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Abstract 

This thesis compares statistical methods for addressing selection bias in cost-

effectiveness analyses (CEA) that use observational data.  The thesis has four 

objectives: (1) to critically appraise currently recommended statistical methods, (2) to 

consider alternative statistical methods for CEA, (3) to compare propensity score (PS) 

approaches and Genetic Matching (GM) for estimating subgroup-effects in CEA, and 

(4) to compare methods that combine regression with PS approaches, for CEA. 

I developed a new checklist for critically appraising statistical methods for addressing 

selection bias in CEA, and applied it in a systematic review of published CEA. Most 

studies used regression or matching methods, and did not assess their underlying 

assumptions, such as the correct specification of the PS or the endpoint regression 

model. 

I identified methods that can make less restrictive assumptions: GM, a multivariate 

matching method that can directly balance covariates, double-robust (DR) methods, 

regression-adjusted matching, and machine learning estimation of the PS and the 

endpoint regression. I compared these methods across a range of typical CEA 

circumstances, using simulations and case studies. 

In the first case study, where cost-effectiveness estimates for subgroups were of interest, 

I found that the cost-effectiveness results differed according to the statistical approach. 

The accompanying simulation study found that GM was relatively robust to the 

misspecification of the PS, and provided the least biased and most precise estimates of 

cost-effectiveness for each subgroup. 
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The second simulation study considered DR methods and regression-adjusted matching 

for estimating overall cost-effectiveness and found that regression-adjusted matching 

was relatively robust to misspecification of the PS and the regression model. The third 

study extended these approaches with machine learning estimation of the PS and the 

endpoint regression, and found that bias due to misspecification could be further 

reduced. 

This thesis concludes that those approaches that relax the assumption that the statistical 

model for addressing selection bias is correctly specified, can give more accurate and 

precise estimates of cost-effectiveness than previously recommended methods. Findings 

from this thesis can improve the quality of CEA that use patient-level observational 

data, to help future studies provide a sounder basis for policy making.  
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Chapter 1 - Introduction 

1.1 Economic evaluation to inform health policy 

An important objective of health care systems is the allocation of scarce resources in 

order to maximise health gain (Gray et al., 2010). Health economic evaluation can 

address this optimisation problem,  by comparing alternative options in terms of their 

costs and consequences (Drummond et al., 2005). Health economic evaluation is 

increasingly used for centralised decision making worldwide (NICE, 2008, IQWIG, 

2009, PBAC, 2008, CADTH, 2006). 

Economic evaluation can rely on various sources of evidence, depending on the 

decision context. For example the Australian  Pharmaceutical Benefits Advisory 

Committee requires the appraisal of new pharmaceuticals and vaccines (PBAC, 2008). 

As randomised controlled trials (RCTs) are generally mandated in the drug development 

process (Glick et al., 2001), RCT evidence for such evaluations is widely available. In 

other settings, for example in the NHS in England and Wales, economic evaluation is 

used for a wider range of technologies, including medical devices, surgical procedures, 

or the development of public health guidelines. Here, RCT evidence might be 

insufficient or lacking and has to be complemented with data from non-randomised 

studies (NRS) (NICE, 2008, NICE, 2009). 

There would appear to be a consensus across methodological guidelines on several 

aspects of the study design of economic evaluations (Hjelmgren et al., 2001). These 

include the use of cost-effectiveness analysis (CEA), with health outcomes measured as 

quality adjusted life years (QALYs) (Dolan, 2000). A further general requirement is a 

time horizon that incorporates all relevant benefits and costs of the interventions under 

comparison (Kuntz and Weinstein, 2001). Decision analytical models provide a 
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framework for synthesising different sources of evidence (Caro et al., 2012), and 

analysts are encouraged to consider and report the uncertainty that surrounds any 

recommendation in regards to the relative cost-effectiveness of the alternatives under 

consideration (Briggs et al., 2012).  

The incorporation of individual patient data (IPD) in decision models has been 

recommended by methodological guidelines (Briggs et al., 2006, Briggs et al., 2012, 

Philips et al., 2006). Using IPD can help studies fully account for parameter uncertainty, 

by estimating the standard errors and correlations between model parameters. IPD can 

also help analysts address heterogeneity, by allowing input parameters to differ for 

patient subgroups (Cooper et al., 2007, Koerkamp et al., 2010).  With the availability of 

IPD, a range of further challenges can be addressed, such as censoring (Willan et al., 

2005), missing data (Noble et al., 2012) and confounding (Thompson et al., 2010).  

Methodological guidance on the analysis of IPD in CEA has been through significant 

development, mostly in the context of cost and effectiveness data from RCTs (Glick et 

al., 2001). While RCT data is generally the preferred evidence for deriving the 

effectiveness of an intervention (NICE, 2008), it has been recognised that CEA based 

on a single study rarely provides a sufficient basis for decision making (Sculpher et al., 

2006). For example, a protocol driven, multinational phase III trial might not reflect real 

world treatment patterns and resource use in a particular country; an RCT might not 

measure the relevant endpoints or include all the relevant comparators, while the time 

horizon can be too short to capture long-term costs and health benefits (Briggs et al., 

2006). Hence the synthesis of data from different sources is required, including RCTs, 

NRS, epidemiological databases or patient registries (NICE, 2008).  

Observational studies often provide a relevant data source for input parameters in a 

decision model. In some cases, observational data provides the main source of evidence 
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for CEA (Polsky and Basu, 2006, Manca and Austin, 2008).   With observational 

studies, a general methodological challenge is handling selection bias due confounding, 

i.e. differences in prognostic factors between treatment groups of interest (Fung et al., 

2011, Pizer, 2009, Rubin, 2010, Tunis et al., 2010, Polsky and Basu, 2006). When IPD 

from observational studies are available, appropriate statistical methods can be used to 

reduce selection bias. Current methodological guidance on economic evaluation warns 

of potential biases from using estimates based on observational studies (Philips et al., 

2006, NICE, 2008). Currently there is no detailed guidance on the appropriate statistical 

analysis of observational data for CEA (Kearns et al., 2012), which was raised as a 

priority in a recent review on priorities for methodological research in health technology 

assessments (HTA) used by NICE (Longworth et al., 2009).  

1.2 Observational data in CEA 

In this thesis I define observational data as data from studies that do not have random 

allocation to alternative treatments (Deeks, 2003), which includes cohort studies, case-

control studies, surveys, registries, administrative records or census data. Observational 

data can be used to estimate a wide range of parameters in CEA (Drummond, 1998, 

Deeks, 2003), including clinical endpoints, prevalence of side effects, health-related 

quality of life (HRQoL) measures, and long-term costs. While some economic 

evaluations do not use decision models and may rely heavily on RCT data, even here 

they may still use observational data, for example to obtain unit costs and HRQoL 

tariffs (Glick et al., 2007). When evidence is synthesised in decision analytical models 

(Briggs et al., 2006, NICE, 2008), observational data can be used to inform model 

parameters by making use of published external information, for example for transition 

probabilities. A more flexible use of observational data may be feasible where patient-

level observational data are available. Here, for example, it may be possible to calibrate 
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estimates of long-term outcomes for the patient characteristics of the treatment groups 

of interest, accounting for patient heterogeneity. If the patient-level observational data 

include information on the treatments of interest, incremental cost and effectiveness 

parameters can be calculated. This can be done either by complementing parameters 

derived from RCT data, or in some settings parameters may be estimated exclusively 

from observational data. Examples for incremental effectiveness parameters are relative 

risk of mortality or clinical events, HRQoL differences, or incremental QALYs. These 

parameters can be then used in a decision-analytical model when extrapolating RCT 

data, for example. 

 In many cases, particularly in evaluations of medical technologies other than 

pharmaceuticals (e.g. health services and public health interventions), there may be no 

RCT data available and both incremental cost and effectiveness parameters are 

calculated based on IPD from a single observational study (Polsky and Basu, 2006, 

Manca and Austin, 2008). Here, additional aggregate information (e.g. HRQoL) may or 

may not be used.  

The focus of this thesis is on CEA that uses patient-level observational data for 

estimating incremental cost and effectiveness parameters. Unless specified otherwise, 

by referring to observational data, this thesis will refer to patient-level observational 

data. Contributions of the thesis to the more general use of observational data in CEA 

will be noted in section 5 of this chapter (conceptual framework), and in the discussion 

of the thesis (chapter 7). 
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1.3 Statistical methods in CEA that use patient-level observational 

data 

Statistical methods for CEA that use IPD predominantly from RCTs have seen 

considerable development in the last decade (Willan and Briggs, 2006, Glick et al., 

2007, Gray et al., 2010). It has been recommended that regression methods adjust for 

covariate imbalances between treatment groups and estimate subgroup-specific 

treatment effects (Hoch et al., 2002, Willan et al., 2004, Nixon and Thompson, 2005), 

while maintaining the correlation between cost and effectiveness endpoints.  Statistical 

methods have been proposed to address further challenges, such as: hierarchical data in 

multicentre CEA (Grieve et al., 2007, Manca et al., 2007), missing data (Noble et al., 

2012), non-compliance to randomised treatment (Hughes et al., 2001) and censoring  

(Willan et al., 2002, Willan et al., 2005). Guidelines (NICE, 2008, Philips et al., 2006) 

and quality assessment tools (Doshi et al., 2006, Gomes et al., 2011) emphasise the use 

of appropriate methods to analyse patient-level data, mostly in the context of RCT data. 

Less attention has been given to methods development in CEA that use patient-level 

observational data. Here, the general concern is that the treatment groups under 

evaluation can be imbalanced in observed and unobserved characteristics, which might 

be prognostic for the cost and effectiveness endpoints. Unadjusted comparisons of cost 

and effectiveness outcomes are then prone to selection bias, which in epidemiology is 

referred to as bias due to confounding (Greenland et al., 1999), and in econometrics as 

bias due to endogeneity (Imbens and Wooldridge, 2009a). 

Selection bias can be reduced if appropriate statistical methods are applied (Jones, 2007, 

Polsky and Basu, 2006, Pizer, 2009, Rubin, 2010). The estimation of treatment effects 

using observational data has been at the centre of methodological research in the last 

decade in the general causal inference literature, including the fields of statistics (Pearl, 
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2009, Rubin, 2006), econometrics (Imbens and Wooldridge, 2009a), the social sciences 

(Morgan and Winship, 2007) and medical statistics (Austin, 2008, Shah et al., 2005, 

Stuart, 2010), but has received relatively little attention in CEA (Polsky and Basu, 2006, 

Sekhon and Grieve, 2011, Manca and Austin, 2008, Mitra and Indurkhya, 2005). 

There are specific complexities of IPD used for CEA that statistical methods must 

acknowledge.  Firstly, correlations between parameters, such as the incremental costs 

and effectiveness need to be estimated (O'Hagan and Stevens, 2001). Secondly, the 

distributions of cost (Mihaylova et al., 2010, Basu et al., 2011, Manning et al., 2005) 

and effectiveness endpoints  (Basu and Manca, 2011) are likely to be irregular (non 

normal), and relationships between covariates and endpoints can be nonlinear (Basu et 

al., 2011). Thirdly, decision makers may want estimates of cost-effectiveness for 

particular patient subgroups (Sculpher, 2008). These issues have been considered in 

methods proposed for statistical analysis of IPD, but mainly in the context of studies 

that use RCT data (Willan and Briggs, 2006, Glick et al., 2007).   

 The aim of this PhD is to help fill in these gaps of methodological literature in CEA by 

considering a range of statistical methods that can reduce selection bias when estimating 

parameters for CEA that use observational data. 

1.4 Aims and objectives of the thesis 

This thesis considers alternative statistical methods for addressing selection bias in CEA 

that use patient-level observational data.  The thesis has four main objectives:  

1. To develop and apply a new checklist for assessing the underlying assumptions 

made by statistical methods for addressing selection bias in CEA, that use 

patient-level observational data;  
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2. To consider which statistical methods from the general causal inference 

literature may be appropriate for addressing selection bias in CEA;  

3. To compare the relative performance of propensity score (PS) approaches and 

Genetic Matching (GM), a multivariate matching method for estimating 

subgroup-effects in CEA; 

4. To compare methods that combine regression with PS approaches for addressing 

selection bias when estimating incremental effectiveness and cost-effectiveness 

parameters.  

1.5 Conceptual framework of the thesis 

The four objectives of the PhD are strongly interlinked. The basis of this research is a 

conceptual literature review, which consists of a careful assessment of the 

methodological challenges that arise when addressing selection bias in CEA that use 

patient-level observational data (objective 1). Here I also review the general causal 

inference literature, to examine further promising methods for addressing selection bias 

in CEA (objective 2).  

Regression and PS methods are currently proposed to address selection bias in CEA 

(Nixon and Thompson, 2005, Polsky and Basu, 2006, Mitra and Indurkhya, 2005). The 

crucial assumption behind these methods is that all confounders can be observed 

(unconfoundedness assumption), the covariate distributions of the treatment groups 

overlap and their underlying models such as endpoint regression and PS models are 

correctly specified. It is unlikely that all these assumptions are met in CEA. For 

example, health care costs and outcomes often have irregular distributions (Jones, 2010, 

Basu and Manca, 2011), with nonlinear relationships between the confounders and the 

endpoints (Basu et al., 2011), hence it can be challenging to correctly specify regression 

models. Policy makers are often interested in cost-effectiveness results for patient 
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subgroups (Sculpher, 2008), which can necessitate specifying regression models that 

can account for heterogeneous treatment effects, or PS models that can incorporate 

heterogeneous selection into treatment.  

The first approach of investigating whether the assumptions behind the currently 

recommended statistical methods are plausible is to conduct a critical review of the 

applied CEA literature (objective 1, research paper 1). A checklist informed by the 

conceptual review can help assess whether the assumptions behind the statistical 

methods are appropriately assessed. The results of this review can highlight those 

methods that are under-utilised, or inappropriately used. These deficiencies in the 

applied literature motivated me to undertake further methodological work, to assess the 

relative performance of the methods under different circumstances faced in applied 

CEA, using case studies and simulation studies.  

I use the conceptual review to identify alternative methods that are promising, because 

they have the potential to make less restrictive assumptions than standard regression and 

PS methods (objective 2). The following methods were identified to be promising:  GM, 

a multivariate matching method that aims to balance individual covariates; and 

approaches that combine the PS and regression models, such as double-robust (DR) 

methods and regression-adjusted matching. I also consider machine learning approaches 

for estimating the PS and the endpoint regression, which can reduce misspecification 

and bias compared to using fixed parametric models. 

The conceptual review provided hypotheses on how these methods perform in realistic 

CEA settings, however previous simulation evidence may not be directly applicable in a 

CEA setting. I undertake Monte Carlo simulation studies (objective 3 and 4; research 

papers 2, 3 and 4) that extend the current CEA methods literature, by assessing the 

selected methods under settings typical of CEA.  These simulations are motivated by 
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CEA case studies, and aim to test hypotheses generated by the conceptual review, 

across different circumstances.  

The first case study (research papers 2 and 3) highlights circumstances when cost-

effectiveness for patient subgroups is of interest. The corresponding simulation study 

(research paper 2) compares methods for subgroup analysis (objective 3). Research 

papers 3 and 4 consider methods that combine the PS and endpoint regression models 

(objective 4). The second case study and corresponding simulation study (research 

paper 4) demonstrate settings where the correct specification of an effectiveness 

endpoint is challenging, and uses machine learning estimation techniques to reduce bias 

due to misspecification.  The methods are also considered in the case studies, and the 

impact of different methods on the cost-effectiveness results and estimated treatment 

effects are reported.  

This thesis considers CEA where IPD from RCTs is either unavailable, or insufficient to 

estimate either incremental costs or incremental effectiveness parameters, or both. The 

focus of the simulation studies (research papers 2, 3 and 4) is when IPD from a single 

observational study is used to calculate incremental effectiveness and cost-effectiveness 

parameters. The applied literature review (research paper 1) and the case studies 

however also consider settings where these incremental parameters are combined with 

aggregate data (research papers 2 and 3), and when input parameters for decision 

models need to be estimated using patient-level observational data (research paper 4).   

It is therefore expected that findings from the thesis will be applicable to a more general 

use of observational data in CEA.   
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1.6 Overall contribution of the thesis 

I developed a new checklist for critical appraisal of statistical methods for addressing 

selection bias in CEA that use patient-level observational data (research paper 1).  This 

checklist complements previous quality-assessment tools and methodological guidance 

(Drummond et al., 2005, Philips et al., 2006, Glick et al., 2007), which did not include 

specific criteria for the analysis of patient-level data from observational studies. 

Research paper 1 provides detailed guidance on how the underlying assumptions of the 

statistical methods can be assessed, and highlights how the choice of statistical approach 

can contribute to structural uncertainty in CEA (Bojke et al., 2009). In addition, prior to 

this work it was unknown whether applied CEA use appropriate statistical methods for 

addressing selection bias. The systematic review in research paper 1 addressed this gap, 

and found that CEA do not appropriately assess the main assumptions behind statistical 

methods. This checklist can raise awareness about these assumptions.  

Research paper 2 compares GM, a multivariate matching method, with PS matching and 

inverse probability of treatment weighting (IPTW) for estimating subgroup effects in 

CEA. GM was previously demonstrated to reduce selection bias in CEA (Sekhon and 

Grieve, 2011), but not in the context of subgroup analysis. The paper found that GM 

was relatively robust to the misspecification of the PS, and provided the lowest bias and 

root mean squared error of the estimated incremental net benefit (INB) for each 

subgroup. This paper provides the first comparison of GM with IPTW in the general 

literature.  

Research paper 3 considers methods that combine the PS with endpoint regression 

models for CEA. This paper considers DR methods and regression-adjusted matching 

for reducing selection bias for the first time in CEA. The paper found that regression-

adjusted matching was the least biased method when both the endpoint regression 
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models and the PS model were misspecified (dual misspecification). This paper 

considers the performance of regression-adjusted matching under dual misspecification 

for the first time.  

Research paper 4 extended the combined approaches presented in research paper 3, by 

considering recently proposed machine learning techniques for estimating the PS and 

the endpoint regression for estimating incremental effectiveness parameters.  This paper 

extends the previous literature which recommended regression modelling of HRQoL 

endpoints (Basu and Manca, 2011). The paper also extends the general methodological 

literature by providing the first comparison of targeted maximum likelihood estimation 

(TMLE) and bias-corrected matching (BCM). Unlike previous papers on BCM, which 

used linear regression (Abadie and Imbens, 2011, Busso et al., 2011), this paper uses 

machine learning techniques for bias correction.  The paper found that both TMLE and 

BCM could reduce bias due to misspecification, with machine-learning versus fixed 

parametric approaches. 

Overall, this thesis compares the performance of statistical methods for addressing 

selection bias under realistic circumstances for CEA. The simulation studies provide 

new evidence on the relative robustness of methods when some of their underlying 

assumptions, such as correct model specification fail. The case studies help motivate the 

simulation studies, demonstrate the appropriate use of statistical methods proposed, and 

illustrate how structural uncertainty from the choice of method can be addressed, by 

reporting results across a range of methods. The research papers provide detailed 

guidance and software codes for the implementation of the methods. It is expected that 

the findings of this thesis can add to the methodological guidance for researchers 

conducting CEA that use patient-level observational data, and help future studies 

provide a sounder basis for policy making.  
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1.7 Structure of the thesis 

The remaining chapters of the thesis are as follows. Chapter 2 first identifies the key 

challenges for statistical methods which aim to address selection bias in CEA that use 

observational data. This chapter then describes the assumptions behind previously 

recommended methods for addressing selection bias in CEA, informed by a conceptual 

review of the general causal inference literature. The chapter then reviews promising 

statistical methods from the causal inference literature, that have potential for 

addressing selection bias in CEA. Finally, chapter 2 identifies gaps in the 

methodological literature concerned with the relative performance of the methods in 

CEA.  

Chapters 3 to 6 comprise of the four research papers, each prefaced with a brief 

preamble. Research paper 1 develops a critical appraisal tool to assess the statistical 

methods for addressing selection bias in CEA that use observational data, and applies 

this checklist in a systematic review of published studies. Motivated by a CEA of a 

pharmaceutical intervention for patients with severe sepsis, research paper 2 presents a 

simulation study that compares the relative performance of GM and PS methods in 

reporting cost-effectiveness for patient subgroups. Research paper 3 evaluates the 

relative performance of statistical methods that combine the PS and regression models, 

for the cost and effectiveness endpoint in CEA. Research paper 4 extends these 

combined methods by considering the recently proposed methods, TMLE and BCM, for 

estimating incremental effectiveness parameters. The simulation study presented in this 

paper was motivated by an evaluation of the effect of alternative hip prostheses on 

patients’ HRQoL. 

Chapter 7 provides an overview of the main findings and contributions of the thesis. 

The chapter then acknowledges the limitations of the thesis, and identifies potential 



24 

 

areas for future research. This chapter concludes by highlighting the implications of the 

findings of the thesis for applied researchers and policy makers. 

1.8 Contribution of the candidate to the thesis 

The work conducted in this thesis was linked to a research grant “Methods for reducing 

selection bias in cost-effectiveness analysis”, funded by the Economic and Social 

Research Council (ESRC), and took a similar approach in using simulations and case 

studies to assess the relative merits of alternative methods for addressing selection bias 

in CEA. The focus of the ESRC project was to compare GM to PS matching. This thesis 

aimed to offer a more thorough comparison of alternative methods, and extended the 

comparison additional methods not included in the ESRC study, such as DR methods 

and regression-adjusted matching. It also looked at some of the methods in a new 

context, where cost-effectiveness for patient subgroups is of interest.  

The research questions for research papers 1 and 2 were linked to the ESRC project and 

identified by the principal investigator, Richard Grieve. In the first study, the candidate 

carried out a conceptual review, and developed a checklist and accompanying 

methodological guidance for critical appraisal of CEA that uses observational data, in 

collaboration with her supervisor, Richard Grieve. The candidate applied this checklist 

in a systematic review of studies, and interpreted the findings. A further contributor to 

this paper was a research fellow linked to the project, Zia Sadique, who verified the 

exclusion criteria of the systematic review, and conducted a second review by 

independently appraising 50% of the studies.  

For research paper 2, the candidate led the design of the simulation study, with Richard 

Grieve. The candidate wrote the simulation code, with help from post-doctoral 

researchers employed by the ESRC project, Roland Ramsahai and Rosalba Radice. 
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Roland Ramsahai helped the candidate run simulations on the LSHTM computational 

cluster.  Zia Sadique led on the analysis of the motivating case study, with the candidate 

contributing to the analysis. The candidate led on the reporting and interpretation of the 

results of the case study and the simulation studies.  For this paper, the candidate built 

on insights from another simulation study linked to the project, which aimed to compare 

GM, IPTW and PS matching for estimating subgroup-specific treatment effects on 

binary endpoints (Radice et al., 2012). For this study, aimed at a biostatistics audience, 

the candidate contributed to the design and the implementation of the simulation study 

and to the interpretation of the results, as well as to writing sections of the manuscript.  

The candidate led on the conception of the research question for research paper 3 in 

collaboration with her supervisor, Richard Grieve and an external collaborator, Jasjeet 

S. Sekhon, while visiting the Center for Causal Inference at UC Berkeley (USA, CA). 

The candidate led on the design of the simulation study, with the collaboration of 

Richard Grieve, Rosalba Radice and Jasjeet S. Sekhon.  Rosalba Radice contributed to 

the design of the simulation scenarios. The candidate wrote the code for the simulation 

study, with help from Rosalba Radice.  The candidate conducted the statistical analysis 

for the motivating case study, and interpreted the results of the paper, with Rosalba 

Radice and Richard Grieve.  

The candidate led the design of the research question for research paper 4, in 

collaboration with Richard Grieve and an external collaborator, Susan Gruber (Harvard 

School of Public Health). The candidate led on the design and implementation of the 

simulation scenarios, with help from Rosalba Radice, who also contributed to the 

implementation of the statistical methods in the motivating case study. The candidate 

led on the interpretation of the results, with Rosalba Radice, Susan Gruber, Jasjeet S. 

Sekhon and Richard Grieve.  
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For each of the research papers, the candidate wrote the first draft of the manuscripts. 

She managed each round of comments and suggestions from co-authors, in 

collaboration with Richard Grieve. All authors read and approved the final drafts of the 

research papers prior to journal submission and inclusion in this thesis. The remaining 

chapters of the thesis are the sole work of the candidate. 
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Chapter 2 - Conceptual review of statistical methods for 

addressing selection bias in CEA that use patient-level 

observational data  

2.1 Introduction 

Statistical methods for cost-effectiveness analyses (CEA) that use individual patient 

data (IPD) from randomised controlled trials (RCTs) have been through considerable 

development in the last decade. However, statistical methods developed for the analysis 

of RCT data might not be appropriate for observational data.  In CEA that use data from 

NRS, the distribution of the baseline covariates can be highly imbalanced (Grieve et al., 

2008). Under such circumstances, estimates can be sensitive to the specification of the 

regression models, for example the inclusion or exclusion of nonlinearities in the 

covariate-endpoint relationship (Ho et al., 2007). Instead of modelling the cost and 

effectiveness endpoint, a recommended  approach in CEA is to try to achieve  covariate 

balance  using the propensity score (PS) (Manca and Austin, 2008, Mitra and 

Indurkhya, 2005). However, correctly specifying the unknown PS is also challenging 

(Dehejia and Wahba, 2002).  

This chapter aims to consider several outstanding methodological concerns that face 

CEA that use observational data. First, what are the important underlying assumptions 

made by common statistical methods for addressing selection bias in CEA?  Which 

statistical methods are most appropriate for addressing selection bias when estimates of 

cost-effectiveness are required for patient subgroups? Which methods from the general 

causal inference literature are potentially appropriate for addressing selection bias in 

CEA, and what are their relative merits under typical circumstances that arise in CEA?  
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The overall aim of this chapter is to identify gaps in the methods literature of CEA 

concerned with addressing selection bias, which the subsequent chapters of the thesis 

aim to address. The specific objectives of this chapter are: 

1. To review methodological guidance on statistical methods for addressing 

selection bias in CEA that use patient-level observational data, and to describe 

challenges that arise when using these methods. 

2. To describe the main underlying assumptions made by recommended statistical 

methods for addressing selection bias in CEA. 

3. To identify statistical methods from the general causal inference literature that 

have the potential to reduce selection bias in a CEA. 

4. To identify gaps in the methodological literature on the relative performance of 

alternative methods for addressing selection bias in CEA. 

To address these objectives, I conducted a conceptual literature review consisting of two 

parts.  First, I reviewed papers that provide methodological guidance for handling 

selection bias in CEA that use patient-level observational data.  Second, I conducted a 

targeted review of the general causal inference literature, by reviewing seminal papers 

and their reference lists, and by consulting leading researchers in the field.  

In the next section, I review the challenges statistical methods currently recommended 

for reducing selection bias in CEA need to address. Section 3 considers the main 

underlying assumptions statistical methods make in the context of CEA, based on 

methodological guidance from the general causal inference literature.  Section 4 reviews 

further promising statistical methods and their appropriateness for CEA. Section 5 

identifies gaps in the CEA methodological literature on the relative performance of the 

methods. The last section summarises the chapter and highlights areas for further 

research. 
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2.2 Statistical challenges in accounting for selection bias in CEA 

that use patient-level observational data 

When RCT data is available for the cost and effectiveness endpoints, in general, 

randomisation ensures unbiased estimates of incremental cost and effects (Gray et al., 

2010).  When the CEA uses observational data, selection bias due to the lack of balance 

between treatment groups is a potential concern. This concern applies for a wide range 

of uses of observational data. These uses include settings when the CEA is conducted 

alongside a single observational study (Manca and Austin, 2008), and the parameters of 

interest are the incremental cost and incremental effectiveness, as well as when 

observational data is used to estimate parameters for a decision model such as hazard 

ratios or  relative risks (Philips et al., 2006).     

Polsky and Basu (2006) discuss the sources of selection bias in health economic 

evaluation. Overt bias is due to differences in observed provider or patient or 

characteristics, such as diseases severity, while hidden bias is due to unobserved 

characteristics, such as patient preferences. In a case study example, the authors 

demonstrate the use of regression and PS methods that can handle overt bias, and 

instrumental variables (IV) estimation that can potentially handle both observed and 

unobserved confounding. The authors note that in the context of economic evaluation, 

finding an appropriate IV is challenging: a good instrument is strongly related to 

treatment receipt, but unrelated to the endpoints.  Moreover IV methods often estimate 

treatment effects for a narrower population than what is relevant for the original 

evaluation question (see more on IV estimation in section 3.2). My systematic review in 

research paper 1 finds that IV methods are rarely used in CEA.  
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Regression methods that can handle correlated costs and outcomes have been developed  

for covariate adjustment of RCT data, and  are also recommended for addressing the 

potential selection bias that arises when using observational data (Nixon and Thompson, 

2005). Even when using RCT data, the choice of statistical model - for example the 

error distribution chosen to model costs - has been shown to influence the estimated 

cost-effectiveness (Thompson and Nixon, 2005).  When observational data is used for 

CEA, covariate distributions between treatment groups can be highly imbalanced 

(Grieve et al., 2008). This can make regression estimates  sensitive to parametric  model 

specification (Ho et al., 2007). In CEA, regression models may be specified for the cost 

and the effectiveness endpoints, which in the case of generalised linear models (GLMs), 

for example involves specifying the functional form relationship between the covariates 

and the endpoint, and the error distributions of the endpoint.  The challenges of 

specifying regression models for resource use and cost data are widely recognised 

(Manning et al., 2005, Manning et al., 1987, Manning and Mullahy, 2001, Mihaylova et 

al., 2010, Basu and Rathouz, 2005, Jones, 2010). These are: nonlinear relationships 

between covariates and endpoints, irregular distributions and heavy tails of the 

endpoints.  Similar challenges prevail when estimating treatment effects on health 

outcomes, such as health related quality of life (HRQoL) and quality-adjusted life years 

(QALYs), which often exhibit truncated supports with spikes at 0 or 1 (Basu and 

Manca, 2011). Recommended regression techniques to handle these endpoints include 

GLMs (Barber and Thompson, 2004a), two-part models  (Buntin and Zaslavsky, 2004, 

Basu, 2011), or exponential conditional mean models (Manning et al., 2005). 

Specification tests recommended to rank competing regression models (Manning and 

Mullahy, 2001, Basu et al., 2004) can provide measures of model fit. However, failure 
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to reject a model in a specification test does not necessarily imply that the model is 

correctly specified (Horowitz, 2011). 

Instead of specifying models for the endpoints, the PS can be used to create balance 

between observed characteristics of the treatment groups (Rosenbaum  and Rubin, 

1983).  In CEA, the PS has been recommended for matching,  stratification on the PS 

and as a covariate in either univariate net benefit regression models (Mitra and 

Indurkhya, 2005, Manca and Austin, 2008) or in bivariate regression models (Manca 

and Austin, 2008). Some of these methods, such as stratification and linear regression 

on the PS are outperformed by alternative PS methods, such as inverse probability of 

treatment weighting (IPTW) (Austin, 2009c, Lunceford and Davidian, 2004).  These 

methods rely on the correct specification of the PS, which can be challenging 

(Westreich et al., 2010).  For example, just as the investigator does not know the 

specification of the relationship between covariates and endpoints, they seldom know 

how covariates influence treatment receipt. A misspecified PS, due to, for example, 

omitting nonlinear relationships between covariates and treatment assignment (Basu et 

al., 2011), can lead to biased parameter estimates. To appropriately assess the 

specification of the PS, an assessment of balance on the full distribution of the 

covariates between the treatment groups must be made (Sekhon and Grieve, 2011), 

however this is rarely performed in practice (Austin, 2008). 

These methods can be used to calculate cost-effectiveness parameters across all patients 

of interest. Decision makers are often also interested in cost-effectiveness for patient 

subgroups (Espinoza et al., 2011, Sculpher, 2008), and calculating overall estimates of 

cost-effectiveness could mask important heterogeneity between subgroups. Sources of 

heterogeneity can be characteristics of the patient (age, weight, gender, preferences, 

baseline outcomes etc.) or the health care provider (e.g. type of treatment centre) 
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(Sculpher, 2008). For example, in the CEA conducted by Mihaylova et al. (2005), cost-

effectiveness of a statin therapy differed across subgroups defined by patients’ baseline 

risk of a vascular event. In RCT-based CEA, a standard way of accounting for 

subgroup-level heterogeneity is to include covariate-by-treatment interactions in a 

regression model (Nixon and Thompson, 2005, Hoch et al., 2002, Willan et al., 2004). 

To provide unbiased cost-effectiveness estimates in an observational setting where 

subgroup effects are of interest is more challenging; the analyst needs to choose the 

correct model specification for the covariate-endpoint relationships, and the joint 

distribution of the endpoints. CEA may be sensitive to the choice of the model 

specification. 

 PS methods can potentially be used for subgroup-analysis, here they are required to 

balance baseline covariates between treatment and control groups within each subgroup. 

Just as relative costs and effectiveness can be heterogeneous across patients, in an 

observational setting it can also be expected that the mechanism of treatment 

assignment might systematically differ by patient subgroup. Balancing covariates at the 

subgroup level may prove particularly challenging: a PS approach has to recognise the 

differential treatment assignment mechanism, for example by estimating separate PS 

models for each subgroup.  

The methodological guidance on decision models in CEA emphasises the need to 

appropriately represent various sources of decision uncertainty, such as parameter 

uncertainty, methodological uncertainty and  structural uncertainty (Bojke et al., 2009). 

