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Abstract 25 
 26 
Assessing the taxonomic composition of metagenomic samples is an important first step in 27 
understanding the biology and ecology of microbial communities in complex environments. Despite a 28 
wealth of algorithms and tools for metagenomic classification, relatively little effort has been put into 29 
the critical task of improving the quality of reference indices to which metagenomic reads are 30 
assigned. Here, we inferred the taxonomic composition of 404 publicly available metagenomes from 31 
human, marine and soil environments, using custom index databases modified according to two 32 
factors: the number of reference genomes used to build the databases, and the monophyletic strictness 33 
of species definitions. Index databases built following the NCBI taxonomic system were also 34 
compared to others using Genome Taxonomy Database (GTDB) taxonomic redefinitions. We 35 
observed a considerable increase in the rate of read classification using modified reference index 36 
databases as compared to a default NCBI RefSeq database, with up to a 4.4-, 6.4- and 2.2-fold 37 
increase in classified reads per sample for human, marine and soil metagenomes, respectively. 38 
Importantly, targeted correction for 70 common human pathogens and bacterial genera in the index 39 
database increased their specific detection levels in human metagenomes. We also show the choice of 40 
index database can influence downstream diversity and distance estimates for microbiome data. 41 
Overall, the study shows a large amount of accessible information in metagenomes remains 42 
unexploited using current methods, and that the same data analysed using different index databases 43 
could potentially lead to different conclusions. These results have implications for the power and 44 
design of individual microbiome studies, and for comparison and meta-analysis of microbiome 45 
datasets. 46 
  47 
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Introduction 48 
 49 
For more than 3 billion years, microbes have established complex ecological niches in environments 50 
and hosts throughout the planet. This makes them ubiquitous components of biogeochemical cycles 51 
on land [1], in the sea [2], the atmosphere [3], and on or inside other living organisms [4, 5] including 52 
humans, in which they are important for development and health [6, 7]. However, technical 53 
constraints limit our ability to study the ecology of microorganisms, in particular the widespread lack 54 
of suitable culturing methods [8]. An important advance in the analysis of microbial communities has 55 
been the use of sequence-based, culture-independent methods to study the diversity and composition 56 
of clinical and environmental samples and their biological functions. The increasing affordability of 57 
high-throughput sequencing has led to an increase in metagenomics studies, in which a sample’s total 58 
extracted DNA can be sequenced as a whole. Accurately determining and quantifying the taxonomic 59 
composition of a metagenome is a critical first step in many analyses, such as the association with 60 
host phenotype, host genotype, disease status or environmental properties. 61 
 62 
Metagenomic classification begins with the accurate assignment of sequencing reads to a reference 63 
database, or “index”, comprising reference genomes and their corresponding taxonomic definitions. A 64 
wealth of metagenomic classification algorithms have been developed in the last few years [4, 9-16], 65 
mainly focusing on improving classification speed and memory usage, including popular methods 66 
such as Kraken [17, 18] or Centrifuge [19]. A given read sequence may be shared among closely-67 
related species, particularly when the read length is short, and so classifiers can assign reads to the last 68 
common ancestor (LCA) of all taxa sharing their sequence (“LCA-classification”). Despite the 69 
development of ever-more efficient classifying algorithms and tools, comparatively little has been 70 
done to improve the quality of the reference indices used to define the taxa to which reads are 71 
assigned. Recent efforts showed that the addition of new genomes to NCBI RefSeq could influence 72 
metagenomic classification performance, with indices built on most recent releases of NCBI RefSeq 73 
able to classify more reads overall, but fewer at the species level [20]. Generally, most methods and 74 
studies use a selection of representative, often complete genomes from curated repositories to build 75 
indices from all described bacteria and archaea using their reported taxonomic definitions [16, 21], 76 
typically NCBI RefSeq [22] for whole representative genomes, and SILVA, Greengenes, or RDP [23] 77 
for 16S rRNA-based studies.  78 
 79 
Defining accurate monophyletic bacterial species boundaries has always been a challenge. Bacterial 80 
taxonomy has historically been defined using imprecise biochemical or ecological phenotypes, with 81 
more recent genotyping studies offering numerous examples of clustered “species” previously thought 82 
to be distinct, and vice versa [24-27]. As a result, microbial taxonomies in reference repositories are 83 
riddled with inconsistencies, with described taxa often forming polyphyletic groupings [28, 29], 84 
necessitating reconciliation between microbial systematics and genomics [30]. This has recently been 85 
addressed by redefining taxonomic definitions using a phylogenetic depth coefficient inferred from a 86 
robust prokaryotic phylogeny [28]. This effort, summarised in the Genome Taxonomy Database 87 
(GTDB), aims to define strictly monophyletic species groups of equivalent phylogenetic depth. It 88 
produced a wealth of novel definitions at various taxonomic levels of the microbial tree of life, 89 
redefining approximately 58% of all previous NCBI-based taxonomic definitions [28]. 90 
 91 
Most classification tools will recommend the use of default indices, built using a set of complete 92 
genomes from NCBI RefSeq. In this study, we assessed the potential for improvement and addressed 93 
the following questions: does the choice of reference index affect the performance of metagenomic 94 
classification? Does the addition of draft reference genome sequences improve classification? Should 95 
we use default NCBI-based indices, custom human microbiome-enhanced indices; or GTDB-based 96 
indices? Is the inclusion of metagenome-assembled genomes (MAGs) beneficial? Is the strict 97 
monophyly of taxonomic definitions in indices important for classification performance? To answer 98 
these questions, we created seven custom indices (Table 1) using NCBI-based and GTDB-based 99 
taxonomic definitions, and examined their classification performance on samples from three diverse 100 
and representative metagenomic datasets: human body sites, marine and soil. Our work addresses the 101 
metagenomic classification bias, whereby sequencing reads for particular taxa are present in 102 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/712166doi: bioRxiv preprint first posted online Jul. 23, 2019; 

http://dx.doi.org/10.1101/712166
http://creativecommons.org/licenses/by-nc-nd/4.0/


