two real datasets used in this study are Dataset 1,
which investigates the survival of 6692 children under the
age of five in Uganda and contains categorical covari-
ates with many levels (polytomous covariates). Dataset
2 evaluates the survival of 107 patients with extremely
drug resistant tuberculosis (XDR TB) in South Africa. It
is a small dataset and contains only categorical binary
covariates.
This article is structured as follows: The “Methods”

section describes the methods used.We discuss the meth-
ods used to evaluate the methods in the “Model eva-
luation” section. In the “Simulation study” section, we
present the simulation study together with the simula-
tion results. The “Real data application” section intro-
duces the two real datasets that we used in this study
and also gives the corresponding real data analyses
results and lastly the “Discussion and conclusions” section
presents the discussion and conclusions drawn from this
study.

Methods
A random survival forest (RSF) is an assemble of trees
method for analysis of right censored time-to-event data
and an extension of Brieman’s random forest method
[14, 20]. Survival trees and forests are popular non-
parametric alternatives to (semi) parametric models for
time-to-event analysis. They offer great flexibility and can
automatically detect certain types of interactions without
the need to specify them beforehand [13]. A survival tree
is built with the idea of partitioning the covariate space
recursively to form groups of subjects who are similar
according to the time-to-event outcome. Homogeneity at
a node is achieved by minimizing a given impurity mea-
sure. The basic approach for building a survival tree is by
using a binary split on a single predictor. For a categor-
ical covariant X, a split is defined as X ≤ c where c is
some constant. For a categorical covariate X with many
split-points, the potential split is X ∈ {c1, . . . , ck} where
c1, . . . , ck are potential split values of a predictor vari-
able X. The goal in survival tree building is to identify
prognostic factors that are predictive of the time-to-event
outcome. In tree building, a binary split is such that the
two daughter nodes obtained from the parent node are
dissimilar and several split-rules (different impurity mea-
sure) for time-to-event data have been suggested over the
years [13, 21].
The impurity measure or the split-rule of the algorithm

is very important in survival tree building. In this article,
we used the log-rank and the log-rank score split-rules
[22–24].

The log-rank split-rule
Suppose a node h can be split into two daughter nodes α

and β . The best split at a node h, on a covariate x at a split
point s∗ is the one that gives the largest log-rank statistic
between the two daughter nodes [22]. The algorithm for
building a survival tree using the split-rule based on the
log-rank statistic [13, 22, 25, 26] is given in Algorithm 1
below.

The log-rank score split-rule
The log-rank score split-rule [23] is a modification of
the log-rank split-rule mentioned above. It uses the log-
rank scores [24]. Given r = (r1, r2, . . . , rN ), the rank
vector of survival times with their indicator variable
(T , δ) = ((T1, δ1), (T2, δ2), . . . , (TN , δN )) and that a =
a (T , δ) = (a1(r), a2(r), . . . , aN (r)) denotes the score vec-
tor depending on ranks in vector r. Assume that the ranks
order the predictor variables in such away that x1 < x2 <

. . . < xN . The log-rank scores for an observation at Tl is
given by:

al = al (T , δ) = δl −
γl(T)∑

k=1

δk
N − γk(T) + 1

, (1)
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Algorithm 1 The Log-rank Survival Tree Algorithm
1: At each node randomly select √p-covariates from p-

covariates as candidates for splitting the node into two
daughter nodes.

2: At a node h, compute the log-rank statistic impurity
measure for daughter nodes α and β formed by all
possible splits on all covariates considered for splitting
at the node.

3: Choose the covariate that has the largest significant
log-rank statistic calculated from one of the daugh-
ter nodes created by the splits. Partition the node
into two daughter nodes based on the values of the
covariate obtained from the split with the largest
statistic.

4: Recursively repeat steps 2 and 3 by treating each
daughter node as a root node.

5: The node is terminal if it has no less than d0 > 0
unique observed events.

where

γk(T) =
N∑

l=1
χ{Tl � Tk}

is the number of individuals that have had the event of
interest or were censored before or at time Tk .

i
(
x, s�

) =
∑

xj≤s�
(
aj − R1ā

)

√
R1

(
1 − R1

N

)
S2a

, (2)

where ā and S2a are the mean and sample variance of the
scores {aj : j = 1, 2, . . . n}. The best split is the one that
maximizes |i (x, s�)| over all x′

js and possible splits s�.
Trees are generally unstable and hence researchers have

recommended the growing of a collection of trees [10, 27],
commonly referred to as random survival forests [20, 26].