As Polsky and Basu (2006) illustrate, statistical methods that make different underlying 

assumptions can lead to substantially different cost-effectiveness results.  This 

uncertainty, due to the choice of statistical method can be characterised as part of 
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structural uncertainty (Jackson et al., 2011), a relatively under-researched area (Gray et 

al., 2010). Here, detailed methodological guidance is currently lacking. 

To conclude this section, the methodological literature in CEA typically considers 

regression and PS approaches for addressing selection bias. In an observational setting, 

high covariate imbalance can make estimates sensitive to the specification of the 

regression model.  PS methods can only provide reliable estimates if good balance is 

achieved after PS adjustment. Each of these methods needs to acknowledge further 

challenges which arise when cost-effectiveness estimates for subgroups are of interest. 

CEA need to acknowledge the structural uncertainty due to the choice of statistical 

method used to address selection bias. The next section considers the main assumptions 

that underlie the methods currently recommended for CEA that use observational data.  

2.3 Methodological guidance from the general causal inference 

literature  

This review had two objectives: first, to inform the development of a new quality 

appraisal tool that focuses on the appropriate assessment of assumptions for statistical 

methods currently recommended for CEA (research paper 1), and second, to identify 

alternative statistical methods and consider their assumptions in the context of 

addressing selection bias in CEA (section 4). 

I conducted a targeted review of the causal inference literature,  including articles from 

the statistics, econometrics and epidemiology literature concerned with estimating the 

effects of exposures, treatments and policies, published between 1983 and 2011 (for 

example, Rosenbaum and Rubin, 1983, Imbens and Wooldridge, 2009a, Stuart, 2010, 

Morgan and Winship, 2007). 
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2.3.1 The potential outcomes framework 

Following the causal inference literature on estimating treatment effects, I draw on the 

Neyman-Rubin potential outcomes framework (Imbens and Wooldridge, 2009a), and 

use its  concepts and  notation throughout. 

𝑌𝑖𝑘 is the observed outcome (cost if 𝑘 = 𝐶 and effectiveness if 𝑘 = 𝐸), for individual1  

𝑖 = 1, . . . . , 𝑛, where 𝑛 is the sample size. 𝑡𝑖( 0,1) is the indicator of the observed 

treatment2.  The potential outcome of the individual that would be realised if she 

received the control is 𝑌𝑖𝑘(0), and 𝑌𝑖𝑘(1) if she received treatment. One of these 

outcomes - the actual treatment received - is observed, while the counterfactual is never 

observed.  

The causal effect of the treatment is the difference between the potential outcomes for 

an individual3: 

𝜏𝑖𝑘 = 𝑌𝑖𝑘(1) − 𝑌𝑖𝑘(0). 

The expected treatment effect across the whole population is the average treatment 

effect (ATE), given by 

𝜏𝑘 = 𝐸(𝑌𝑖𝑘(1) − 𝑌𝑖𝑘(0)). 

Another relevant estimand is the average treatment effect on the treated (ATT), here the 

expectation is taken only for those who actually received the treatment. The individual 

                                                 

1 For simplicity here I consider individuals, however treatment effects can also be calculated for different 

units such as practices and hospitals. 

2 Again, treatment is a generic term for any intervention or program. Here I consider a binary treatment 

(1= treated, 0 =control). The methods considered here can be generalised to several treatments.  

3 This review focuses on methods for analysing continuous outcomes (e.g. QALYs) and costs, where 

additive (incremental) effects are of interest. The potential outcomes framework also applies for different 

types of outcomes (e.g. count and binary data, or censored data such as survival time), where parameters 

such as odds ratios, relative risks or hazard ratios are of interest. These parameters are beyond the scope 

of this review.  
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level treatment effect (𝜏𝑖𝑘) can be heterogeneous across the patient population, for 

example by subgroups, and due to this heterogeneity, the ATE and ATT will differ from 

each other, and across subgroups. 

In the CEA context, a treatment effect of interest is the incremental net benefit, 

calculated as  

𝐼𝑁𝐵 = 𝐾 ∗ 𝜏𝐸−𝜏𝐶, 

where 𝐾 is the willingness to pay.  

 In non-randomised settings individuals can be assigned to a treatment according to 

characteristics that are observed (𝑥𝑖) and unobserved by the investigator. Under the 

assumption of  “selection on observables”, even if some of the unobserved 

characteristics influence treatment assignment, these factors are assumed not to 

influence the endpoint of interest, and not to be associated with unobserved factors 

influencing the endpoint. The mathematical counterpart of selection on observables is a 

combination of two assumptions:  the unconfoundedness assumption and the overlap 

assumption. The combination of these two assumptions is also referred to as “strong 

ignorability” (Imbens and Wooldridge, 2009a).   

2.3.2 The assumption of “no unobserved confounding” 

The assumption of no unobserved confounding (also referred to as 

“unconfoundedness”) states that, after controlling for a vector of observed covariates 

(𝑥𝑖)4, treatment assignment (𝑡𝑖) is independent of both potential outcomes: 

                                                 

4 Here I assume that the vector of observed confounders necessary for the unconfoundedness assumption 

to hold is the same for the cost and effectiveness endpoint. Research paper 2 presents a scenario where a 
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𝑡𝑖_||_ (𝑌𝑖𝑘(0), 𝑌𝑖𝑘(1)) |𝑥𝑖                     

Under this assumption, the allocation of two individuals who have similar observed 

characteristics but are in different treatment arms, can be thought of as effectively at 

random (Greenland et al., 1999). Approaches that use longitudinal data, such as panel 

data regression and “difference-in-differences”, rely on a weaker form of this 

assumption; they assume that changes over time in unobserved confounders are 

conditionally independent of treatment (Imbens and Jeffrey, 2007). 

The unconfoundedness assumption is not directly testable from the data (Imbens and 

Wooldridge, 2009a). Intuitively, it requires that the researcher has all relevant pre-

treatment covariates at his or her disposal (Rubin, 2010). To consider this assumption, 

external evidence or expert opinion of the potential influence of observed and 

unobserved baseline covariates on treatment assignment, and endpoints need to be 

considered (Rubin, 2010). Causal diagrams can be useful for defining the structure of 

such relationships (Pearl, 2001). These considerations might be complemented with 

indirect statistical tests, so called “placebo tests” which can detect violations of the 

assumption (Imbens, 2004, Jones, 2007, Abadie et al., 2010). One possible 

implementation of these tests is to split those who did not receive the treatment into two 

control groups: one that was eligible for the treatment and one that was not, and 

estimate the “treatment effect” between these two groups (Imbens and Wooldridge, 

2009a). After adjusting for the observed covariates, a nonzero estimated treatment effect 

between these groups might indicate that it is not plausible to assume 

                                                 

covariate which is a confounder for the QALY endpoint, the baseline QALY, is not associated with the 

cost endpoint.  
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unconfoundedness. However, a set of observed covariates “passing” the placebo test 

does not confirm that the unconfoundedness assumption is valid. 

Another approach is to tests the sensitivity of the treatment effect estimates to the 

impact of potential unobserved confounders, for example using Rosenbaum’s method of 

sensitivity analysis (Rosenbaum, 2002). This method can characterise the strength of 

association between the potential unobserved confounder and treatment assignment, 

which is necessary to change the conclusions regarding the estimated treatment effect.  

IV estimation is a recommended statistical approach that can account for both observed 

and unobserved confounding (Mullahy, 2011, Basu et al., 2007, Terza et al., 2008). IV 

methods assume that the instrument only influences endpoints through treatment, and is 

independent of the unobserved confounders (Hernán and Robins, 2006). This 

assumption is also untestable, however its plausibility can be assessed, for example, 

with causal diagrams informed by expert opinion and evidence from literature (Joffe 

and Mindell, 2006).  Examples of proposed instruments in health economics are, the 

distance from hospital (Basu et al., 2007), or in Mendelian randomisation studies, the 

genotype (Didelez and Sheehan, 2007). In most CEAs, however, finding a valid 

instrument is challenging (Polsky and Basu, 2006). A further challenge of IV estimation 

is that, instead of ATEs, a feasible estimand is often the local average treatment effect, 

which can differ from the ATE when individual treatment effects are heterogeneous. 

Therefore, for CEA, statistical methods that assume unconfoundedness warrant 

consideration. 

2.3.3 The overlap assumption 

The overlap assumption (also known as the assumption of positivity, or the 

”experimental treatment assignment” assumption) (Westreich and Cole, 2010)  requires 
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that for any combination of covariate values, there is a nonzero probability of being 

assigned to each treatment arm.  For a binary treatment, this requires that 

0 < 𝑝𝑟(𝑡𝑖 = 1 |𝑥𝑖) < 1).          

Intuitively this implies that no covariate or combination of covariates perfectly 

determine treatment assignment.  The overlap assumption can be assessed using the 

data, for example by inspecting histograms or density plots (continuous covariates) and 

by reporting standardised differences (categorical or continuous covariates)  (Imbens 

and Wooldridge, 2009a, Busso et al., 2011). 

Poor overlap, or structural violations of the positivity assumption, are  present when at 

certain combinations of covariates, it is impossible to observe both treated or control 

individuals (Westreich and Cole, 2010). In such cases, in order to identify the ATE for 

the whole population, statistical methods need to extrapolate. For example, if in certain 

age groups there are no treated individuals, treatment effects for these patients need to 

be extrapolated using information on younger patients.  Regression methods make this 

extrapolation automatically, and can hide overlap problems (Crump et al., 2009, Ho et 

al., 2007, Westreich and Cole, 2010). If the regression model specification is incorrect, 

this can result in biased parameter estimates. A common remedy is to estimate the 

treatment effect only for the subsamples where there is good overlap (Crump et al., 

2009). However, this approach of dropping treated and control individuals can lead to 

an estimated treatment effect for a population that differs from that of interest for the 

policy maker.  

In finite samples, even when overlap is reasonable, “practical positivity violations” 

often arise: in certain covariate strata there might be small numbers or no individuals 

from each treatment group (Westreich and Cole, 2010). This can lead to the probability 
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of treatment assignment to be close to 0 or 1, which can be problematic for methods that 

use the inverse of the PS for addressing selection bias (Kang and Schafer, 2007). This 

problem can be especially severe in reduced sample sizes of patient subgroups.  

This thesis follows the terminology of the econometrics literature (Imbens and 

Wooldridge, 2009a) and defines both structural and practical violations of the positivity 

assumption as poor overlap. 

2.4 Currently recommended methods for accounting for selection 

bias in CEA  

2.4.1 Regression methods 

A commonly used regression approach for covariate adjustment for CEA is the net 

benefit regression framework (Hoch et al., 2002). Here, the treatment effect is estimated 

on the individual net benefit endpoint, for example by using ordinary least squares 

(OLS) regression. This approach accounts for the correlation between individual costs 

and effects. However, it assumes the same, linear functional form relationship between 

the covariates and the cost and effectiveness endpoints for a fixed value of WTP, which 

may not be plausible (Nixon and Thompson, 2005).   

A more flexible approach is to model the cost and effectiveness endpoints using GLMs 

(Barber and Thompson, 2004b). The advantage of GLMs is their potential to address 

skewed endpoints and nonlinear response surfaces, where response surface describes the 

functional form relationship between the covariate and the endpoint (Rubin, 1979). 

GLMs can predict expected endpoints on the original scale of interest. Following Barber 

and Thompson (2004), GLMs for 𝑌𝑖𝑘 can be written as 

                      𝑔𝑘(𝜇𝑖,𝑘) = 𝛾𝑘𝑡𝑖 + 𝑥𝑖𝛽𝑘;     𝑌𝑖𝑘~𝐹𝑘.                                          (1)      
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Here 𝜇𝑖,𝑘 = 𝐸(𝑌𝑖,𝑘) is the expectation of 𝑌𝑖,𝑘,  𝑔𝑘 is the link function which describes 

the scale on which 𝑥𝑖 are related to 𝑌𝑖,𝑘, 𝛾𝑘 and 𝛽𝑘  are the regression coefficients, and 

𝐹𝑘 is an exponential family distribution.  If treatment effects for subgroups are of 

interest, treatment-covariate interactions in the linear predictor can account for 

heterogeneous treatment effects (Nixon and Thompson, 2005). Parameters can be 

estimated via maximum likelihood (ML), quasi ML or Bayesian methods (Basu and 

Manca, 2011). Bivariate models (Nixon and Thompson, 2005) or non-parametric 

bootstrap  (Davison and Hinkley, 1997) can be used to recognise the  joint uncertainty 

in the estimates of the incremental costs and effectiveness, for example by estimating 

confidence intervals (CIs) around the INB, or cost-effectiveness acceptability curves 

(CEACs).  

For unbiased estimation with GLMs, correct specification of the link function and linear 

predictor is needed.  For efficient estimates, the correct specification of the error 

distribution is also necessary.   With certain data typical of CEA, for example cost or 

HRQoL data with large spikes in their distributions, it is recommended that GLMs are 

extended, for example, by applying two-part models  (Buntin and Zaslavsky, 2004, 

Basu, 2011).  Further flexible approaches are semi-parametric methods such as 

extended estimating equations (Basu and Rathouz, 2005), or beta-type size distributions 

(Jones et al., 2011), which, however, are rarely used in practice (Mihaylova et al., 

2010).  A general concern is that, even a flexible parametric approach is not a substitute 

for finding the correct model specification (Manning et al., 2005).  Non-parametric 

methods such as the quintile regression and the discrete conditional density estimator 

(Gilleskie and Mroz, 2004), or machine learning algorithms can be  promising 

alternatives (Austin, 2012).   
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A general way to obtain ATEs, across a wide range of regression models, is with the 

method of recycled predictions (Basu and Rathouz, 2005), which is equivalent to the G-

computation estimator of a point treatment (Robins, 1986, Imbens and Wooldridge, 

2009a, Imbens, 2004). This method predicts the expected potential outcomes for each 

individual, under treated and control states: 

�̂�𝑘,𝑟𝑒𝑔 =
1

𝑛
∑ {�̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 0)},               𝑛

𝑖=1                       (2) 

 where �̂�𝑖,𝑘(. ) is the predicted mean of 𝑌𝑖,𝑘 from the GLM in equation (1),  given 𝑥𝑖, 

with 𝑡𝑖 set to 1 and then to 0 for the whole sample. Standard errors around the estimated 

ATE can be obtained using the non-parametric bootstrap.  

2.4.2 Propensity score matching 

Matching methods aim to create treated and control groups with balanced covariate 

distributions. Ideally, treated and control units can be exactly matched on their observed 

covariate values. However, with high dimensional, continuous confounders, exact 

matching is not possible. Instead, the PS can be used as a balancing score. The PS is the 

conditional probability of treatment assignment given 𝑥𝑖 (Rosenbaum  and Rubin, 

1983), 

                𝑝𝑖 = 𝑃𝑟(𝑡𝑖 = 1|𝑥𝑖). 

The estimated PS,  �̂�𝑖, is generally obtained as a prediction from a logistic regression 

model (Westreich et al., 2010). The PS can create balance between treated and control 

comparison groups, and can be used in several ways: for matching, using the inverse of 

the PS for weighting the sample, stratifying on the PS, and including the PS as a 

covariate in regression (Rosenbaum  and Rubin, 1983). Matching and weighting – 

selected for further investigation – have been shown to dominate stratification and 
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regression in terms of accuracy (Austin, 2009b, Lunceford and Davidian, 2004, Austin, 

2009c, Austin et al., 2007).  

In PS matching, matched treated and control comparison groups can be created, using  

�̂�𝑖 as a distance metric (Rosenbaum  and Rubin, 1983). For each subject, the missing 

potential outcome, 𝑌𝑖,𝑘(0) or 𝑌𝑖,𝑘(1) is imputed, using the observed outcomes of the 

closest matches:   

�̂�𝑖,𝑘(0, 𝑥𝑖) = { 1

𝑀

𝑌𝑖,𝑘

∑ 𝑌𝑗,𝑘𝑗𝜖𝜁𝑀(𝑖)     

if  𝑡𝑖 = 0
if  𝑡𝑖 = 1

  

�̂�𝑖,𝑘(1, 𝑥𝑖) = {
1

𝑀
∑ 𝑌𝑗,𝑘𝑗𝜖𝜁𝑀(𝑖)

𝑌𝑖,𝑘     

if  𝑡𝑖 = 0
if  𝑡𝑖 = 1

  

where 𝜁𝑀(𝑖) is the set of M individuals matched to unit 𝑖. The matching estimator for 

the ATE is the mean of the estimated individual-level treatment effects: 

�̂�𝑘,𝑚𝑎𝑡𝑐ℎ =
1

𝑛
∑ {�̂�(1, 𝑥𝑖) − �̂�(0, 𝑥𝑖)}𝑛

𝑖=1                (3) 

The true PS is a balancing score: conditional on the PS, treatment and control groups 

are expected to have the same distribution of observed baseline characteristics. 

Matching on a correctly specified PS can therefore eliminate selection bias (Rubin and 

Thomas, 1992). However, in an observational setting, the specification of the true PS is 

generally unknown. If the PS is misspecified, for example by incorrectly omitting 

higher order terms from the  logistic model, or ignoring differences between subgroups 

in the treatment assignment mechanism, then PS matching can lead to biased estimates 

of treatment effects (Cole and Hernán, 2008). 

An appropriate check of the PS specification is whether covariate distributions between 

the treatment groups are balanced in the matched sample (Stuart, 2010). Recommended 

ways of assessing balance include calculating the standardised mean differences of 
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covariates between matched treatment groups (Rosenbaum  and Rubin, 1985, Austin, 

2009a), defined as 

𝑑 =
�̅�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−�̅�𝑐𝑜𝑛𝑡𝑟𝑜𝑙

√𝑠2
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+ 𝑠2

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
2

,          (4) 

, where x̅ and s2 denote the covariate’s weighted means and variances by treatment 

group. It is suggested (Stuart, 2010, Diamond and Sekhon, 2012) that the balance needs 

to be assessed not only on the means, but on the full distribution of the covariates, e.g. 

by comparing empirical quantile-quantile (EQQ) plots between the treatment groups 

(Diamond and Sekhon, 2012, Basu et al., 2008, Austin, 2008, Ho et al., 2007). If the 

balance between the treatment groups is poor after matching, the analyst should try to 

improve it by re-estimating the PS  (Dehejia and Wahba, 2002, Imbens and Wooldridge, 

2009b). If treatment effects for subgroups are of interest, this process of balance checks 

should be performed for each subgroup.  This approach can, however, result in 

subjective decisions, and is rarely followed (Austin, 2008).  

There is no consensus in the methodological literature on the estimation of variance for 

matching approaches (Hill, 2008, Hill and Reiter, 2005, Abadie and Imbens, 2006b, 

Austin, 2008, Stuart, 2010). Ideally, the estimated variance of the treatment effect 

should include the variance due to the estimation of the PS, and account for the 

dependences in the data created by the matching process (Hill and Reiter, 2005, Hill, 

2008). A general suggestion is to estimate standard errors conditional on the matched 

data (Ho et al., 2007), for example using analytical standard errors from regression 

models applied on the matched data, or the non-parametric bootstrap.  In CEA, the non-

parametric bootstrap, by re-sampling individual cost and effectiveness pairs, can 

maintain the correlation between the incremental cost and effectiveness parameters 

(Sekhon and Grieve, 2011). While this approach does not account for the uncertainty 
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due to the estimated PS,  under relatively general circumstances, it expected that using 

the estimated PS instead of the true PS provides conservative variance estimates (Stuart, 

2010). Analytical variance formulas which can account for the matching process are 

subject to ongoing research (Abadie and Imbens, 2009, Abadie and Imbens, 2006a), and 

cannot be readily applied for the bivariate context of CEA. 

2.4.3 Inverse probability of treatment weighting 

A further recommended use of the estimated PS is inverse probability of treatment 

weighting (IPTW). IPTW can estimate ATEs, by reweighting the observed cost and 

effectiveness endpoints for treated and control samples. The IPT weight, 𝑤𝑖, is the 

inverse of the estimated probability of receiving the observed treatment: 

𝑤𝑖 =
𝑡𝑖

𝑝𝑖
+ 

1−𝑡𝑖

1−𝑝𝑖
                          (5) 

It is recommended that in practice the normalised IPTW estimator is implemented, 

where  weights  are divided with the sum of weights for the respective treatment group 

(Hirano and Imbens, 2001, Kang and Schafer, 2007a): 

�̂�𝑘,𝐼𝑃𝑇𝑊

∑ 𝑡𝑖𝑤𝑖𝑌𝑖,𝑘  𝑛
𝑖=1

∑ 𝑡𝑖𝑤𝑖
𝑛
𝑖=1

−
∑ (1 − 𝑡𝑖)𝑤𝑖𝑌𝑖,𝑘  𝑛

𝑖=1

∑ (1 − 𝑡𝑖)𝑤𝑖  
𝑛
𝑖=1

 

In CEA, IPTW has been introduced for reducing selection bias in cost analysis (Basu et 

al., 2011) and for handling censored cost (Pullenayegum and Willan, 2011) and cost-

effectiveness (Willan et al., 2002, Willan et al., 2005) data. IPTW has not previously 

been considered for addressing selection bias in CEA.  

If the PS is correctly specified, IPTW can provide consistent estimates and reach semi-

parametric efficiency (Hirano et al., 2003). This can be particularly attractive for 

subgroup analysis, where sample sizes at the subgroup level can be small.  Covariate 
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balance can be assessed following IPTW according to standardised differences (Austin, 

2009a), where the  means and standard deviations in equation (4) are weighted by the 

IPT weights.  

Misspecification of the PS, for example ignoring subgroup-specific treatment 

assignment, can cause IPTW to be biased, and it is expected to report more bias than PS 

matching. While for matching it is sufficient for the estimated PS to be a balancing 

score, for weighting, the PS needs to be the correct conditional probability of treatment 

assignment (Busso et al., 2009, Waernbaum, 2011). 

Even when the PS model is correctly specified, poor overlap can result in PS values 

close to 0 and 1, and unstable IPT weights, which can lead to estimates of ATEs that are 

biased and inefficient (Kang and Schafer, 2007a, Lee et al., 2010, Busso et al., 2011). 

Such challenges are likely to arise in CEA, where covariate imbalance can be high 

(Grieve et al., 2008), possibly resulting in poor overlap.  

After applying IPTW, uncertainty can be calculated using the sandwich estimator of a 

weighted regression of the endpoint on the treatment indicator 5 or the non-parametric 

bootstrap (Lunceford and Davidian, 2004), for example. Both approaches can maintain 

the correlation between the incremental cost and effectiveness parameters.  

2.4.4 Structural uncertainty from the choice of statistical method to address 

selection bias 

Each of the statistical approaches described above make assumptions that cannot be 

directly tested, for example the unconfoundedness assumption, or the assumption of 

                                                 

5 This weighted regression estimator, often used in applied work, corresponds the normalised IPTW 

estimator defined earlier (Busso et al., 2009). 
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correct regression model specification. This implies that no one approach is ideal, and 

the choice of statistical method for estimating cost-effectiveness parameters from 

patient-level observational data can contribute to structural uncertainty (Bojke et al., 

2009, Jackson et al., 2011). This type of structural uncertainty can be incorporated in 

CEA, by considering the impact of choosing alternative statistical methods on the 

estimated cost-effectiveness. In some cases structural uncertainty can be quantitatively 

incorporated in the analysis, for example using Bayesian model averaging for weighting 

regression models according to some measure of model adequacy (Jackson et al., 2011). 

Another approach, that can quantify the uncertainty due to possible violations of the 

unconfoundedness assumption, is calculating bounds around the estimated treatment 

effect, using Rosenbaum’s method of sensitivity analysis (Rosenbaum, 2002).  A more 

general approach is to repeat the analysis with alternative assumptions and carefully 

report and interpret their impact on the cost-effectiveness results. An example is 

provided by Polsky and Basu (2006) who report results obtained with regression, 

alongside with PS matching and IV methods.  The critical appraisal tool, developed in 

research paper 1, provides guidance on addressing structural uncertainty from the choice 

of the statistical method to address selection bias in CEA.  

2.4.5 Summary: underlying assumptions of statistical methods currently 

recommended to address selection bias in CEA 

This section reviewed the main assumptions behind statistical methods currently 

proposed for addressing selection bias in CEA. These assumptions include:  

1. Unconfoundedness. 

2. When using IV estimation, the IV only influences the endpoint through the 

treatment. 

3. Good overlap between covariate distributions of the treatment groups. 
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4. Correct specification of the endpoint regression model. 

5. Correct specification of the PS model.  

The critical appraisal tool, developed and applied in research paper 1, provides detailed 

guidance on how these assumptions can be assessed for CEA that use patient-level 

observational data, and gives guidance on how structural uncertainty from the choice of 

statistical method can be acknowledged.  

In this conceptual review, I found that in CEA, some of these assumptions are unlikely 

to hold. For example, while IV methods can potentially handle selection bias due to 

both observed and unobserved confounding, finding an appropriate IV can be 

challenging for CEA (Polsky and Basu, 2006).  While in health economics, genetic 

variation has been recently proposed as a type of valid instrument (Mullahy, 2011), its 

appropriateness for CEA has not been investigated.  This thesis therefore considers 

methods that rely on the unconfoundedness assumption. 

For these methods, including regression, PS matching and IPTW, in realistic 

circumstances of CEA, it is expected that three main challenges will prevail:   

misspecification of the endpoint regression model, misspecification of PS, and poor 

overlap.  The previous sections reviewed the expected performance of these methods 

under realistic circumstances. This is summarised in Table 2.1.   
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Table 2.1 - The expected performance of currently recommended methods, under realistic 

circumstances in CEA 

 Misspecification  

of endpoint 

regression model 

Misspecification of PS Poor overlap 

    

Regression Possible bias and 

inefficiency. 

 

Not relevant. Performance depends on 

correct specification of 

endpoint model.  

If misspecified, poor overlap 

magnifies bias. 

 

PS 

matching 

Not relevant. Possible bias and 

inefficiency. 

PS makes overlap explicitly 

testable. If weak overlap, 

treated observations 

might have to be dropped, 

alternatively bad quality 

matches, leading to bias and 

inefficiency.  

 

IPTW Not relevant.  Possible bias and 

inefficiency. More 

sensitive to 

misspecification than 

matching. 

 

Unstable IPT weights, bias 

and inefficiency.  

In the systematic review of research paper 1, I find that most applied CEA used 

regression and matching methods, including exact matching and PS matching. The 

review also revealed that the main underlying assumptions of these methods were not 

appropriately assessed.  This motivates the consideration of alternative statistical 

methods for addressing selection bias in CEA, which rely on less restrictive 

assumptions. The following sections review these methods. 

2.5 Statistical approaches identified in the general causal 

inference literature that have the potential to reduce selection 

bias in CEA  

In this section, I consider further statistical methods that, based on my conceptual 

literature review, were deemed promising for addressing selection bias in CEA. Each of 

these methods has the potential to make more plausible underlying assumptions in the 
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CEA context, than the methods currently recommended for CEA. Genetic Matching 

relaxes the assumption of the correctly specified PS model, by aiming to directly 

maximise covariate balance, using machine learning. Double-robust methods and 

regression-adjusted matching exploit information from the endpoint regression and the 

PS models, and can be unbiased even if one of these models is misspecified. I also 

consider machine learning approaches for estimating the PS and the endpoints, which 

relax the assumption of knowing the correctly specified, fixed parametric models. 

2.5.1 Genetic Matching 

Genetic Matching (GM) is a multivariate matching approach whose explicit aim is to 

optimise covariate balance (Diamond and Sekhon, 2012, Ramsahai et al., 2011, Sekhon, 

2011, Sekhon and Grieve, 2011). GM extends standard PS matching in two ways. First, 

instead of the manual process of modifying the PS and re-assessing covariate balance, 

GM harnesses an automated search algorithm that iteratively checks balance on 

observed confounders, and directs the search towards those matches that optimise 

balance (Diamond and Sekhon, 2012, Sekhon, 2011). Secondly, the GM algorithm can 

maximise covariate balance by matching on individual covariates as well as the PS.  

GM is a multivariate matching method that uses a generalised version of Mahalanobis 

distance (MD) metric.  The MD between any two column vectors (here representing the 

covariate values of a treated and a control individual) is:  

𝑀𝐷(𝑥𝑖 , 𝑥𝑗) = {(𝑥𝑖−𝑥𝑗)
𝑇

𝑆−1(𝑥𝑖−𝑥𝑗)}

1
2
 

, where S is the sample covariance matrix of 𝑥.  The distance metric for GM contains an 

extra weight 𝑊, with dimensions of a  𝑘 × 𝑥 matrix with  𝑘 free parameters in the 

diagonal, where k is the number of covariates: 
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𝐺𝑀𝐷(𝑥𝑖 , 𝑥𝑗) = {(𝑥𝑖−𝑥𝑗)
𝑇

(𝑆−1/2)
𝑇

𝑊𝑆−1/2(𝑥𝑖−𝑥𝑗)}

1
2
 

The algorithm chooses the free parameters of the  W matrix based on a loss function 

which minimises the imbalance between the covariate distributions of the matched 

treated and control groups. To measure imbalance, paired t-tests assess the equality of 

the means and Kolmogorov-Smirnov (KS) distributional tests assess covariate balance 

across the whole distribution. Using the optimal W matrix, matched pairs are selected, 

for example performing 1:1 matching, and the matching estimator can be obtained as 

described by equation (3).   

As a default, the variables that receive the highest weight in the loss function are those 

that have the worse balance at each stage of the optimisation process. However, a 

researcher might want to ensure that good balance is achieved on a subset of covariates 

designated as “high priority”.  For example, prior clinical evidence might indicate that a 

covariate is particularly prognostic for the endpoint.  GM can be tailored to prioritise  

achieving covariate balance on such high priority variables (Ramsahai et al., 2011), by 

modifying the loss function.  The ability of GM to reduce bias hence relies on the 

correct specification of the loss function.  

While it is an option to use the estimated PS in the matching process, GM does not rely 

on knowing the correct PS. Sekhon and Grieve (2011) report that when the PS is 

misspecified, GM can improve covariate balance, and reduce bias and variability in the 

cost-effectiveness estimates. For subgroup analysis, the GM algorithm can be modified 

to maximise balance for each subgroup.   

A challenge GM shares with other multivariate matching methods is that matching on a 

high dimensional covariate vector can lead to finite sample bias and loss of precision 

(Abadie and Imbens, 2006a). This can be of particular concern when reporting cost-
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effectiveness results by subgroup as sample sizes can be relatively small.  GM has not 

been considered for subgroup analysis in CEA before, nor compared to alternatives 

other than PS matching. 

2.5.2 Approaches that combine the PS with regression for the endpoints 

Some commentators raise doubts about regression approaches, where model selection 

can be influenced by its consequences for the estimated treatment effects (Rubin, 2008, 

Rubin, 2007, Ho et al., 2007). In contrast, PS methods do not require information on the 

endpoint, and can be regarded as more objective.  However, if some confounders are 

highly prognostic for the endpoint, even small imbalances that remain in these 

covariates after matching can translate into large biases in the estimated treatment 

effects. PS methods alone cannot formally take into account information on the 

confounder-endpoint relationship (Stuart, 2010). In CEA, where selection bias needs to 

be addressed for both the cost and the effectiveness endpoints, the PS might balance the 

most important confounders for one endpoint, but not for the other, leading to bias. It is 

recommended that PS and other matching methods form the design stage of an 

observational study, and are followed by regression modelling of the endpoint (Polsky 

and Basu, 2006, Rubin, 1973, Imbens and Wooldridge, 2009a, Rubin, 2007). The 

following sections describe two combined approaches: double-robust methods, and 

regression-adjusted matching. 

Double-robust methods 

Double-robust (DR) methods, proposed by Robins and colleagues (Robins et al., 1995, 

Bang and Robins, 2005, Robins et al., 2007) combine models for the PS and for the 

endpoint, with most implementations using the PS as IPT weights (Kang and Schafer, 

2007b). The distinctive property of DR estimators is that they are consistent if either 
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(but not necessarily both) the PS or the endpoint regression model is correctly specified. 

If both components are correct, the DR estimator can be a semi-parametric efficient 

estimator (Robins et al., 2007). 

 In the context of CEA, DR estimators require specifying a model for both the cost and 

the effectiveness endpoints, as well as for the PS. If treatment effect estimates for 

subgroups are required, treatment-covariate interactions can be included in the 

regression models. DR methods have been proposed for addressing censoring (Pan and 

Zeng, 2011, Bang and Tsiatis, 2000), or selection bias in cost analyses (Basu et al., 

2011), but have not been considered  for addressing selection bias in CEA. Below I 

review two DR methods that are commonly used in the causal inference literature, 

augmented IPTW (AIPTW) and weighted regression. I also describe a recently 

proposed DR method, targeted maximum likelihood estimation (TMLE). 

Commonly used DR methods  

 AIPTW (Robins et al., 1994, Basu et al., 2011) weights residuals from a regression 

model with the IPT weights. The AIPTW estimator is 

�̂�𝑘,𝐴𝐼𝑃𝑇𝑊  
∑ 𝑡𝑖𝑤𝑖(𝑌𝑖,𝑘 − �̂�𝑖,𝑘(𝑥𝑖))  𝑛

𝑖=1

∑ 𝑡𝑖𝑤𝑖  
𝑛
𝑖=1

−
∑ (1 − 𝑡𝑖)𝑤𝑖(𝑌𝑖,𝑘 − �̂�𝑖,𝑘(𝑥𝑖))  𝑛

𝑖=1

∑ (1 − 𝑡𝑖)𝑤𝑖  
𝑛
𝑖=1

+ 

1

𝑛
∑ {�̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 1) − �̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 0)}𝑛

𝑖=1 , 

where �̂�𝑖,𝑘(. ) is the predicted endpoint from a regression model, for example from a 

GLM defined in equation (1), and 𝑤𝑖 is the IPT weight, defined in equation (5). 