metagenomics data but remain unclassified using current methods and recommendations. This has 103 
important consequences for the classification of metagenomic datasets and downstream applications 104 
such as microbiome-wide association studies. 105 
 106 
Results 107 
 108 
Substantial improvements in classification performance can be achieved using larger indices  109 
To examine the impact of custom indices on metagenomic classification performance, we classified 110 
404 metagenomic samples from three different datasets using seven custom indices (Figure S1, Table 111 
1) and quantified the proportion of reads per sample that were classified to any taxon and the 112 
proportion that remained unclassified (Figure 1, Figure S2). Our custom index databases were 113 
corrected for two distinct factors: (a) number of reference genomes for each species used to build the 114 
index, and (b) strict monophyletic species definition for these reference genomes (Table 1). We 115 
observed a drastic improvement in classification performance using custom indices, built with more 116 
reference genomes, i.e. the greater the number of reference genomes used to build the index, the 117 
greater the proportion of reads classified (Figure 1A-C). This effect was not associated with 118 
sequencing depth (Figure S3). For instance, using the NCBI_r88_Human17k index on human 119 
metagenomes, which includes only 1.67-fold more genomes than NCBI_r88 (selectively chosen from 120 
70 known human microbiome taxa) and monophyly correction (Table 1), the median proportion of 121 
classified reads per sample increased from 54.7% to 76.5%. The index built with the largest number 122 
of genomes, GTDB_r86_46k, consistently classified the most reads in every sample tested. The 123 
increase in the median percentage of classified reads per sample from a default NCBI_r86 124 
classification for human metagenomes was from 53.6% to 91.3% (median increase of +69.4%; range 125 
of +3.9% to +342.8%) (Figure S2A, Table S2, Table S3). Similarly, the increase in classified reads 126 
per sample for marine metagenomes was from a median of 14.1% to a median of 55.2% (median 127 
increase of +276.2%; range of +94.6% to +536.3%); and in soil metagenomes from 33.2% to 66.3% 128 
(median increase of +100.7% reads/sample; range of +85.7% to +120.6%) (Figure S2B-C, Table S2, 129 
Table S3). 130 
 131 
We next show that the number of reference genomes rather than strict monophyly of the index 132 
database led to increased classification rate. To do so, we compared two indices built using the same 133 
reference genomes with (GTDB_r86_8.6k) and without (NCBI_r86) strict monophyletic definitions. 134 
When considering all three datasets together, the proportion of unclassified and classified 135 
reads/sample were nearly identical using GTDB_r86_8.6k over NCBI_r86 (median increase of +71 136 
classified reads per sample, range of difference from 0 to +2,213 reads/sample, equivalent to a median 137 
increase of less than +0.0005% of total reads/sample) (Figure 1, Table S2, Table S3), indicating that 138 
strict monophyly alone does not substantially affect classification rate. On the other hand, the 139 
comparison of classification performance using GTDB_r86 vs GTDB_r86_46k captures the effect of 140 
adding reference genomes (28,560 vs 46,006 total genomes, respectively) to two similarly 141 
monophyletic indices. When compared to GTDB_r86, GTDB_r86_46k produced more classified 142 
reads in almost every (402/404) human and environmental sample tested (Figure 1, Figure S2, Table 143 
S2, Table S3), with median percentage change in classified reads/sample of +2.7% in human samples 144 
(range of –5.6% to +18.7%), +3.2% reads/sample in marine metagenomes (range of +1.8% to +5.0%) 145 
and +2.1% (range of +1.9% to +2.3%) in soil metagenomes.  146 
 147 
In human samples, a median of 8.6% of total reads/sample (range of 0.9% to 31.6%) (Table S2) 148 
remained unclassified even when using our best corrected index GTDB_r86_46k. To investigate what 149 
these remaining unclassified reads are, we reclassified them using a pre-computed index based on the 150 
nucleotide (nt) database of NCBI, which excludes any whole genome sequence from the WGS or 151 
RefSeq databases but includes sequences from all taxonomic domains of life (results in Figure S4). 152 
The large majority of these reads remained unclassified (~8.5% of total reads/sample); a substantial 153 
proportion were attributed to eukaryotic (~0.86% of total reads/sample) and viral (~0.16% of total 154 
reads/sample) taxa, which are not included in the custom indices used in this study (Figure S4). 155 
Notably, ~1.1% of all reads/sample were still attributed to Bacteria and Archaea (Figure S4). As the 156 
nt database of NCBI excludes reference genomes from WGS and RefSeq, this classification reflects 157 
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either the presence of genomic fragments in the nt database that are not in WGS of RefSeq, or that 158 
these reads mapped to rarer genomic variants that were not included in the 46,006 representative 159 
genomes from the GTDB_r86_46k index. As a very small fraction of these unclassified reads were 160 
prokaryotic, this result suggests that the GTDB_r86_46k index is much more likely to capture and 161 
classify most accessible prokaryotic reads from human metagenomes than default methods. 162 
 163 
Classification to lower taxonomic ranks is increased and more accurate using larger indices 164 
The interpretation of metagenomics data often focuses on lower taxonomic levels, typically genus- 165 
and species-level. We compared the taxonomic levels of lowest-common-ancestor (LCA) read 166 
classification between the different indices (Figure 1D-F, Table S4-S5). The observed trend in all 167 
three datasets was that as indices included more reference genomes, more reads were classified to 168 
genus and species level (Figure 1D-F, Table S4-S5). In particular, GTDB_r86_46k index showed a 169 
greater proportion of reads from human samples classified to genus (median increase of +387.2% in 170 
reads/sample; range of –22.4% to +3914.7%) and species level (median increase of +44.4% 171 
reads/sample; range of –31.6% to +371.7%), as compared with the default NCBI_r86 index (Figure 172 
1D, Table S4-S5). For marine samples, corresponding median increases using GTDB_r86_46k were 173 
+503.4% reads classified to genus/sample (range of +68.1% to +1124.9%) and +269.2% reads 174 
classified to species/sample (range of +64.3% to +567.2%) (Figure 1E, Table S4-S5); and +113.4% 175 
reads classified to genus/sample (range of +98.8% to +140.0%) and +90.9% reads classified to 176 
species/sample (range of +71.4% to +114.8%), for soil samples (Figure 1F, Table S4-S5).  177 
 178 
Interestingly, of the two best performing indices, GTDB_r86 (built with almost 18,000 less reference 179 
genomes than GTDB_r86_46k) classified a median of –28.1% less reads/sample (range of –70.3% to 180 
+70.7%) at the genus level, but a median of +3.7% more reads/sample (range of –17.1% to +28.7%) 181 
more reads at the species level than GTDB_r86_46k in human samples (Figure 1D-F, Table S4-S5). 182 
A similar trend was observed in marine and soil samples (Table S4-S5). This is likely because the 183 
larger the index, the greater the likelihood it includes genomes from two different species that share 184 
genes via recent horizontal transfer, which renders those gene sequences ambiguous at the species 185 