Random survival forests algorithm
The random survival forests algorithm implementation is
shown in Algorithm 2 [20, 26].
For this study, we used the log-rank and the log-rank

score split-rules in Step 2 of the algorithm. Two random
survival forest algorithmswere generated denoted as RSF1
and RSF2. RSF1 consists of survival trees built using the
log-rank split-rule whereas RSF2 consists of survival trees
built using the log-rank score split-rule.
The random survival forests algorithm, has been crit-

icised for having a bias towards selecting variables with
many split points and the conditional inference forest
algorithm has been identified as a method to reduce this
selection bias. Conditional inference forests are formu-
lated in such a way that it separates the algorithm for
selecting the best splitting covariate is separated from the

Algorithm 2 : Random Survival Forest Algorithm
1: Draw B bootstrap samples from the original data set.

Each bootstrap sample excludes about 30% of the data
and this is called out-of-bag (OOB) data.

2: Grow a survival tree for each bootstrap sample, at
each node randomly select √p variables. Split the
node by selecting the variable that maximizes the
difference between daughter nodes using a predeter-
mined split rule.

3: Grow the tree to full size under the constraint that a
terminal node should have no less than d0 > 0 unique
events.

4: Calculate the cumulative hazard (CH) for each tree.
Average to obtain the ensemble prediction.

5: Using OOB data, calculate prediction error curves for
the ensemble cumulative hazard.

algorithm for selecting the best split point [15–18]. To
illustrate this, consider a dataset with a time-to-event out-
come variable T and two explanatory variables x1 and x2
with k1 and k2 possible split-points, respectively. Further-
more, consider that T is independent of x1 and x2, and
that k1 < k2. In the random survival forests algorithm, the
search for the best covariate to split on and the best split-
point by comparing the effect for both the covariates on
T, gives x2 the highest probability of being selected just by
chance.

Conditional inference trees and forests
Algorithm 3 outlines the general algorithm for building
a conditional inference tree as presented by [28]. For
time-to-event data, the optimal split-variable in step 1 is
obtained by testing the association of all the covariates
to the time-to-event outcome using an appropriate linear
rank test [28, 29]. The covariate with the strongest associ-
ation to the time-to-event outcome based on permutation
tests [28], is selected for splitting. In covariates selection,

Algorithm 3 : Conditional Inference Trees
1: For case weights w, test the global null hypothesis of

independence between any of the p covariates and the
response variable. Stop if this hypothesis cannot be
rejected otherwise selcet the j�th covariate X j� with
strongest association to T .

2: Select a set A� ⊂ X j� inorder to split X j� into
two disjoint sets i.e. A� and X j�\A�. The weights wα

and wβ determine the two subgroups with wα,i =
wiI

(
X j�,i ∈ A�

)
and wβ ,i = wiI

(
X j�,i �= A�

)
for all i =

1, 2, . . . , n.
3: Recursively repeat steps 1 and 2 with modified case

weights wα and wβ , respectively.
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a linear rank test based on the log-rank transformation
(log-rank scores) is performed. Using the distribution of
the resulting rank statistic, p-values are evaluated and
the covariates with minimum p-value is known to have
the strongest association to the outcome [17, 30, 31].
Although the standard association test is done in the first
step, a standard binary split is done in the second step. A
single tree is considered unstable and hence research has
recommended the growing of an entire forest [9, 10, 20].
The forest of conditional inference trees results into a con-
ditional inference (CIF) model. The CIF model algorithm
for time-to-event data is implemented in the R package
called party.
To compare the performance of the three models used

in this study, integrated Brier scores are used [32] which
are described in the section below.

Model evaluation
Brier scores [32] are used to compare the predictive per-
formance of the two random survival forests models of all
models. At a given time point t, the Brier score for a sin-
gle subject is defined as the squared difference between
observed event status (e.g., 1=alive at time t and 0=dead at
time t) and a model based prediction of surviving time t .
Using the test sample of size denoted as Ntest, Brier scores
at time t are given by

BS(t) = 1
Ntest

Ntest∑

l=1

{[
0 − Ŝ (t|x)]2 I (tl ≤ t, δl = 1)

Ĝ (tl|x)

+ [
1 − Ŝ (t|x)]2 I (tl > t)

Ĝ (t|x)
}
.