An alternative is the weighted regression estimator (Freedman and Berk, 2008, Kang 

and Schafer, 2007a), which weights the endpoint regression, for example a GLM, with 

𝑤𝑖 (Freedman and Berk, 2008, Kang and Schafer, 2007a).  ATEs can be obtained using 

the method of recycled predictions, 
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�̂�𝑘,𝑤𝑟𝑒𝑔

1

𝑛
∑{�̂�𝑖,𝑘,𝑤𝑟𝑒𝑔(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘,𝑤𝑟𝑒𝑔(𝑥𝑖,, 𝑡𝑖 = 0)},

𝑛

𝑖=1

 

where  �̂�𝑘,𝑤𝑟𝑒𝑔(. ) is the prediction from a weighted regression. 

Due to the DR property, these methods are consistent even if one of the PS or the 

regression model are misspecified. Under circumstances of poor overlap, in theory, a 

correctly specified regression can help with extrapolation (Petersen et al., 2010), hence 

can reduce bias compared to using IPTW alone. DR methods can also  increase 

efficiency, because using the predicted  endpoint can stabilise weights (Glynn and 

Quinn, 2010).   

In realistic settings, such as when there is poor overlap and the PS and the endpoint 

models are misspecified, DR methods can provide biased and inefficient estimates of 

ATEs (Kang and Schafer, 2007a, Porter et al., 2011, Freedman and Berk, 2008, Basu et 

al., 2011).  An ongoing debate discusses the relative merits of different DR estimators 

under these circumstances (Porter et al., 2011, van der Laan and Gruber, 2010, Robins 

et al., 2007). It has been suggested that DR estimators should have a “boundedness 

property”:  they should respect the known bounds of the endpoint; so that the estimated 

parameter will always fall within the parameter space, i.e. the realistic range of values 

for that parameter (Robins et al., 2007, Rotnitzky et al., 2012). A  recently proposed DR 

method , targeted maximum likelihood estimation, can have this boundedness property 

(Gruber and van der Laan, 2010a, Gruber and van der Laan, 2012a).  

Targeted maximum likelihood estimation  

While standard maximum likelihood estimation aims to find parameter values that 

maximise the likelihood function for the whole data, targeted maximum likelihood 

estimation (TMLE) is concerned with a particular feature of the distribution such as the 
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ATE  (van der Laan and Rubin, 2006, Moore and van der Laan, 2009). Maximising a 

global likelihood function may not yield the least biased estimate of the target 

parameter, so TMLE is designed to target the initial estimate so as to reduce bias in the 

estimate of the parameter of interest. Performing TMLE involves two stages  (Gruber 

and van der Laan, 2012b). In the first stage, an initial estimate of the conditional mean 

of 𝑌𝑖 , given 𝑡𝑖 and 𝑥𝑖  , is obtained. In practice, this involves using a regression approach 

to predict the expected potential outcomes conditional on the observed confounders, 

�̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 0) and �̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 1). 

In the second stage, these initial estimates of the regression functions for the potential 

outcomes are fluctuated, exploiting the information in the treatment assignment 

mechanism, using  �̂�, the estimated PS. For the ATE, the fluctuation corresponds to 

extending the parametric regression model for 𝑌𝑖,𝑘 with “clever covariates” (ℎ), which 

are defined similarly to the IPT weights: 

ℎ0(𝑡, 𝑥) =
1 − 𝑡𝑖

1 − 𝑝𝑖
 

ℎ1(𝑡, 𝑥) =
𝑡𝑖

𝑝𝑖
 

For continuous endpoints, it is recommended (Gruber and van der Laan, 2012a, Gruber 

and van der Laan, 2010a) that known bounds of the endpoint are exploited, by rescaling  

𝑌 to between 0 and 1, to ensure that TMLE has the boundedness property. Then the 

fluctuation can be performed on the logistic scale: logistic regressions are fitted with the 

transformed endpoint on the left hand side, using the initial prediction as an offset, and 

the clever covariates as regressors. This regression can be interpreted as explaining the 

residual variability of the predicted endpoint, using information from the treatment 

assignment mechanism. The resulting targeted estimates of the expected potential 
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outcomes, �̂�1
𝑖,𝑘

(𝑥𝑖, 𝑡𝑖 = 0) and �̂�1
𝑖,𝑘

(𝑥𝑖, 𝑡𝑖 = 1) are used in the G-computation formula 

to obtain the TMLE estimator: 

�̂�𝑘,𝑇𝑀𝐿𝐸 =
1

𝑛
∑ {μ̂

1
i,k

(𝑥𝑖,, 𝑡𝑖 = 1) − μ̂
1

i,k
(𝑥𝑖,, 𝑡𝑖 = 0)},               

𝑛

𝑖=1

 

TMLE has the property of double-robustness, and if both  components are correct, it 

reaches the semi-parametric efficiency bound (van der Laan, 2010). As any DR method, 

TMLE can be biased if both the endpoint and the PS model are misspecified, and can be 

sensitive to unstable IPT weights when overlap is poor (Porter et al., 2011).  However, 

TMLE was demonstrated to report relatively  low bias compared to other DR methods 

when machine learning techniques were used to obtain the initial estimate of the 

endpoint, and to estimate the PS (Porter et al., 2011).  

TMLE has not been considered in CEA before. The method has particular appeal for 

estimating treatment effects on data where known bounds can be exploited, for example 

with common HRQoL endpoints, where distributions are bounded at small negative 

values and 1, or cost data that is typically bounded at 0.  Standard errors can be 

estimated using the influence curve (van der Laan, 2010), but also with the non-

parametric bootstrap. The latter method can be used for any DR method including 

AIPTW and weighted regression, and can maintain the correlation between the 

incremental cost and effectiveness parameters.  

Regression-adjusted matching methods 

The causal inference literature generally recommends that matching is followed by 

regression adjustment (Rubin, 1973, Rubin and Thomas, 2000, Abadie and Imbens, 

2006a). The idea is similar to regression-adjustment in randomised trials: regression is 

used to “clean up” imbalances between treatment groups after matching (Stuart, 2010). 
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Here, I review two implementations: matching as non-parametric pre-processing (Ho et 

al., 2007) and bias-corrected matching (Abadie et al., 2004, Abadie and Imbens, 2011). 

Matching as non-parametric pre-processing 

Ho et al. (2007) proposes undertaking matching - for example PS matching or GM - as 

the first step of the analysis, and then use the frequency weights from the matching to 

weight endpoint regression models, for example GLMs. Using this approach, the 

regression-adjusted matching estimator (Hill and Reiter, 2005)  of the ATEs for each 

endpoint can be obtained as:  

�̂�𝑘,𝑟𝑒𝑔−𝑚𝑎𝑡𝑐ℎ =
1

𝑛
∑{�̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ

(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ
(𝑥𝑖,, 𝑡𝑖 = 0)},   

𝑛

𝑖=1

 

where  �̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ
(. )  are the predicted potential outcomes obtained from applying 

regression models on the matched data. 

Regression-adjusted matching is expected to reduce finite sample bias and increase 

efficiency compared to matching alone (Hill and Reiter, 2005, Ho et al., 2007).  

Applying a regression model with treatment by covariate interactions can also facilitate 

hypothesis testing for differences between treatment effects among subgroups of 

interest.  This approach can reduce the sensitivity of the estimated ATEs to the 

specification of the endpoint model (Ho et al., 2007). In CEA, regression-adjustment 

has been proposed after matching in CEA, in order to reduce conditional bias and to test 

the robustness of results obtained after matching (Sekhon and Grieve, 2011). Standard 

errors and confidence intervals of cost-effectiveness estimates can be obtained 

conditional on the matched data (Ho et al., 2007). No guidance on the implementation 

of this approach has been provided for CEA, nor has its performance been compared 

with alternative methods.  
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Bias-corrected matching 

Bias-corrected matching (BCM) (Abadie et al., 2004, Abadie and Imbens, 2011) adjusts 

the imputed potential outcome with the difference in the predicted outcome that can be 

attributed  to covariate imbalances between the matched pairs. The predicted potential 

outcomes are obtained using regression models of the endpoint on covariates, stratified 

by treatment assignment. The bias-corrected predictions of the potential outcomes are: 

�̂�(0, 𝑥𝑖) = { 1

𝑀

𝑌𝑖,𝑘

∑ 𝑌𝑗,𝑘 + �̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 0) − �̂�𝑖,𝑘(𝑥𝑗,, 𝑡𝑖 = 0)𝑗𝜖𝜁𝑀(𝑖)     

if  𝑡𝑖 = 0
if 𝑡𝑖 = 1

  , 

�̂�(1, 𝑥𝑖) = {
1

𝑀
∑ 𝑌𝑗,𝑘 + �̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘(𝑥𝑗,, 𝑡𝑖 = 1)𝑗𝜖𝜁𝑀(𝑖)

𝑌𝑖,𝑘     

if  𝑡𝑖 = 0
if  𝑡𝑖 = 1

  . 

For example, for an individual 𝑖 who received control, the imputed potential outcome 

under treatment is the average outcome of its 𝑀 closest matches from the treatment 

group (indexed by 𝑗), adjusted with the difference between the predicted outcomes 

under treatment, when covariate values are set to those of its own values, 

�̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 1) and the values of the match , �̂�𝑖,𝑘(𝑥𝑗,, 𝑡𝑖 = 1). The corresponding 

estimator, analogously to the PS matching estimator, is the mean of the estimated 

individual-level treatment effects: 

�̂�𝑘,𝐵𝐶𝑀 =
1

𝑛
∑{�̂�(1, 𝑥𝑖) − �̂�(0, 𝑥𝑖)}

𝑛

𝑖=1

 

BCM is consistent if �̂�𝑖,𝑘(𝑥, 0)  and �̂�𝑖,𝑘(𝑥, 1) are consistent estimators for the potential 

outcomes (Abadie and Imbens, 2011). It has been shown that for reducing bias, the 

correct specification of the regression model is not essential, for example, for moderate 

nonlinearities in the response surface, adjustment even with a linear model can remove 

most bias (Rubin, 1973, Rubin and Thomas, 2000, Abadie and Imbens, 2011, Busso et 

al., 2011). CEA typically has highly nonlinear response surfaces, and so adjustment 
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with linear models might be insufficient. One approach would be to consider non-

parametric regression methods, such as series estimation which have been also 

recommended for bias-adjustment (Abadie and Imbens, 2011). However, such flexible 

approaches have not been considered in applied studies or simulations that implement 

BCM (Busso et al., 2011, Abadie and Imbens, 2011). In scenarios relevant to CEA, for 

example when overlap is poor, BCM has been shown to outperform reweighting 

approaches such as IPTW and DR methods (Busso et al., 2011). BCM has not been 

considered for CEA before. 

2.5.3 Machine learning estimation for the PS and the endpoint regression 

Each of the methods reviewed in the previous sections can use models for the costs and 

effectiveness endpoints, or a model for the PS.  Single methods - for example, 

regression, or PS matching - can use these models to estimate ATEs, or they can be 

combined, for example in DR methods or in regression-adjusted matching. GM extends 

PS matching, by using a machine learning algorithm to directly maximise balance.  In 

general, machine learning covers a wide range of classification and prediction 

algorithms (Westreich et al., 2010, Austin, 2012).  Unlike approaches that assume a 

fixed statistical model, for example a GLM with a log link, machine learning aims to 

extract the relationship between the endpoint and covariates through a learning 

algorithm, without choosing one specific model a priori (Lee et al., 2010). These 

approaches can be used to estimate the PS (Westreich et al., 2010), and the endpoint 

regression functions (Austin, 2012), and are reviewed in the next section.   
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Machine learning estimation of the PS 

A common approach to PS estimation is to use logistic regression models without 

interaction or higher order terms. Assumptions behind the logistic regression, for 

example the linearity of the relationship between covariates and the logit, are rarely 

assessed (Westreich et al., 2010). More flexible modelling approaches, such as series 

regression estimation (Hirano et al., 2003), and methods from the machine learning 

literature (Westreich et al., 2010), can increase the chances  of correctly specifying the 

PS.  Machine learning methods that can be used for PS modelling, include decision 

trees, neural networks, linear classifiers and boosting methods (Austin, 2012, Lee et al., 

2010, van der Laan, 2007). While these algorithms mostly choose an estimated PS 

based on the predictive performance of a model for the binary indicator of treatment 

receipt, the ultimate test of the specification is whether the PS balances the distribution 

of  potential confounders between the treatment groups (Stuart, 2010).  

This thesis considers boosted classification and regression trees (CART), which can 

reduce bias in the estimated ATE when compared to using a misspecified logistic 

regression, and also compared to alternative machine learning approaches (Lee et al., 

2010). The algorithm fits regression trees on random subsets of the data, and in each 

iteration, the data points which were incorrectly specified with the previous trees 

receive greater priority. The algorithm can be specified to stop when the best balance - 

measured as mean standardised differences or KS tests - is achieved (McCaffrey et al., 

2004, Lee et al., 2010). As well as specifying a balance measure, tuning parameters, 

such as the number of iterations, depth of interactions or shrinkage parameters need to 

be chosen.   
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Machine learning estimation of the endpoint regression function 

For estimating treatment effects, the expected potential outcomes need to be predicted 

under treated and control states, using regression functions of the endpoint. Here, 

recommended machine learning methods include bagged regression trees, random 

forests or boosted regression trees (Austin, 2012); and the “super learning” algorithm 

(van der Laan, 2007), considered for this thesis.  

Super learning uses a collection of prediction algorithms pre-selected by the user, 

potentially exploiting subject-matter knowledge of the data-generating mechanism for 

the endpoint. For example, for CEA, if a multiplicative relationship between the 

covariates and the cost endpoint is likely, a GLM with log link can be included among 

the prediction algorithms. The super learner algorithm uses cross-validation to select a 

weighted combination of estimates reported by the prediction procedures (Polley and 

van der Laan, 2010). The selected combination is proposed to be asymptotically optimal 

(van der Laan and Dudoit., 2003): if the correct model is among the candidates, the 

algorithm is expected to select it. The predicted potential outcomes can then be used in a 

regression estimator (see equation 2) or in combined methods such as TMLE (Porter et 

al., 2011) or BCM.   

There is little known about the performance of machine learning regression estimators 

when there is poor overlap between covariate distributions. It is expected that the 

increased flexibility of these methods can reduce model misspecification, as well as 

reduce bias from extrapolation with an incorrect model (Porter et al., 2011). A drawback 

of machine learning methods is computational time, especially if the non-parametric 

bootstrap is used for calculating standard errors for estimated treatment effects (Austin, 

2012).  
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2.5.4 Summary: promising methods from the causal inference literature, for 

addressing selection bias in CEA 

The objective of this section was to review promising statistical methods from the 

general causal inference literature which can be used in CEA to address selection bias, 

and to evaluate their appropriateness for CEA. Beyond the approaches recommended by 

the methods literature in CEA, such as regression, PS matching and IPTW, the 

following methods were deemed promising for CEA: GM, DR methods and regression-

adjusted matching. I also considered machine learning methods for estimating the PS 

and the endpoint regression function.  Each of these methods relies on the assumptions 

of unconfoundedness and good overlap. 

This section investigated these methods in terms of the challenges identified for CEA, 

such as the specification of the endpoint regression models and the PS, and when there 

is poor overlap.  I found that these methods can make less restrictive assumptions than 

previously proposed methods. Table 2.2 summarises the expected relative performance 

of these methods under realistic circumstances in CEA.  

GM does not require a correctly specified PS, however the analyst does need to specify 

a loss function for the machine learning algorithm. This involves selecting those 

potential confounders that the algorithm is specified to balance. This choice of 

confounders also needs to be made when PS matching or IPTW is used for creating 

balance (Stuart, 2010). GM, similarly to PS matching, can result in poor quality 

matches, hence bias and high variability if overlap is weak. Combined methods can 

mitigate the disadvantages of either PS or regression methods: DR methods can be 

unbiased if either one of the PS or regression models is correct, but can be sensitive to 

unstable weights if overlap is poor. Regression-adjusted matching can decrease the 

sensitivity of estimates to the misspecification of the regression model, due to increased 



65 

 

balance; however can be less efficient than using regression. Machine learning 

estimation methods for the PS and the endpoints, while not requiring a correctly 

specified fixed parametric model, can be sensitive to subjective choices such as the 

choice of prediction algorithms and tuning parameters. 

2.6 Identifying research gaps in the literature comparing 

alternative statistical methods for addressing selection bias in 

CEA  

In the conceptual review, I identified a range of alternative statistical methods that are 

promising in addressing selection bias in CEA.  While statistical theory offers guidance 

on how methods perform when their underlying assumptions fail, an important 

challenge for the applied researcher is to choose the least biased and most efficient  

estimator under realistic circumstances, such as not knowing the true statistical models 

that generate the endpoint and the treatment assignment.  

The results of current comparative work in the methodology literature might not 

translate directly to CEA. Therefore new simulation studies, which incorporate 

important features of CEA, such as correlated cost and effectiveness endpoints and 

nonlinear covariate-endpoint relationships, are needed. 

When cost-effectiveness for patient subgroups needs to be estimated using 

observational data, regression methods, recommended for subgroup analysis in CEA 

(Nixon and Thompson, 2005), can be sensitive to the specification of the regression 

model. Methods that use the PS to reduce selection bias are therefore of interest to 

estimate subgroup-effects. IPTW has particular appeal for subgroup analysis, where due 

to reduced sample sizes, precision can be a concern: if the PS is correctly specified, 

IPTW can provide more precise estimates of treatment effects than matching (Hirano et 

al., 2003).   
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Table 2.2 - The expected performance of proposed methods, under realistic circumstances 

in CEA 

 Misspecification 

of the endpoint1 

Misspecification of the PS1 Poor overlap 

GM Not relevant. Does not matter if loss 

function correctly specified. 

 

Treated observations 

might have to be dropped, 

or the quality of matches 

is bad, leading to bias and 

inefficiency. 

 

DR  

methods 

Consistent 

estimates if the 

PS is correct.  

Consistent estimates if the 

endpoint regression model is 

correct. 

 

 

A correctly specified 

regression can help with 

extrapolation (Petersen et 

al., 2010). 

In practice, with unstable 

weights, bias and 

inefficiency likely. 

 

Regression-

adjusted 

matching 

Matching can 

reduce sensitivity 

to model 

misspecification. 

Regression adjustment can 

correct for imbalance and 

bias due to misspecified PS. 

 

Bias and inefficiency. 

However, bias due to 

model misspecification 

can be reduced by 

increased balance after 

matching. 

 

Machine 

learning 

estimation 

of PS 

 

 

Not relevant. Reduces chance of 

misspecification. Can be 

sensitive to the choice of 

algorithm and tuning 

parameters. 

 

Can provide remedy 

against unstable IPT 

weights (Lee et al., 2010). 

Machine 

learning 

estimation 

of the 

endpoint  

Reduces chance 

of 

misspecification.  

Can be sensitive 

to the choice of 

prediction 

algorithms. 

 

Not relevant. Reduced misspecification 

can reduce bias due to 

extrapolation (Porter et 

al., 2011).  

    

Notes: 1 Misspecification is defined as functional form misspecification, for example using the incorrect 

link function or omitting higher order terms from the linear predictor. 
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However IPTW has not been considered in CEA for addressing selection bias. GM has 

been proposed for CEA (Grieve et al., 2008), and was compared to PS matching 

(Sekhon and Grieve, 2011). However GM has not been compared to IPTW in the 

general methodological literature before, and none of the PS or matching approaches 

have been considered for subgroup analysis in CEA.    

While methodological guidance in CEA propose several ways of using the PS to create 

balance (Polsky and Basu, 2006, Mitra and Indurkhya, 2005, Manca and Austin, 2008), 

these studies did not consider the combination of the PS with regression models for the 

endpoint. Previous findings on the relative merits of alternative DR methods (Kang and 

Schafer, 2007a, Porter et al., 2011) may not translate to the CEA setting, where models 

for both costs (Jones, 2010) and health outcomes (Basu and Manca, 2011) may be 

required. While regression adjustment post matching has been proposed as a sensitivity 

analysis in the CEA literature (e.g. Sekhon and Grieve, 2011), the performance of this 

method under model misspecification has not been considered in a CEA setting before.  

 The evidence on the relative performance of regression-adjusted matching and DR 

methods is limited in the general causal inference literature.  A recent working paper 

(Busso et al., 2011) compared BCM with IPTW and a DR method, across a range of 

scenarios, including poor overlap. However,  BCM has not been  compared to TMLE,  

which has been proposed to outperform alternative DR methods under circumstances of 

model misspecification and poor overlap (Porter et al., 2011, Gruber and van der Laan, 

2010b). 

Both TMLE and BCM can be coupled with machine learning estimation of the endpoint 

regression function and the PS. This can be a promising approach for estimating 

parameters for CEA, such as treatment effects on HRQoL data, where specifying the  

endpoint regression model can be challenging (Basu and Manca, 2011). There are no 
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previous studies that implement BCM with machine learning, and the simulation studies 

which consider TMLE with machine learning (Porter et al., 2011, Gruber and van der 

Laan, 2010b), did not consider typical circumstances of HRQoL data, such as spikes in 

the distribution of the endpoint.  

To conclude, a number of gaps were identified in the methodological literature of CEA 

that considers statistical methods to address selection bias: 

1. PS methods such as PS matching and IPTW have not been considered for 

estimating subgroup-effects in CEA.  

2. GM has not been compared to IPTW before in the general methodological 

literature.  

3. DR methods and regression-adjusted matching have not been considered in the 

context of CEA. 

4. TMLE and regression-adjusted matching have not been compared in the 

methodological literature. 

5. Machine learning estimation methods have not been considered for estimating 

parameters for CEA before. 

The research papers included in this thesis (chapters 3 to 6) will aim to address these 

gaps, using simulations and case studies (see Table 2.3).  
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Table 2.3 - Summary of research papers to compare alternative statistical methods for 

addressing selection bias in CEA 

 Context Main 

comparators 

Main 

challenges 

considered  

Previous 

methodological 

papers 

extended 

Gap 

addressed 

 

Research 

paper 2 

 

Subgroup 

analysis in 

CEA 

 

IPTW, PS 

matching, 

GM 

 

Misspecification 

of the PS; 

unstable IPT 

weights 

 

 

Sekhon and 

Grieve, 2011  

 

1,2 

Research 

paper 3 

CEA Common DR 

methods,  

regression-

adjusted PS 

matching  

Misspecification 

of the PS, cost 

and 

effectiveness 

endpoints;  

unstable IPT 

weights 

 

Basu et al., 

2011 

Kang and 

Schafer, 2007 

 

 

3 

Research 

paper 4  

Estimating 

incremental 

effectiveness 

TMLE, BCM, 

with PS and 

endpoint 

estimated 

using (1) 

fixed 

parametric, 

(2) machine 

learning 

methods 

Misspecification 

of PS and 

HRQoL  

endpoint; 

poor overlap 

Basu and 

Manca, 2011;  

Busso et al., 

2011; 

Porter et al., 

2011; 

Lee et al., 2010 

 

4,5 

 

2.7 Discussion 

This chapter had four interlinked objectives. First, to review methodological guidance 

on the statistical methods for addressing selection bias in CEA that use patient-level 

observational data and to describe statistical challenges that arise when using these 

methods.  Second, to describe the main underlying assumptions of statistical methods 

previously recommended for addressing selection bias in CEA. Third, to identify further 

promising statistical methods from the general causal inference. Fourth, to identify gaps 
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in the methodological literature on the relative performance of statistical methods for 

addressing selection bias in CEA.  

CEA methodological guidance recommended that regression, PS methods and IV 

estimation are considered to address selection bias.  IV methods can potentially reduce 

selection bias due to both observed and unobserved confounding, however they make 

further untestable assumptions that may be unrealistic in a CEA setting (Polsky and 

Basu, 2006). Hence methods that assume no unobserved confounding need to be 

considered for CEA. These methods make the following further assumptions: 

1. Good overlap between the covariate distributions. 

2. Correctly specifying regression models for cost and effectiveness endpoints. 

3. Correctly specifying the PS model. 

The conceptual review found that under realistic circumstances, these assumptions 

might not be plausible for methods currently recommended for CEA. For example, INB 

regression (Hoch et al., 2002) imposes a linear functional form on the relationships 

between the covariates and the net benefit endpoint. PS, when used for stratification or 

as a covariate in regression  (Manca and Austin, 2008, Mitra and Indurkhya, 2005) has 

been shown to be dominated by alternative PS approaches such as IPTW and PS 

matching (Lunceford and Davidian, 2004). These methods are not further considered for 

this thesis. 

Research paper 1 (chapter 3) uses findings from this conceptual review to give detailed 

guidance on how the plausibility of the underlying assumptions of statistical methods 

can be assessed in CEA.  As this conceptual review highlighted, any statistical method 

relies on assumptions that cannot be directly tested from the data. As the checklist 

presented in research paper 1 highlights, the uncertainty due to the choice of statistical 



71 

 

approach needs to be acknowledged as part of a structural uncertainty in the CEA. My 

systematic review appraising published CEA (research paper 1) found that most studies 

did not appropriately assess the underlying assumptions their statistical methods made. 

Motivated by this finding, this conceptual review identified alternative statistical 

approaches from the causal inference literature that can potentially make less restrictive 

assumptions than previously proposed methods.  

I found that the following alternative approaches held promise for addressing selection 

bias in CEA: GM, DR methods, regression-adjusted matching and machine learning 

estimation approaches for the PS and the endpoint regression. The relative performance 

of these methods is likely to depend on the specific circumstances of the CEA, such as 

the extent to which there is poor overlap or misspecification of the PS or the endpoints. 

There is limited evidence on the relative performance of these methods, and it is 

unknown how these methods would perform when compared to previously proposed 

methods for addressing selection bias, in typical CEA.  

This thesis aims to address these gaps with three research papers. Research paper 2 

compares PS matching, GM and IPTW, for estimating cost-effectiveness for patient 

subgroups. Research paper 3 considers the relative performance of DR methods and 

regression-adjusted matching, for CEA. Research paper 4 considers a recently proposed 

DR method, TMLE, and compares it to BCM, for estimating treatment effects on 

HRQoL data, when fixed parametric models and machine learning techniques are used 

for estimating the PS and the endpoint regression.  

This review focused on methods that can address selection bias in CEA that use patient-

level observational data to estimate incremental parameters of continuous endpoints, 

such as incremental costs or HRQoL. The methods reviewed here can be extended to 

other endpoints such as binary, count or time-to-event data, and different estimands 
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such as odds ratios (Radice et al., 2012, Moore and van der Laan, 2009) and hazard 

ratios (Thompson et al., 2010). The complexities of using these statistical methods for 

estimating alternative parameters are beyond the scope of this review.  

This conceptual review focused on methods that can estimate the effect of a time 

constant, binary treatment. Extending the methods to categorical or continuous 

treatment is possible, for example using the generalised PS (Cole and Frangakis, 2009).  

IPTW and DR methods can also be extended to handle treatment and covariates that 

vary over time (Robins et al., 2000). Such extensions have relevance in CEA which 

need to handle cross-over between treatments, or treatment starting at different time 

points for patients. More generally, these methods can be used in CEA when developing 

input parameters for decision models, for example risk equations which need to account 

for time-varying confounding (Caro et al., 2012). 

This review did not cover some further important statistical challenges in CEA which 

uses patient-level observational data. These include the appropriate analysis of missing 

data and censored endpoints such as survival times or costs. Some of the methods 

reviewed here, for example IPTW and DR methods have more general applicability to 

account for censoring (Willan et al., 2002, Willan et al., 2005, Bang and Tsiatis, 2000) 

and to estimate mean endpoints under missing data (Kang and Schafer, 2007a). 

This review concludes that current methods recommended to address selection bias in 

CEA make assumptions that may not be plausible in practice. Further promising 

statistical methods are available from the general causal inference literature, but there is 

little evidence on their relative merits across settings typically observed in CEA. The 

subsequent chapters provide insights on the relative performance of statistical methods 

that aim to tackle selection bias in CEA that use patient-level observational data, to help 

address the gaps in the methodological literature identified in this chapter. 
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Chapter 3 - Checklist for critical appraisal of statistical 

methods to address selection bias in CEA that use patient-

level observational data 

3.1 Preamble to research paper 1 

Chapter 2 reviewed the current methodological guidance on statistical methods for 

addressing selection bias in CEA, and found that recommended methods make 

important underlying assumptions that may be implausible in typical CEA. General 

checklists and methodological guidelines (Drummond et al., 2005, Glick et al., 2007) do 

not include criteria for assessing the quality of statistical methods for CEA that use 

observational data. Research paper 1 aims to fill this gap in the methodological 

literature, by developing a new checklist to critically appraise statistical methods for 

addressing selection bias in CEA that use patient-level observational data.  

The development of this checklist was informed by the conceptual review (chapter 2), 

and by insights from an expert panel. In order to help a reviewer judge whether a study 

meets the checklist criteria, and to help the analyst to appropriately apply statistical 

methods in CEA, this paper also presents detailed methodological guidance (Appendix 

3.1).  

The checklist is applied in a systematic review of the applied literature, which aims to 

identify which methods are frequently used in applied CEA, and evaluates whether the 

assumptions underlying these methods were appropriately assessed.  Findings from the 

review will inform the choice of statistical methods and simulation scenarios in the 

subsequent empirical work (research papers 2, 3 and 4).  
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The research question for this paper was linked to the ESRC project and identified by 

the principal investigator, RG. I carried out a conceptual review, developed a checklist 
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observational data, in collaboration with RG. I applied this checklist in a systematic 

review of studies, and interpreted the findings. ZS verified the exclusion criteria of the 

systematic review and conducted a second review by independently appraising 50% of 

the included studies. I wrote the first draft of the manuscript and managed each round of 

comments and suggestions from RG and ZS. All authors read and approved the final 

draft prior to journal submission and inclusion in the dissertation.  
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Abstract  

Many cost-effectiveness analyses (CEAs) use data from observational studies. 

Statistical methods can only address selection bias if they make plausible assumptions. 

No quality assessment tool is available for appraising CEAs that use observational 

studies. We developed a new critical appraisal checklist to assess statistical methods for 

addressing selection bias in CEAs that use observational data.  

The checklist criteria were informed by a conceptual review, and applied in a systematic 

review of economic evaluations. Criteria included whether the study assessed the “no 

unobserved confounding” assumption, overlap of baseline covariates between the 

treatment groups, and the specification of the regression models. The checklist also 

considered structural uncertainty from the choice of statistical approach.  

We found 81 studies that met the inclusion criteria: studies tended to use regression 

(51%), matching on individual covariates (25%) or matching on the propensity score 

(22%). Most studies (77%) did not assess the “no observed confounding”  assumption, 

and few studies (16%) fully considered structural uncertainty from the choice of 

statistical approach. 

We conclude that published CEAs do not assess the main assumptions behind statistical 

methods for addressing selection bias.  This checklist can raise awareness about the 

assumptions behind statistical methods for addressing selection bias and can 

complement existing method guidelines for CEAs. 
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Introduction 

Methodological guidance for cost-effectiveness analyses (CEAs) emphasises the use of 

pragmatic randomised controlled trials (RCTs) (Willan and Briggs, 2006, Glick et al., 

2007), but for many decision problems RCTs are unavailable or insufficient. Hence 

CEAs may use observational studies, for example to provide transition probabilities for 

decision models, or to estimate incremental costs or effectiveness. However, the non-

random selection of patients into treatment can lead to selection bias (Jones and Rice, 

2011). For CEAs where individual patient data (IPD) are available, statistical methods 

such as regression, matching or instrument variable (IV) estimation can address 

selection bias. For these methods to provide unbiased estimates, the underlying 

assumptions must be plausible.  For example, regression and matching assume that 

there is no unobserved confounding (Greenland et al., 1999), regression that the 

endpoint model is correctly specified (Ho et al., 2007), and matching that baseline 

characteristics are balanced after matching (Stuart, 2010). 

In CEA, the choice of method for addressing selection bias can lead to different 

conclusions. For example, after applying regression to adjust for baseline differences, a 

surgical intervention for breast cancer appeared cost-effective, whereas after IV 

estimation, the intervention was dominated  (Polsky and Basu, 2006) (Table 3.1). 
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Table 3.1 - Incremental cost-effectiveness results according to statistical method for 

addressing selection bias: an illustrative example from a study comparing breast 

conserving surgery to mastectomy (Polsky and Basu, 2006). 

 

Covariate adjustment Instrumental variables 

Incremental cost [USD](95%  

CI) 

14,199 (10,279 to 

18,118) 
50,997 (12,879 to 89,114) 

Incremental QALY (95%  CI) 0.12 (0.05 to  0.19) -0.29 (- 0.095 to 0.38) 

ICER (USD) (95%  CI) 

118,325 (70,040 to 

250,000) 

Dominated (150,200 to 

Dominated) 

Abbreviations: USD- US Dollars; QALY, quality adjusted life year; CI, confidence interval. 

 

Critical appraisal tools have been developed for CEAs (Drummond et al., 2005, Philips 

et al., 2006), but there is no tool for assessing the quality of CEAs that use observational 

data; it is currently unknown whether such studies adopt appropriate statistical methods.  

This paper introduces a new checklist for assessing the main assumptions made by 

statistical methods for addressing selection bias. We apply the checklist in a systematic 

review of published CEAs that use observational data.  