level so that they can be attributed to their LCA only. In this way, the largest index GTDB_r86_46k 186 
can be considered to offer a more accurate representation of taxonomic classification, with ambiguous 187 
reads being accurately attributed to the LCA rather than erroneously to a single species. 188 
 189 
The specific composition of corrected indices affects classification performance and detection 190 
levels of specific taxa 191 
Unsurprisingly, the specific composition of reference genomes in custom indices affected 192 
classification performance. To demonstrate this, we expanded the default NCBI_r88 index by 193 
increasing the coverage of 70 human-associated bacterial genera (including pathogens) by 6,819 194 
reference genomes and also correcting monophyly for these genera (to produce the 195 
NCBI_r88_Human17k index; Table 1, File S1). This expansion of the index from NCBI_r88 had a 196 
significantly greater impact on the overall read classification rate for the human metagenomes (mean 197 
increase of +44.3% reads/sample; mean range of +0.5% to +249.3%) compared to the environmental 198 
metagenomes (mean of +21.2% and +7.0% reads/sample for marine and soil samples, respectively; 199 
p<0.0001, D=0.3355; Kolmogorov-Smirnov test on human vs. environmental per-sample increase 200 
percentage distributions) (Table S3-S4). The effect was also clear at both genus and species levels, 201 
with mean increases of +181.1% (genus) and +36.4% (species) in human samples compared to mean 202 
increases of +28.8% and +10.0% (genus), and +19.2% and +6.5% (species) in marine and soil 203 
samples, respectively (Figure 1D-F, Table S3-S4). 204 
 205 
Specifically, we also observed that 63/70 (90%) of the genera expanded in the NCBI_r88_Human17k 206 
index could be classified and detected in human metagenomes at a higher level using this index 207 
compared to the default NCBI_r88 index (Figure S5). Pseudomonas, Enterobacter, Butyrivibrio, 208 
Lactobacillus, Alistipes, Moraxella, Parabacteroides and Faecalibacterium were amongst the genera 209 
with the most significant improvement in detection levels using the expanded index database in HMP 210 
metagenomes (Figure S5). The detection levels for common human pathogens, including Yersinia, 211 
Clostridium, Helicobacter or Acinetobacter, were also improved when using NCBI_r88_Human17k 212 
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(Figure S5B). In human samples, up to 20% of all reads that remained unclassified using NCBI_r88 213 
but that could be classified using NCBI_r88_Human17k belonged to Prevotella and Bacteroides, the 214 
rest being attributed to a variety of other genera (Figure S5C, S5D). When examining particular 215 
species of interest, the detection of Lactobacillus crispatus in vaginal samples, Haemophilus 216 
parainfluenzae, Campylobacter concisus and Campylobacter showae in buccal and throat samples, 217 
were particularly improved by the use of the corrected NCBI_r88_Human17k index, along with 218 
numerous distinct species of Prevotella, Bacteroides and Alistipes in samples from various body sites 219 
(Figure S5C, S5D). Our results demonstrate that increasing the number of reference genomes for 220 
specific genera of interest can substantially improve their detection levels. 221 
 222 
Impact of metagenome-assembled genomes on classification performance 223 
The recently published GTDB taxonomic system (release 86.0) includes 3,087 metagenome-224 
assembled genomes (MAGs) in the taxonomic redefinition of the prokaryotic tree of life [28]. We 225 
assessed whether the addition of these potentially new taxa to a reference index improved 226 
metagenomic classification on the human, marine and soil test datasets. The addition of 3,087 MAGs 227 
to GTDB increased the proportion of reads classified by mean +0.72% (human), +0.63% (marine) and 228 
+0.51% (soil) (GTDB_r86_noMAGs vs GTDB_r86 index; Figure 1, Figure S2, Table S2-S3). These 229 
results show that adding MAGs to index databases can in principle increase classification 230 
performance. However, this increase was limited in our test, likely because the MAGs included in 231 
GTDB release 86.0 do not capture many novel sequences from the microbiomes analysed (human, 232 
marine, and soil). 233 
 234 
GTDB-based species definitions affect taxonomic composition, abundance and diversity metrics, 235 
downstream analyses and interpretation from metagenomic studies 236 
The use of corrected indices had a substantial effect on downstream metagenomic analyses. We 237 
compared the 30 most abundant taxa for HMP samples at the family, genus and species levels, from 238 
classifications using NCBI_r88, NCBI_r88_Human17k and GTDB_r86_46k (Figure 2, Figure S6). 239 
A total of 19 (63%) families, 15 (50%) genera and 7 (23%) species appeared in the top 30 taxa using 240 
all three indices. Thus, the higher the taxonomic order examined, the more agreement across index 241 
databases (Figure 2A, Figure S6). Notably, even for taxa in the top 30 using all three indices, the 242 
order of abundance varied substantially (Figure 2B, Figure S6). Some of this variation was 243 
attributable to many taxa having been reclassified and renamed in the larger, monophyly-corrected 244 
databases (particularly GTDB_r86_46k, see yellow bars in Figure 2A). The increased taxonomic 245 
granularity within the GTDB system sometimes led to previously common taxa being divided and 246 
redefined as multiple different sub-lineages, each with a distinct taxon name. However, there were 247 
also differences in the relative abundances of top 30 taxa that were not explained by this (Figure S7). 248 
For example, the relative abundance rank of families Porphyromonadaceae and Corynebacteriaceae 249 
were reversed using NCBI_r88 vs. GTDB_r86_46k, as were the genera Lactobacillus and 250 
Bifidobacterium, and the species Bacteroides fragilis and Bacteroides thetaiotaomicron (Figure S7).  251 
 252 
Alpha diversity (within-sample diversity), which has been associated with various phenotypes in 253 
different microbiomes [6, 31-33], is estimated directly from taxonomic composition data and 254 
therefore showed significant differences between indices. We compared three alpha-diversity metrics 255 
at the genus level (observed genus richness, genus evenness and Shannon index at the genus level), 256 
calculated from taxonomic composition tables summarised at the genus level based on classifications 257 
of the same test data sets but using seven different index databases (Figure 3). As expected, the large 258 
GTDB-based indices showed a much higher richness, but also had an effect on the evenness of genus 259 
distribution, especially in marine metagenomes, which affected Shannon diversity index distribution 260 
(Figure 3). Notably the effect of index database on alpha diversity values varied between samples, 261 
with some increasing in value and others decreasing. In some cases these differences were substantive 262 
enough to alter the results of statistical tests for difference in alpha diversity between samples from 263 
different body sites (Figure 3B, Table S6). For example, in our subset of the HMP dataset, faecal 264 
samples were found to have significantly lower Shannon diversity than buccal samples when using 265 
the NCBI_r86 index (median of 1.44 [IQR 1.03-2.25] vs median of 2.41 [IQR 2.02-2.70] respectively, 266 
p=0.027) (Table S6). A similar result was obtained using NCBI_r88 index (Table S6). However no 267 