(3)

Where Ĝ (t|x) ≈ P (C > t|X = x) is the Kaplan-Meier
estimate of the conditional survival function of the cen-
soring times.
The integrated Brier scores (IBS) are given by

IBS =
∫ max(t)

0
BS(t)dt .

To avoid the problem of overfitting that arises from
using the same dataset to train and test themodel, we used
the Bootstrap cross-validated estimates of the integrated
Brier scores [19]. The prediction errors are evaluated in
each bootstrap sample.
These have been implemented in the pec package [19].

We fit a pec object with the three rival prediction mod-
els (RSF1, RSF2 and CIF). The three models were passed
on as a list to the pec object and chose splitMethod =
Boot632plus. We set B = 5, to have reasonable run times
and reported Bootstrap cross-validated estimates for inte-
grated Brier scores. Prediction error rates of 50% or higher

are useless because they are no better than tossing a
coin [12, 33].

Simulation study
Simulated time-to-event datasets
To simulate time-to-event datasets for this study, two
frameworks were used. The first framework is more flex-
ible and it generates time-to-event data from known dis-
tributions for proportional hazard models by inverting
the cumulative baseline hazard function. The desired cen-
soring parameters were achieved by randomly generating
them from a binomial distribution. This framework was
used to generate polytomous and datasets with covari-
ate interactions [34–36]. The second framework uses a
nested numerical integration and a root-finding algorithm
to choose the censoring parameter that achieves prede-
fined censoring rates in simulated time-to-event datasets
[34]. This framework was used to generate time-to-event
datasets with binary covariates.

Time-to-event datasets with binary covariates
Ten covariates are considered in each simulated dataset
that is, Xj = {X1,X2,X3,X4,X5,X6,X7,X8,X9, X10}. Each
of the covariates is randomly generated from a Bernoulli
distribution with probability pj, Xj ∼ B

(
pj

)
. Weibull

event times were considered, these were generated using
a baseline hazard function h0(t) = θ

ρθ tθ−1 . The scale

parameter is given by λ = exp
(
−β0

θ
− ∑n

j=1
βj
θ
Xj

)
, where

β0 is the coefficient of the intercept term log
(
ρ−θ

)
. The

shape parameter θ was set at 0.8, 1.5, or 1 to repre-
sent decreasing, increasing and constant hazard, respec-
tively. The corresponding intercept for each dataset was
β0 = −0.98,−1.44, or 0.9. The regression coefficients for
the 10 covariates were defined as {0.5,−0.045, 0.6,−0.03,
−2, 0.5, 0.25,−0.04, 0.33, 0.3}, {0.1,−0.8, 0.5,−0.2,−3, 0.7,
0.2, 0.4, 0.3}, {0.4,−0.7, 1,−2,−3, 0.7, 0.06, 0.5−0.43, 0.3},
respectively. Censoring times were generated from a
Weibull distribution with a shape parameters 0.4, 2.4, or
1. The censoring parameter θ was computed numeri-
cally to get 50%, 20% and 80%, respectively. In total, six
time-to-event datasets were generated from this covariate
design and other properties of these datasets are stated in
Table 1.

Time-to-event datasets with polytomous covariates
Covariates were generated by sampling with replace-
ment from a list of desired categories. Event times
were generated by inverting cumulative hazard function.
T = −1 ∗ log(U) ∗ ρ ∗ exp(−λ)(1/θ). Where λ =
exp

(
−β0

θ
− ∑n

j=1
βj
θ
Xj

)
. The shape parameter θ was set

at 0.5, 1.5 and 1 to yield time-to-event datasets with a
decreasing, increasing and a constant hazard, respectively.
The corresponding censoring times were also generated
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Table 1 Simulated time-to-event datasets