Method 

A critical appraisal checklist was developed for assessing whether CEAs used 

appropriate statistical methods for addressing selection bias, and to provide a tool for 

improving the quality of future studies. To inform development of the checklist, we 

undertook a conceptual review of the statistics, econometrics and epidemiology 

literatures (including work published between 1983 and 2011) to identify relevant 

statistical methods for addressing selection bias in CEAs (e.g. Rosenbaum and Rubin, 

1983, Imbens and Wooldridge, 2009a, Stuart, 2010). The approaches judged most 

relevant were regression, matching on the propensity score, matching on individual 

covariates and IV methods (Polsky and Basu, 2006, Jones and Rice, 2011). To inform 
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the development of the checklist (Table 3.2) and accompanying guidance (Appendix 

3.1), the conceptual review identified the main assumptions underlying each method. 

Provisional versions of the checklist were reviewed by a panel of health economists and 

statisticians. Three independent reviewers piloted the tool on 15 studies.  

Assumption of no unobserved confounding 

Regression and matching methods assume “no unobserved confounding”. Under this 

assumption, the allocation of two individuals, who have similar observed characteristics 

but are in different treatment arms, can be thought of as effectively at random 

(Greenland et al., 1999). So for example in the CEA described by Polsky and Basu 

(2006) (and Table 3.1), this assumption implies that after regression adjustment there 

are no differences in the distributions of unobserved confounders between treatment 

arms. Approaches that use longitudinal data such as panel data regression and 

“difference-in-differences” rely on a weaker form of this assumption; they assume that 

changes over time in unobserved confounders are conditionally independent of 

treatment (Imbens and Jeffrey, 2007). 

The assumption of no unobserved confounding cannot be tested (Imbens and 

Wooldridge, 2009a). However, as Question 1a states, studies should assess whether this 

assumption is plausible (Table 3.2).  To meet this criterion a study is required to draw 

on external evidence or expert opinion of the potential influence of observed and 

unobserved baseline covariates on treatment assignment and endpoints (Rubin, 2010). 

Causal diagrams can be useful for defining the structure of such relationships (Pearl, 

2001). 
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Table 3.2 - Checklist for critically appraising statistical methods to address selection bias, 

in estimating incremental costs, effectiveness and cost-effectiveness  

Q1a: Did the study assess the “no unobserved confounding” assumption? 

a) Yes,  for example with causal diagrams informed by external literature 

b) Partially, for example with external literature or expert opinion    

c) No   

d) Not applicable                                                                                

Q1b: Did the study assess the assumption that the IV was valid? 

a) Yes,  for example, with causal diagrams informed by external literature                

b) Partially, for example, with external literature or expert opinion    

c) No   

d) Not applicable                                                                                

Q2: Did the study assess whether the distributions of the baseline covariates overlapped 

between the treatment groups? 

a) Yes, for example, with histograms and standardised differences   

b) Partially, for example, just with standardised differences 

c) No 

d) Not applicable 

 

Q3: Did the study assess the specification of the regression model for                                                                                

        (i.) Health outcomes?  (ii.) Costs? 

     

  

a) Yes, for example, with statistical tests or plots                   

b) Partially, with qualitative arguments 

c) No 

d) Not applicable 

Q4: Was covariate balance assessed after applying a matching method? 

a) Yes, with a measure that considered imbalance 

across different aspects of the distribution 

b) Partially, for example, by assessing mean differences  

c) No    

d) Not applicable                                                                         

Q5: Did the study consider structural uncertainty arising from the choice or specification 

of the statistical method for addressing selection bias? 

a) Yes, the sensitivity of cost-effectiveness  results to the choice of method  

was quantitatively assessed  and interpreted 

b) Partially, for example, by additional statistical analysis but without 

 interpetation, or commentary  with no quantitave assessment 

c) No 
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One way of handling both observed and unobserved confounding is with IV methods 

(Basu et al., 2007, Mullahy, 2011). IV estimation assumes that the instrument only 

influences endpoints through treatment and is independent of the unobserved 

confounders (Hernán and Robins, 2006). Although this assumption is also untestable, 

studies should again assess plausibility, for example with causal diagrams informed by 

expert opinion and evidence from the literature (Joffe and Mindell, 2006) (Question 

1b). For instance in a Mendelian randomisation study where genotype is the proposed 

instrument, causal diagrams may help the assessment of whether genotype only 

influences the endpoint of interest through the treatment (Didelez and Sheehan, 2007). 

 Assumption of good overlap in the distribution of baseline covariates between 

treatment arms 

Question 2 highlights that methods that assume no unobserved confounding also 

assume that there is good overlap in the distributions of baseline covariates between the 

treatment groups (Imbens and Wooldridge, 2009a). Good overlap implies there are no 

baseline characteristics which fully predict treatment status.  With weak overlap, a 

regression model extrapolates beyond the observed covariate data, so unless the model 

is correctly specified, this will lead to biased estimates (Ho et al., 2007). Overlap can be 

assessed by inspecting histograms or density plots (continuous covariates), and by 

reporting standardised differences (categorical or continuous covariates) (Imbens and 

Wooldridge, 2009b), before statistical adjustment takes place. A remedy for weak 

overlap is to constrain the sample to the area of good overlap, but recognising that this 

alters the population of interest (Crump et al., 2009).   
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Assumption that the parametric regression model is correctly specified 

Parametric regression models can only provide unbiased and efficient parameter 

estimates if they are correctly specified.  For unbiased estimates, the model must state 

the true relationship between the covariates and the mean endpoint (Ho et al., 2007). For 

the model to provide the most precise estimates, the probability distribution of the 

endpoint or error terms must be correct. In CEAs, these two elements of correct model 

specification are challenging, especially as it is also important to recognise any 

correlation of costs with health outcomes. Flexible bivariate models have been proposed 

that allow for non-normal distributions, and can improve the precision of the estimates 

(Nixon and Thompson, 2005), but less attention has been given to specifying the correct 

relationship between the covariates and the mean endpoint (Thompson et al., 2006). 

While the true parametric model is always unknown, a study should assess the relative 

fit of alternative models, for example by using likelihood based model diagnostics or 

cross validation  (Jones, 2010, Hill and Miller, 2010). Question 3 of the checklist 

considers whether the study has evaluated the model specification appropriately.  

Assumption that a matching method has balanced the matched samples 

Matching aims to balance treatment and control groups, by creating matched samples 

with similar observed covariate distributions. The estimated propensity score (Pscore) is 

often used as a balancing score (Rosenbaum  and Rubin, 1983). As Question 4 

emphasises, matching methods can only produce unbiased estimates if matching 

balances the distributions of baseline covariates. Hence the appropriate specification test 

is whether the matched samples are balanced (Stuart, 2010). Some balance diagnostics 

such as standardised differences use a comparison of means, but these are insufficient 

for capturing imbalances elsewhere in the covariate distributions (Sekhon and Grieve, 
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2011).  In CEAs, covariates tend to be non-normal, making it important to assess 

balance on the full distributions of the covariates using graphical tools (e.g. quantile-

quantile plots) and nonparametric tests (Stuart, 2010).  

Structural uncertainty from the choice of statistical method for addressing selection 

bias 

Each of the statistical approaches described makes untestable assumptions, which 

implies that no one approach is ideal. The choice of statistical method for estimating 

cost-effectiveness parameters from IPD can therefore contribute to structural 

uncertainty, both when the CEA takes data from a single study and if the estimates are  

used in a decision-model (Jackson et al., 2011). Question 5 considers structural 

uncertainty in the context of addressing selection bias. These criteria assess whether the 

study has considered the impact of choosing alternative methods for addressing 

selection bias, for example by making alternative assumptions about unobserved 

confounders, or assuming different regression model specifications. 

Even if, for example, the study has previously judged that a regression model is 

appropriate, it is still important to assess whether the results are sensitive to alternative 

approaches. The rationale is that even amongst regression models with similar fit, 

results can still be sensitive to the choice of model (Thompson and Nixon 2005). A 

recommended approach for characterising structural uncertainty is to repeat the analysis 

with alternative structural assumptions and carefully report and interpret the impact on 

results.  One way to assess whether results are sensitive to the potential for unobserved 

confounders is to employ “Rosenbaum bounds” (Rosenbaum, 2002). Here, cost-

effectiveness results can be reported according to alternative assumptions about the 

level of unobserved confounding (see Noah et al., 2011).  
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Systematic review of published cost-effectiveness analyses  

A literature search identified published economic evaluations that used observational 

data. The databases searched were MEDLINE, EMBASE, NHS Economic Evaluations 

Database (NEED), and the Health Economic Evaluations Database (HEED) (Appendix 

3.2). Inclusion and exclusion criteria were applied in title, abstract and full text reviews. 

Papers had to be published between 2000-2011, report a full economic evaluation 

(Drummond et al, 2005) that estimated at least one incremental parameter (e.g. 

incremental costs, incremental quality adjusted life years, or an incremental surrogate 

measure such as relative risks) using  observational IPD. The studies had to employ a 

statistical method to address selection bias (Appendix 3.2).  

Title and abstract screening were conducted by one reviewer (NK); a second reviewer 

(ZS) verified exclusion criteria on a random sample of 5% of excluded studies. There 

were no disagreements on the articles excluded. The selected studies were critically 

appraised by the first reviewer. The second reviewer independently appraised a random 

sample of 50% of these papers. The inter-rater reliability of the checklist was good 

(kappa > 0.95), disagreements were resolved by a third reviewer (RG). Pre-specified 

subgroup analyses were defined according to publication year (post 2006 versus 2006 or 

earlier), the observational study’s design (prospective versus retrospective), and journal 

type (health economics or statistics versus other). 

Results 

The literature search yielded 4203 abstracts, 257 papers were selected for full text 

review with data extracted from 81 papers (Figure 3.1). The most common statistical 

method for addressing selection bias was regression (Table 3.3).  
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Figure 3.1. - Flow chart of studies included in the systematic review of published economic 

evaluations 

 

Most studies (77%) did not assess the assumption of “no unobserved confounding” 

(Table 3.4). Both studies using IV methods only partially assessed the validity of the 

instrument. A small minority of regression-based studies fully assessed model 

specification with statistical tests; others gave a partial assessment by citing 

methodological work to justify the model choice. Around half of the matching studies 

assessed covariate balance by comparing means in the matched samples.   

A minority of studies (16%) fully considered structural uncertainty. They reported and 

interpreted cost-effectiveness estimates across different methods (e.g. regression and 

matching); 35% partially assessed structural uncertainty by considering alternative 

model specifications, or by providing a “qualitative assessment” of the potential role of 

unobserved confounders. 
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Structural uncertainty was fully considered by a higher proportion of studies published 

in health economics and statistics journals (30% vs. 13%; p=0.091). For other items any 

differences between subgroups were relatively small.  

 

Table 3.3 - Characteristics of studies included in the review (n=81) 

Primary statistical method to address selection bias  

Regression  Matching on 

the Pscore 
Matching on 

covariates 
Instrumental  
variables 

 

 41 (51%)  18 (22%)   20 (25%)   2 (2%)   

 
Year of publication 
 
2000-2005 

 
2006-2011 

  

 
 36 (44%)   45 (56%)   

 
Journal type 
 
Health 

economics 
Statistics Medical Public health, health 

services. 
Other 

 16 (20%)   1 (1%)   53 (65%)   9 (11%)   2 (3%)  

 
Intervention type 

 
Health services Disease 

management 
Prevention, 

screening 
Substance abuse 
 treatment 

Other 

  11 (14%)    54 (67%)    7 (9%)    6 (7%)   3 (4%)  

 
Design of observational study 
 
Concurrent 

cohort 
Before-after Historic cohort Cross-

sectional 
Case -  

control 
Other 

 41 (51%)   2 (2%)   25 (31%)  2 (2%)  2 (2%)   9 (11%)  

 
Observational data is used to estimate… 

 
Does the CEA use a decision 

model? 

    
Incremental cost 

and effects or 

INB 

Incremental 

effects 1 
Incremental 

cost 2 
Yes No 

54 (67%) 26 (32%) 1 (1%) 12 (15%) 69 (85%) 
Notes: Pscore, propensity score; INB, incremental net benefit; IPD, individual patient data, CEA, cost-

effectiveness analysis 
1 These studies used aggregate estimates of incremental costs, for example, from external literature. 
2 This study used an aggregate estimate of incremental effectiveness from external literature. 
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Table 3.4 - Results of applying the checklist to published CEAs (n=81)  

Q1a. Was the “no unobserved confounding” assumption assessed?1 

Yes Partially 

 1/79 (1%) 

 

 17/79 (22%) 

 
 

Q2. Was the overlap of the covariate distributions between the treatment groups 

assessed?1  

Yes Partially 

 2/79 (3%) 

 

 0/79 (0%) 

 

 
Q3. For regression methods, was model specification assessed, for 

 

Health outcomes?2 Costs?2 

Yes Partially  Yes Partially 

8/41 (20%) 

 

12/41 (29%) 

 

3/23(13%) 

 

9/23 (39%) 

 

 
Q4. Was covariate balance assessed after applying a matching method? 

Yes Partially 

1/38 (3%) 20/38 (51%) 

 
 

Q5. Was structural uncertainty from the choice of statistical method considered? 

Yes Partially 

  13/81 (16%)   28/81 (35%) 

Notes: 1 Two studies used IV estimation which does not rely on the assumption of no unobserved 

confounding. For these studies Q1a and Q2 do not apply. Therefore for Q1a and Q2 the denominator was 

79.  Results for Question 1b are given in the Results section. 

2 Regression adjustment was used in 41 papers for health outcomes, 23 for costs. 
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Discussion 

This paper presents a critical appraisal tool for assessing and improving the way 

selection bias is addressed in CEAs that use observational data. The systematic review 

found that in the majority of published CEAs, the main assumptions underlying the 

statistical methods were not assessed. In particular, most studies assumed “no 

unobserved confounding” without any justification, raising concerns that the cost-

effectiveness estimates were biased. To improve practice, studies could use external 

evidence, for example from previous clinical studies to carefully consider potential 

confounders. Synthesising this information in causal diagrams can help make the 

assumption of no unobserved confounding explicit, and help assess whether this 

assumption is credible (Joffe and Mindell, 2006). 

We found that half the matching studies reported balance statistics, but only one study 

followed recent recommendations and assessed balance according to the full covariate 

distribution (Stuart, 2010). In CEAs, covariates tend to have irregular distributions, so 

using balance statistics that consider the full covariate distribution can be important in 

helping to address bias (Sekhon and Grieve, 2011).  

A promising approach for CEAs would be to combine matching with regression; this 

can address residual imbalances post matching, and findings tend to be insensitive 

to model choice (Ho et al., 2007, Abadie and Imbens, 2011). Another alternative is to 

combine weighting on the inverse probability of treatment assignment with regression 

(Robins et al., 1994). Such estimators can have double-robust properties; if either the 

model for the endpoint or for the treatment assignment is correctly specified, estimates 

are unbiased and  achieve semiparametric efficiency (Basu et al., 2008, Vansteelandt et 

al., 2011). Further work is required to test double-robust methods in CEA. 
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This paper has some limitations; as with any critical appraisal tool, study quality is 

judged according to the methods reported, and does not recognise that a study may have 

justified an assumption without reporting it.  However, the goal is to encourage studies 

to adopt better methods and report them transparently. Studies which did not apply a 

statistical method for addressing selection bias were excluded from the review, so the 

findings do not apply to all CEAs that use observational data, nor to those that relied on 

aggregate estimates from previous studies. The checklist does not cover other aspects of 

statistical analysis, for example the handling of missing or censored data. The checklist 

is therefore intended to complement rather than substitute for current methods guides 

for CEA (Drummond et al., 2005, Philips et al., 2006, Glick et al., 2007). 

Furthermore, as with any methodological guidance (Philips et al., 2006),  our checklist 

cannot prescribe which specific statistical method should be used to address selection 

bias in CEAs. The checklist’s main contribution is to raise awareness of the 

assumptions underlying alternative statistical methods.  

There has been recent interest and investment in comparative effectiveness research, 

which tends to assess cost-effectiveness without using RCTs (Sox et al., 2010). The 

findings from our paper suggest that it is vital to scrutinise the assumptions behind the 

statistical methods that purport to address selection bias. Indeed critical appraisal may 

reveal that the study design is flawed in that key underlying assumptions, for example 

that there are no unobserved confounders, cannot be justified. These insights might 

encourage future studies with more rigorous designs such as prospective cohort studies 

that collect baseline data on rich set of measured covariates (Rubin, 2010) including 

plausible instruments, or RCTs. 

In conclusion, CEAs that use observational data rarely assess the main assumptions 

behind statistical analyses for addressing selection bias. This checklist can raise 
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awareness about the major assumptions behind statistical methods for addressing 

selection bias and can complement existing method guidelines for CEAs. 

Acknowledgments 

We gratefully acknowledge John Cairns, Rhian Daniel, James Carpenter, Rosalba 

Radice (all LSHTM), Jasjeet S. Sekhon (UC Berkeley) and Roland Ramsahai 

(University of Cambridge) for reviewing provisional versions of the checklist. We also 

thank Carla Guerriero, Manuel Gomes and Mark Pennington (all LSHTM) for piloting 

the checklist. This work was funded by the Economic and Social Research Council 

(Grant no. RES-061-25-0343).   



99 

 

References 

Abadie, A. & Imbens, G. W. 2011. Bias-Corrected Matching Estimators for Average Treatment 

Effects. Journal of Business & Economic Statistics, 29, 1-11. 

Austin, P. C. 2009. Balance diagnostics for comparing the distribution of baseline covariates 

between treatment groups in propensity-score matched samples. Statistics in Medicine, 

28 3083-3107. 

Barber, J. & Thompson, S. G. 2004. Multiple regression of cost data: use of generalised linear 

models. Journal of Health Services Research Policy, 9, 197-204. 

Basu, A., Heckman, J. J., Navarro-Lozano, S. & Urzua, S. 2007. Use of instrumental variables 

in the presence of heterogeneity and self-selection: an application to treatments of breast 

cancer patients. Health Economics, 16, 1133-1157. 

Basu, A., Manning, W. G. & Mullahy, J. 2004. Comparing alternative models: log vs Cox 

proportional hazard? Health Economics, 13, 749-765. 

Basu, A., Polsky, D. & Manning, W. G. 2008. Use of Propensity Scores in Non-Linear 

Response Models: The Case for Health Care Expenditures [Online]. National Bureau of 

Economic Research, Inc. Available: http://ideas.repec.org/p/nbr/nberwo/14086.html 

[Accessed 05/10/2010. 

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J. & Sturmer, T. 2006. 

Variable selection for propensity score models. Am J Epidemiol, 163, 1149-56. 

Buntin, M. B. & Zaslavsky, A. M. 2004. Too much ado about two-part models and 

transformation?: Comparing methods of modeling Medicare expenditures. Journal of 

Health Economics, 23, 525-542. 

Crump, R. K., Hotz, V. J., Imbens, G. W. & Mitnik, O. A. 2009. Dealing with limited overlap in 

estimation of average treatment effects. Biometrika, 96, 187-199. 

Diamond, A. & Sekhon, J. S. 2012. Genetic Matching for Estimating Causal Effects: A General 

Multivariate Matching Method for Achieving Balance in Observational Studies. Review 

of Economic and Statistics, Forthcoming. 

Didelez, V. & Sheehan, N. 2007. Mendelian randomization as an instrumental variable 

approach to causal inference. Statistical Methods in Medical Research, 16, 309-330. 

Drummond, M., Sculpher, M., Torrance, G., O'Brien, B. & Stoddart, G. 2005. Methods for the 

Economic Evaluation of Health Care Programmes, Oxford, Oxford University Press. 

Glick, H., Doshi, J., Sonnad, S. & Polsky, D. 2007. Economic evaluation in clinical trials, 

Oxford, Oxford University Press. 

Greenland, S., Pearl, J. & Robins, J. M. 1999. Confounding and Collapsibility in Causal 

Inference. Statist. Sci. , 14, 29-46. 

Hernán, M. A. & Robins, J. M. 2006. Instruments for Causal Inference: An Epidemiologist's 

Dream? Epidemiology, 17, 360-372. 

Hill, S. C. & Miller, G. E. 2010. Health expenditure estimation and functional form: 

applications of the generalized gamma and extended estimating equations models. 

Health Economics, 19, 608-627. 

Ho, D. E., Imai, K., King, G. & Stuart, E. A. 2007. Matching as Nonparametric Preprocessing 

for Reducing Model Dependence in Parametric Causal Inference Political Analysis, 15, 

199-236. 

Hoch, J. S., Briggs, A. H. & Willan, A. R. 2002. Something old, something new, something 

borrowed, something blue: a framework for the marriage of health econometrics and 

cost-effectiveness analysis. Health Economics, 11, 415-430. 

Hosmer, D. W., Lemeshow, S. & May, S. 2008. Applied survival analysis : regression modeling 

of time-to-event data, Hoboken, N.J., Wiley ; Chichester : John Wiley [distributor]. 

Imbens, G. & Jeffrey, M. W. 2007. Difference-in-Differences Estimation. NBER Lecture Notes. 

Imbens, G. & Wooldridge, J. M. 2009b. New Developments in Econometrics. Lecture Notes, 

CEMMAP, UCL. 

Imbens, G. M. & Wooldridge, J. M. 2009a. Recent Developments in the Econometrics of 

Program Evaluation. Journal of Economic Literature, 47, 5–86. 

http://ideas.repec.org/p/nbr/nberwo/14086.html


100 

 

Jackson, C., Bojke, L., Thompson, S., Claxton, K. & Sharples, L. 2011. A Framework for 

Addressing Structural Uncertainty in Decision Models. Medical Decision Making, 31, 

662–674. 

Joffe, M. & Mindell, J. 2006. Complex Causal Process Diagrams for Analyzing the Health 

Impacts of Policy Interventions. American Journal of Public Health, 96, 473-479. 

Jones, A. M. 2007. Identification of treatment effects in Health Economics. Health Economics, 

16, 1127-1131. 

Jones, A. M. 2010. Models For Health Care. HEDG Working Papers. HEDG, c/o Department of 

Economics, University of York. 

Jones, A. M. & Rice, N. 2011. Econometric Evaluation of Health Policies. In: GLIED, S. & 

SMITH, P. (eds.) The Oxford handbook of health economics. Oxford: Oxford 

University Press. 

Mullahy, J. 2011. Symposium on genetic data in health economics research. Health Economics, 

n/a-n/a. 

Nixon, R. M. & Thompson, S. G. 2005. Methods for incorporating covariate adjustment, 

subgroup analysis and between-centre differences into cost-effectiveness evaluations. 

Health Economics, 14, 1217-1229. 

Noah, M. A., Peek, G. J., Finney, S. J., Griffiths, M. J., Harrison, D. A., Grieve, R., Sadique, M. 

Z., Sekhon, J. S., McAuley, D. F., Firmin, R. K., Harvey, C., Cordingley, J. J., Price, S., 

Vuylsteke, A., Jenkins, D. P., Noble, D. W., Bloomfield, R., Walsh, T. S., Perkins, G. 

D., Menon, D., Taylor, B. L. & Rowan, K. M. 2011. Referral to an Extracorporeal 

Membrane Oxygenation Center and Mortality Among Patients With Severe 2009 

Influenza A(H1N1). JAMA: The Journal of the American Medical Association, 306, 

1659-1668. 

Pearl, J. 2001. Causal Inference in the Health Sciences: A Conceptual Introduction. Health 

Services and Outcomes Research Methodology, 2, 189-220. 

Petersen, M. L., Porter, K., Gruber, S., Wang, Y. & Laan., M. J. v. d. 2010. Diagnosing and 

Responding to Violations in the Positivity Assumption. U.C. Berkeley Division of 

Biostatistics Working Paper Series. 

Philips, Z., Bojke, L., Sculpher, M., Claxton, K. & Golder, S. 2006. Good practice guidelines 

for decision-analytic modelling in health technology assessment: a review and 

consolidation of quality assessment. Pharmacoeconomics, 24, 355-71. 

Polsky, D. & Basu, A. 2006. Selection Bias in Observational Data. The Elgar Companion to 

Health Economics. Edward Elgar Publishing. 

Robins, J., Rotnitzky, A. & Zhao, L. P. 1994. Estimation of regression coefficients when some 

regressors are not always observed. Journal of the American Statistical Association, 89, 

846-866. 

Rosenbaum, P. R. 2002. Observational studies, New York ; London, Springer. 

Rosenbaum , P. R. & Rubin, D. B. 1983. The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70, 41-55. 

Rubin, D. B. 2010. On the limitations of comparative effectiveness research. Statistics in 

Medicine, 29, 1991-1995. 

Sekhon, J. S. & Grieve, R. D. 2011. A Matching Method for Improving Covariate Balance in 

Cost-Effectiveness Analyses. Health Economics, doi: 10.1002/hec.1748. 

Sox, H., Helfand, M., Grimshaw, J., Dickersin, K., Tovey, D. & al., e. 2010. Comparative 

effectiveness research: challenges for medical journals. Medical Decision Making, 30, 

301-303. 

Stuart, E. A. 2010. Matching Methods for Causal Inference: A review and a look forward. 

Statistical Science, 25. 

Thompson, S. G., Nixon, R. M. & Grieve, R. 2006. Addressing the issues that arise in analysing 

multicentre cost data, with application to a multinational study. J Health Econ, 25, 

1015-28  

Vansteelandt, S., Bekaert, M. & Claeskens, G. 2011. On model selection and model 

misspecification in causal inference. Statistical Methods in Medical  Research. 



101 

 

Willan, A. R. & Briggs, A. H. 2006. Statistical Analysis of Cost-effectiveness Data, John Wiley 

& Sons Ltd. 

Willan, A. R., Briggs, A. H. & Hoch, J. S. 2004. Regression methods for covariate adjustment 

and subgroup analysis for non-censored cost-effectiveness data. Health Economics, 13, 

461-475. 

 

 

  



102 

 

Appendix 3.1 - Methodological guidance to the checklist 

The aim of this guidance is to help a reviewer judge whether or not the published study 

assessed the main assumptions underlying the use of the statistical method for 

addressing selection bias.  The guidance offers examples of how each criterion can be 

met, drawing on findings from the conceptual review. However, the guidance does not 

aim to be exhaustive.  The checklist and guidance are intended for studies that meet the 

same inclusion criteria stipulated for the systematic review reported in the paper 

(Appendix 3.2).  

Step 1: Identifying the primary statistical method 

The checklist focuses on the statistical method that is used to address selection bias. A 

common example is where the study attempts to address selection bias with regression 

analysis, specifying a binary variable for the treatment and additional baseline 

covariates to adjust for observed differences in patient characteristics. By contrast, a 

regression model which aims to predict costs associated with the outcome of interest 

(e.g. the costs of atrial fibrillation event versus no event, as input to a decision analytical 

model) is not considered a relevant approach for this study. 

Some questions of the checklist are applicable only for certain methods, therefore the 

primary statistical method needs to be identified and recorded. If several statistical 

methods are applied, the one which the authors rely on in the CEA is selected as 

primary method and any other method will count as part of the structural sensitivity 

analysis (Table 3.2, Question 5). 

The classification of statistical methods used in this paper, with some accompanying 

examples, is as follows: 



103 

 

1. Regression: Examples are ordinary least squares (OLS), Generalised Linear 

Models (GLMs), panel data regression, difference-in-differences methods, Cox 

survival regression or net benefit regression. 

2. Matching methods: 

-  Matching on the Pscore: for example, Pscore matching, inverse probability of 

treatment weighting (IPTW), kernel density matching, 

stratification/subclassification/blocking/interval matching, regression on the 

Pscore or full matching. 

- Matching on individual covariates: for example, exact matching, Mahalanobis 

distance matching, or Genetic Matching. 

3. Instrumental variables (IV): for example, two stage least squares, two stage 

residual inclusion or generalised method of moments. 

Step 2: Applying the checklist 

Question 1a: Did the study assess the “no unobserved confounding” assumption? 

Applicability: A statistical method relies on the assumption of no unobserved 

confounding if regression or matching methods are used as a primary analysis of the 

study. If the primary method that is used allows for unobserved confounding (e.g. IV), 

the “Not applicable” option should be selected.  

a) Yes, for example, with causal diagrams informed by external literature. 

The assumption that needs to be assessed is that all potential confounders are accounted 

for in the statistical analysis, that is, baseline covariates that are associated with the 

treatment assignment and the cost or effectiveness endpoint.  This assumption might 

also be referred to as “unconfoundedness”, “strong ignorability”, “exogeneity”, 
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“selection on observables” or “conditional independence” (Imbens and Wooldridge, 

2009a, Imbens and Wooldridge, 2009b, Jones and Rice, 2011). If a panel data 

regression or a difference-in-differences method is used, the assumption is somewhat 

weaker: instead the assumption is that there are no time-varying unobserved 

confounders correlated with treatment assignment and the endpoints (Imbens and 

Jeffrey, 2007). 

A paper is defined to have fully assessed the assumption, if the causal relationships 

between covariates (observed and hypothesised unobserved) and endpoints (both cost 

and effectiveness) were assessed on the basis of a priori scientific knowledge (e.g. 

previous clinical studies on prognostic factors), using some of the following tools: 

-  Graphical representation with causal diagrams or directed acyclic graphs (Pearl, 

2001). 

-  Mathematical description of the relationships, by structural equation models 

(Pearl, 2001). 

These considerations might be complemented with placebo tests (Jones, 2007), which 

can detect violations of the assumption.     

b) Partially, for example, with external literature/expert opinion.    

The criterion would be partially met, if, for example:  

- The authors justified the set of observed confounders used in their statistical 

methods with substantive a priori knowledge, for example of risk factors for the 

disease or mechanism of treatment assignment (Rubin, 2010), but did not use the 

tools mentioned in a). 
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- The paper justified the choice of specific covariates by commenting (for 

example, in the discussion) on the plausibility and sufficiency of the observed 

confounders. 

c) No, if none of the above applies. 

 For example, if covariate selection is based solely on statistical tests (e.g. t-test of 

equality of covariate means between treatment groups) or automated model selection 

(e.g. stepwise) procedures (Brookhart et al., 2006). A general warning about unobserved 

confounding does not fulfil the criterion.  

d) Not applicable - see applicability  

Question 1b: Did the study assess the assumption that the IV was valid?                     

Applicability: This question is applicable if instrumental variable estimation was used 

as the primary statistical analysis. Otherwise, the “Not applicable” option should be 

selected. 

The validity assumption consists of two untestable assumptions (Hernán and Robins, 

2006): (i) the instrument only influences the outcome through treatment and (ii) the 

instrument is independent of the unobserved confounders. Although these assumptions 

cannot be tested directly, they can be assessed in similar ways to the no unobserved 

confounding assumption. 

a) Yes, for example, with causal diagrams informed by external literature. 

Similarly to Question 1a, previous empirical information and expert judgment need to 

be combined to assess the assumption that the instrument has a causal effect on the 

treatment, but does not have an independent casual effect on the outcome, nor is it 

associated with unobserved confounders. The causal diagrams can use this information 
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to formulate the relationships between the treatment, the instrument, observed and 

unobserved confounders and the endpoints. The use of causal diagrams can make the IV 

assumption explicit (Joffe and Mindell, 2006). If more than one instrument is available, 

tests of overidentifying restrictions can be used in addition (Jones and Rice, 2011). 

b) Partially, for example, with external literature/expert opinion    

- The authors justified the choice of the IV with substantive a priori knowledge of 

how the instrument is associated with treatment assignment, and is conditionally 

independent of endpoints without using the  tools mentioned in a). 

- The criterion can be partly met with commentary in the discussion justifying the 

validity of the instrument, if it uses prior scientific knowledge (e.g. other studies 

justifiying the use of the same instrument) or expert opinion. 

c) No, if none of the above applies. 

d) Not applicable - see applicability. 

                                       

Question 2: Did the study assess whether the baseline covariates (e.g. age and sex) 

had distributions that overlapped between the treatment groups? 

Applicability: This question is applicable for the same studies where Q1a is applicable. 

For IV, “Not applicable” should be selected.  

a) Yes, for example with histograms and standardised differences.  

This assumption is also referred to as the “common support” assumption (Rosenbaum  

and Rubin, 1983), the “experimental treatment assignment “, or the “positivity 

assumption” (Petersen et al., 2010). It is fully assessed if one of the following steps is 

taken, and the authors make explicit that the intention is assessing overlap: 
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- Histograms or smoothed density plots of the continuous covariates are plotted 

(Imbens and Wooldridge, 2009b), and areas of weak support in the densities are 

investigated. For binary variables, standardised differences are investigated. 

- If there are many covariates, this criteria is met if the distribution of Pscore is 

inspected for both treatment groups, so as to reveal possible lack of overlap in 

the multivariate covariate distributions.  

- Quantiles of the Pscore distributions are investigated. 

b) Partially, for example, just with standardised differences. 

Inspecting standardised differences of variables with the explicit objective of assessing 

overlap partially fulfills this requirement (Imbens and Wooldridge, 2009b). 

c) No, if none of the above applies, for example if standardised differences are reported 

for the purposes of assessing balance. 

d) Not applicable - see applicability. 

 

Question 3: Did the study assess the specification of the regression model for                                                                             

(i) health outcomes and (ii) cost? 

Applicability:  This question is applicable for studies where the primary statistical 

analysis to address selection bias was regression adjustment.  If regression adjustment 

was performed only for the cost or effectiveness endpoint, only the relevant part of the 

question needs to be answered. If regression on a univariate measure of net benefit was 

used (e.g. net benefit regression) the same answers should be given to both questions. 

a) Yes, for example with statistical tests/plots. 