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such differences were found between faecal and buccal samples when Shannon diversity was 268 
calculated using any of the GTDB-based indices (median of 2.09 [IQR 1.62-2.83] vs median of 2.59 269 
[IQR 2.16-2.90] respectively, p=0.999 using GTDB_r86_8.6k) (Table S6). The situation was 270 
reversed when comparing Shannon diversity for faecal and skin samples, with significant differences 271 
obtained using GTDB_r86_8.6k (median of 2.09 [IQR 1.62-2.83] vs median of 0.81 [IQR 0.63-1.12], 272 
p=0.001) but not using NCBI_r86 (median of 1.44 [IQR 1.03-2.25] vs median of 0.77 [IQR 0.63-273 
1.12], p=0.965) (Table S6). 274 
 275 
We also examined the effect of index database choice on beta-diversity, or between-sample diversity 276 
assessed by calculating Bray-Curtis dissimilarity between groups of samples from different sources 277 
(Figure S8, S9, S10, Table S7). The effect on beta-diversity was more subtle than for alpha diversity, 278 
with the large GTDB indices yielding greater distance estimates between groups of samples that were 279 
already dissimilar using default methods (dissimilarity above 80%; Figure S8, S9), but did not 280 
significantly alter the overall clustering patterns (Figure S10). 281 
 282 
 283 
Discussion 284 
 285 
Considerable efforts have been made to improve methods for detection of taxonomic and functional 286 
markers in complex metagenomic samples, including increasing sequencing depth, optimising 287 
classification algorithms and developing more accurate de novo metagenome assembly tools. In this 288 
study, we showed that the index database is a major source of variation in classification performance 289 
and has significant ramifications for downstream analyses, which may be substantive enough to 290 
change study conclusions (e.g. alpha diversity). Commonly utilised index databases lead to sub-291 
optimal taxonomic classification, with a minority of some read sets being classified. Increasing the 292 
number of phylogenetically consistent reference genomes in an index database in either a broad or 293 
targeted manner had consistently positive effects on increasing the proportion of reads classified 294 
(sometimes several fold higher) and classification to greater taxonomic resolution. To facilitate 295 
metagenomic analyses without the need for deeper sequencing or de novo assembly, we make freely 296 
available these improved index databases (https://github.com/rrwick/Metagenomics-Index-297 
Correction) for two commonly-used classifiers, Centrifuge and Kraken2 and the tools to construct 298 
them as NCBI RefSeq and GTDB expand. 299 
 300 
We found that large indices built using recently developed and largely phylogenetically-coherent 301 
taxonomic species definitions, such as GTDB [28], greatly increased the number of classified reads. 302 
Our results suggest that more coherent taxonomic definitions and accurate taxonomic boundaries, 303 
such as those proposed within GTDB, may improve statistical power and biological interpretation of 304 
subsequent results, particularly those for compositional and diversity analyses (summarised in Figure 305 
4). This results in greater taxon granularity, i.e. smaller, more discrete clades of similar phylogenetic 306 
depth than commonly known phylogroups, which increases classification accuracy and may improve 307 
downstream applications, such as association analysis for particular traits. For example, in 308 
microbiome-wide association studies using large cohorts, a weak association with a poorly-defined 309 
lineage may be caused by a strong association with a well-defined subset of the poorly-defined 310 
lineage (Figure 4). Furthermore, at a fixed confidence level, increasing the classification rate of a 311 
metagenomic sample offers a more accurate representation of its microbial diversity and may, as we 312 
have shown, affect study conclusions. As such, the approach we propose here facilitates improved 313 
metagenomic analysis across the full spectrum of sequencing depths. In particular, our results may 314 
facilitate “shallow sequencing” metagenomics [34] by maximising the extraction of taxonomic 315 
information from samples sequenced at lower depth, thus enabling more cost-effective comparison of 316 
thousands or tens of thousands of samples in large-scale metagenomic and multi-omics studies. 317 
Lastly, our study shows the importance of consistency in index database when comparing results 318 
across studies. Differences in reference genomes and taxonomic coherence may introduce artefacts 319 
when integrating metagenomic data across studies, and therefore care should be taken when 320 
performing combined or meta-analyses. 321 
 322 
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 323 
Material and Methods 324 
 325 
Description of corrected index databases 326 
 327 
Seven different indices, ranging in size from 8674 to 46,006 complete genomes, were built to 328 
compare the effect of various factors on metagenomic classification performance (Table 1). As the 329 
focus of this study was not to compare the performance of specific metagenomic classifier tools 330 
themselves, but rather to evaluate the impact of custom indices on metagenomic classification, we 331 
picked a recently developed classifier, Centrifuge [19], on the basis of an easy-to-use index 332 
customisation pipeline, fast metagenomic classification performance and lower RAM usage than 333 
alternative tools. Centrifuge allows for the building of custom indices (via the centrifuge-build 334 
indexer), taking as input a set of sequences with taxonomic labels and a ranked taxonomic tree 335 
describing the relationships between those labels.  336 
 337 
The NCBI_r86 and NCBI_r88 indices were built from the default collections of complete bacterial 338 
and archaeal genomes from NCBI RefSeq releases 86 (n=8,674 genomes) and 88 (n=10,089 339 
genomes), respectively, using the NCBI taxonomy tree. The NCBI_r88_Human17k index was based 340 
on the NCBI_r88 index, with the addition of 6819 further reference genomes from NCBI GenBank 341 
plus manual curation of the taxonomy for 70 common human commensal and pathogenic bacterial 342 
genera (File S1). We used the Bacsort pipeline (https://github.com/rrwick/Bacsort) to manually curate 343 
the taxonomy within each of these 70 genera to enforce strict monophyly. We also built four indices 344 
using the GTDB taxonomic system (Table 1). GTDB is based on curation of >125,000 whole genome 345 
sequences sourced from NCBI RefSeq and metagenome-assembled genomes (MAGs); but with 346 
taxonomic labels and tree re-defined based on phylogenetic relationships inferred from the 347 
concatenation of 120 proteins and enforcing strict monophyly [28]. We built the GTDB_r86 index 348 
from the default GTDB release 86 set of 28,941 dereplicated bacterial and archaeal genomes 349 
representative of the GTDB taxonomy [28], “dereplication” being defined as the selection of 350 
reference genomes representative of phylogenetic similarity clusters [28]. In the original GTDB 351 
publication and website, two genomes were found to be “replicates” when a set of conditions were 352 
met, typically when their Mash distance was ≤0.05 (∼ANI of 95%) [4]. The GTDB_r86_8.6k index 353 
was built using the exact same 8,674 complete reference genomes as for NCBI_r86, but using the 354 
taxonomic labels and trees assigned by GTDB. The GTDB_r86_noMAGs index was built exactly like 355 