Properties of simulated time-to-event datasets

Type of covariates Datasets Sample size % of censoring Nature of the
hazard

Binary Data 1 100 80 Increasing

Data 2 100 50 Decreasing

Data 3 250 20 Constant

Data 4 1000 80 Increasing

Data 5 1500 50 Decreasing

Data 6 2000 20 Constant

Polytomous Data 1 100 20 Increasing

Data 2 100 80 Constant

Data 3 250 50 Decreasing

Data 4 1000 20 Increasing

Data 5 1500 80 Constant

Data 6 2000 50 Decreasing

Binary & polytomous Data 1 1000 20 Increasing

Data 2 100 80 Decreasing

Data 3 250 50 Constant

Data 4 1000 20 Increasing

Data 5 1500 80 Decreasing

Data 6 2000 50 Constant

Interactions Data 1 100 20 Increasing

Data 2 100 50 Decreasing

Data 3 1000 20 Increasing

Data 4 1500 50 Decreasing

from aWeibull distribution with a shape and scale param-
eter of 0.4, 1.2 and 1.1, receptively. In this covariate design,
six datasets were generated. Other properties for these
datasets are given in Table 1.

Time-to-event datasets with binary and polytomous
covariates
We used the same frame work for generating survival
times as that of generating time-to-event datasets with
polytomous covariates described above. Binary covari-
ates, were added to the dataset by generating them
from a Bernoulli distribution. In total, six datasets were
generated.

Time-to-event datasets with covariate interactions
We used the same frame work for generating survival
times as that for generating time-to-event datasets with
polytomous covariates and four datasets were generated.
The codes used to generate these datasets is provided
as an additional file. In total, twenty-two datasets are
generated for this simulation study. The Table 1 presents
properties for each simulated dataset.

In this study, the two random survival forest methods,
that is, the one consisting of trees built with the log-rank
split-rule (RSF1) and the other consisting of survival trees
built with the log-rank score split-rule (RSF2) are fit to the
data and compared to the CIF model.
To have reasonable run times, 100 survival trees are

grown for each survival forest fitted on each simulated
dataset and this is repeated 100 times. The models are
then evaluated using bootstrap cross-validated estimates
of the integrated Brier scores. This estimate is recorded
from each fitted survival forest [37–39]. All computations
and analyses were carried out in R, using R version 3.3.2.
We used the randomForestSRC [26], party [40], pec [19],
rms [41], and doMC packages.

Results on simulated datasets
For each repetition, bootstrapped-cross-validated inte-
grated brier scores were recorded. The results are then
reported using box-plots as shown below.
Figure 1 presents box plots of the prediction errors for

RSF1, RSF2 and the CIF models on all the six datasets
simulated with binary covariates. In general, all models
have a good predictive performance on the dataset.This
is because all the prediction error values are below the
50% cut-off point. However, there are some unique differ-
ences in the predictive performance between two random
survival forests and the CIF model which can not be
ignored. On Data 1, the prediction errors for the CIF
model are sandwiched between the error values for RSF1
and RSF2. The prediction error values for The CIF model
on the remaining five datasets are lowest compared to
those of the RSF1 and RSF2 model. The box plots of the
error values for the three models appear to be almost
symmetrical. The results therefore indicate that the pre-
dictive performance for the two random survival forests
and the conditional inference survival forest model is sim-
ilar or comparable in performance on simulated time-to-
event data with only binary covariates. Figure 2 indicates
that all the three models have a good predictive perfor-
mance on all the six datasets because the error values
are below the 50% mark. Although the prediction error
values for the CIF model appear to be at par with those
of RSF2 on Data 1, the model has the lowest error val-
ues compared to RSF1 and RSF2 on the remaining five
datasets. This is not a surprise because the CIF model is
known to be superior in performance to random survival
forests models in the presence of covariates with many
split-points.
The results presented by using box plots in Fig. 3 give

prediction errors of RSF1, RSF2 and the CIF model on
six datasets simulated to have both binary and polyto-
mous covariates. On all the six datasets, the CIF model
has the lowest prediction error rates. This is because
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Fig. 1 Predictive performance on simulated datasets with binary covariates

conditional inference forests have an added advantage for
prediction in the presence of covariates with many split-
points because of the way it does the search for covariate
selection and split-point.
Figure 4 presents box plots for predictive performance

of the three survival forest model on simulated time-
to-event data with covariate interactions. The prediction
error values for the CIF model are lowest on all the
six datasets. Since covariate interactions are simulated in
such a way that some of the covariates have many split-
points, the superiority in performance of the CIF model
was not a surprise.