Several options are available to statistically assess the specification of a regression 

model, for example, 
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- For GLMs, the correct specification of the link function and the outcome 

distribution can be tested, for example, with the the Hosmer–Lemeshow, 

Pregibon’s link test, or the modified Park test (Basu et al., 2004, Jones, 2010). 

-  The fit of models estimated through a maximum likelihood method can be 

assessed using log-likelihood based fit statistics, for example, the Akaike 

Information Criterion or the Bayesian Information Criterion (Barber and 

Thompson, 2004, Jackson et al., 2011). 

- Cross-validation is a general method to assess model fit based on predictive 

abilities (Buntin and Zaslavsky, 2004, Hill and Miller, 2010). 

- If a linear model (e.g. OLS) is used, residual plots can be examined to detect 

misspecification of the functional form of the regression model or 

heteroscedastic errors (Jones, 2010). Multicollinearity in the models can also be 

assessed. 

- Lag structure of time series models can be tested.  

- If a semiparametric Cox proportional hazards model is used, the proportionality 

of the hazard can be tested (Hosmer et al., 2008). 

b) Partially, with qualitative arguments. 

If a study uses previous applied and methodological work to guide the choice of the 

regression model, the criterion can be considered partly met, for example, 

- The distribution of an outcome can imply a modeling approach, e.g. logistic 

regression for binary data, or two-part models for costs with a large number of 

zeros (Buntin and Zaslavsky, 2004). 

- There might be a consensus in the clinical literature that certain covariates have 

a nonlinear effect on the outcome, or interaction with the treatment.  

- The linear net benefit regression is used and referenced (Hoch et al., 2002). 
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c) No,  if none of the above applies. 

d) Not applicable -  see applicability. 

 

Question 4: Was covariate balance assessed after applying a matching method? 

Applicability: This question is applicable if the primary statistical method to address 

selection bias is a matching method. 

a) Yes, with a measure that considered imbalance  across different aspects of the 

distribution 

This requirement is fulfilled if covariate balanced is assessed for aspects of the covariate 

distributions beyond the mean. Examples include: 

- For continuous covariates quantile–quantile plots can be examined, which 

compare the empirical distributions of variables in the treatment and control 

groups. This can be also compared for second moments of the variables, and 

interactions (Stuart, 2010). 

- Nonparametric tests of the equality of distributions can be performed, for 

example Kolmogorov-Smirnoff tests (Diamond and Sekhon, 2012). 

- Five-number summaries (quantiles) of the distributions can be provided (Austin, 

2009a). 

- Side-by side boxplots (Austin, 2009a) are presented. 

- Higher moments (variance, skewness, kurtosis) and cross-moments (covariance) 

of covariate distributions are compared (Jones and Rice, 2011). Variance can be 

compared using variance ratios (Austin, 2009a). 
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The assessment can be performed for any matching method. For methods that create 

matched treatment and control groups, the resultant groups can be compared. For Pscore 

subclassification, the assessment can be performed by the created strata; for IPTW, 

weighted boxplots can be used to assess balance (Stuart, 2010). If the Pscore is used for 

covariate adjustment, weighted conditional standardised absolute differences can be 

computed (Austin, 2009a). 

b) Partially, for exmaple, by assessing mean differences. 

Balance is partially assessed if covariate means of matched groups are compared, using 

the following tools, for example, 

- Standardised differences (also referred to as normalised differences) are 

measures which express difference in means in units of the pooled standard 

deviation (Rosenbaum  and Rubin, 1983) and are frequently used as balance 

diagnostics (Austin, 2009a). These measures are recommended for balance 

assessment since they are invariant to sample size (Stuart, 2010) and can be 

applied across a wide range of balancing methods (matching, IPTW, 

stratification). Using graphical displays (Austin, 2009a, Stuart, 2010) makes 

standardised differences on a large number of covariates easier to interpret. 

- Comparing mean differences with for example t-tests carries some information 

on balance, therefore it is considered to partially fulfil the criterion of balance 

assessment. It is, however, not recommended because sample size can change 

during a matching process resulting in misleading tests statistics (Imbens and 

Wooldridge, 2009a). 
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c) No, if none of the above applies. For example, the c-statistic or area under the 

receiver operating characteristic curve of the Pscore model and balance assessed on the 

estimated Pscore is not regarded as informative (Austin, 2009a). 

d) Not applicable – see applicability.  

 

Question 5: Did the study consider structural uncertainty arising from the choice 

or specification of the statistical method for addressing selection bias? 

a) Yes, the authors quantitatively assessed  and interpreted the  sensitivity of cost-

effectiveness  results to the choice of method. 

This criterion is fully met if the authors conducted an additional statistical analysis 

beyond the primary method used to address selection bias, and interpreted how the 

results are altered by using the alternative method. Structural uncertainty stems from 

many sources (Jackson et al., 2011), and the particular form of structural uncertainty 

here is that pertaining to the method for handling selection bias. Even this specific form 

of structural uncertainty can take several forms. Some examples are as follows: 

- Distinct methods based on different structural assumptions are applied, and 

results are reported and compared (e.g. instrumental variables versus Pscore, 

matching versus regression (Polsky and Basu, 2006)). 

- Methods are combined to add robustness to the analysis. For example methods 

combining regression and Pscore (Robins et al., 1994), or matched data adjusted 

using regression models (Ho et al., 2007). Results of these analyses are reported, 

and compared to those obtained from just one method. 

- Different specifications of the cost and effectiveness regressions are applied, 

results are reported and compared (e.g. with and without interactions; OLS 

versus gamma GLM). 
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- Structural uncertainty in the choice of parametric model for regression can be 

quantified, for example by Bayesian model averaging (Jackson et al., 2011). 

- Assessing the sensitivity to the assumption of no unobserved confounders, by 

exploring the effect of potentially omitted confounders on the parameters of 

interest, using sensitivity analysis (Rosenbaum, 2002). 

b) Partially, for example, additional statistical analysis with no interpetation, or 

commentary with no quantitave assessment. 

The criterion is partially met if: 

-  Statistical analysis beyond the primary method was performed; however, the 

implications for cost-effectiveness results were not interpreted appropriately. 

Examples are: 

- Specification tests for regression model are conducted, but results obtained 

using different specifications are not contrasted. 

- Matched data is adjusted with a regression model. 

- Pscore is included as an additional covariate in the regression model. 

- As a sensitivity analysis, some covariates are omitted from the set of 

variables used in the statistical analysis. 

- Commentary on the implications of the method choice is provided, without 

conducting a formal analysis, for example: 

- by discussing suspected bias due to unobserved  confounders. 

- by outlining a possible instrumental variables analysis. 

c) No, if none of the above applies. For example, conducting sensitivity analysis for 

other sources of structural uncertainty (e.g. Markov model structure) do not fulfil the 

criterion.  



113 

 

Appendix 3.2 – Systematic review search terms and inclusion 

criteria 

Search terms 

In order to minimise the risk of omitting potentially relevant studies, the search terms 

were broad, combining two requirements: the study is an economic evaluation and uses 

a statistical method.  The search terms used for the MEDLINE and EMBASE databases 

are listed in Appendix 3.2 Table 1, and were adapted for the NHS EED (through 

Cochrane Library) and HEED (through Wiley Online library) databases. 

Appendix 3.2 Table 1 - Search terms for NHS EED (adapted for HEED, MEDLINE and 

EMBASE databases) 

#1 "economic evaluation" OR "cost effectiveness " OR "cost-effectiveness" OR "cost 

utility" OR "cost-benefit" in Economic Evaluations 
#2 "regression" OR "covariate adjustment" OR "ordinary least square*" OR "OLS" or 

"generalised estimating equation*" OR "linear model*" OR "nonlinear model*" OR "logistic 

model*"  in Economic Evaluations 
#3 ("double robust" OR "doubly robust" OR  "inverse probability weight*" OR "inverse 

probability of treatment") OR (weight* AND "propensity score*") 
 in Economic Evaluations 

#4 (stratification OR stratify OR stratified OR blocking OR block OR strata) AND 

"propensity score*"  in Economic Evaluations 
#5 "propensity score*" in Economic Evaluations 
#6 "matching" or "matched" in Economic Evaluations 
#7 "two stage least squares" OR "two-stage least squares" OR "2SLS" OR "instrumental 

variable*" in Economic Evaluations 
#8 "panel data" OR "difference in differences" OR "repeated cross section" OR 

"repeated cross-section" OR "fixed effect*"  in Economic Evaluations 
#9 "regression discontinuity" in Economic Evaluations 
#10 "control function" OR "Heckman selection" OR "selection model" in Economic 

Evaluations 

#11 (#1 AND ( #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 )), from 

2000 to 2010 
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Inclusion criteria 

From the results of the broad search, relevant studies were narrowed down using the 

following inclusion criteria. Examples for excluded studies are provided. 

1. Individual patient level observational data are used to calculate at least one of the 

following parameters:  incremental cost, effectiveness or cost effectiveness 

parameters or relative surrogate outcomes, for example, relative risk of mortality. 

Examples for excluded studies: when a decision analytical model uses aggregate inputs 

only, or when a study uses individual level RCT data only. 

2. The study is a full economic evaluation: cost-effectiveness, cost-utility or cost-

benefit analysis. Examples for excluded studies:  

- Cost-minimisation or cost-consequences analysis. 

- A study labelled as cost-benefit analysis which accounts cost-saving as 

benefits. 

3. A statistical method is used to address selection bias when calculating at least one 

of the following parameters: incremental cost, incremental effectiveness or cost-

effectiveness or relative surrogate outcomes, for example, relative risk of mortality. 

Statistical methods are defined as in Appendix 3.1. 

      Examples for excluded studies are as follows: 

- No statistical adjustment when calculating incremental quantities (e.g. 

uncontrolled before and after analysis). 

- Statistical method is not used to address selection bias, but for other 

purposes (e.g. to create predictive equations stratified by risk factors). 

4. Study is published in English.  
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Chapter 4 - Statistical methods for estimating subgroup 

effects in CEA that use patient-level observational data  

4.1 Preamble to research paper 2 

The conceptual review (chapter 2) found that an important challenge in CEA that use 

observational data is to estimate cost-effectiveness for patient subgroups. PS methods, 

such as PS matching and IPTW can estimate cost-effectiveness for subgroups, but can 

only provide unbiased estimates if they create balance between the distributions of 

confounders. The critical appraisal of applied studies (research paper 1) highlighted that 

CEA rarely assess balance appropriately. GM, a multivariate matching method, uses 

machine learning to directly balance the distributions of observed confounders, and 

provides a promising alternative.  GM has not been used to estimate cost-effectiveness 

parameters for subgroups or compared to IPTW before. To help address these gaps in 

the methodological literature of CEA, research paper 2 compares the relative 

performance of GM, PS matching and IPTW for estimating cost-effectiveness in patient 

subgroups.  

This paper first considers the methods in a motivating case study of the CEA. The 

subsequent simulation study is grounded in features of this case study and uses insights 

from the conceptual review to generate hypotheses (chapter 2).  The paper provides 

guidance for choosing among the statistical methods considered, in order to obtain 

unbiased, precise estimates of cost-effectiveness by patient subgroup. In order to help 

the applied researcher, this paper provides sample code for implementing the methods 

(Appendix 4.2). 
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Additional page for Question (3) on LSHTM cover sheet form: 

 

The research question for this paper was linked to the ESRC project and identified by 

the principal investigator, RG. I designed the simulation study, with RG. I wrote the 

simulation code, with help from post-doctoral researchers employed by the ESRC 

project, R Ramsahai and R Radice.  R Ramsahai helped me run simulations on the 

LSHTM high-performance computational cluster. I assisted ZS on the analysis of the 

motivating case study. I led on the reporting and interpretation of the results of the case 

study and the simulation studies, and wrote the first draft of the manuscript. I managed 

each round of comments and suggestions from the co-authors, in collaboration with RG. 

All authors read and approved the final draft prior to journal submission and inclusion 

in the dissertation. I  built on insights from another study linked to the ESRC project 

(Radice et al., 2012). In this study, aimed at a biostatistics audience, I contributed to the 

design and the implementation of the simulations and to the interpretation of the results, 

as well as to writing sections of the manuscript. 
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Abstract 

Decision makers require cost-effectiveness estimates for patient subgroups. In non-

randomized studies, propensity score (PS) matching and inverse probability of treatment 

weighting (IPTW) can address overt selection bias, but only if they balance observed 

covariates between treatment groups. Genetic Matching (GM) matches on the PS and 

individual covariates using an automated search algorithm to directly balance baseline 

covariates. This paper compares these methods for estimating subgroup effects in cost-

effectiveness analyses (CEA).The motivating case study is a CEA of a pharmaceutical 

intervention, Drotrecogin alfa (DrotAA) for patient subgroups with severe sepsis 

(n=2,726). Here GM reported better covariate balance than PS matching and IPTW.  

For the subgroup at a high level of baseline risk, the probability that DrotAA was cost 

effective ranged from 30% (IPTW) to 90% (PS matching and GM), at a threshold of 

£20,000 per QALY. 

We then compared the methods in a simulation study, where initially the PS was 

correctly specified, and then misspecified, for example by ignoring the subgroup-

specific treatment assignment. Relative performance was assessed as bias and root mean 

squared error (RMSE) in the estimated incremental net benefits. When the PS was 

correctly specified and inverse probability weights were stable, each method performed 

well; IPTW reporting the lowest RMSE. When the subgroup-specific treatment 

assignment was ignored, PS matching and IPTW reported covariate imbalance and bias; 

GM reported better balance, less bias, and more precise estimates.  We conclude that if 

the PS is correctly specified and the weights for IPTW are stable, each method can 

provide unbiased cost-effectiveness estimates. However, unlike IPTW and PS matching, 

GM is relatively robust to PS misspecification.  
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Introduction6 

Health care decision-makers often use cost-effectiveness information for overall 

populations, when setting priorities (Vanness and Mullahy, 2006). However, focusing 

on overall mean cost-effectiveness may hide important heterogeneity, and can lead to 

over (or under) treatment of particular subgroups (Coyle et al., 2003, Sculpher, 2008, 

Koerkamp et al., 2010). For cost-effectiveness analyses (CEA) to help maximize 

population health, they are required to provide results for patient subgroups (NICE, 

2008). CEA ideally use evidence from pragmatic randomized controlled trials (RCTs) 

with broad entry criteria; these can provide unbiased estimates of relative cost-

effectiveness for policy-relevant subgroups. However, for many decision problems 

appropriate RCT data are not available, for example because trials have excluded 

important subgroups, or have tightly-regulated protocols that hinder accurate cost 

estimation. In such circumstances, the best available data may come from non-

randomized studies (NRS), such as prospective cohort studies (Deeks, 2003, Rubin, 

2010). 

In any NRS, the crucial concern is that treatment assignment is non-random leading to 

selection bias from confounding. If individual patient data are available for both 

treatment groups, statistical methods can tackle potential selection bias, but only when 

their key underlying assumptions are plausible (Rubin, 2010). Instrumental variable 

approaches can handle confounding and heterogeneity according to both observed and 

unobserved characteristics (Basu et al., 2007), but in some settings the assumptions 

required are implausible (Hernán and Robins, 2006). Instead, regression and matching 

                                                 

6 US spelling conventions are used throughout this paper, due to the target journal criteria.  
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approaches warrant consideration, provided that the crucial assumption, that all 

potential confounders have been observed can be justified (Greenland et al., 1999). 

Regression methods, recommended for subgroup analysis in CEA of RCTs (Nixon and 

Thompson, 2005, Willan et al., 2004), are common in CEA that use NRS (Kreif et al., 

2012). Here, even if the assumption of no unobserved confounding is justified, cost-

effectiveness estimates can be highly sensitive to the specification of the regression 

model (Grieve et al., 2008). If the model is misspecified, results may suffer from overt 

bias (Thompson and Nixon, 2005). Instead, propensity score (PS) approaches that aim 

to balance baseline covariates between treatment groups are advocated for estimating 

treatment effectiveness (Ho et al., 2007, Stuart, 2010), and cost-effectiveness (Mitra and 

Indurkhya, 2005, Pullenayegum and Willan, 2011). Austin (2009) has demonstrated that 

PS matching and inverse probability of treatment weighting (IPTW) can perform 

relatively well. IPTW has particular appeal for subgroup analysis; if the PS is correctly 

specified, IPTW can provide more precise estimates of treatment effects than matching 

(Hirano et al., 2003). A general concern is that these approaches assume the PS is 

correctly specified (Cole and Hernán, 2008). An alternative method, Genetic Matching 

(GM), harnesses an automated search algorithm to match on individual covariates as 

well as the PS. The explicit aim of GM is to balance distributions of observed covariates 

between the treatment groups. GM can provide some protection against PS 

misspecification (Sekhon and Grieve, 2011, Diamond and Sekhon, 2012) but has not 

previously been compared with IPTW. 

A major gap in the CEA methods literature is that no previous study has compared 

alternative methods for subgroup analysis with data from NRS. A recent review of 80 

published studies found most CEA that use NRS fail to balance baseline covariates for 

patient subgroups, potentially leading to biased cost-effectiveness estimates (Kreif et al., 
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2012).7  The aim of this paper is to compare the relative performance of alternative PS 

approaches for reporting subgroup effects in CEA.  

We reanalyze a high profile case study, a CEA of Drotrecogin alfa (DrotAA) for 

patients with severe sepsis. The effectiveness of DrotAA may differ by subgroup 

(Bernard et al., 2001, Ely et al., 2003), but it is unclear whether the intervention is cost-

effective for either subgroup; we consider this issue using data from a NRS (Rowan et 

al., 2008). This case study illustrates some general challenges that arise when aiming to 

report unbiased cost-effectiveness estimates by subgroup from an NRS. Here, statistical 

methods are required to balance baseline covariates between treatment and control 

groups within each subgroup. Balancing covariates at the subgroup level may prove 

particularly challenging if the treatment assignment mechanism differs systematically 

across subgroups. A PS approach has to then recognize the differential treatment 

assignment mechanism, for example by estimating separate PS models for each 

subgroup. We extend a previous study that matched on a single PS estimated across 

subgroups (Rowan et al., 2008), by estimating a separate PS for each subgroup.  In the 

reanalysis, we employ PS matching, GM, and IPTW to report cost-effectiveness by 

subgroup.  

We report a new Monte Carlo Simulation that builds on the case study by considering 

circumstances in which the treatment assignment mechanism differs by subgroup. The 

simulation study incorporates other features of the case study such as nonlinearities in 

the PS and unstable PS weights. The next section describes the statistical methods and 

the challenges they face when reporting CEA for different patient subgroups. We 

                                                 

7 Note that other concerns such as missing data and non-compliance with treatment may also arise, and 

can lead to biased estimates if not handled appropriately. Methods for handling these issues are beyond 

the scope of this paper.  
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describe the case study methods and findings, then the design and results of the Monte 

Carlo simulations. The last section discusses the findings and outlines areas for further 

research. 

Statistical methods  

Each statistical method considered here assumes that there is no unobserved 

confounding (Greenland et al., 1999). This assumption implies that, conditional on the 

observed covariates, there are no differences in the distributions of unobserved 

confounders between treatment groups. As this assumption cannot be directly tested, it 

is important to draw on external evidence or expert opinion and consider a priori which 

baseline factors are potential confounders (Rubin, 2007). In the context of CEA, the 

study should carefully consider adjustment for baseline covariates that are potential 

confounders for either the cost or effectiveness endpoint (Hoch et al., 2002).  

Each statistical method then aims to balance the distribution of those potential 

confounders that are observed. Balance can be achieved by matching (PS matching or 

GM) or by re-weighting the treatment and control samples (IPTW). Relative 

performance of weighting and matching methods can be assessed with weighted balance 

statistics (Stuart, 2010, Austin, 2009a). A recommended balance statistic (Austin, 

2009a) is the weighted absolute standardized mean difference, often termed the 

weighted standardized difference.  

When treatment effectiveness estimates for subgroups are required, the study should 

consider whether the treatment assignment mechanism differs by subgroup. For 

example, the relative influence of factors explaining treatment assignment may differ 

for high-risk versus low-risk patients. Hence, balancing baseline characteristics for 

overall samples of treated and control observations can leave potential confounders 
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imbalanced at the subgroup-level, possibly resulting in biased cost-effectiveness 

estimates for patient subgroups. An important aim of these methods is to balance 

baseline covariates in each subgroup of interest. The next sections describe the main 

distinguishing features of PS matching, GM, and IPTW. 

PS matching 

The true PS is the conditional probability of treatment assignment given observed 

baseline covariates (Rosenbaum  and Rubin, 1983): 

𝑝𝑖 = 𝑃𝑟(𝑡𝑥𝑖 = 1|𝑋𝑖)                       𝑖 = 1, . . . . , 𝑛 

where 𝑡𝑥𝑖 is a binary treatment variable for the ith individual,  𝑋𝑖 is a vector of 

measured baseline confounders and n is the sample size. The true PS is a balancing 

score: conditional on the PS, treatment and control groups are expected to have the 

same distribution of observed baseline characteristics. Matching on a correctly specified 

PS can therefore be expected to eliminate bias (Rubin and Thomas, 1992). However, in 

NRSs the specification of the true PS is generally unknown; i.e. just as the investigator 

does not know the specification of the relationship between covariates and endpoints 

they seldom know how covariates influence treatment receipt. 

If the PS is misspecified, for example by disregarding differences between subgroups in 

the treatment assignment mechanism, then PS matching can lead to biased estimates of 

treatment effects (Cole and Hernán, 2008). It is unclear which forms of PS 

misspecification will lead to large biases when reporting subgroup results in CEA.  

Methods guidance for estimating the PS suggests two ways of improving the resultant 

covariate balance. Firstly, the PS should be repeatedly reestimated, with balance 

reassessed until the analyst finds the best PS, the one that maximizes balance  (Stuart, 

2010). In this context, the PS is required to maximize balance at the subgroup level. 
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Second, to improve balance, matching on the PS should be combined with matching on 

individual covariates (Rosenbaum  and Rubin, 1985). However, finding the correct PS 

specification and the best metric for matching on individual covariates is challenging 

(Austin, 2008), particularly when covariate balance at the subgroup level is required. 

Instead, a search algorithm can be used to help improve balance. 

Genetic Matching 

GM is a multivariate matching approach whose explicit aim is to optimize covariate 

balance (Diamond and Sekhon, 2012, Ramsahai et al., 2011, Sekhon, 2011, Sekhon and 

Grieve, 2011). GM extends standard PS matching in two ways. First, rather than the 

manual process of modifying the PS and balance-checking, GM harnesses an automated 

search algorithm that iteratively checks balance on observed confounders, and directs 

the search toward those matches that optimize balance (Diamond and Sekhon, 2012, 

Sekhon, 2011). Second, the GM algorithm can maximize covariate balance by matching 

on individual covariates as well as the PS. Hence, at the expense of computational time, 

the GM search algorithm optimizes covariate balance to the extent possible, given the 

data (Diamond and Sekhon, 2012, Sekhon, 2011). When the PS is misspecified, Sekhon 

and Grieve (2011)  report that GM can improve covariate balance and reduce bias and 

variability in the cost-effectiveness estimates.  

For subgroup analysis, the GM algorithm can be modified to maximize balance for each 

subgroup. A challenge GM shares with other multivariate matching estimators is that if 

required to balance covariates that are not true confounders, this increases the 

dimensionality of the matching problem. This can lead to loss of precision (Abadie and 

Imbens, 2006), which can be of particular concern when reporting cost-effectiveness 

results by subgroup as sample sizes can be relatively small.  
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The appendices offer further explanation (Appendix 4.1) and code for implementing the 

method (Appendix 4.2). Full details of the method are provided by Diamond and 

Sekhon (2012)  and Sekhon (2011) .  

Inverse probability of treatment weighting 

In CEA, IPTW has been introduced for reducing selection bias in cost analysis (Basu et 

al., 2011) and for handling censored costs (Pullenayegum and Willan, 2011).  IPTW has 

not previously been considered for addressing selection bias in CEA. In this context, 

IPTW can reweight the treatment and control samples, when estimating cost-

effectiveness. The weight 𝑤𝑖 is the inverse of the estimated probability of the treatment 

received, 𝑤𝑖 =
𝑡𝑥𝑖

𝑝𝑖
+ 

1−𝑡𝑥𝑖

1−𝑝𝑖
  where �̂�𝑖 is the estimated PS. If the PS is correctly specified, 

IPTW will provide unbiased estimates of the ATEs and can reach semiparametric 

efficiency (Hirano et al., 2003). Covariate balance can be assessed following IPTW 

according to weighted standardized differences (Austin, 2009a), where the weights are 

the inverse probability weights.  

A potential concern is that IPTW can be highly sensitive to PS misspecification; for 

example when treated observations have a true PS close to zero, even slight 

discrepancies in the estimated PS translate into large errors in the weights. This can lead 

to biased and inefficient estimates  (Kang and Schafer, 2007).  Unstable weights can 

arise with sparse data and lead to inefficient estimates even if the PS model is correctly 

specified. As Cole and Hernán (2008) demonstrate, even with good overlap between the 

treatment and control groups, estimated PS values close to zero can occur by chance. 

This tends to arise with small sample sizes or if the PS has many continuous covariates. 

Methods guidance suggest that extreme weights can be progressively truncated (Cole 

http://aje.oxfordjournals.org/search?author1=Miguel+A.+Hern%C3%A1n&sortspec=date&submit=Submit


127 

 

and Hernán, 2008). The implications of unstable weights and weight truncation have not 

been reported before when using IPTW to reduce selection bias in CEA.  

Issues arising when applying these methods to report cost-effectiveness by subgroup 

 Each approach can estimate average treatment effects (Polsky and Basu, 2006) - 

incremental costs (ΔC), incremental effects (ΔE), and incremental net monetary benefits 

(INBs) - for each prespecified subgroup. We identified 3 particular areas of potential 

concern when applying these methods to report cost-effectiveness by subgroup.  

1. Subgroup specific treatment assignment. 

  When the treatment assignment mechanism differs by subgroup, the methods are 

required to balance baseline covariates in each subgroup of interest.  In the case study 

we, illustrate how the methods can attempt to balance covariates in each subgroup.  The 

simulation study then considers circumstances where the treatment assignment 

mechanisms differ by subgroup. The simulation study investigates how the statistical 

methods perform after incorrectly assuming that there is a single treatment assignment 

mechanism, rather than recognizing that treatment assignment differs by subgroup.  The 

simulation study reports the relative bias and root mean squared error (RMSE) of the 

cost-effectiveness estimates across the methods. 

2. Sensitivity of estimates to misspecification of the PS. 

The methodological literature suggests that matching methods can be less sensitive to 

PS misspecification than IPTW (Lee et al., 2010). Specifically, if the estimated PS 

weights are unstable, IPTW can report biased and imprecise treatment effects. We 

consider issues raised by the unstable PS weights found in the motivating case study, 

when the true PS is not known. In the second simulation scenario, we compare the 
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relative performance of the methods when PS weights are extreme, for the first time in a 

CEA context.  

3. Different set of confounders in the cost and effectiveness endpoints. 

In CEA, different covariates can be potential confounders for the estimates of 

incremental costs versus effectiveness. One approach is to include in the PS all potential 

confounders for either endpoint. However, previous studies have shown that adjusting 

for a covariate which influences treatment assignment but not the endpoint can lead to 

estimates that are statistically inefficient (Brookhart et al., 2006). We designed a 

simulation scenario to consider the bias and RMSE across the methods of including a 

covariate in the PS, which is only a confounder for one of the endpoints. 

Motivating case study 

Overview 

We present a CEA in which observational data are used to report cost-effectiveness by 

subgroup. The case study considers the implications for covariate balance of ignoring, 

then recognizing the subgroup–specific treatment assignment. We then report cost-

effectiveness results for each subgroup. This case study also illustrates circumstances 

where the inverse PS weights are unstable.  

This CEA evaluates DrotAA for patients with severe sepsis admitted to intensive care 

units (ICUs). The National Institute for Health and Clinical Excellence previously 

recommended DrotAA for severe sepsis patients with two or more organ systems failing 

(NICE, 2007), based on a CEA that used a US phase 3 RCT (Bernard et al., 2001). 

However, this trial, while not powered to detect treatment effects by subgroup, provided 

some evidence to suggest that the effectiveness of DrotAA may differ across patient 
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subgroups; the intervention was found to be relatively effective for patients at high 

levels of baseline risk (Bernard et al., 2001, Ely et al., 2003). Subsequent RCTs that 

only included low-risk patients were stopped early because of futility (Abraham et al., 

2005, Barton et al., 2004) or lack of benefit (Silva et al., 2010). Given the controversy 

about the effectiveness, but also the infusion’s costs (around £5,000 per patient)  there is 

interest in the cost-effectiveness of  DrotAA for patients with different risk profiles 

(NICE, 2007). A CEA for subgroups of patients defined according to baseline risk of 

death can help address this question. However, such analyses require the use of 

observational data, hence, the possibility of selection bias must be addressed. 

We reanalyzed data from a large UK observational database (Rowan et al., 2008) which 

represents relevant real-world clinical practice for the subgroups of interest. Following 

previous analysis of this data (Rowan et al., 2008), we first used a single PS model 

estimated across all patient subgroups. Rowan et al. (2008) reported treatment 

effectiveness for subgroups defined according to high (3 to 5 organ failures at baseline) 

and low (2 organ failures) levels of baseline risk, and found that  DrotAA reduced 

hospital mortality for high risk patients, but increased mortality for low risk patients. 

We extended this analysis by deploying the alternative statistical methods described to 

try and maximize covariate balance for each subgroup.  

Data 

We used the same data as the previous prospective cohort study (Rowan et al., 2008), 

from the UK Case-Mix Programme dataset co-ordinated by the Intensive Care National 

Audit and Research Centre (ICNARC). Of patients who met the study’s inclusion 

criteria and were defined as having severe sepsis and multiple organ failures at 
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admission, 1,076 received DrotAA (treated) and 1,650 contemporaneous admissions did 

not receive DrotAA (controls).  

The CEA estimated individual-level lifetime QALYs, based on individual patient’s 

mortality data collected for a follow-up period of four years and, for those who 

survived, age- and gender-specific expected survival and quality of life.   Costs of 

DrotAA and all hospitalizations were estimated at the patient level, over the same 

period of follow-up. QALYs and costs were discounted at the recommended rate of 

3.5% (NICE, 2008). The subsequent statistical analysis used the individual level data on 

costs and lifetime QALYs. Further details on the CEA, including data sources are 

reported elsewhere (Sadique et al., 2011). 

Statistical analysis of the case study 

We extended the previous PS matching (Rowan et al., 2008) in creating subgroup-

specific PS models, but also by considering GM and IPTW. The PS models were 

estimated by logistic regression and included the same potential confounders as the 

previous study. The baseline characteristics included were hospital type, number of 

critical care beds in the ICU, age, ICNARC model physiology score (IMscore), gender, 

number of organ systems failing, type of organ failures (cardiovascular, respiratory, 

renal, haematological, metabolic acidosis), source of admission to critical care (via the 

emergency department, theatre or recovery, ward, clinic or home), diagnostic category, 

and serious conditions in the past medical history.  Age and IMscore were defined as 

nonlinear terms, fitted as smoothed functions using restricted cubic splines; other 

continuous measures were assumed to have a linear relationship with the logit of 

treatment assignment. 
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Each statistical method first aimed to maximize covariate balance in the overall sample 

by using a single PS model estimated across all subgroups (see example code for 

implementation in Appendix 4.1). The GM algorithm was required to minimize 

standardized differences for the overall sample.  PS models were then estimated for 

each subgroup (2 or 3 to 5 organ failures) and GM was required to optimize balance for 

each subgroup. In a sensitivity analysis, GM optimized balance according to paired t-

tests and Kolmogorov-Smirnoff tests (Sekhon, 2011). 

We report lifetime incremental costs, QALYs and INBs of DrotAA versus control. 

Statistical uncertainty was considered by reporting 95% confidence intervals 

(CIs)(Davison and Hinkley, 1997), and cost-effectiveness acceptability curves (CEACs) 

using the nonparametric bootstrap to maintain the correlation between costs and QALYs 

(Fenwick et al., 2004). The resultant inferences should be regarded as conditional on the 

estimated PSs and the matched data (Hill and Reiter, 2005). For all statistical analyses, 

the R platform was used.  

Case study results 

Covariate balance 

Before matching, the treatment groups were highly imbalanced; compared with 

controls, the DrotAA patients were on average younger, with a higher baseline 

probability of death (Table 4.1).   

  



132 

 

Table 4.1 - Case study results: baseline characteristics and covariate balance for DrotAA 

versus Control group, before matching or weighting. 