GTDB_r86, but excluding all 3,087 metagenome-assembled genomes (MAGs) identified in GTDB 356 
release 86. Finally, the GTDB_r86_46k index was built using a lower Mash threshold for 357 
dereplication than in the default GTDB_r86 set. Specifically, this index included a total of 46,006 358 
reference genomes (18,634 more than GTDB_r86), each representative of similarity clusters defined 359 
using a Mash [10] distance threshold of ≤0.005 (~ANI of 99.5%). The tax_from_gtdb.py and 360 
dereplicate_assembly.py scripts are available in https://github.com/rrwick/Metagenomics-Index-361 
Correction with instructions. 362 
 363 
Metagenomic datasets 364 
 365 
We used a total of 404 publicly available metagenomes representing a variety of commonly-studied 366 
environments: human body sites, marine and soil environments (Table S1, Figure S1). Human 367 
samples were from the WGS-PP1 study of the Human Microbiome Project (HMP) and obtained 368 
through the HMPDACC.org website [9]. HMP samples were chosen with the following 369 
considerations: we kept a representative proportion of each body site represented in the WGS-PP1 370 
study, we did not subset a body site source with less than five samples, and we excluded samples with 371 
a high (>90%) proportion of low quality reads and samples with low sequencing depth. A total of 98 372 
representative samples were selected, corresponding to ~9.2% (n=98/1067) of the HMP WGS-PP1 373 
study. A total of 246 marine metagenomic samples were isolated from a range of locations in 374 
epipelagic and mesopelagic waters around the world as part of the TARA Oceans survey [35, 36], and 375 
were downloaded from the EBI repository (study MGYS00002008; BioProject PRJEB1787). A total 376 
of 60 soil metagenomes were sampled in a recent study from meadows ground at various depths [37], 377 
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and were obtained from NCBI BioProject PRJNA449266. Accessions for all readsets are listed in 378 
Table S1. 379 
 380 
Assessment of metagenomic classification performance  381 
 382 
For all classifications, we ran Centrifuge version 1.0.4 [19] on a Linux x86 cluster with 16 cores and 383 
128 GB of RAM allocated for each sample classification. The run time ranged from 11 to 45 minutes 384 
per metagenomic sample, depending on the index used for classification and the sequencing depth of 385 
the sample. Classification reports were built from the resulting output files using the centrifuge-386 
kreport tool, and reports were visualised and exported using Pavian version 0.8.1 [38] and custom-387 
made scripts, available at https://github.com/rrwick/Metagenomics-Index-Correction.  388 
 389 
Classification performance was assessed by first comparing the number of unclassified and classified 390 
reads per sample for each index database used. This provides an unambiguous way to measure how 391 
much of the total microbial information present in each sample can be classified. We also compared 392 
the taxonomic ranks to which reads were assigned using each index. It should be noted that the NCBI 393 
prokaryotic taxonomic system includes many additional and ambiguous taxonomic ranks that are not 394 
present in GTDB, such as “subphylum”, “infraclass”, “superclass”, “subtribe” or “strain”. To make 395 
results comparable between taxonomic systems, reads were always attributed and reported to the LCA 396 
of the standard ranks: phylum, class, order, family, genus and species.  397 
 398 
A pre-compiled index based on the nucleotide (nt) database is available from the Centrifuge website 399 
(http://www.ccb.jhu.edu/software/centrifuge/, compiled on 03/03/2018). This database includes all 400 
traditional divisions of GenBank, EMBL and DDBJ, and thus includes eukaryotic and viral sequences 401 
in addition to prokaryotes. However, the nt database excludes the WGS section of GenBank, which 402 
should have a negative impact on the determination of accurate species-specific microbial markers. 403 
Accordingly, we observed that the classification of 10 random HMP metagenomes using nt resulted in 404 
more unclassified reads than when using GTDB_r86_46k (data not shown). To investigate the origin 405 
of the reads which were unclassified by the GTDB_r86_46k index (the best-performing custom index 406 
in this study), we reclassified them using the nt database. 407 
 408 
Finally, we assessed the effect of using different indices on commonly-used ecological diversity 409 
metrics. The calculation of alpha and beta diversity estimates (observed genus richness, genus 410 
evenness, Shannon diversity and Bray-Curtis dissimilarity at the genus level) was performed using the 411 
R package phyloseq version 1.24.2 [39]. 412 
 413 
Custom scripts and pre-computed index databases availability 414 
 415 
A collection of scripts used to prepare, compare and analyse Centrifuge classifications using custom 416 
index databases, either based on default NCBI or GTDB taxonomic systems, is available at: 417 
https://github.com/rrwick/Metagenomics-Index-Correction with instructions. Pre-computed versions 418 
of the NCBI_r88_Human17k and GTDB_r86_46k indices suitable for use with Centrifuge [19], 419 
Kraken1 [18], Kraken2 (https://ccb.jhu.edu/software/kraken2/) and their variants (KrakenUniq [17], 420 
LiveKraken [40]), are freely available to from: 421 
https://monash.figshare.com/projects/Metagenomics_Index_Correction/65534. 422 
  423 
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Figure and table legends 443 
 444 
Table 1. Description of the seven classification indices used in this study. The release numbers 445 
correspond to NCBI RefSeq releases of genomes from which the reference genomes used to build 446 
indices were obtained. 447 
 448 
Figure 1. Large index databases substantially improve metagenomic classification performance 449 
and accuracy, including at lower taxonomic levels. Sequencing reads from three datasets (HMP 450 
samples, n=98; TARA Oceans samples, n=246; meadow soil samples, n=60) were classified using the 451 
seven index databases presented in Table 1. Boxplots (Tukey) show the distribution of the proportion 452 
of unclassified and classified reads/samples for human samples (A), marine samples (B) and soil 453 
samples (C) using seven indices (y-axis) is shown for each index size (x-axis), defined as the number 454 
of reference genomes used to build the index. Distributions of the breakdown of read classification to 455 
the two lowest taxonomic levels (genus, species) for human samples (D), marine samples (E) and soil 456 
samples (F) are shown for the NCBI_r86 default index (light blue), two indices based on NCBI_r88 457 
(NCBI_r88 in green and NCBI_r88_Human17k in pink) and two indices based on GTDB_r86 458 
(GTDB_r86 in orange and GTDB_r86_46k in purple). 459 
 460 
Figure 2. Effect of index database correction on metagenomic composition. (A) Number of shared 461 
top 30 most abundant families, genera and species after classification of 98 HMP samples using 462 
default NCBI_r88 index and corrected NCBI_r88_Human17k and GTDB_r86_46k indices. (B) 463 
Comparisons of relative abundances (-log10 scale) between the default NCBI_r88 classification and 464 
NCBI_r88_Human17k classifications (left) and GTDB_r86_46k (right) for taxa in the top 30 most 465 
abundant of all three classifications (19 families, 15 genera and 7 species). To assess changes in rank 466 
order consistency between the classifications, Spearman’s rank correlation coefficient, and the 467 