Generally, all the three survival forest models have
a good predictive performance based on the bootstrap
cross-validated estimates of integrated Brier score. How-
ever, there are some differences in the performance of
each of the models on each of the simulated dataset as
discuss above. The results in summary suggest that con-
ditional inference forests have a good predictive perfor-
mance compared to the two random survival forest mod-
els especially on time-to-event datasets with polytomous
covariates. The model is comparable in predictive perfor-
mance to random survival forests models in the analysis of
simulated time-to-event datasets with binary covariates.
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Fig. 2 Predictive performance of the three survival forest models on simulated datasets with polytomous covariates

Real data application
To further investigate the results obtained from the sim-
ulation study on the predictive performance of the three
survival forest models, we analysed two real datasets
whose covariate properties are similar to those used in
the simulation study. Note that in identifying the most
important covariates in explaining survival in the analy-
sis of both datasets, permutation importance was used as
measure of variable importance [20, 42].

Dataset 1
The dataset can be found on the demographic health sur-
vey website [43]. In this survey, a representative sample of

10,086 households was selected during the 2011 Uganda
Demographic and Health Survey (UDHS). The sample
was selected in two stages. First a total of 404 enumeration
areas (EAs) were selected from among a list of clus-
ters sampled for the 2009/10 Uganda National Household
Survey (2010 UNHS). In the second stage of sampling,
households in each cluster were selected from a complete
listing of households. Eligible women for the interview
were aged between 15–49 years of age who were either
usual residents or visitors present in the selected house-
hold on the night before the survey. Out of 9247 eli-
gible women, 8674 were successively interviewed with
a response rate of 94% (91% in urban and 95% in rural
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Fig. 3 Predictive performance on simulated datasets with binary and polytomous covariates

areas). The study population for this analysis includes
infants born between exactly one and five years preceding
the 2011 UDHS.

Explanatory variables
In this dataset, 19 covariates are considered for analysis
and their choice was based on literature studies [44–46].
To some extent, other limitations like high level of miss-
ingness in the dataset influenced our covariate choice.
The dataset is readily available from the Demographic and
Health Survey Data website [43]. Summary characteristics
can be found in Table 2.

The time-to-event outcome of interest is time to death
of children under the age of five. The range of values of
this outcome lie between one month and 59 months of
age. Children that were alive at the time of the interview
were considered to be right censored. The dataset has a
high censoring rate of 93%.

Dataset 2
Between August 2002 and October 2012, a total of 107
adult patients with microbiologically confirmed XDR-TB
from three provinces in South Africa, were hospitalised
for treatment in three tuberculosis treatment facilities
(Brooklyn Chest Hospital, Western Cape [B], Gordonia
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Fig. 4 Predictive performance of the three survival forest models on simulated datasets with covariate interactions

Hospital, Upington, Northern Cape, [H] and Sizwe Trop-
ical Disease Hospital, Johannesburg, Gauteng [S]). All
the three hospitals are specialist referral centres for the
treatment of drug resistant TB, aimed at serving patients
from across respective provinces. This dataset has been
published in [47].

Explanatory variable
The covariates of interests were selected based on litera-
ture [47, 48] and limitations of high level of missingness.
Table 3 shows the distribution of deaths in each of the

covariates considered. The outcome variable is survival
time in days from diagnosis of XDR-TB.

The median survival time was 30.9(IQR =19.5) months.
A total of 79 (74%) patients died, with a low censoring rate
of 26%.

Analysis
Dataset 1
Results from the two random survival forest models
applied to Dataset 1 shown in Fig. 5 identify the number
of children under the age of five in the household as the
most informative predictor of time to death for children
under-five in Uganda.
Other covariates strongly associated to under-five child

mortality in Uganda include; the number of births in the
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Table 2 Characteristics and the distribution of deaths for covariates in Dataset 1

Characteristics Dead N(%) Alive N(%) Total Characteristics Dead N(% ) Alive N(%) Total

Mother’s education level Mother’s occupation

Illiterate Mothers 344(7.7) 4149(92.3) 4493 Not-working 93(6.9) 1260(93.1) 1353

Mother completed primary 119(6.4) 1749(93.6) 1868 Sales and Services 110 (6.5) 1589 (93.5) 1699