Covariate 2 organ failures subgroup 3 to 5 organ failures subgroup 

 DrotAA 

(n=198) 

Control 

(n=630) 

Standardized 

difference (%) 

DrotAA 

(n=878) 

Control 

(n=1020) 

Standardized 

difference (%) 

Age 57.58 63.04 26.49 58.96 65.16 32.32 

IMprob * 0.42 0.39 10.76 0.64 0.58 20.12 

IMscore† 22.83 20.44 29.53 32.08 27.96 40.83 

% vent. ‡ 88.38 70.16 40.02 93.39 78.53 38.90 

Abbreviations: *:  ICNARC model predicted probability of acute hospital mortality † ICNARC model 

physiology score  ‡ % of patients mechanically ventilated 

 

 

Following PS matching and IPTW, standardized differences (%) remained large for 

both subgroups, both with the overall and the subgroup-specific PSs. GM reported 

better balance than the other methods, even when required to maximize balance across 

the overall sample. The lowest standardized differences were reported when GM was 

required to optimize balance for each subgroup (Figure 4.1). Subsequent results are 

reported just for the subgroup-specific PS models and GM algorithms. 
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Figure 4.1 - Case study: covariate balance reported as weighted standardized differences 

(%), after PS matching, GM and IPTW, for overall and subgroup specific PSs and GM 

algorithms 

 

Abbreviations: IMprob - ICNARC model predicted probability of acute hospital mortality, IMscore - 

ICNARC model physiology score, vent -  % of patients mechanically ventilated 
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Lifetime cost-effectiveness results  

For patients with two organs failing, the INBs were all negative, but following IPTW, 

the 95% CI was relatively wide and included zero (Table 4.2). For the subgroup with 3 

to 5 organs failing, the incremental QALYs were positive and relatively high for both 

matching methods. For IPTW, the QALY gain was smaller with 95% CI that included 

zero. The INB was lower following IPTW than for the matching methods, and again 

had a wide CI. 

 

Table 4.2 - Case study: Lifetime incremental costs (£), QALYs and INBs 

 (WTP=£20,000) for DrotAA versus Control group. Estimates are from subgroup specific 

PSs and GM algorithms. 

 PS matching GM IPTW 

   2 organ failures subgroup   

Incremental costs 

(95%CI*) 
12,710 

(11,058 to 14,361 ) 

14,703  

(12,763 to 16,644) 

13,750 

(9,873 to 17,597) 

Incremental 

QALYs (95% 

CI*) 

-1.01 

(-1.60 to -0.41) 

-0.97  

(-1.62 to -0.32) 

-0.30 

(-1.77 to 1.15)  

INBs (95% CI*) -32,846 

(-44,704 to -20,987) 

-34,031  

(-47,028 to -21,034) 

-19,764 

(-49,546 to 9,835) 

   3-5 organ failures subgroup 

Incremental costs 

(95% CI*) 
19,384 

(17,696 to 21,071 ) 

19,948  

(17,610 to 22,286) 

19,023 

(15,636 to 22,102) 

Incremental 

QALYs (95% 

CI*) 

0.98 

(0.65 to 1.33) 

1.28 

(0.86 to 1.70) 

0.542  

(-0.66 to 1.55) 

INBs (95% CI*) 391 

(-6,350 to 7,133) 

5,690 

(-2,543 to 13,924) 

-8,175 

(-31,787 to 11,845) 

Notes: * Bootstrapped confidence intervals, conditional on the estimated PS and matched data.  
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Figure 4.2 - Case study: Cost-effectiveness acceptability curves for DrotAA versus Control 

group using subgroup specific PSs and GM algorithms 

 

 

Notes: For the 2 organ failures subgroup, CEACs for GM and PS matching are indistinguishable 

 

Figure 4.2 presents CEACs which suggest that DrotAA is not cost-effective for the 2 

organ failures subgroup. The CEACs for the 3 to 5 organ failures subgroup differ 

somewhat by method; at realistic levels of WTP for a QALY gain in the UK (£20,000 to 
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£30,000) the probability that DrotAA is cost-effective is 30% following IPTW versus 

90% for the other methods. 

When the extreme inverse probability weights were truncated (Appendix 4.3, Figure 1), 

we found that covariate balance worsened (Appendix 4.3, Table 1), and the 95% CIs 

around the INBs were only slightly reduced (Appendix 4.3, Figure 2). When the GM 

algorithm was required to optimize alternative balance statistics (Kolmogorov-Smirnoff 

tests and paired t-tests), the results were similar to the base case. 

Monte Carlo simulation study 

Overview  

Monte Carlo simulations were conducted to examine the relative performance of the 

methods, for estimating cost-effectiveness in prespecified subgroups. The study design 

extended previous simulations comparing PS matching with IPTW (Austin, 2009b) or 

GM (Sekhon and Grieve, 2011), to recognize the specific challenges that arise when 

reporting cost-effectiveness by subgroup.  In particular, motivated by the case study, the 

treatment assignment mechanism was assumed to differ by subgroup. Cost and 

effectiveness data were simulated to recognize heterogeneity, and it was assumed that 

cost-effectiveness estimates were required by subgroup.  The case study also illustrated 

that the weights for IPTW can be unstable. Here, we investigate the implications of such 

unstable weights by including a nonlinear term in the PS. We also consider an issue 

specific to CEA, which concerns the choice of covariates when attempting to address 

selection bias for both cost and effectiveness endpoints.  The simulation study reported 

covariate balance, bias and RMSE of the estimated cost-effectiveness across the 

methods. 
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Description of scenarios 

In the 3 scenarios, each estimation method was initially assumed to follow the true 

treatment assignment mechanism, and then a misspecified treatment assignment as 

described below. In the first scenario, each approach assumed that the same treatment 

assignment mechanism applied for both subgroups, but in fact it differed by subgroup. 

The second scenario recognized that treatment assignment was subgroup-specific, but 

each estimation approach was misspecified by excluding a nonlinear term. This scenario 

also considered the hypothesis that IPTW may provide  inefficient estimates when, as in 

the case study, the estimated inverse probability weights are unstable (Cole and Hernán, 

2008).   

The third scenario considered the challenge of choosing the correct set of covariates 

when attempting to address selection bias for both cost and effectiveness endpoints. 

Here we build on a previous simulation (Brookhart et al., 2006) by introducing an 

additional covariate which is not a confounder for the cost endpoint, but does influence 

the effectiveness endpoint and the treatment assignment. We anticipate that 

conditioning on this variable will reduce bias in the estimated effectiveness, but will 

lead to more uncertainty in the estimation of incremental costs. The simulation 

scenarios are summarized in Table 4.3.  

Data generating process 

We simulated an observational dataset, extending previous data generating processes 

(DGPs) (Austin, 2009c, Austin, 2009b) to the context where cost-effectiveness 

estimates by subgroup are required. The main features of the DGP were grounded in the 

case study. In particular, there were two prespecified subgroups, heterogeneous 

treatment effects, a treatment assignment mechanism that differed by subgroup, 
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nonlinearities in the PS and unstable PS weights. For each subject, 3 confounders, 2 

continuous (𝑋1 and 𝑋2) and 1 binary (𝑋3), were generated from a bivariate normal and a 

Bernoulli distribution, respectively: 

(
𝑋1

𝑋2
) ~𝑁 {(

2
4

) , (
1 0.2

0.2 1
)} , 

𝑋3~𝐵𝑒𝑟𝑛 {
0.6 for 𝑋1 > 2
0.4 for 𝑋1 ≤ 2

} , 

where for example 𝑋1 has a mean of 2, standard deviation of 1, and the covariance 

between 𝑋1  and 𝑋2 is 0.2. The variable 𝑋3 defines the prespecified patient subgroup 

(subgroup 1 for 𝑋3=0 and subgroup 2 for 𝑋3=1). The treatment indicator, 𝑡𝑥,  was 

randomly generated from a Bernoulli distribution with parameter 𝑝, the PS, determined 

by a different logistic model for each pair of scenarios. 

To reflect a typical CEA, costs and outcomes (QALYs) were drawn from a bivariate 

normal-gamma distribution, using a copula function (Trivedi and Zimmer, 2005, 

Mihaylova et al., 2010, Quinn, 2007), with the correlation coefficient equal to 0.4.8  

QALYs were drawn from a normal distribution 

𝑄𝐴𝐿𝑌~𝑁(𝜇𝑄𝐴𝐿𝑌, 0.2) , 

 and costs from a gamma distribution with identity link, and shape and scale parameters 

defined as 

𝐶𝑜𝑠𝑡~Γ(10, 𝜇𝑐𝑜𝑠𝑡/10). 

The mean costs and QALYs, specific to each scenario are given below. 

                                                 

8 The copula function can generate draws from a flexible multivariate distribution (in this case the 

bivariate) with different marginal distributions (here, the normal and the gamma).  
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Scenario 1 

The true PS allowed the confounders to have a differential effect on treatment 

assignment according to subgroup, by including interaction terms in determining the 

logit of the PS as: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln(0.2) + 0.1𝑋1 + 0.2𝑋2 + 0.3𝑋3 + 0.2𝑋1𝑋3 − 0.2𝑋2𝑋3 

The linear predictors for the cost and QALY endpoints also included interactions 

between 𝑋3 and 𝑡𝑥 to ensure heterogeneity in the incremental costs and QALYs: 

            𝜇𝑐𝑜𝑠𝑡 = 4000 + 4000𝑡𝑥 + 5000𝑋1 + 4000𝑋2 + 3000𝑋3 − 1000𝑋3𝑡𝑥, 

  
𝜇

𝑄𝐴𝐿𝑌
= 9 + 0.25tx − 1𝑋1 − 0.6𝑋2 − 0.8𝑋3 + 0.5𝑋3𝑡𝑥. 

In scenario 1a (correct specification), subgroup-specific PSs were used for matching and 

weighting. Similarly, for each subgroup, GM was required to match on and balance 𝑋1, 

𝑋2 and the linear predictor of the estimated PS. In Scenario 1b, the PS and the GM 

algorithm were both misspecified; the PS was estimated for the overall sample 

(including 𝑋1, 𝑋2 and 𝑋3 in the logistic regression). The GM was required to match on, 

and maximize balance for 𝑋1, 𝑋2  and 𝑋3 across the overall sample.  

Scenario 2  

In Scenario 2 the term 𝑋1
2 was added to the true PS model. The coefficient for the 

𝑋1
2 term was  set to create unstable inverse probability weights for subgroup 2: 

𝑙𝑜𝑔𝑖𝑡(𝑝) =  𝑙𝑛(0.2) + 0.1𝑋1 + 0.2𝑋2 + 0.3𝑋3 + 0.2𝑋1
2𝑋3. 

In scenario 2a, we assumed correctly specified PS models: 𝑋1, 𝑋2 and 𝑋1
2 were all 

included in separate logistic regression models for each subgroup. For each subgroup, 
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GM was required to maximize balance on each term contributing to the true PSs, 

including  𝑋1
2. In scenario 2b, separate PS models and GM algorithms were specified as 

before. However, for subgroup 2,   𝑋1
2 was excluded from the PSs and from the terms 

GM was required to match on and balance.  

Scenario 3  

This scenario extended scenario 1a by introducing a new continuous variable in the 

assignment model,  𝑋4~𝑁(3,1), which was a confounder for the QALY but not for the 

cost endpoint. The logit of the PS model and the linear predictor of the QALY were 

defined as: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = ln(0.2) + 0.1𝑋1 + 0.2𝑋2 + 0.3𝑋3 + 0.2𝑋1𝑋3 − 0.2𝑋2𝑋3 +  0.4𝑋4

− 0.2𝑋4𝑋3 

𝜇𝑄𝐴𝐿𝑌 = 9 + 0.5𝑡𝑥 − 1𝑋1 − 0.2𝑋2 − 0.8𝑋3 + 0.25𝑋3𝑡𝑥 +  0.1𝑋4  

In scenario 3a, the subgroup-specific PS models and the GM algorithms included 𝑋4, 

while in scenario 3b, this covariate was excluded. 
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Table 4.3 - Monte Carlo simulations: summary of scenarios 

 
PS matching, IPTW GM  

Scenario 1 : Subgroup-specific treatment assignment  

 1a  Correct specification Subgroup-specific 

PS 
Subgroup-specific PS and GM 

algorithm 
 

 1b   Misspecification Overall PS Overall PS and GM algorithm 

 

 

Scenario 2: Nonlinear term in PS   

2a  Correct specification Nonlinear term 

included in PS 
Nonlinear term included in PS and 

GM algorithm 
 

2b   Misspecification Nonlinear term 

excluded from PS 
Nonlinear term excluded from PS 

and GM algorithm 

 

 

Scenario 3:  Confounder for QALY   

 3a  Correct specification Confounder included 

in PS  
Confounder included in PS and 

GM algorithm 
 

3b   Misspecification Confounder excluded 

from  PS 
Confounder excluded from PS and 

GM algorithm 
 

 

Implementation  

One thousand datasets of sample size 2000 were simulated. Both PS matching and GM 

matched one-to-one to the nearest neighbor, with replacement. GM was required to 

maximize balance according to weighted standardized differences. In scenario 2a, as a 

sensitivity analysis, IPTW results were also reported after progressively truncating the 

extreme PS weights. INBs were calculated at a societal WTP of £20,000 per QALY 

gained. For scenarios 1 and 2, the true INBs were set to £1,000 (subgroup 1) and 

£12,000 (subgroup 2), and for scenario 3 to £6,000 and £12,000. The methods were 

compared by calculating weighted standardized differences (reported as percentage), 

relative bias, and RMSE for the estimated incremental costs, QALYs and INBs. 

Appendix 4.2 provides sample R code for the data generating processes and for 

implementing each method. 
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Results of the Monte Carlo simulations  

Covariate balance 

Table 4.4 reports the weighted standardized differences averaged over 1000 

replications. When each approach recognized the true treatment allocation mechanism 

(scenarios 1a, 2a, 3a), all the standardized differences were small. When the PS model 

was misspecified by fitting an overall PS, and the GM algorithm failed to match and 

balance at the subgroup level (scenario 1b), both PS matching and IPTW reported high 

standardized differences, whereas following GM, covariates were balanced.  In scenario 

2b, when the PS model for subgroup 2 excluded the nonlinear term 𝑋1
2, the 

standardized differences for 𝑋1
2 were 14% (IPTW), 4% (PS matching) and 3% (GM). In 

scenario 3b, when each method ignored 𝑋4, the standardized differences for this 

variable were high. 
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Table 4.4 - Monte Carlo simulations: covariate balance reported as weighted standardized 

differences (%). 

  
Subgroup 1 Subgroup 2 

 

Scenario Method X1 

 

X2 

 

X4 

 

X1 

 

X2 

 

X4 

 

        

1a PS matching 2.58 1.35  0.62 3.08  

 GM 0.10 0.12  0.19 0.15  

 IPTW 0.50 0.56  0.80 0.59  

1b PS matching 7.91 8.54  8.36 8.55  

 GM 1.69 1.88  1.82 1.82  

 IPTW 8.09 8.12  8.51 8.12  

2a  PS matching 2.50 1.68  1.78 4.88  

 GM 0.20 0.24  1.43 1.87  

 IPTW 0.44 0.58  5.35 3.49  

2b PS matching 2.58 1.35  2.21 4.97  

 GM 0.10 0.12  1.57 1.01  

 IPTW 0.50 0.56  5.09 2.06  

3a   PS matching 3.17 2.79   1.70 1.76 2.89 2.49 

 GM 0.32 0.30   0.38 0.20 0.18 0.18 

 IPTW 0.84 0.89   1.11 0.41 0.28 0.33 

3b  PS matching 2.40 1.31 39.82 0.57 2.83 20.08 

 GM 0.09 0.11 39.74 0.14 0.10 20.07 

 IPTW 0.44 0.47 39.62 0.31 0.20 19.98 
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Bias and RMSE 

Table 4.5 reports the relative bias and RMSE in the estimated INB, over 1000 

replications for each scenario. The corresponding results for the incremental costs and 

QALYs are reported in Appendix 4.3. In scenario 1a, when the subgroup-specific 

treatment allocation was recognized, bias was low following each method, and IPTW 

reported the lowest RMSE for both subgroups. When the subgroup-specific assignment 

mechanism was ignored (scenario 1b), bias and RMSE were higher following PS 

matching and IPTW than for GM. 

In scenario 2a, when the nonlinear term was correctly included in the PS for subgroup 2, 

biases were low but IPTW reported RMSE twice that of the matching methods. Insights 

as to why the precision for IPTW is worse can be gained from plotting the weights in a 

large sample (n=1,000,000), simulated by the same DGP.  Visual inspection suggests 

these weights are highly variable for the controls in subgroup 2 (Appendix 4.3, Figure 

3). When in the sensitivity analysis, weights are progressively truncated, the problem is 

not resolved; while the IPTW estimator for scenario 2a is less variable, bias increases 

(Appendix 4.3, Figure 4).  In Scenario 2b after omitting the nonlinear term from the PS  

for subgroup 2, IPTW reported the highest bias and RMSE. 

In scenario 3a, when each approach balanced all confounders including 𝑋4, IPTW 

reported the lowest RMSE. In scenario 3b, the failure to balance  𝑋4 resulted in biased 

estimates of the incremental QALY and the INB for all methods, with IPTW reporting 

the lowest RMSE. 

  



145 

 

Table 4.5 - Monte Carlo simulations: relative bias and RMSE for the INBs 

(WTP=£20,000) 

 
Subgroup 1 Subgroup 2 

Scenario Method Relative Bias 

(%) 

RMS

E 

Relative Bias 

(%) 

RMSE 

1a      

 PS matching 4.4 961 0.6 1068 

 GM  2.9 756 0.8 825 

 IPW  1.5 675 0.3 782 

1b      

 PS matching 58.0 1988 5.7 2031 

 GM  11.6 1060 1.6 1088 

 IPTW  71.3 1802 6.6 1875 

2a      

 PS matching 5.0 989 3.2 1484 

 GM  4.2 744 4.4 1267 

 IPTW  2.2 676 2.2 2535 

2b      

 PS matching 4.1 963 0.9 1306 

 GM  2.4 756 3.7 1210 

 IPTW  2.0 673 10.3 1839 

3a      

 PS matching  0.6 1271 0.7 1043 

 GM  0.7   699 0.3 784 

 IPTW  0.2   686 0.0 689 

3b      

 PS matching 12.5 1229 3.0 927 

 GM  12.4 1036 3.0 885 

 IPTW  12.7   999 3.3 802 
Notes: For scenarios 1 and 2 the true INBs are £1,000 (subgroup 1) and £12,000 (subgroup 2), and the 

corresponding INBs for scenario 3 are £6,000 and £12,000.  
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Discussion 

This paper compares alternative statistical methods for reducing selection bias when 

cost-effectiveness results are required for patient subgroups. The Monte Carlo 

simulation finds that if the treatment assignment mechanism ignores differential 

treatment allocation by subgroup, then cost-effectiveness estimates can be biased and 

inefficient. GM appears relatively robust to this misspecification, because it aims to 

balance confounders directly using an automated search algorithm. This is also 

highlighted in the case study, where GM achieves better balance than the other methods 

even if required to maximize balance across the overall treatment and control groups.  

This paper extends the work of Sekhon and Grieve (2011), who showed that GM can 

create good balance and reduce bias in CEA, even if the PS model is misspecified. Our 

article considers the important context of subgroup analysis and includes IPTW as a 

comparator. We find that IPTW provides unbiased, precise cost-effectiveness results for 

subgroups, if the PS is correctly specified and the weights are stable.  However, IPTW 

is sensitive to extreme probability weights (Kang and Schafer, 2007).  In the case study, 

we find that IPTW has unstable weights and reports INBs with wider CIs than the 

matching approaches, and is anticipated to provide divergent estimates of the expected 

value of further information (Fenwick et al., 2004). In the simulation scenario with 

unstable weights (due to nonlinearity in the PS model), IPTW reports high RMSE 

compared to matching. Truncating the weights (Cole and Hernán, 2008) improves 

precision, but increases imbalance and bias. 

Our work considers 2 distinct examples of PS misspecification: first, when the 

estimated PS  disregards differences in the treatment assignment between subgroups, 

and second, when a nonlinear term is omitted. The simulations demonstrate that IPTW 

is more sensitive to either misspecification than the matching methods. In the case 
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study, IPTW reported poor balance and, for the high risk subgroup, divergent point 

estimates, compared to either matching approach. GM reported good balance for both 

subgroups and PS approaches, and hence a relatively sound basis for the ensuing cost-

effectiveness estimates.  

This article also contributes to the general methodological literature by considering the 

methods in a bivariate context.  In CEA, potential confounders can differ between the 

cost and effectiveness endpoints; for example, baseline health-related quality of life 

might be associated with the QALY but not the cost endpoint. The simulations highlight 

that balance should be maximized on potential confounders for either endpoint. When a 

baseline covariate that influences just the QALY is left unbalanced, the estimates of the 

QALY gain are biased, and the only advantage is a slight improvement in the precision 

of the cost estimate. These findings extend previous univariate analyses showing that 

including covariates not associated with outcome reduces precision (Brookhart et al., 

2006).   

Our paper considers circumstances when subgroups are prespecified, informed by prior 

reasoning from the previous literature (Bernard et al., 2001, Ely et al., 2003). In other 

circumstances there may be insufficient information to predefine the subgroups of 

interest. Here, the optimal number and definition of subgroups could be established as 

part of the CEA,  based on expected health benefits (Espinoza et al., 2011). 

Alternatively, to report subgroup-specific treatment effects, regression analysis with 

treatment by covariate interactions (Nixon and Thompson, 2005) could be applied to the 

matched or weighted data.  The general requirement to choose an approach that 

minimizes selection bias is still of paramount importance, and can be informed by the 

results presented here. 
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This paper focuses on CEA that use patient-level data from a NRS. For many policy 

questions input parameters in decision analytical models are taken from studies that use 

either patient-level or aggregated estimates from NRS (Briggs et al., 2006, NICE, 2008, 

Kreif et al., 2012, Briggs et al., 2004). In this more general context to provide cost-

effectiveness results by subgroup, heterogeneity may need to be recognized for a range 

of model input parameters (e.g. rates of adverse events, estimates of health-related 

quality of life and transition probabilities) (Sculpher, 2008, Koerkamp et al., 2010). The 

potential for selection bias must be recognized when estimating subgroup-specific input 

parameters from NRS whether using patient-level data or extracting aggregate input 

parameters from the literature. By highlighting the selection biases that can arise, this 

study provides important insights both for those doing CEA using patient-level data 

without a decision model and for those developing and interpreting decision models that 

report cost-effectiveness estimates by patient subgroup. 

The major limitation of the methods described is that they all rely on the assumption of 

no unobserved confounding (Greenland et al., 1999).  The case study followed 

recommendations by identifying potential confounders a priori (Rubin, 2007) and a rich 

set of measured confounders were selected for adjustment, based on previous literature 

(Rowan et al., 2008) and clinical expert opinion. As in any observational study, 

unmeasured confounding can still be present. In our case study, the potential for hidden 

bias is greatest in the 2 organ failures subgroup. Here, approximately one-third of 

DrotAA cases were treated with delay, possibly leading to unobserved differences in 

baseline severity between the comparison groups. However, as the simulations 

highlight, omitting a confounder can lead to similar levels of hidden bias for each 

method. Hence, unmeasured confounding is unlikely to drive any differences in cost-

effectiveness results across the methods considered. Unobserved confounding can be 
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addressed with instrumental variables (Terza et al., 2008, Grootendorst, 2007) or control 

functions (Polsky and Basu, 2006). These approaches can potentially accommodate 

unobserved heterogeneity, and identify those patients who can make the largest health 

gains from treatment (Basu, 2011, Basu et al., 2007, Basu, 2009). 

This article raises several areas for further research. The performance of the methods 

presented here can be improved by exploiting information on the data-generating 

process for the cost and effectiveness endpoints (Imbens and Wooldridge, 2009a). 

Regression models can then be applied to the matched data to adjust for any remaining 

imbalances in observed characteristics between the treatment groups (Abadie and 

Imbens, 2011). Regression post matching can be relatively insensitive to the choice of 

model specification (Ho et al., 2007). Doubly robust methods (Robins et al., 1995, Kang 

and Schafer, 2007, Robins et al., 2007, van der Laan and Gruber, 2010) can be deployed 

that use the estimated PS as weights (Hirano and Imbens, 2001) or adjustment terms 

(Glynn and Quinn, 2010) in the endpoint models.  

We conclude that the key criterion for choosing amongst the proposed statistical 

methods is the level of covariate balance for each subgroup.  IPTW can provide 

unbiased, precise cost-effectiveness estimates for patient subgroups, but only if the PS 

is correctly specified, and the PS weights are stable. If the inverse probability weights 

are unstable, IPTW estimates can be biased and imprecise.  In most CEA that use 

observational data, the treatment assignment mechanism is unknown, and GM, which is 

an example of an automated approach, is relatively robust to PS misspecification. GM is 

publicly available  in standard software packages (Sekhon, 2011, Hartman and Sekhon, 

2011), and should be considered by future CEA that use NRS to report cost-

effectiveness by patient subgroup.  
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Appendix 4.1 - Genetic Matching 

Overview 

Genetic matching (GM) automates the process of maximizing balance on observed 

covariates in the matched sample by using an evolutionary search algorithm to 

determine the weight each individual covariate is given. As with any matching method, 

GM requires choices to be made a priori about which covariates to include in the 

matching and assessment of balance, and which balance statistic to use. In GM the key 

innovations are the generalised distance metric, and the use of an iterative search 

algorithm to maximize covariate balance. Full details of the method and its properties 

are covered in a general context elsewhere (Diamond and Sekhon, 2012, Sekhon, 2011), 

so here we summarize the key aspects. 

Selection of covariates for matching algorithm 

Before matching, it is necessary to choose which potential confounders to condition on. 

The researcher should follow general guidance and only include those covariates 

anticipated to influence the endpoints (Rubin, 2007). This selection process should also 

consider interaction effects as well as main effects and nonlinear terms. The choice can 

be informed by previous empirical analyses, expert opinion, and causal diagrams 

(Rubin, 2007, Pearl, 2001). The GM algorithm will only use those matching variables 

that are pre-specified. The choice of variables for balance assessment should include 

those anticipated to be of high prognostic importance whether or not they are included 

in the matching. For example, a summary prognostic measure may be excluded from the 

matching because it is highly correlated with the underlying covariates, and better 

overall balance may be achieved by just matching on the covariates. However, balance 
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should be checked on both the underlying covariates and the summary measure. GM 

can also be tailored to prioritize achieving covariate balance on particular covariates 

designated as “high priority”, for further details see Ramsahai et al. (2011) (Ramsahai et 

al., 2011). 

Covariate balance statistics 

A recommended statistic for checking covariate balance is the weighted standardized 

mean difference: 

𝑑 =
�̅�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡−�̅�𝑐𝑜𝑛𝑡𝑟𝑜𝑙

√𝑠2
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡+ 𝑠2

𝑐𝑜𝑛𝑡𝑟𝑜𝑙
2

, 

where for continuous covariates, �̅� and 𝑠2 denote the covariate’s weighted means and 

variances. This balance statistic allows matching methods to be compared to IPTW, by 

using the appropriate weights. For matching these are the frequency weights from the 

matched datasets, and for IPTW the weights calculated from the PS. This balance 

statistic can be adapted for binary variables (Austin, 2009a).  

In some circumstances, the weighted standardized mean differences are an insufficient 

measure of balance as they are insensitive to imbalances in aspects of the covariate 

distribution beyond the mean (e.g., variance, maximum, skew, kurtosis). To address 

imbalances beyond differences in means for linear terms, matching methods can 

consider standardized differences for higher order terms, but also alternative balance 

statistics such as Kolmogorov-Smirnov (KS) tests and empirical quantile-quantile plots 

(Austin, 2009a).  The drawback with these non-parametric measures is that weighted 

versions that would enable comparisons between matching and IPTW are not currently 

available. 
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Distance metric 

The Mahalanobis distance (MD) between any two observations (one from treatment and 

the other from control) is:  

𝑀𝐷(𝐗𝑖, 𝐗𝑗) = {(𝐗𝑖−𝐗𝑗)
T

(𝐒−1/2)
T

𝐒−1/2(𝐗𝑖−𝐗𝑗)}

1
2
 

where S is the sample covariance matrix of X and 𝐗T is the transpose of the matrix X. 

Using this metric, the distance between individual covariates is collapsed into a single 

scalar. The PS can be combined with MD by, for example, including the PS as a 

variable in the X matrix. GM generalizes the MD by including an additional weight 

matrix W: 

𝐺𝑀𝐷(𝐗𝑖, 𝐗𝑗) = {(𝐗𝑖−𝐗𝑗)
T

(𝐒−1/2)
T

𝐖𝐒−1/2(𝐗𝑖−𝐗𝑗)}

1
2
 

where W is a 𝑘 ×  𝑘 positive definite weight matrix with 𝑘 being the number of 

matching covariates , and 𝑺−
1

2 is the Cholesky decomposition of S. GM essentially 

matches by minimizing the generalized version of MD. W is chosen to be the weight 

matrix that minimizes covariate imbalance according to the balance statistics the user 

chooses (e.g., standardized differences, KS statistics). The GM algorithm uses the 

distance measure, 𝐺𝑀𝐷, in which (by default) all elements of W are zero except down 

the main diagonal. The main diagonal is the vector of weights chosen by the algorithm. 

If each of the weights for the covariates are set equal to one and the weight for the PS is 

zero, 𝐺𝑀𝐷 is the same as 𝑀𝐷. That is, GM will converge to the MD if this is the 

optimal distance metric. If the PS contains all the information required to maximize 

covariate balance, the algorithm will converge to the corresponding distance metric, that 

is, the PS will be given full weight, and the other elements in W will be given zero 

weight. Hence, both PS and MD matching can be considered as limiting cases of GM. 
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The inclusion of individual covariates in the X matrix, rather than relying solely on the 

specification of the PS, helps ensure covariate balance when the PS is misspecified. In 

this sense, GM is robust to misspecifications in the PS. 

The iterative search algorithm 

Here we provide an overview of the optimization algorithm. Further details are 

available elsewhere (Sekhon and Mebane, 1998, Mebane and Sekhon, 2011). The aim 

of the GM algorithm is to find the optimal weights, W, that is the weight matrix which 

produces the matched sample with the best balance. GM uses a genetic search algorithm 

to search the weight matrices W, where each possible W corresponds to a different 

distance metric. The algorithm proposes batches of weights, Ws and moves towards the 

batch which contains the optimal weights. Each batch is a 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and is used 

iteratively to produce a subsequent generation with better candidate Ws. The size of 

each generation is the 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 (e.g., 1000) and is constant for all generations. 

For each generation the sample is matched according to each metric, corresponding to 

each W, to produce as many matched samples as the population size. Balance is 

evaluated for each matched sample and the algorithm identifies the weights 

corresponding to the best balance. The generation of candidate Ws evolves towards 

those containing, on average, better W and asymptotically converges to contain the 

optimal W: the one which maximizes balance. 

The X matrix includes all variables which are matched on and is used to define the GMD 

between units. The balance matrix consists of columns of data for each variable used to 

measure balance. By default, the balance matrix is identical to the X matrix. 

Optimization can be stopped either if there is no significant improvement in the 

minimum loss over a specified number of generations or after a fixed number of 
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generations (e.g., 200). The algorithm will optimize whichever balance statistics are 

chosen, recommended statistics include t-statistics from paired t-tests, D-statistics from 

Kolmogorov-Smirnov tests (Sekhon, 2011, Diamond and Sekhon, 2012)  and weighted 

standardized differences (Austin, 2009a, Stuart, 2010). 

Previous simulation evidence 

Diamond and Sekhon (2008) (Sadique et al., 2011) conducted an extensive simulation 

study to compare the performance of GM to other matching methods (PS matching, MD 

matching, PS and MD matching combined). The results showed that GM produced 

better covariate balance. Where the PS was correctly specified and the covariates were 

multivariate normal, GM dominated the other multivariate matching methods in terms 

of bias and RMSE, and reported lower MSE than PS matching. When the PS was 

misspecified, GM reported lower bias and RMSE than the other estimators. Sekhon and 

Grieve (2011) (Sekhon and Grieve, 2011) compared GM to PS matching in a 

challenging setting where some covariates were discrete, and others continuous but with 

highly skewed distributions. The simulation reported that GM achieved better covariate 

balance, lower bias and MSE, compared with PS matching. 

Diamond and Sekhon (2010) (Diamond and Sekhon, 2012) also compared the 

performance of GM to PS matching, where the PS was estimated by a linear logistic 

regression model, random forests and boosted Classification and Regression Trees 

(CART). The simulations considered scenarios that differed in the degree of linearity 

and additivity in the true PS model, that is the extent to which the PS model included 

quadratic and interaction terms. GM reported the smallest MSE and bias, apart from one 

scenario where matching on the correctly specified PS model gave least bias. 
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Implementation 

Various matching options can be implemented in the  software for GM (Sekhon, 2011). 

For example, matching can be performed with or without replacement, with calipers, 

1:1 or 1:n, with or without ties. Software and further details can be found at 

http://sekhon.berkeley.edu/matching. 
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Appendix 4.2 - Illustrative R code for the simulation study of 

research paper 2 

For scenario 1a the following code was used for the data generating process, and to 

report balance and average treatment effects (ATEs). For the remaining scenarios, the 

code was modified accordingly.  