associated p-value are shown for both comparisons of NCBI_r88_Human17k and GTDB_r86_46k 468 
classifications with NCBI_r88 for all taxa, and at each taxonomic ranks. 469 
 470 
Figure 3. Using corrected indices to classify metagenomes affects measures of alpha diversity. 471 
(A) The values of three measures of alpha diversity (observed genus richness, genus evenness and 472 
Shannon diversity index at the genus level) for each metagenomic sample from three datasets (HMP 473 
subset, TARA Oceans, Meadow soil samples) are shown. Three specific comparisons of values are 474 
presented, between NCBI_r86 and GTDB_r86_8.6k, between NCBI_r88 and NCBI_r88_Human17k 475 
and between GTDB_r86, GTDB_r86_noMAGs and GTDB_r86_46k. Each sample is represented by a 476 
line coloured by isolation phenotype. Statistical comparisons of distributions presented in this panel 477 
are shown in Table S6. (B) Effect of classification index on alpha diversity metrics comparisons 478 
between groups. The scatter plots compare the significance of ANOVA tests on all alpha-diversity 479 
measures for each of three comparisons, P-values using Dunn’s multiple testing (with Holm’s 480 
correction). The dotted lines represent proportionality for which p-values are identical for 481 
classifications using both indices, the red lines denote the p-value threshold of 0.05 (-log10=1.301) for 482 
each index. 483 
 484 
Figure 4. Increased taxonomic granularity in classification indices can improve the 485 
interpretation of microbiome-wide association studies. (A) Increased taxonomic granularity is 486 
defined here by the accurate redefinition, splitting and merging of phylogenetically-coherent strictly-487 
monophyletic lineages, as performed using GTDB. In this example, taxon A is split into taxa A1, A2, 488 
A3 and A4, and taxon B is split into B1 and B2. (B) Example classification using two index 489 
databases, a smaller number of reference genomes with polyphyletic definitions (left) and a larger 490 
number of reference genomes with monophyletic definitions (right). (C) Example effects of index 491 
database correction on downstream analysis involving alpha-diversity metrics (left) or for 492 
microbiome-wide association studies (right).  493 
 494 
Figure S1. Description of 404 metagenomic samples used in this study. The distribution of the 495 
number of reads/sample is shown for 98 human (A), 246 marine (B) and 60 soil (C) samples, 496 
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according to various sampling information (body site for human samples, and sampling depth for 497 
marine and soil samples). 498 
 499 
Figure S2. Per-sample change (% and fold-change) in unclassified and classified reads/sample 500 
using seven default and corrected NCBI- and GTDB-based indices. Per-sample percent and fold-501 
changes are shown for the three metagenomic datasets: (A) human samples (n=98), (B) TARA 502 
Oceans samples (n=246) and (C) meadow soil samples (n=60). Values are normalised to the number 503 
of reads unclassified and classified using the default NCBI_r86 index. 504 
 505 
Figure S3. Classification improvement using corrected indices is unaffected by variations in 506 
sequencing depth. The total number of reads/sample (a proxy for sequencing depth) was plotted 507 
against the number of unclassified reads/sample using 6 default and corrected indices, for human (A), 508 
marine (B) and soil (C) metagenomes. The regression line was calculated using a linear model fit 509 
(“lm” in ggplot2 geom_smooth function)  for each index. 510 
 511 
Figure S4. Reads from human metagenomes that remained unclassified using the 512 
GTDB_r86_46k index are mostly unknown and eukaryotic. (A) Proportion of reads/sample from 513 
HMP samples (n=98) that are unclassified using GTDB_r86_46k, according to body site of isolation; 514 
(B) and (C) outcome of re-classification of these specific reads using an index based on the NCBI 515 
nucleotide database (nt; pre-computed on the 03/03/2018 and available on the Centrifuge website 516 
[http://www.ccb.jhu.edu/software/centrifuge/]) in number of reads/sample (B) and in proportion (C); 517 
(D) per-sample breakdown of domain re-classification, showing the proportion of reads attributed to 518 
Eukaryota, Bacteria, Archaea and Viruses or unclassified. 519 
 520 
Figure S5. Targeted correction for 70 specific bacterial genera increases their detection levels in 521 
human metagenomes. (A) The average number of reads classified to all 1001 different bacterial 522 
genera to which at least one read was attributed using the NCBI_r88 and the NCBI_r88_Human17k 523 
indices were compared, with the 70 specifically corrected genera were highlighted in blue while the 524 
non-corrected genera are shown in red. Any point above the line denotes genera to which more reads 525 
were classified using the NCBI_r88 index, while any point below the line denotes genera to which 526 
more reads were classified using the NCBI_r88_Human17k index. (B) Number of classified 527 
reads/sample using a default index and a targeted correction for 70 specific bacterial genera. The 70 528 
corrected genera are shown, along with their corresponding distribution of the number of classified 529 
reads/sample using NCBI_r88 (red) or NCBI_r88_Human17k (blue). The column on the right 530 
indicates the p-value and significance thresholds after Wilcoxon signed-rank tests comparing the two 531 
indices. Genera with the highest significance in difference are shown in red, orange and yellow, and 532 
non-significant differences are shown in white. (C and D) From all reads that were unclassified using 533 
NCBI_r88 but classified using NCBI_r88_Human17k, the top 30 genera (C) and species (D) to which 534 
these reads were attributed, in proportion, are shown. Boxplots of different colours denote different 535 
isolation sources, showing how body sites are differently affected by the index correction. 536 
 537 
Figure S6. Effect of index database correction on metagenomic compositional data and most 538 
abundant taxa. The 30 most relative abundant families, genera and species to which reads were 539 
attributed using three indices (default NCBI_r88 and corrected indices NCBI_r88_Human17k and 540 
GTDB_r86_46k) are shown in boxplots. The colour of the taxon name in the y-axes denotes whether 541 
the same taxon label was found to be present in the top 30 most abundant taxa after classification by 542 
all three indices (blue), by NCBI_r88 and NCBI_r88_Human17k and not GTDB_r86_46k (orange), 543 
by GTDB_r86_46k and either NCBI_r88 or NCBI_r88_Human17k (pink) or only in one index 544 
(black). In red are indicated the taxon definitions that are existing only in one index. For the 545 
comparison at the genus level, green arrows indicate whether the corresponding genus has been 546 
specifically corrected in the NCBI_r88_Human17k index. 547 
 548 
Figure S7. Comparison of metagenomic compositional data and most abundant taxa after 549 
classification with indices built from the same reference genomes taxonomically defined using 550 
NCBI- or GTDB-based definitions. The 30 most relative abundant families (A), genera (B) and 551 
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species (C) to which reads were attributed using the NCBI_r86 and GTDB_r86_8.6k indices, built 552 
with the exact same set of complete reference genomes from NCBI RefSeq release 86, are shown in 553 
boxplots. The correspondence between the top 30 most abundant taxa from the two classifications is 554 