Secondary and higher 14(4.2) 317(95.8) 331 Agriculture 274(7.5) 3366(92.5) 3640

Partner’s level of education Births in past 5 years

Illiterate Father 266(7.7) 3180(92.3) 3446 1-Birth 93(4.5) 1982(95.5) 2075

Father completed primary 170(6.9) 2287(93.1) 2457 2-Birth 227(6.5) 3288(93.5) 3515

Secondary and higher 41(5.2) 748(94.8) 789 3-Births 140(13.6) 887(86.4) 1027

Birth status 4-Births 17(22.7) 58(77.3) 75

Singleton births 431(6.7) 6048(93.3) 6479 Births in past 1 year

Multiple births (Twins) 46(21.5) 167(78.5) 213 No-births 309(6.8) 4212(93.2) 4521

Sex of the child 1-Birth 163(7.6) 1971(92.4) 2134

Males 258(7.8) 3067(92.2) 3325 2-Births 5(13.5) 32(86.5) 37

Females 212(6.3) 3155(93.7) 3367 Children Under 5 in Household

Type of place of residence No-child 101(34.9) 188(65.1) 289

Urban 81(5.8) 1308(94.2) 1389 1-Child 178(10.5) 1511(89.5) 1689

Rural 396(7.5) 4907(92.5) 5303 2-Children 146(4.9) 2831(95.1) 2977

Wealth index 3-Children 35(2.5) 1349(97.5) 1384

Poorest 131(7.5) 1623(92.5) 1754 4-Children 17(4.8) 336(95.2) 353

Poorer 112(8.5) 1205(91.5) 1317 Mother’s age group

Middle 86(7.2) 1109(92.8) 1195 Less than 20 years 29(8.9) 296(91.1) 325

Richer 72(6.9) 969(93.1) 1041 20-29 years 235(6.5) 3376(93.5) 3611

Richest 76(5.5) 1309(94.5) 1385 30-39 years 164(7.4) 2054(92.6) 2218

Children ever born 40 years+ 49(7.9) 489(90.1) 538

One child 20(3.3) 581(96.7) 601 Birth order number

Two children 81(7.1) 1065(92.9) 1146 First child 95(7.6) 1154(92.4) 1249

Three children 67(6.6) 953(93.4) 1020 Second to Third child 117(5.6) 1974(94.4) 2091

Four and more 309(7.9) 3616(92.1) 3925 4th-6th child 149(7.1) 1949(92.9) 2098

Birth order number th+child 116(9.3) 1138(90.7) 1254

First child 95(7.6) 1154(92.4) 1249 Sex of household head

Second to Third child 117(5.6) 1974(94.4) 2091 Male 341(6.7) 4771(93.3) 5112

4th-6th child 149(7.1) 1949(92.9) 2098 Female 136(8.6) 1444(91.4) 1580
th+child 116(9.2) 1138(90.8) 1254 Source of drinking water

Religion Piped water 76(5.9) 1204(94.1) 1280

Catholics 217(7.4) 2722(92.6) 2939 Borehole 216(7.3) 2731(92.7) 2947

Muslims 69(7.5) 852(92.5) 921 Well 93(6.9) 1261(93.1) 1354

Other Christians 187(6.8) 2571(93.2) 2758 Surface/Rain/Pond/Lake/tank 70(8.5) 756(91.5) 826

Others 4(5.4) 70(94.6) 74 Other 22(7.7) 263(92.3) 285

Type of toilet facility Age at first birth

Flush toilet 5(4.1) 116(95.9) 121 Less than 20 years 347(7.5) 4291(92.5) 4638

Pitlatrine 376(6.9) 5031(93.1) 5407 20-29 years 127(6.3) 1899(93.7) 2026

No-facility 96(8.2) 1068(91.8) 1164 30-39 years 3(12.0) 22(88.0) 25
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Table 3 Characteristics and the distribution of deaths for covariates in Dataset 2

Characteristics Dead N(%) AliveN (%) Total Characteristics Dead N(%) Alive N(%) Total