Data generating process 

The following libraries are required for the code: 

library(Rlab) 

library(Matching) 

library(stats) 

library(boot) 

library(copula) 

 

A simulated dataset, including the covariates X1,X2,X3 the treatment variable tx and 

the endpoints cost and Y (denoting QALY) was created using the following 

commands: 

Sigma<-matrix(c(1,0.2,0.2,1),2,2)     

   Data generating 

X12<-mvrnorm(n,c(2, 4), Sigma)     

  

X1<-X12[,1]         

  

X2<-X12[,2]         

  

X3<-rbern(n,0.5+ifelse(X1>2,0.1,-0.1))    

   

psc_logit<-log(0.2)+(0.1*X1)+(0.2*X2)+(0.3*X3)+(0.2*X1*X3)-

(0.2*X2*X3) 

 

psc<-inv.logit(psc_logit) 

tx<-rbern(n,psc) 

 

E.cost<- 4000+ 4000*tx+5000*X1+4000*X2+3000*X3-1000*X3*tx 

E.cost=ifelse(E.cost<=0,0.1,E.cost) 

E.Y <- 9+0.25*tx-(1*X1)-(0.6*X2)-(0.8*X3)+(0.5*X3*tx)  

 

ngmvdc <- mvdc(normalCopula(0.4), c("norm", "gamma"), 

          list(list(mean = E.Y, sd =0.2), 

list(shape=10,rate=10/E.cost))) 

rng <- rmvdc(ngmvdc, n) 

 

Y <- rng[,1] 

cost <- rng[,2] 
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dataset<-cbind(X1,X2,X3,Y,cost,tx) 

dataset<-as.data.frame(dataset)      

   

dataset.X3 <- dataset[dataset$X3==1,]                       

dataset.noX3 <- dataset[dataset$X3==0,] 

 

The object dataset denotes the whole sample, dataset.noX3 and dataset.X3 are 

the subsamples for subgroup 1 and subgroup 2, respectively. 

PS model fitting 

Two PS models were fitted for subgroup 1 and subgroup 2. Subgroup specific 

propensity scores (pscore.noX3 and pscore.X3), linear predictors (pscore.lin.noX3 

and pscore.lin.X3) and inverse probability weights (pscorwght.noX3 and 

pscorwght.X3) were calculated, and attached to the datasets: 

pmodel.noX3<-glm(tx~X1+X2+X3,family=binomial,data=dataset.noX3) 

pscore.lin.noX3<-pmodel.noX3$linear.predictor     

pscore.noX3<-pmodel.noX3$fitted.values      

pscorwght.noX3<-(dataset.noX3$tx/pscore.noX3)+ 

((1-dataset.noX3$tx)/(1-pscore.noX3))   

 dataset.noX3<-

cbind(dataset.noX3,pscore.noX3,pscore.lin.noX3, 

pscorwght.noX3)       

rm(pscore.lin.noX3,pscore.noX3,pscorwght.noX3) 

pmodel.X3<-glm(tx~X1+X2+X3,family=binomial,data=dataset.X3)   

pscore.lin.X3<-pmodel.X3$linear.predictor     

 pscore.X3<-pmodel.X3$fitted.values      

pscorwght.X3<-(dataset.X3$tx/pscore.X3)+((1-dataset.X3$tx)/ 

(1-pscore.X3)) 

dataset.X3<-

cbind(dataset.X3,pscore.X3,pscore.lin.X3,pscorwght.X3)

 rm(pscore.lin.X3,pscore.X3,pscorwght.X3) 

 

In the following sections, the implementation of PS matching, GM and IPTW is 

described, for subgroup 1. For subgroup 2, the code was modified accordingly.  

PS matching 

First, matched datasets were created, using the Match() function from the Matching 

library.  

attach(dataset.noX3)              

           

mtchout.Y.noX3<-Match(Y=Y,Tr=tx, 
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X=cbind(pscore.lin.noX3),exact=c(FALSE), 

estimand="ATE")  

mtchout.cost.noX3<-

Match(Y=cost,Tr=tx,X=cbind(pscore.lin.noX3),exact=c(FALSE),estim

and="ATE")  

 

detach(dataset.noX3) 

 

mtch.data.noX3<-

rbind(dataset.noX3[mtchout.Y.noX3$index.treated,] 

,dataset.noX3[mtchout.Y.noX3$index.control,])   

mtch.data.noX3<-

cbind(mtch.data.noX3,weights=c(mtchout.Y.noX3$weights,mtchout.Y.

noX3$weights)) 

 

After matching, ATEs for the QALY and cost endpoint can be extracted as follows: 

 
Y_ps.noX3<-mtchout.Y.noX3$est 

cost_ps.noX3<-mtchout.cost.noX3$est  

 

The covariate balance measured as weighted standardized differences can be reported, 

for example for the covariate X1 as follows:  

attach(mtch.data.noX3) 

 

X1.ps.sdiff.X3<-100*abs(weighted.mean(x=as.matrix(X1[tx==1]), 

w=weights[tx==1])- 

weighted.mean(x=as.matrix(X1[tx==0]),w=weights[tx==0])) 

/sqrt((cov.wt(x=as.matrix(X1[tx==1]), 

wt=weights[tx==1])$cov+ 

cov.wt(x=as.matrix(X1[tx==0]),wt=weights[tx==0])$cov)/2) 

 

detach(mtch.data.noX3) 

Genetic Matching 

The automated GM algorithm was run using the GenMatch() function from  the 

Matching library: 

genmtchout.noX3<-GenMatch(Tr=tx,X=cbind(pscore.lin.noX3,X1,X2), 

estimand="ATE", 

fit.func = my.fitfunc_sdiff,  

starting.values=c(10000,0,0),exact=c(FALSE,FALSE, 

FALSE),pop.size=gpop,unif.seed=seedin, 

int.seed=seedin)           

 

Matched datasets were then created:  

attach(dataset.noX3)                   

    



164 

 

gmtchout.Y.noX3<Match(Y=Y,Tr=tx,X=cbind(pscore.lin.noX3,X1,X2), 

exact=c(FALSE,FALSE,FALSE),Weight.matrix=diag(w8s), 

estimand="ATE") 

 

gmtchout.cost.noX3<-       

Match(Y=cost,Tr=tx,X=cbind(pscore.lin.noX3,X1,X2), 

exact=c(FALSE,FALSE,FALSE),Weight.matrix=diag(w8s), 

estimand="ATE") 

detach(dataset.noX3)  

mtch.data.noX3<rbind(dataset.noX3[gmtchout.Y.noX3$index.treated,

], 

dataset.noX3[gmtchout.Y.noX3$index.control,])    

    

mtch.data.noX3<cbind(mtch.data.noX3, 

weights=c(gmtchout.Y.noX3$weights, 

gmtchout.Y.noX3$weights))        

  

ATEs can then be extracted as previously:     

Y_gn.noX3<-gmtchout.Y.noX3$est 

cost_gn.noX3<-gmtchout.cost.noX3$est       

 

The covariate balance for the covariate X1 can be calculated as follows:  

attach(mtch.data.noX3)  

X1.gn.sdiff.noX3<- 

100*abs(weighted.mean(x=as.matrix(X1[tx==1]), 

w=weights[tx==1])- 

weighted.mean(x=as.matrix(X1[tx==0]),w=weights[tx==0]))/ 

sqrt((cov.wt(x=as.matrix(X1[tx==1]), 

wt=weights[tx==1])$cov 

+cov.wt(x=as.matrix(X1[tx==0]), 

wt=weights[tx==0])$cov)/2) 

 

detach(mtch.data.noX3)  

Inverse probability of treatment weighting 

The inverse probability weights (variable pscorwght.noX3) calculated previously 

were used in a weighted mean difference of the respective endpoints, to calculate the 

average treatment effects. 

attach(dataset.noX3)       

    

Y_ipw.noX3<-weighted.mean(x=Y[tx==1], 

w=pscorwght.noX3[tx==1])-

weighted.mean(x=Y[tx==0],w=pscorwght.noX3[tx==0]) 

 

cost_ipw.noX3<-weighted.mean(x=cost[tx==1], 

w=pscorwght.noX3[tx==1])-

weighted.mean(x=cost[tx==0],w=pscorwght.noX3[tx==0]) 
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Balance can be calculated as standardized mean difference, where the treated and 

control samples are weighted with the inverse probability weights: 

X1.ipw.sdiff.noX3<-100*abs(weighted.mean(x=as.matrix(X1[tx==1]), 

w=pscorwght.noX3[tx==1])-

weighted.mean(x=as.matrix(X1[tx==0]),w=pscorwght.noX

3[tx==0]))/sqrt((cov.wt(x=as.matrix(X1[tx==1]),wt=ps

corwght.noX3[tx==1])$cov+cov.wt(x=as.matrix(X1[tx==0

]),wt=pscorwght.noX3[tx==0])$cov)/2) 

 

detach(dataset.noX3) 
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Appendix 4.3 - Supplementary tables and figures for research 

paper 2 

Appendix 4.3 Table 1 - Sensitivity analysis for the case study. Covariate balance (% 

weighted standardized differences) after IPTW with weights truncated to different 

percentiles. 

Covariate Percentile 2 organ failures 3 to 5 organ failures 

Age    

 0,100 9.06 7.24 

 1,99 9.13 2.72 

 5,95 14.83 8.33 

 10,90 20.33 13.29 

 25,75 26.19 24.52 

IMprob    

 0,100 5.58 9.86 

 1,99 7.49 0.27 

 5,95 8.17 4.88 

 10,90 9.04 7.75 

 25,75 10.47 14.01 

IMscore    

 0,100 3.88 12.41 

 1,99 9.97 4.93 

 5,95 16.31 12.89 

 10,90 21.66 18.45 

 25,75 27.92 30.61 

% Ventilated   

 0,100 5.99 13.19 

 1,99 13.39 5.54 

 5,95 20.23 10.55 

 10,90 24.89 14.60 

 25,75 30.74 24.44 
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Appendix 4.3 Table 2 - Monte Carlo simulations: relative bias for estimated incremental 

costs (ΔC), QALYs (ΔE) and INBs (WTP=£20,000) 

Scenario Method Relative bias (%) 

ΔC 

 

Relative bias (%) 

ΔE 

 

Relative bias (%) 

INB 

 

  Subgr. 1 Subgr. 2 Subgr. 1 Subgr. 2 Subgr. 1 Subgr. 2 

        
1a        

 

PS 

matching 0.3 0.0 0.6 0.5 4.4 0.6 

 GM  0.1 1.2 0.5 0.4 2.9 0.8 

 IPTW 0.2 0.0 0.1 0.2 1.5 0.3 

1b        

 

PS 

matching 1.3 2.5 10.6 4.0 58.0 5.7 

 GM  0.7 1.2 1.8 1.0 11.6 1.6 

 IPTW 2.1 3.0 12.6 4.7 71.3 6.6 

2a        

 

PS 

matching 0.4 3.0 0.7 1.9 5.0 3.2 

 GM  0.3 3.9 0.6 2.8 4.2 4.4 

 IPTW 0.2 2.5 0.3 1.3 2.2 2.2 

2b        

 

PS 

matching 0.3 0.4 0.6 0.8 4.1 0.9 

 GM  0.1 2.0 0.4 2.5 2.4 3.7 

 IPTW 0.3 8.7 0.2 6.5 2.0 10.3 

3a        

 

PS 

matching 0.8 0.0 0.0 0.5 0.6 0.7 

 GM  0.4 0.6 0.2 0.3 0.7 0.3 

 IPTW 0.3 0.3 0.0 0.1 0.2 0.0 

3b        

 

PS 

matching 0.5 0.5 7.7 2.3 12.5 3.0 

 GM  0.3 0.0 7.6 2.4 12.4 3.0 

 IPTW 0.3 0.4 7.8 2.6 12.7 3.3 

        
Notes: True value of incremental costs is £3,000 (Subgroup 1) and £4,000 (Subgroup 2), for all 

Scenarios.  True value of incremental QALYs for Scenarios 1 and 2 are 0.25 (Subgroup 1) and 0.75 

(Subgroup 2), and for Scenario 3, 0.5 and 0.75. The true INBs are therefore £1,000 and £12,000 for 

Scenarios 1 and 2, £6,000 and £12,000 for Scenario 3.  
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Appendix 4.3 Table 3 - Monte Carlo simulations: RMSE for estimated incremental costs 

(ΔC), QALYs (ΔE) and INBs (WTP=£20,000) 

Scenario Method 
 

RMSE: ΔC 

 

RMSE: ΔE 

 

RMSE: INB 
 

  Subgr. 1 Subgr. 2 Subgr. 1 Subgr. 2 Subgr. 1 Subgr. 2 

        
1a        

 

PS 

matching 788 915 0.03 0.03 961 1,068 

 GM  819 889 0.02 0.02 756 825 

 IPTW 679 773 0.02 0.02 675 782 

1b        

 

PS 

matching 853 953 0.08 0.08 1,988 2,031 

 GM  818 888 0.03 0.03 1,060 1,088 

 IPTW 765 841 0.07 0.07 1,802 1,875 

2a        

 

PS 

matching 787 1,231 0.03 0.04 989 1,484 

 GM  790 1,173 0.02 0.03 744 1,267 

 IPTW 681 1,155 0.02 0.09 676 2,535 

2b        

 

PS 

matching 788 1,224 0.03 0.03 963 1,306 

 GM  820 1,192 0.02 0.03 756 1,210 

 IPTW 680 920 0.02 0.07 673 1,839 

3a        

 

PS 

matching 812 866 0.04 0.03 1,271 1,043 

 GM  755 845 0.02 0.01 699 784 

 IPTW 682 730 0.02 0.01 686 689 

3b        

 

PS 

matching 769 835 0.05 0.03 1,229 927 

 GM  771 856 0.04 0.02 1,036 885 

 IPTW 668 724 0.04 0.02 999 802 

        
Notes: True value of incremental costs is £3,000 (subgroup 1) and £4,000 (subgroup 2), for all scenarios.  

True value of incremental QALYs for scenarios 1 and 2 are 0.25 (subgroup 1) and 0.75 (subgroup 2), and 

for scenario 3, 0.5 and 0.75. The true INBs are therefore £1,000 and £12,000 for Scenarios 1 and 2, 

£6,000 and £12,000 for scenario 3.  
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Appendix 4.3 Figure 1 - Sensitivity analysis for the case study. Distribution of inverse 

probability weights for DrotAA and control groups  

 

 

Notes: The boxplots show the median, interquartile distance and extreme values of the inverse probability 

weights. 
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Appendix 4.3 Figure 2 - Sensitivity analysis for case study. 95% bootstrapped CIs 

following IPTW, after truncation of the weights according to different percentiles  

 

Notes: 0,100 corresponds to no truncation, 1,99 corresponds to the case where weights are truncated at 

the first and 99th percentiles 
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Appendix 4.3 Figure 3 - Sensitivity analysis for the Monte Carlo simulations, Scenario 2a. 

Distribution of inverse probability weights for treated and control observations, generated 

for a typical sample (n=1,000,000)  

 

Notes: The boxplots show the median, interquartile distance and extreme values of the inverse probability 

weights. 
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Appendix 4.3 Figure 4 - Sensitivity analysis for the Monte Carlo simulations, scenario 2a. 

Boxplots of the INBs (WTP= £20,000) after IPTW with truncated weights.  

 

Notes: Dotted lines indicate the true values of the INBs (1,000 for subgroup 1 and 12,000 for subgroup 

2). 100 corresponds to no truncation, 99 corresponds to the case where weights are truncated at the first 

and 99th percentiles. Results are across 1000 replications. 
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Chapter 5 - Statistical methods that combine the PS with 

endpoint regression models, for estimating cost-

effectiveness 

5.1 Preamble to research paper 3 

The conceptual review (chapter 2) highlighted the challenges in CEA of correctly 

specifying the PS and the regression models for the cost and effectiveness endpoints. 

The critical appraisal of the applied literature (research paper 1) found that most applied 

CEA used regression or PS matching for addressing selection bias; however they did 

not carefully assess whether it was plausible to assume that the PS and the endpoint 

regression models were correctly specified.  

Research paper 2 proposed the use of GM to protect against misspecification of the PS. 

The conceptual review (chapter 2) also suggested methods that combine the PS with 

endpoint regression models: DR methods and regression-adjusted matching. These 

methods can provide unbiased estimates even when either the PS or the endpoint 

models is misspecified. These methods have not been considered for addressing 

selection bias in CEA before. Research paper 3 aims to address this gap in the literature. 

This paper compares DR with regression-adjusted PS matching, traditional PS and 

regression approaches, for estimating incremental cost-effectiveness.  The simulation 

study is grounded in a motivating CEA. The paper provides insights on the relative 

performance of the methods across typical CEA settings. To assist applied researchers 

who wish to implement the proposed methods, the paper provides sample software code 

(Appendix 5.1) 
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Abstract 

Regression and propensity score (PS) methods can reduce selection bias when 

estimating average treatment effects (ATEs), if their underlying models are correctly 

specified. In cost-effectiveness analysis (CEA), the correct specification of these models 

can be challenging, due to potential nonlinear functional form relationships. Double-

robust (DR) methods and regression-adjusted matching can protect against bias from 

model misspecification, but their relative performance has not been previously assessed. 

This paper compares selected DR methods (weighted regression and augmented inverse 

probability of treatment weighting), regression-adjusted matching, regression and PS 

methods for addressing selection bias in CEA. 

We contrast the methods in a CEA of a pharmaceutical intervention, Drotrecogin alfa, 

for severe sepsis. We find that cost-effectiveness estimates differ across methods, and 

methods that combine the PS with endpoint regression report narrower confidence 

intervals than methods that use the PS alone. Motivated by the case study, our 

simulation study compares the methods in scenarios with estimated PSs close to 0 or 1, 

that have unstable inverse probability of treatment (IPT) weights. The simulations 

include settings with functional form misspecification in the PS and endpoint regression 

models (e.g. cost model with log instead of identity link). Measures of relative 

performance include bias and root mean squared error (RMSE) of the incremental net 

benefit.   

We found that combining PS methods with endpoint regression reduced bias and RMSE 

compared to using PS only. With unstable IPT weights and misspecifications to the PS 

and regression models, regression-adjusted matching reported less bias than DR 

methods, and the lowest RMSE of all the approaches considered.  
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Introduction 

Recent investments in large observational datasets offer new opportunities for 

comparative effectiveness research, including cost-effectiveness analysis (CEA). CEA 

ideally use evidence from pragmatic randomised controlled trials (RCTs) which include 

patients, centres and comparators appropriate to the decision context (Willan and 

Briggs, 2006, Glick et al., 2007, Gray et al., 2010). For many decision problems RCTs 

may be unavailable or insufficient, and so the CEA may be reliant partly or entirely on 

non-randomised studies (NRS) (Kreif et al., 2012b). While instrumental variable 

methods  (Basu et al., 2007) can remove selection bias due to observed and unobserved 

confounding, in many circumstances plausible instruments are not available. The 

majority of CEA that use individual patient data from NRS rely on regression and 

propensity score (PS) methods (Kreif et al., 2012b). These approaches assume 

“unconfoundedness”, but also that the functional form of the regression model or the PS 

is correctly specified. Alternatively, regression and PS approaches can be combined, for 

example in double-robust (DR) estimation (Bang and Robins, 2005), or regression-

adjusted matching (Ho et al., 2007). Both “combined approaches” can protect against 

bias from misspecification of the PS or regression models, but they have not been 

compared before.  

DR methods combine inverse probability of treatment (IPT) weights with endpoint 

regression models. Under the “double-robust” property, unbiased estimates of average 

treatment effects (ATEs) can be obtained if either one of the regression or PS models is 

correctly specified (Robins et al, 1994). However, when estimated propensity scores are 

close to 0 or 1, the IPT weights can be unstable. In circumstances where there is dual 

misspecification and unstable IPT weights, certain DR approaches have been reported to 
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be more biased and less efficient than  ordinary least squares (OLS) regression (Kang 

and Schafer, 2007, Freedman and Berk, 2008).   

An alternative “combined approach” is regression-adjusted matching (Hill and Reiter, 

2005, Ho et al., 2007), which aims to create balanced comparison groups before 

regression adjustment. This approach purports to reduce the sensitivity of the regression 

estimates to the choice of model specification (Dehejia and Wahba, 2002, Ho et al., 

2007).   

Regression-adjusted matching and DR methods warrant particular consideration for 

CEA that use data from NRS. A recent systematic review found that most studies use 

regression or PS matching, but do not carefully assess model specification (Kreif et al., 

2012b). DR methods have been proposed for addressing censoring (Pan and Zeng, 

2011, Bang and Tsiatis, 2000), or selection bias in cost analyses (Basu et al., 2011), but 

have not been considered for CEA. Previous findings on the relative merits of 

alternative DR methods (Porter et al., 2011, van der Laan and Gruber, 2010, Robins et 

al., 2007) may not translate to the CEA setting. Here typical circumstances include: 

baseline covariates that are widely imbalanced between the treatment groups, unstable 

IPT weights, and misspecified parametric models for both costs (Jones, 2010) and 

health outcomes (Basu and Manca, 2011).  

The aim of this paper is to compare selected DR estimators with a regression-adjusted 

PS matching estimator, and common PS or regression approaches for estimating ATEs 

in CEA. We illustrate the approaches with a case study, a CEA of a pharmaceutical 

intervention, Drotrecogin alfa (DrotAA) for patients with severe sepsis. We consider the 

relative performance of the methods in a simulation study that extends an influential 

methodological paper in medical statistics (Kang and Schafer, 2007, Robins et al., 2007, 

Porter et al., 2011) to a bivariate CEA context. The simulation study design is grounded 
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in the characteristics of the case study, for example by including scenarios with unstable 

IPT weights.  

In the next section, we outline the statistical methods under comparison. The following 

section presents the motivating example. We then report the design and results of the 

simulation study. The last section discusses the findings and suggests areas for further 

research

Statistical methods 

The methods considered assume no unobserved confounding, and require choices about 

potential measured confounders, 𝑥, to be made in advance, for example drawing on 

theory (Rubin, 2007), published literature, expert opinion or causal diagrams (Pearl, 

1995). We denote by 𝑌𝑖𝑘 the observed outcome (cost if 𝑘 = 𝐶 and effectiveness if 𝑘 =

𝐸), for individual 𝑖 = 1, . . . . , 𝑛, where 𝑛 is the sample size. The parameter of interest is 

the average treatment effect (ATE) of a binary treatment 𝑡,  which in CEA corresponds 

to the incremental cost and effectiveness parameters.  

Regression adjustment  

Incremental cost, effectiveness and cost-effectiveness can be modelled with simple 

generalised linear models (GLM) (Barber and Thompson, 2004), two-part models  

(Buntin and Zaslavsky, 2004, Basu, 2011), semi-parametric methods such as extended 

estimating equations (Basu and Rathouz, 2005), or flexible parametric methods such as 

beta-type size distributions (Jones et al., 2011). These approaches have the potential to 

address skewness, heavy tails and nonlinear relationships between covariates and 

endpoints. A general concern is that, even a flexible parametric approach is not a 

substitute for finding the correct model specification (Manning et al., 2005).  
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We consider common GLMs for estimating incremental cost and effectiveness. 

Following Barber and Thompson (2004), GLMs for 𝑌𝑖𝑘 can be written as 

                      𝑔𝑘(𝜇𝑖,𝑘) = 𝛾𝑘𝑡𝑖 + 𝑥𝑖𝛽𝑘;     𝑌𝑖𝑘~𝐹𝑘.                                    (1) 

Here 𝜇𝑖,𝑘 = 𝐸(𝑌𝑖,𝑘) is the expectation of 𝑌𝑖,𝑘,  𝑔𝑘 is the link function which describes 

the scale on which 𝑥𝑖 are related to 𝑌𝑖,𝑘, 𝛾𝑘 and 𝛽𝑘  are the regression coefficients, and 

𝐹𝑘 is an exponential family distribution. Parameters can be estimated via maximum 

likelihood (ML), quasi ML or Bayesian methods (Basu and Manca, 2011). The joint 

uncertainty in the estimates of the incremental cost-effectiveness can be recognised by 

bivariate models (Nixon and Thompson, 2005) or with the nonparametric bootstrap  

(Davison and Hinkley, 1997). A common GLM for estimating incremental costs uses 

the gamma distribution with a log link (Buntin and Zaslavsky, 2004), and assumes that 

the covariates have multiplicative effects on the endpoint. A general way to obtain 

ATEs, which can handle such nonlinearities is with the method of recycled predictions 

(Basu and Rathouz, 2005) : 

1

𝑛
∑ {�̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘(𝑥𝑖,, 𝑡𝑖 = 0)},               𝑛

𝑖=1                       (2) 

 where �̂�𝑖,𝑘(. ) is the predicted mean of 𝑌𝑖𝑘 from the GLM (1)  given 𝑥𝑖, and 𝑡𝑖 is set to 1 

and 0 for the whole sample.  
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Propensity score methods 

Propensity score matching 

The PS is the conditional probability of treatment assignment given 𝑥𝑖 (Rosenbaum  and 

Rubin, 1983): 

                𝑝𝑖 = 𝑃𝑟(𝑡𝑖 = 1|𝑥𝑖). 

Consistent estimates of the ATE can be obtained by creating matched treated and 

control comparison groups, using the estimated PS, �̂�𝑖 as a distance metric (Rosenbaum  

and Rubin, 1983). However, in finite samples even a correctly specified PS can leave 

some baseline covariates imbalanced, which can lead to bias if these variables are 

highly prognostic (Stuart, 2010). Implementations of PS matching include pair 

matching, nearest neighbour or kernel matching (Imbens and Wooldridge, 2009a, 

Stuart, 2010, Basu et al., 2011). Here we consider nearest neighbour 1:1 matching with 

replacement, without callipers9 (Austin, 2008, Caliendo and Kopeinig, 2008, Stuart, 

2010). 

The matching estimator is the weighted mean difference between matched treated and 

control groups, which can be written as:  

1

𝑛
∑{(2𝑡𝑖 − 1)(1 + 𝐾𝑖)𝑌𝑖,𝑘},               

𝑛

𝑖=1

 

where 𝐾𝑖 is the sum of the frequency  weights unit 𝑖 has as a match for other units 

(Abadie et al., 2004a).   

                                                 

9 Here a calliper is defined as the pre-specified amount by which propensity scores of matched 
pairs are allowed to differ. 



183 

 

Inverse probability of treatment weighting 

IPTW can estimate ATEs, by reweighting the observed cost and effectiveness endpoints 

for treatment and control samples10. The IPT weight 𝑤𝑖 is the inverse of the estimated 

probability of the observed treatment, 𝑤𝑖 =
𝑡𝑖

𝑝𝑖
+ 

1−𝑡𝑖

1−𝑝𝑖
 . If the PS is correctly specified, 

IPTW can provide consistent estimates and reach semi-parametric efficiency (Hirano et 

al., 2003). However, even when the PS model is correctly specified, practical violations 

of the positivity assumption (Westreich and Cole, 2010) resulting in unstable weights, 

can lead to estimates of ATEs that are biased and inefficient (Kang and Schafer, 2007, 

Lee et al., 2010, Busso et al., 2011). Here we implement the normalised IPTW estimator 

(Hirano and Imbens, 2001, Kang and Schafer, 2007), defined as: 

∑ 𝑡𝑖𝑤𝑖𝑌𝑖,𝑘  𝑛
𝑖=1

∑ 𝑡𝑖𝑤𝑖  
𝑛
𝑖=1

−
∑ (1 − 𝑡𝑖)𝑤𝑖𝑌𝑖,𝑘

𝑛
𝑖=1

∑ (1 − 𝑡𝑖)𝑤𝑖  
𝑛
𝑖=1

 

Combining regression and PS adjustment 

Double-robust methods 

Double-robust (DR) methods combine models for the PS and for the endpoint. The 

distinctive property of DR estimators is that they are consistent if either (but not 

necessarily both) the PS or the regression model is correctly specified (Robins et al., 

1994, Robins et al., 1995, Bang and Robins, 2005). If both components are correct, the 

DR estimator is a semiparametric efficient estimator (Robins et al., 2007). Compared to 

IPTW, DR methods can increase efficiency, by stabilising the IPT weights (Glynn and 

Quinn, 2010). However when both the PS and the endpoint model are misspecified, DR 

                                                 

10  Further possible ways of balancing with the PS include stratification (blocking) by the quintiles of the 

PS and adding the PS as a covariate (Rosenbaum and Rubin, 1983). They have been demonstrated to be 

dominated by IPTW and matching (Lunceford and Davidian, 2004, Austin, 2009b). 
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estimators generally provide biased and inefficient estimates of ATEs (Kang and 

Schafer, 2007, Porter et al., 2011, Freedman and Berk, 2008, Basu et al., 2011).  

Here, we consider DR methods that are commonly used in the causal inference literature 

(Lunceford and Davidian, 2004, Funk et al., 2011, Freedman and Berk, 2008). The 

augmented IPTW (AIPTW) (Robins et al., 1994, Basu et al., 2011) estimator weights 

residuals from a regression model. The AIPTW estimator is: 

 
∑ 𝑡𝑖𝑤𝑖(𝑌𝑖,𝑘 − �̂�𝑖,𝑘(𝑥𝑖))  𝑛

𝑖=1

∑ 𝑡𝑖𝑤𝑖  
𝑛
𝑖=1

−
∑ (1 − 𝑡𝑖)𝑤𝑖(𝑌𝑖,𝑘 − �̂�𝑖,𝑘(𝑥𝑖)) 𝑛

𝑖=1

∑ (1 − 𝑡𝑖)𝑤𝑖  
𝑛
𝑖=1

+ 

1

𝑛
∑ {�̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 1) − �̂�𝑖,𝑘(𝑥𝑖, 𝑡𝑖 = 0)}𝑛

𝑖=1 , 

where �̂�𝑖,𝑘(. ) is the predicted endpoint from the GLMs defined in equation (1), and 𝑤𝑖 

is the IPT weight. 

One alternative is the weighted regression estimator (Freedman and Berk, 2008, Kang 

and Schafer, 2007), which can be constructed by combining 𝑤𝑖 with the GLMs for 

𝑌𝑖𝑘.  ATEs can be obtained using the method of recycled predictions: 

1

𝑛
∑{�̂�𝑖,𝑘,𝑤𝑟𝑒𝑔(𝑥𝑖,, 𝑡𝑖 = 1) − �̂�𝑖,𝑘,𝑤𝑟𝑒𝑔(𝑥𝑖,, 𝑡𝑖 = 0)},

𝑛

𝑖=1

 

where �̂�𝑘,𝑤𝑟𝑒𝑔(. ) is the predicted endpoint from a weighted GLM. 

Regression-adjusted matching  

It is generally recommended that matching is followed by regression adjustment (Rubin, 

1973, Rubin and Thomas, 2000, Abadie and Imbens, 2006). The idea is similar to 

double- robustness, and also to regression-adjustment in randomised trials: regression is 

used to “clean up” imbalances between treatment groups after matching (Stuart, 2010). 

We consider regression-adjusted matching undertaken as a two stage process: matching, 
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that forms the design stage of the analysis, is followed with regression modelling using 

the matched data (Ho et al., 2007). This approach can reduce the sensitivity of the 

estimated ATEs to the specification of the endpoint model (Hill and Reiter, 2005, Ho et 

al., 2007),  and can reduce finite sample bias and increase efficiency compared to 

matching alone. We implement this approach by undertaking PS matching, and using 

the frequency weights from the matching to weight the GLMs (1). The regression-

adjusted matching estimator of the ATEs for each endpoint can be obtained as:  

1

𝑛
∑{�̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ

(𝑥𝑖,, 𝑡𝑖 = 1)−�̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ
(𝑥𝑖,, 𝑡𝑖 = 0)},   

𝑛

𝑖=1

 

where  �̂�𝑖,𝑘,𝑟𝑒𝑔𝑚𝑎𝑡𝑐ℎ
(. )  is the predicted endpoint obtained from applying GLMs to the 

matched data. 

Motivating case study 

Case study overview 

We compared the methods in a CEA that evaluated Drotrecogin alpha (activated) 

(DrotAA), a pharmaceutical for patients with severe sepsis admitted to intensive care 

units (ICUs), using observational data from the UK Case-Mix Programme dataset 

coordinated by the Intensive Care National Audit and Research Centre (ICNARC) 

(Rowan et al., 2008). We revisit a previous CEA (Kreif et al., 2012a, Sadique et al., 

2011) and consider high-risk patients defined as having 3, 4 or 5 organ systems failing 

at ICU admission (n=878 DrotAA and n=1020 controls). The CEA estimated 

individual-level lifetime quality-adjusted life years (QALYs), based on individual 

patient’s mortality data collected for a follow-up period of four years, and for those who 

survived, age- and gender-specific expected survival and quality of life. Costs of 
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DrotAA and all hospitalisations were estimated at the patient level, over the same 

period of follow-up. QALYs and costs were discounted at 3.5%  (NICE, 2008).  

Statistical analysis 

We used a previously published PS (Rowan et al., 2008), which included the following 

baseline covariates: hospital type, number of critical care beds in the ICU, age, 

ICNARC model physiology score (IMscore), gender, number of organ systems failing, 

type of organ failures (cardiovascular, respiratory, renal, haematological, metabolic 

acidosis), source of admission to critical care (via the emergency department, theatre or 

recovery, ward, clinic or home), diagnostic category, and serious conditions in the past 

medical history. The PS was estimated by logistic regression, the potential nonlinear 

effects of age and IMscore on the logit of treatment assignment were recognised with 

restricted cubic splines. 

Regression models were developed for the cost and QALY endpoints drawing on the 

literature (Rowan et al., 2008). Linear predictors included a treatment indicator, 

treatment by covariate interaction terms, and cubic splines of age and IMscore to take 

into account possible nonlinearities. Model fit was evaluated using the Akaike 

information criterion and split sample cross validation (Buntin and Zaslavsky, 2004). A 

gamma GLM with log link, and a normal model with identity link were selected for the 

cost and QALY endpoints, respectively. 

Both treated and control individuals were matched to their nearest neighbour in the 

comparison group, one-to-one, with replacement, based on the linear predictor of the 

PS, using the “Matching” package (Sekhon, 2011). Balance on those potential 

confounders anticipated to be most important  (Sadique et al., 2011), was reported with 
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weighted standardised differences (Austin, 2009a)11.  The AIPTW estimator used 

predictions from the GLMs described above, with both IPTW and AIPTW using 

normalised weights (Kang and Schafer, 2007). Weighted regression applied the GLMs 

on data with IPT weights, while regression-adjusted matching applied the same 

regression models to the matched data, using the frequency weights from the matching.  