reflected by lines between the two plots. The colouring of the lines denote taxa with an exact 555 
correspondence in both indices (plain blue) or whether the GTDB redefinition of taxa affected the 556 
correspondence (dotted red). The taxa written in red were created in GTDB. 557 
 558 
Figure S8. Effect of using corrected indices to classify metagenomes on Bray-Curtis 559 
dissimilarity between groups of HMP samples (grouped by body site isolation). (A) Bray-Curtis 560 
dissimilarity distributions are shown for pairwise group comparisons between buccal, throat, skin, 561 
faecal and vaginal samples of the HMP dataset subset (n=98) used in this study, using seven different 562 
classification indices. Coloured panels denote within-group comparisons, white panels denote 563 
between-group comparisons. (B) Visualisation of the same data, but ordered to contrast the effect of 564 
index database on pairwise group comparisons of Bray-Curtis dissimilarity. Colours represent body 565 
sites, similarly to panel A.  566 
 567 
Figure S9. Effect of using corrected indices to classify metagenomes on Bray-Curtis 568 
dissimilarity between groups of TARA Oceans and meadow soil samples (grouped by body site 569 
isolation). (A-B) Bray-Curtis dissimilarity distributions are shown for pairwise group comparisons 570 
between buccal, throat, skin, faecal and vaginal samples of the TARA Oceans dataset (n=246, panel 571 
A) and meadow soil dataset (n=60, panel B) used in this study, using seven different classification 572 
indices. Coloured panels denote within-group comparisons, white panels denote between-group 573 
comparisons. (C-D) Visualisation of the same data, but ordered to contrast the effect of index 574 
database on pairwise group comparisons of Bray-Curtis dissimilarity for TARA Oceans samples 575 
(panel C) and meadow soil samples (panel D). Statistical comparisons of distributions presented in 576 
this figure are shown in Table S7. 577 
 578 
Figure S10. Effect of using corrected indices to classify metagenomes on Bray-Curtis 579 
dissimilarity (ordination plots). Between-sample diversity was compared by calculating and 580 
ordinating Bray-Curtis distance measures for samples classified using NCBI_r88 (C, H, M), 581 
NCBI_r88_Human17k (D, I, N) and GTDB_r86_46k (E, J, O). To compare the effect of indices on 582 
beta-diversity, we performed permutational multivariate analysis of variance (PERMANOVA) on the 583 
Bray-Curtis distances to measure the association between sample information (such as isolation 584 
source for the HMP samples, or sampling depth for the marine and soil samples) and variance within 585 
the dataset, indicated in bold in panels C-E, H-J, M-O. 586 
 587 
Table S1. Sample description and accession number for 404 public human, marine and soil 588 
metagenomes used in this study. 589 
 590 
Table S2. Summary of classification outcome for three datasets using seven different index 591 
databases. The median, average, minimum and maximum values of the number and proportion of 592 
classified and unclassified reads/sample is shown for every condition. Classifications were performed 593 
using Centrifuge version 1.0.4. Detailed per-sample values are shown in Table S3. 594 
 595 
Table S3. Detailed per-sample classification outcome using samples from three datasets, after 596 
classification using seven different index databases. The number and proportion of classified and 597 
unclassified reads/sample is shown for every condition. Classifications were performed using 598 
Centrifuge version 1.0.4. A summary of these results is shown in Table S2. 599 
 600 
Table S4. Summary of classification outcome at the genus and species level for samples from 601 
three datasets using five different index databases. The median, average, minimum and maximum 602 
values of the number and proportion of classified reads/sample is shown for every condition. 603 
Classifications were performed using Centrifuge version 1.0.4. Detailed per-sample values are shown 604 
in Table S5. 605 
 606 
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Table S5. Detailed per-sample classification outcome to genus and species levels using samples 607 
from three datasets, after classification using five different index databases. The number and 608 
proportion of classified reads/sample is shown for every condition. Classifications were performed 609 
using Centrifuge version 1.0.4. A summary of these results is shown in Table S4. 610 
 611 
Table S6. Influence of index correction on the significance of differences between alpha 612 
diversity of isolation phenotype groups. Comparison of significance (p-values) from Dunn's 613 
multiple testings with Holm correction after ANOVA on three alpha diversity metrics comparisons 614 
(observed richness, evenness and Shannon diversity index) between isolation phenotype groups in 615 
three metagenomic datasets (body site for HMP samples, depth of sampling for TARA Oceans and 616 
meadow soil samples) after classification with six index databases. Specifically, the alpha diversity 617 
metric distribution between isolation group pairs were compared after classifications with NCBI_r86 618 
and GTDB_r86_8.6k, NCBI_r88 and NCBI_r88_Human17k and GTDB_r86, GTDB_r86_noMAGs 619 
and GTDB_r86_46k. 620 
 621 
Table S7. Influence of index correction on the significance of differences between beta diversity 622 
(Bray-Curtis dissimilarity) calculated between isolation phenotype groups. Comparison of 623 
significance (p-values) from Dunn's multiple testings with Holm correction after ANOVA on Bray 624 
Curtis dissimilarity comparisons between isolation phenotype groups in three metagenomic datasets 625 
(body site for HMP samples, depth of sampling for TARA Oceans and meadow soil samples) after 626 
classification with four index databases. Specifically, comparisons were between NCBI_r88 and 627 
NCBI_r88_Human17k and GTDB_r86 and GTDB_r86_46k. 628 
 629 
File S1. Description of the NCBI_r88_Human17k index database creation. Pre- and post-630 
correction Newick and XML phylogenetic trees built on hybrid FastANI/Mash distances for 9928 631 
genomes from 70 genera of interest (Acinetobacter, Alistipes, Anaerostipes, Atlantibacter, 632 
Bacteroides, Barnesiella, Bifidobacterium, Blautia, Brenneria, Buttiauxella, Butyrivibrio, 633 
Campylobacter, Cedecea, Citrobacter, Clostridium, Coprococcus, Dickeya, Dorea, Edwardsiella, 634 
Enterobacter, Erwinia, Escherichia, Eubacterium, Faecalibacterium, Haemophilus, Hafnia, 635 
Helicobacter, Intestinimonas, Izhakiella, Klebsiella, Kluyvera, Kosakonia, Lachnoclostridium, 636 
Lactobacillus, Leclercia, Lelliottia, Mangrovibacter, Moraxella, Morganella, Nissabacter, 637 
Odoribacter, Oscillibacter, Pantoea, Parabacteroides, Paraprevotella, Pectobacterium, 638 
Phascolarctobacterium, Phytobacter, Plesiomonas, Prevotella, Proteus, Providencia, 639 
Pseudescherichia, Pseudocitrobacter, Pseudomonas, Psychrobacter, Rahnella, Raoultella, Roseburia, 640 
Rosenbergiella, Rouxiella, Ruminiclostridium, Ruminococcus, Salmonella, Serratia, Siccibacter, 641 
Tatumella, Trabulsiella, Xenorhabdus and Yersinia), suitable for visualisation in Archeopteryx [41]. 642 
The species definitions for these genomes were corrected and made strictly monophyletic to create the 643 
“NCBI_r88_Human17k” index. 644 
 645 
  646 
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Table 1. Description of 7 classification indices used in this study 
   