Age at diagnosis Ethionamide

Below 30 35(81.3) 8(18.6) 43 Not prescribed 25(64.10) 14(35.89) 39

Above 30 43(68.25) 20(31.75) 63 Prescribed 54(79.41) 14(20.59) 68

Gender Ofloxacin

Females 41(83.67) 8(16.33) 49 Not prescribed 48(70.59) 20(29.41) 68

Males 38(65.52) 20(34.48) 58 Prescribed 31(79.49) 8(20.51) 39

smoking status Ofloxacin and moxifloxacin

No 28(65.12) 15(34.88) 43 Not prescribed 72(72.73) 27(27.27) 99

Yes 38(79.17) 10(20.83) 48 Prescribed 7(87.50) 1(12.50) 8

HIV plus ART status Amikacin

HIV -ve 46(73.02) 17(26.98) 63 Not prescribed 76(73.79) 27(26.21) 103

HIV +ve ART 24(68.57) 11(31.43) 35 Prescribed 3(75.00) 1(25.00) 4

HIV +ve no ART 9 (100.00) 0 (0.00) 9 Capreomycin

Cohort Not prescribed 8(88.98) 1(11.11) 9

B 54(83.08) 11(16.92) 65 Prescribed 71(72.45) 27(27.55) 98

N 12(80.00) 3(20.00) 15 Dapsone

S 13(48.15) 14(51.85) 27 Not prescribed 43(67.19) 21(32.81) 64

Race Prescribed 36(83.72) 7(16.28) 43

Blacks 34(64.15) 19(35.85) 53 Augmentin

Mixed ancestry 45(83.33) 9(16.67) 54 Not prescribed 28(66.67) 14(33.33) 42

Drugs used Prescribed 51(78.46) 14(21.54) 65

Isoniazid Clofazamine

Not prescribed 57(83.82) 11(16.18) 68 Not prescribed 70(82.35) 15(17.65) 85

Prescribed 22(56.41) 17(43.59) 39 Prescribed 9(40.91) 13(59.09) 22

Etambutol Azithromycin

Not prescribed 39(66.10) 20(33.89) 59 Not prescribed 75(76.53) 23(23.47) 98

Prescribed 40(83.33) 8(16.67) 48 Prescribed 4(44.44) 5(55.56) 9

Pyrazinainamide Amoxicillin

Not prescribed 14(58.33) 10(41.67) 24 Not prescribed 49(71.01) 20(28.99) 69

Prescribed 65(78.3) 18(21.69) 83 Prescribed 30(78.95) 8(21.05) 38

Clarithromycin

Not prescribed 19(70.37) 8(29.63) 27

Prescribed 60(75.00) 20(25.00) 80

past five years, birth order, wealth index and the total
number of children ever born. Both random survival for-
est models have similar results in identifying the same
factors affecting the time to survival of children under the
age of five years in Uganda.
The results from the CIF model on the same dataset

in Fig. 6, agree with the top two predictors by RSF1
and RSF2. The top predictors are; number of children
under the age of five in a household and the number of
births in the past five years. Some covariates in the CIF

model that move up in ranks compared to RSF1 and RSF2
include; the number of births in the past one year and
the sex of the household head. These two covariates were
also found important in explaining under-five child mor-
tality rates by [49] using the Cox proportional hazards
models.

Dataset 2
Figure 7, presents results of variable importance from
RSF1 and RSF2 on Dataset 2. The covariates are ranked
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Fig. 5 Variable importance scores obtained from RSF1 and RSF2 model on Dataset 1

Fig. 6 Variable importance scores obtained under CIF model on Dataset 1
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Fig. 7 Variable importance obtained from fitting RSF1 and RSF2 model on Dataset 2

according to their degree of importance in RSF1. The
combined HIV/ART status is ranked most important
among the covariates considered in predicting the time to
death of patients with XDR TB in both random survival
forest models. Age at diagnosis and specific prescribed
drugs (Isoniazid, Amoxicillin and Clofazamine) are also

ranked highly important. The same drugs were found to
be predictive in the multivariate Cox analysis [47].
The results obtained from fitting the CIF model on the

same dataset in Fig. 8, indicate that the age at diagnosis
and HIV/ART status are again highly associated with the
outcome.

Fig. 8 Variable importance obtained under CIF model on Dataset 2



Nasejje et al. BMCMedical ResearchMethodology  (2017) 17:115 Page 14 of 17

The three survival forest models give similar results in
determining the factors affecting the survival of patients
with XDR TB.

Results on real datasets
For each survival forests, 100 trees were built and this
was repeated 50 times. For each repetition, bootstrapped-
cross-validated integrated brier scores were recorded. The
results on predictive performance of all the models used
in this study on Dataset 1 and Dataset 2 is shown in Fig. 9.
Overall, the three models show a good predictive perfor-
mance on the two real datasets as shown in Fig. 9. On
Dataset 1, the conditional inference forest model has the
lowest prediction error values compared to the two ran-
dom survival forest models. On Dataset 2, however, the
two random survival forest model are at par in predic-
tive performance compared to the conditional inference
forests model. Infact the prediction error values of the
three models are all positively skewed. These results on

the predictive performance of the three survival forest
models confirm that the CIF model is superior in pre-
dictive performance to the two random survival forest
models on the real survival dataset with covariates that
have many split-points. The study also shows that the
CIF model and the two random survival forests are com-
parable in predictive performance on real time-to-event
datasets with covariates that have fewer split-points. Sim-
ilar results were obtained from the simulation study.

Discussion and conclusions
In this study, we compared the predictive performance
of three survival forests models on twenty-two simu-
lated time-to-event datasets and two real time-to-event
datasets. First, eighteen datasets were simulated to have
covariate properties of interest that is, fewer split-points
vs many split-points. Four more time-to-event datasets
with covariate interactions were also simulated. The first
two forest models are random survival forests models with

Fig. 9 The predictive performance of the two random survival forest models and the conditional inference forest model on Dataset 1 and 2
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trees built based on the log-rank and the log-rank score
split-rule, respectively. The third survival forest model
consists of conditional inference trees.
The results from comparing the predictive performance

on three survival forest models on simulated time-to-
event datasets indicate that the three random survival for-
est models have a good predictive performance. Despite
this fact, the study has shown that there are some vari-
ations in predictive performance for these three mod-
els in the presence of covariates with many vs those
with fewer split-points. The study suggests that condi-
tional inference forests are superior in predictive per-
formance to random survival forests on time-to-event
datasets with polytomous covariates. The results also
indicate that the three models are comparable in predic-
tive performance on time-to-event datasets with categor-
ical covariates that are binary in nature. The superiority
in performance of the CIF model is likely due to the
way it handles the split variable and the split point
selection especially in the presence of covariates with
many split-points. These results are similar to those from
the simulation study. This study therefore confirms the
results that conditional inference forests are desirable
in analysing time-to-event data consisting of covariates
with many split-points. This results is therefore in agree-
ment with the assertion made from a study by [28]
that the CIF model is desirable in analysing time-to-
event data in the presence of covariates with many split
points.
The main finding of this study is that random survival

forests perform comparably to conditional inference
forests in analysing time-to-event data consisting of
covariates with few split-points and that conditional infer-
ence forests are desirable in situations where the data
consists of covariates with many split-points. It is there-
fore important for researchers to select the best survival
forest model to analyse any time-to-event dataset based
on the nature of its covariates.
Note that the conditional inference forest for time-to-

event analysis and random survival forests have a differ-
ence in the way they calculate the predicted time-to-event
probabilities and it is not yet clear whether this has an
influence on their overall predictive performance [19].
The CIF model utilizes a weighted Kaplan-Meier esti-
mate based on all subjects from the training dataset and
it therefore put more weight on terminal nodes where
there is a large number of subjects at risk whereas ran-
dom survival forests use equal weights on all terminal
nodes. Further studies need to be done to understand
whether this property has an influence on the predictive
performance of these models.
The limitation of this study is that we used random sur-

vival forest models that consists of survival trees based
on the log-rank split-rule. Recent studies have raised

concerns that since the log-rank split-rule is based on
the proportional hazards assumption, it may negatively
affect the predictive performance of the survival forest
model. A recent study has recommended the use of the
integrated absolute difference between the two daughter
nodes survival functions as the splitting rule especially
in circumstances when the hazard functions cross [50].
Further studies would therefore compare the predictive
performance of the CIF model to robust random sur-
vival forest models resulting from using robust split-rules
especially in the presence of covariates that violate the
PH assumption. Another limitation of the study is that
the real datasets used had missing data and we assumed
that the data was missing completely at random. Only a
complete case analysis was considered which negatively
affect outcomes.
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