Index name Reference database and 
taxonomic definitions used 

Description 
Total number of 

reference genomes 
included 

Strictly 
monophyletic 

species 
definitions 

NCBI_r86 NCBI RefSeq release 86 Complete microbial genomes (r86) 8674 N 

GTDB_r86_8.6k GTDB release 86 Same genomes as NCBI_8.6k but with GTDB 
taxonomic definitions, to compare effect of strict 
monophyletic definitions 

8674 Y 

NCBI_r88 NCBI RefSeq release 88 Complete microbial genomes (r88) 10089 N 

NCBI_r88_Human17k NCBI RefSeq release 88 Same as NCBI_r88 with the addition of all draft 
genomes from 70 genera of interest, strictly corrected 
for monophyly 

16908 Y (for 70 genera 
only) 

GTDB_r86_noMAGs  GTDB release 86 GTDB r86 without metagenome-assembled genomes 
(MAGs) 

25660 Y 

GTDB_r86 GTDB release 86 All dereplicated* bacterial and archaeal genomes used 
to curate the GTDB taxonomy in the GTDB study 

28560 Y 

GTDB_r86_46k GTDB release 86 Manual dereplication* of GTDB release 86 to get more 
bacterial and archaeal reference genomes with GTDB 
taxonomic definitions 

46006 Y 

* Dereplication is defined as the threshold-based selection of representative reference genomes for phylogenetically-similar clusters.   
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