We reported lifetime incremental costs, QALYs and INBs (£20,000 per QALY) of 

DrotAA versus control. Statistical uncertainty was considered by reporting 95% 

confidence intervals (CIs), and cost-effectiveness acceptability curves (CEACs) 

(Fenwick et al., 2004). For variance estimation, the non-parametric bootstrap (Davison 

and Hinkley, 1997) was used to maintain correlation between incremental costs and 

QALYs. After all methods except for regression alone, inferences should be regarded as 

conditional on the estimated PS and, for  the matching estimators, inferences were also 

conditional on the matched  data (Hill and Reiter, 2005). For all statistical analyses the 

R platform was used (R Development Core Team, 2011).  

Case study results 

Before adjustment, potential confounders were highly imbalanced between the 

treatment groups; compared with controls, DrotAA patients were on average younger, 

with a higher baseline probability of death (Table 5.1).  Following PS matching and 

IPTW, standardised differences somewhat decreased, but PS matching and particularly 

IPTW still reported high imbalances for important potential confounders such as the 

proportion of patients with five organ systems failing, and the baseline probability of 

death (IMprob).  

                                                 

11 Standardised differences are weighted using matching frequency weights and IPT weights.  



188 

 

Table 5.1 - Case study results: baseline characteristics and covariate balance for DrotAA 

versus control group, before and then after matching or weighting  

Covariate Unadjusted PS matching IPTW 

 DrotAA 

(n=878) 

Control 

(n=1020) 

Standardised 

difference (%) 

Standardised    

difference 

(%) 

Standardised 

difference (%) 

Age 58.96  65.16  32.32 1.25 7.24 

IMprob   0.64    0.58  20.12 6.82 9.86 

IMscore 32.08 27.96 40.83 3.95       12.41 

% vent.  93.39 78.53 38.90 2.48       13.19 

Medical history:      

    Cardiovascular  0.34   1.86 13.58 7.05 5.08 

    Respiratory  1.60   2.94    7.78 1.53 1.30 

    Renal  0.91   1.47    4.39          0.97 2.45 

    Liver  0.68   1.77    8.70          0.17       29.30 

    

Immunosuppressed 

 7.29 12.75  15.55 

3.93 4.33 

Number of organ 

systems failing: 

     

  3       49.09 62.94 22.88          2.98 4.60 

  4       41.12 29.31 20.07  9.3 1.98 

  5  9.80   7.75   5.82        10.62       11.55 

Abbreviations: IMprob:  ICNARC model predicted probability of acute hospital mortality, IMscore: 

ICNARC model physiology score, %vent: % of patients mechanically ventilated 

 

A comparison of the distribution of the estimated PSs shows good overlap between the 

treatment groups, however there are some values close to 0 and 1 (e.g. minimum 0.014 

for DrotAA), resulting in unstable IPT weights (Figure 5.1). 
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Figure 5.1 - Panel (a): Distribution of the estimated PSs for DrotAA (grey line) and control 

(black line) observations. Panel (b): IPT weights for DrotAA and control observations in 

the case study.  

 

Notes: The rug plots, at the top and bottom of panel (a), shows the values of the PS. 

 

After regression adjustment, the INB was large, with 95% CI that excluded zero. After 

PS matching and IPTW, the point estimates were much lower, with CIs that included 

zero, IPTW reporting the widest CIs (Table 5.2). Combined methods reported 

somewhat differing point estimates, and narrower CIs than their PS method 

counterparts. AIPTW reported narrower CIs than IPTW, but less certain estimates than 

the other combined approaches. The probability that DrotAA is cost-effective at the 

WTP threshold of £20,000 per QALY is 30% following IPTW versus 90% for 

regression (Figure 5.2). The corresponding probability that DrotAA is cost-effective is 

around 50% following weighted regression and regression-adjusted matching.   
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Table 5.2 - Case study: Lifetime incremental costs (£), QALYs and INBs (WTP=£20,000) 

for DrotAA versus control group.  

 
Incremental costs 

(£) (95% CI*) 

Incremental 

QALYs (95% 

CI*) 

INBs (£) 

(95% CI*) 

Regression 
19,390 

(16,086 to 22,084 

1.47 

(0.98 to 1.93) 

9997 

(762 to 19,353) 

PS matching 
19,384 

(17843 to 21,061) 

0.99 

(0.65 to 1.33) 

391 

(-6,413 to  6,911) 

IPTW 
19,023 

(15946 to 22,506) 

0.54 

(-0.97 to 1.44) 

-8175 

(-36,763 to 9,547) 

AIPTW 
20,262 

(16,723 to 25,026) 

0.77 

(-0.01 to 1.36) 

-4861 

(-22,251 to 7887) 

Weighted regression 
19,728 

(16587 to 22,951) 

0.96 

(0.37 to 1.48) 

-430 

(-13,304 to 9,920) 

Reg. -adjusted  

matching 

19,705 

(18012 to 21,286) 

0.93 

(0.68 to 1.18) 

-1147 

( -6,072 to 3,820) 

Notes: * The non-parametric bootstrap is used for all CIs. After all methods except for regression alone, 

inferences should be regarded as conditional on the estimated PS and, for matching methods, on the 

matched data. 
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Figure 5.2 - Cost-effectiveness acceptability curves for DrotAA versus control groups in 

the case study 

 

 

In summary, while the estimated incremental costs were similar across approaches, 

there were differences in the incremental QALYs leading the estimated INBs to differ 

somewhat by method. For each PS method, adding regression led to narrower CIs. To 

assess the relative bias and efficiency of the methods in a CEA context, we now use 

salient features of this case study, such as nonlinear relationships between covariates 

and endpoints, and unstable IPT weights in the subsequent Monte Carlo simulation 

study.  

Monte Carlo simulation study 

Simulation overview 

Monte Carlo simulations were conducted to examine the relative performance of single 

and combined methods, for estimating cost-effectiveness. We extended previous 

simulation studies (Kang and Schafer, 2007, Porter et al., 2011) to generate cost-
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effectiveness data that reflected the settings typified by the case study. In particular, key 

features of the case study were that there were estimated PSs close to 0 and 1 i.e. 

unstable IPT weights, and some continuous confounders were modelled nonlinearly in 

the PS model (Rowan et al., 2008). The study also built on other simulation studies 

which compared alternative single PS approaches in estimating incremental 

effectiveness (Austin, 2009b, Radice et al., 2012) and cost-effectiveness (Kreif et al., 

2012a). 

The simulation study aimed to investigate the following main hypotheses: 

1.  Combined methods can increase precision and reduce bias compared to single PS 

methods only, even if the PS is correctly specified. Regression adjustment using a 

correctly specified model is expected to correct for finite sample imbalances and 

therefore reduce finite sample bias, and increase efficiency compared to PS matching 

alone (Rubin and Thomas, 2000). Adding a misspecified regression model after 

applying PS matching can also reduce finite sample bias (Abadie and Imbens, 2011).  

With stable weights, IPTW can be consistent and asymptotically efficient (Hirano et al., 

2003), but with unstable weights IPTW is expected to be inefficient (Kang and Schafer, 

2007). Under such circumstances AIPTW and weighted regression are expected to 

increase efficiency, by stabilising IPT weights (Glynn and Quinn, 2010). 

2. Compared to using regression alone, combined methods can reduce bias due to the 

misspecification of the regression models. The DR property ensures that AIPTW and 

weighted regression with correctly specified IPT weights can protect from bias due to a 

misspecified regression model. Using PS matching for balancing the data before 

regression adjustment can reduce bias compared to regression alone (Dehejia and 

Wahba, 2002, Ho et al., 2007), even when the PS is misspecified (Busso et al., 2011). 

file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_53
file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_2
file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_31
file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_31
file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_36
file:///M:/Documents%20and%20Settings/lsh247596/Local%20Settings/Temp/7/XPgrpwise/4FBD096FLSHTM_POphpmailb1001667A35129CD1/GW_00002.HTM%23_ENREF_36


193 

 

3. When IPT weights are unstable, regression-adjusted matching can be less sensitive to 

PS misspecification than weighted regression or AIPTW. Weighted regression and 

AIPTW are expected to be sensitive to unstable IPT weights and misspecification of the 

PS (Basu et al., 2011, Kang and Schafer, 2007, Freedman and Berk, 2008).  Here 

regression-adjusted matching might perform better (Busso et al., 2011) than the DR 

methods considered. AIPTW can report higher bias than weighted regression when both 

models are misspecified (Kang and Schafer, 2007). 

We considered four scenarios (Table 5.3). We assumed a PS mechanism that generates 

stable IPT weights (Scenario 1 and 2) and one that generates unstable weights (Scenario 

3 and 4). We considered a “mild” (Scenario 1) and “major” (Scenario 2 and 3) 

misspecification of the PS and regression models. In Scenario 4 we also considered a 

further regression misspecification where the wrong link function was chosen. In each 

scenario, four different settings were considered: when the PS and regression models 

were correct (a), when one of the two was misspecified (b and c), and when neither 

model was correctly specified (d).   

Bias and RMSE were obtained to provide information about the accuracy and the 

precision of the estimated incremental costs, effectiveness and INB across the methods. 

Relative bias was calculated as the difference between the true parameter value and the 

mean of the estimated parameter, expressed as a percentage of the true value. The 

RMSE was taken as the square root of the mean squared differences between the true 

and estimated parameter values.   
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Table 5.3 - Monte Carlo simulations, summary of scenarios 

Scenario 1:  Stable IPT weights + “mild” misspecification 

 Regression correctly 

specified 

Regression misspecified 

PS correctly specified 1a 1b 

PS misspecified 1c 1d 

Scenario 2:  Stable IPT weights + “major” misspecification 

 Regression correctly 

specified 

Regression misspecified 

PS correctly specified 2a (= 1a) 2b 

PS misspecified 2c  2d 

Scenario 3:  Unstable IPT weights + “major” misspecification 

 Regression correctly 

specified 

Regression misspecified 

PS correctly specified 3a 3b 

PS misspecified 3c 3d 

Scenario 4:  Unstable IPT weights + “major” misspecification (as in Scenario 3, but 

regression misspecification also includes log instead of identity link for costs) 

 Regression correctly 

specified 

Regression misspecified 

 

PS correctly specified 4a (= 3a) 4 b 

PS misspecified 4c (= 3c) 4d 

 

Data generating process 

1000 CEA datasets were simulated, each with 2000 subjects. For each subject, 

continuous confounders (𝑍1, 𝑍2, 𝑍3, 𝑍4) were generated from bivariate normal 

distributions with the following means, standard deviations and correlation: 

(
𝑍1

𝑍2
) ~𝑁 {(

2
4

) , (
1 0.2

0.2 1
)}                                      

(
𝑍3

𝑍4
) ~𝑁 {(

2
4

) , (
1 0.2

0.2 1
)}. 
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The treatment indicator 𝑡 was randomly generated from a Bernoulli distribution with 

parameter 𝑝 (the PS), determined by a logistic model with a nonlinear term in the logit, 

as seen in the case study: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑆𝑐𝑒𝑛 1,2) = 0.4 − 1𝑍1 + 0.5𝑍2 + 0.025𝑍2
2 − 0.25𝑍3 − 0.1𝑍4         (3)                 

Costs and effectiveness endpoints were drawn from a bivariate gamma-normal 

distribution, with a copula function12 (Trivedi and Zimmer, 2005, Mihaylova et al., 

2010, Quinn, 2007). The dependence between the two endpoints was recognised by 

setting the correlation between the error terms equal to 0.413.  The effectiveness 

endpoint was drawn from a normal distribution: 

                       𝑌𝐸~𝑁(𝜇𝐸 , 0.2) , 

 and costs from a gamma distribution with identity link, shape and scale parameters14:  

                       𝑌𝐶~Γ(10, 𝜇𝐶/10). 

The relationship between the covariates with 𝜇𝐶 and 𝜇𝐸 was assumed linear, with a 

constant treatment effect, as: 

𝜇𝐶  = 10000 + 6000𝑡 − 2000𝑍1 + 2000𝑍2 − 2000𝑍3 + 2000𝑍4 ,    

  
             𝜇

𝐸
= 9 + 0.4𝑡 + 0.1𝑍1 − 0.05𝑍2 + 0.05𝑍3 − 0.05𝑍4 .                       (4) 

Simulation scenarios 

Scenarios 1 and 2 considered stable IPT weights (Figure 5.3). Scenarios 3 and 4 used 

unstable weights similar to the case study, in that a large portion of the true PSs were 

                                                 

12 The copula function can generate draws from a flexible multivariate distribution (in this case the 

bivariate) with different marginal distributions (here, the gamma and the normal).  
13 This resulted in a correlation of 0.34 between the cost and QALY variable, which reflects the 

correlation (0.22) found in the case study. 
14 

The choice of normal distribution for 𝑌𝐸  and the identity link function for 𝑌𝐶  was made for transparency 

reasons and to facilitate replication. 
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close to 0 and 1 (Figure 5.3).  This was achieved by modifying the coefficients in the PS 

model (equation (3)) as: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑆𝑐𝑒𝑛 3,4) = 1.5 − 2𝑍1 + 1𝑍2 + 0.05𝑍2
2 − 0.5𝑍3 − 0.2𝑍4. 

In each scenario a common functional form misspecification for the PS and the endpoint 

model was defined as in Kang and Schafer (2007): we assumed that instead of the true 

confounders Z1 to Z4, their nonlinear functions, X1 to X4 were observed, both when 

modelling the PS and the endpoints.  Scenario 1 had a “mild” functional form 

misspecification, with the nonlinear functions defined as:  

  X1 = exp (
Z1

10
), 

                    X2 = Z2 ∗ (1 + Z1) + 10, 

              X3 = (Z3/25 + 0.6)2, 

      X4 = (Z4 + 20)2. 

 

In addition, when the PS was misspecified, the squared term was omitted from the 

logistic regression. Scenarios 2-4 had “major” misspecifications of the PS and endpoint 

models. Here, the misspecification of X1 and X4 was increased: 

X1 = exp (
Z1

3
),  

                    X4 = (Z2/10 + Z4 + 20)2. 

 

 Scenario 4 extended scenario 3, here the cost regression model had a further 

misspecification in that a log rather than the correct identity link function (equation 4) 

was chosen. This setting was again motivated by the case study15.   

                                                 

15 The proportion of individuals in the treatment group were typically around 50% (scenarios 1 and 2) and 

60% (scenarios 3 and 4), compared with 46% in the case study.  
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Figure 5.3 - Densities of the true PS in the Monte Carlo simulation study, using data from 

a typical sample (n = 1,00,000) for treated (grey line) and control (black line). The rug 

plots, at the top and bottom of each graph show the values of the PS. 

 

 

Simulation results 

Table 5.4 reports the relative bias (%) and RMSE of the estimated INB, over 1000 

replications for the different scenarios.  Tables containing simulation results for the 

incremental costs and QALYs are presented in Appendix 5.1. 

When the IPT weights were stable and both the PS and the endpoint models were 

correctly specified (scenario 1a), all methods provided relatively low bias, with 

regression reporting the lowest RMSE.  In scenario 2d with stable IPT weights and a 

“major” misspecification of the regression and the PS models, PS matching and 

regression-adjusted matching performed best, with lower bias and RMSE then DR 

methods (relative bias of 11% after regression-adjusted matching versus 53% after 

AIPTW and 29% after weighted regression).  

Under unstable IPT weights (scenario 3), combined methods outperformed correctly 

specified PS methods. In general, DR methods reported lower bias and RMSE than 

IPTW, and regression-adjusted matching performed better than PS matching alone. 
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These combined methods performed better even when a misspecified regression model 

was applied, after matching or weighting with a correctly specified PS (scenario 3b). 

Under dual misspecification (scenario 3d), all methods reported bias. Regression-

adjusted matching again provided estimates with the lowest relative bias (20% versus 

50% with regression and 89% with IPTW) and RMSE.  

When the regression for the cost endpoint used a log rather than the correct identify link 

function (scenario 4d), PS matching reported slightly lower bias than regression-

adjusted matching, however regression-adjusted matching again reported the lowest 

RMSE.  

Across the scenarios, regression-adjusted matching reported lower RMSE than PS 

matching alone, and in most scenarios lower bias. DR methods always reduced RMSE 

compared to IPTW only, and under unstable IPT weights they also reduced bias. 

However in these scenarios (3d and 4d), both DR methods were outperformed by 

regression-adjusted matching. 
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Table 5.4 - Monte Carlo simulations results: relative bias and RMSE for the INBs (WTP=£20,000) 

Scenarios 1: Stable IPT weights, 

“mild” misspec. 

2: Stable IPT weights, 

“major” misspec. 

3: Unstable IPT weights, 

“major” misspec. 

4: Unstable IPT weights, “major” 

misspec. (link function misspecified)  

 Relative bias  RMSE Relative bias  RMSE Relative bias RMSE Relative bias RMSE 

a:  PS and regression correctly specified        

        Regression 0.2% 330 0.2% 330 0.9% 376 0.9% 376 

        PS matching 1.9% 439 1.9% 439 9.4% 860 9.4% 860 

        IPTW 0.0% 402 0.0% 402 3.1% 1372 3.1% 1372 

        AIPTW 0.2% 348 0.2% 348 1.0% 795 1.0% 795 

        Weighted regression 0.2% 348 0.2% 348 0.7% 660 0.7% 660 

        Reg.-adjusted PS matching 0.3% 406 0.3% 406 1.0% 735 1.0% 735 

b:  PS  correct and regression  misspecified        

        Regression 11.1% 396 34.8% 770 51.3% 1087 52.0% 1102 

        PS matching 1.9% 439 1.9% 439 9.4% 860 9.4% 860 

        IPTW 0.0% 402 0.0% 402 3.1% 1372 3.1% 1372 

        AIPTW 0.2% 361 0.1% 381 2.3% 872 2.1% 875 

        Weighted regression 0.2% 359 0.3% 377 2.1% 735 10.8% 725 

        Reg.-adjusted PS matching 0.3% 408 0.1% 414 3.3% 748 12.2% 760 

c:  PS  misspecified and regression  correct        

        Regression 0.2% 330 0.2% 330 0.9% 376 0.9% 376 

        PS matching 6.1% 440 12.4% 485 26.0% 897 26.0% 897 

        IPTW 4.7% 621 44.4% 2161 88.6% 4069 88.6% 4069 

        AIPTW 0.4% 370 1.1% 784 2.6% 2105 2.6% 2105 

        Weighted regression 0.2% 359 0.2% 445 0.7% 863 0.7% 863 

        Reg.-adjusted PS matching 0.2% 393 0.0% 400 0.8% 684 0.8% 684 

d:  PS  misspecified and regression  misspecified       

        Regression 11.1% 396  34.8% 770 51.3% 1087 52.0% 1102 

        PS matching 6.1%  440  12.4% 485 26.0% 897 26.0% 897 

        IPTW 4.7% 621  44.4% 2161 88.6% 4069 88.6% 4069 

        AIPTW 10.3% 446 53.6% 1966 69.0% 3012 79.5% 3140 

        Weighted regression 9.4%  409 29.0% 713 34.2% 986 44.2% 1165 

        Reg.-adjusted PS matching 4.6%  408  11.2% 459 19.5% 769 30.2% 881 

Notes:  The RMSE was taken as the square root of the mean squared differences between the true and estimated parameter values.
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Discussion 

This paper finds that regression-adjusted matching can reduce overt selection bias and 

increase precision in the estimates of ATEs versus alternative approaches such as 

regression, PS matching and IPTW, across a range of scenarios typical of CEA. We 

show that regression-adjusted PS matching is relatively insensitive to functional form 

misspecifications of both the PS and the regression models, even when there are 

positivity violations, i.e. estimated PS values close to 0 and 1, resulting in unstable IPT 

weights. Here, both DR approaches reported higher bias and RMSE than regression-

adjusted matching. In the case study, the cost-effectiveness estimates and the reported 

CIs differed across methods.  The differences in the cost-effectiveness estimates were 

driven by the estimated incremental QALY which may reflect imbalances in important 

potential confounders that remained after PS matching, and especially after IPTW. 

This paper builds on previous simulation studies that compared alternative methods for 

addressing overt selection bias in cost and cost-effectiveness analysis (Basu et al., 2011, 

Sekhon and Grieve, 2011, Kreif et al., 2012a). Our paper considers combined methods 

for the first time in a CEA setting. This setting provoked the new simulation scenarios 

considered. The case study had typical characteristics of CEA that use observational 

data (Kreif et al., 2012a) and helped ground the simulation study. While the example 

used previously published PS models, and regression models were selected based on 

model fit, there were concerns about model misspecification and unstable IPT weights. 

Hence the simulation scenarios most relevant to applied studies are when both the PS 

and the regression models are misspecified. We find that even with dual 

misspecification, weighted regression and regression-adjusted matching can reduce bias 

and RMSE compared to using a single method alone. Amongst the combined methods 
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considered, regression-adjusted matching appears the least sensitive to misspecification, 

and this advantage was most apparent with unstable IPT weights.    

Our simulation scenarios considered settings characteristic of CEA. Here, while GLM 

approaches have been recommended (Barber and Thompson, 2004, Glick et al., 2007), 

the analyst has to choose the correct functional form of the linear predictors and the 

appropriate link function; in practice these are seldom known. We found that using PS 

matching in conjunction with GLMs can mitigate bias due to either misspecification. To 

help analysts consider these approaches further in different settings, we append R and 

Stata code for each combined method (see Appendix 5.2), and the code for simulating 

the data (Appendix 5.3).  

Our work also builds on previous simulation studies in the more general methodological 

literature (Kang and Schafer, 2007, Porter et al., 2011, Basu et al., 2011) by considering 

a range of scenarios with stable and unstable IPT weights. Similarly to previous studies 

(Kang and Schafer, 2007, Basu et al., 2011, Radice et al., 2012) we find that IPTW can 

be inefficient under unstable IPT weights, even if the PS is correctly specified, and can 

be highly biased due to the misspecification of the PS. In contrast to Kang and Schafer 

(2007), we find that under dual misspecification and unstable IPT weights, weighted 

regression and regression-adjusted matching can outperform regression. The current 

paper finds that regression-adjusted matching, an estimator not considered in previous 

comparisons (Basu et al., 2011), can be relatively robust to misspecification of the PS 

and the regression models. Related simulation work reports that  another 

implementation of matching combined with regression, “bias-corrected matching” 

(Abadie and Imbens, 2011) also performed well compared to DR methods  (Busso et al., 

2011). 
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This work has some limitations. The methods and the simulation settings all assume no 

unobserved confounding. This paper could not consider all circumstances that may arise 

in practice; for example in CEA, further endpoint model misspecifications can arise 

with quality of life data (Basu and Manca, 2011). To aid transparency we considered 

relatively simple matching and regression estimators. Rather than nearest neighbour PS 

matching one could use other multivariate matching approaches such as Genetic 

Matching (GM), (Diamond and Sekhon, 2012, Sekhon, 2011), previously demonstrated 

to reduce selection bias in a range of applications (Grieve et al., 2008, Sekhon and 

Grieve, 2011, Radice et al., 2012, Kreif et al., 2012a). More flexible regression models 

could also be compared, including extended estimating equations (Basu et al., 2011) or 

beta-type size distributions (Jones et al., 2011), which can outperform GLMs. These 

methods can also be combined with PS methods such as matching.  

This work also opens up areas for further research. Further studies could consider 

alternative DR methods such as targeted-maximum likelihood estimation (van der Laan, 

2010, van der Laan and Gruber, 2010, Gruber and van der Laan, 2010). When IPT 

weights are unstable, these approaches can perform better than the DR approaches 

considered, but they have not been compared to the regression-adjusted matching 

estimators described (Porter et al., 2011). New developments in machine learning 

methods for the estimation of the PS and the endpoint regression (Lee et al., 2010, 

Austin, 2012, van der Laan, 2007, Westreich et al., 2010) can further reduce bias due to 

functional form misspecification. These methods warrant careful consideration in 

further simulation studies relevant to health economic evaluations. 
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Appendix  5.1 - Additional tables for research paper 3 

Appendix 5.1 Table 1 - Monte Carlo simulation results: relative bias and RMSE of the estimated incremental cost  

Scenarios 1: Stable IPT weights, “mild”  

misspec. 

2: Stable IPT weights, 

“major” misspec. 

3: Unstable IPT weights, 

“major” misspec. 

4: Unstable IPT weights, “major” misspec 

(link function misspecified)   

 Relative bias  RMSE Relative bias  RMSE Relative bias  RMSE Relative bias  RMSE 

a:  PS and regression correctly specified        

Regression 0.1% 341 0.1% 341 0.3% 390 0.3% 390 

PS matching 0.5% 433 0.5% 433 1.8% 826 1.8% 826 

IPTW 0.1% 380 0.1% 380 0.8% 1004 0.8% 1004 

AIPTW 0.1% 358 0.1% 358 0.4% 821 0.4% 821 

Weighted regression 0.1% 357 0.1% 357 0.2% 685 0.2% 685 

Reg.-adjusted PS matching 0.2% 416 0.2% 416 0.2% 768 0.2% 768 

b:  PS  correct and regression  misspecified        

Regression 2.5% 372 6.9% 534 10.0% 702 10.2% 718 

PS matching 0.5% 433 0.5% 433 1.8% 826 1.8% 826 

IPTW 0.1% 380 0.1% 380 0.8% 1004 0.8% 1004 

AIPTW 0.1% 365 0.1% 372 0.7% 822 0.6% 827 

Weighted regression 0.1% 363 0.1% 370 0.5% 719 3.4% 699 

Reg.-adjusted PS matching 0.2% 416 0.2% 419 0.7% 765 3.7% 762 

c:  PS  misspecified and 

regression  correct 

        

Regression 0.1% 341 0.1% 341 0.3% 390 0.3% 390 

PS matching 1.6% 437 2.3% 442 4.7% 723 4.7% 723 

IPTW 0.5% 485 7.1% 1347 14.6% 2812 14.6% 2812 

AIPTW 0.0% 379 0.3% 776 1.3% 2071 1.3% 2071 

Weighted regression 0.1% 369 0.1% 457 0.3% 891 0.3% 891 

Reg.-adjusted PS matching 0.2% 413 0.1% 415 0.3% 723 0.3% 723 

d:  PS  misspecified and regression  misspecified       

Regression 2.5% 372 6.9% 534 10.0% 702 10.2% 718 

PS matching 1.6% 437 2.3% 442 4.7% 779 4.7% 779 

IPTW 0.5% 485 7.1% 1347 14.6% 2812 14.6% 2812 

AIPTW 2.4% 410 10.2% 1273 12.3% 2356 15.9% 2454 

Weighted regression 2.2% 389 5.8% 528 6.5% 817 9.8% 974 

Reg.-adjusted PS matching 2.5% 372 2.2% 431 3.8% 732 7.4% 799 
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Appendix 5.1 Table 2 - Monte Carlo simulation results: relative bias and RMSE of the estimated incremental QALYs  

Scenarios 1: Stable IPT weights , “mild” misspec. 2: Stable IPT weights, “major” misspec. 3 and 4: Unstable IPT weights, “major” 

misspec. 

 Relative bias  RMSE Relative bias  RMSE Relative bias  RMSE 

a:  PS and regression correctly specified       

Regression 0.1% 0.01 0.1% 0.01 0.0% 0.01 

PS matching 0.1% 0.01 0.1% 0.01 1.0% 0.02 

IPTW 0.1% 0.01 0.1% 0.01 0.2% 0.04 

AIPTW 0.1% 0.01 0.1% 0.01 0.1% 0.02 

Weighted regression 0.1% 0.01 0.1% 0.01 0.0% 0.02 

Reg.-adjusted PS matching 0.1% 0.01 0.1% 0.01 0.1% 0.02 

b:  PS  correct and regression  misspecified       

Regression 0.9% 0.01 3.5% 0.02 5.3% 0.02 

PS matching 0.1% 0.01 0.1% 0.01 1.0% 0.02 

IPTW 0.1% 0.01 0.1% 0.01 0.2% 0.04 

AIPTW 0.1% 0.01 0.1% 0.01 0.1% 0.03 

Weighted regression 0.1% 0.01 0.1% 0.01 0.1% 0.02 

Reg.-adjusted PS matching 0.1% 0.01 0.1% 0.01 0.3% 0.02 

c:  PS  misspecified and regression  correct       

Regression 0.1% 0.01 0.1% 0.01 0.0% 0.01 

PS matching 0.3% 0.01 1.3% 0.01 3.0% 0.02 

IPTW 0.8% 0.02 5.8% 0.05 11.2% 0.10 

AIPTW 0.1% 0.01 0.0% 0.03 0.3% 0.06 

Weighted regression 0.1% 0.01 0.1% 0.01 0.1% 0.03 

Reg.-adjusted PS matching 0.2% 0.01 0.0% 0.01 0.0% 0.02 

d:  PS  misspecified and regression  

misspecified 

      

Regression 0.9% 0.01 3.5% 0.02 5.3% 0.02 

PS matching 0.3% 0.01 1.3% 0.01 3.0% 0.02 

IPTW 0.8% 0.02 5.8% 0.05 11.2% 0.10 

AIPTW 0.8% 0.01 5.7% 0.05 7.9% 0.08 

Weighted regression 0.7% 0.01 2.9% 0.02 3.7% 0.03 

Reg.-adjusted PS matching 0.9% 0.01 1.2% 0.01 2.0% 0.02 
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Appendix 5.2 – Code for implementing the methods in research 

paper 3 

This section provides code for the implementation of the combined statistical 

approaches proposed in the paper, using the R (R Development Core Team, 2011)  and 

Stata statistical softwares (StataCorp, 2011). The user-written functions implemented 

here call some pre-written R routines, for example “glm” for generalised linear models, 

or the “Matching” library (Sekhon, 2011).  When implementing the methods in Stata, 

we use the NNMATCH routine (Abadie et al., 2004b) for matching. 

R code for AIPTW 

First, the regression models for the cost and effectiveness endpoints need to be defined: 

rmodel_Y<-glm(Y~tx+Z1+Z2+Z3+Z4,family=gaussian,data=dataset) 

rmodel_cost<-glm(cost~tx+Z1+Z2+Z3+Z4,family=gaussian,data=dataset)  

 

The IPT weights (pscw) need to be created: 

 ps.formula<- as.formula(tx~Z1+Z2+I(Z2^2)+Z3+Z4) 

 

pmodel_func=function(data, formula) { 

 

  pmodel<-glm(formula,family=binomial,data=data)    

  pscore.lin<-pmodel$linear.predictor     

   pscore<-pmodel$fitted.values   

     

  pscw=data$tx/pscore+(1-data$tx)/(1-pscore) 

  return(cbind(pscore,pscore.lin,pscw) 

  rm(pscore,pscore.lin,pscw) 

                                         } 

         dataset=cbind(dataset,pmodel_func(dataset,ps.formula)) 

 

The function for AIPTW will take the above objects as in: 

ate_aipw=function(data, model, weight, endpoint) { 

data_new0=data 

data_new0$tx=0 

data_new1=data 

data_new1$tx=1 

m0=predict(model, newdata=data_new0, type="response") 

m1=predict(model, newdata=data_new1, type="response") 

m=predict(model, type="response") 
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mu1 <- sum(data$tx * weight * (endpoint-m) )/sum(data$tx                                       

* weight) + mean(m1) 

mu0 <- sum((1-data$tx)* weight* (endpoint-m))/sum((1-data$tx) * weight) 

+ mean(m0) 

  my.ate.aiptw=mu1-mu0 

  return(my.ate.aiptw) 

 

                                 } 

To obtain the estimate for example for the incremental QALYs, we call the above 

function: 

aipw_Y=ate_aipw(dataset,rmodel_Y, dataset$pscw,dataset$Y)     

R code for weighted regression 

Weighted GLMs are constructed, using the IPT weights (pscw) defined above: 

wrmodel_Y<glm(Y~tx+Z1+Z2+Z3+Z4,family=gaussian,data=dataset,weight=pscw)  

wrmodel_cost<glm(cost~tx+Z1+Z2+Z3+Z4,family=gaussian,data=dataset,weight=pscw)

  

 

The function ate_reg is called to obtain the estimates of ATE, for example for the 

incremental QALYs:  

ate_reg=function(data, model) { 

  data_new0=data 

  data_new0$tx=0 

  data_new1=data 

  data_new1$tx=1 

  m0=predict(model, newdata=data_new0, type="response") 

  m1=predict(model, newdata=data_new1, type="response") 

  mu1 <- mean(m1) 

  mu0 <- mean(m0) 

  my.ate.reg=mu1-mu0 

  return(my.ate.reg) 

                              } 

wreg_Y=ate_reg(dataset,wrmodel_Y)   

R code for regression-adjusted matching 

We create the matched datasets, using the linear predictor of the estimated PS 

(pscore.lin) as a proximity measure. 

PSmatch_data=function(data){                

attach(data) 

mtchout.Y=Match(Y=Y,Tr=tx,X=cbind(pscore.lin),estimand="ATE") 

detach(data) 
mtch.data<rbind(data[mtchout.Y$index.treated,],data[mtchout.Y$index.control,])  

mtch.data<cbind(mtch.data,weights=c(mtchout.Y$weights,mtchout.Y$weights)) 
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  return(mtch.data) 

      } 

The matched data is stored in the object mdataset, where the matching frequency 

weights are stored as mtch.data$weights. 

      mdataset=PSmatch_data(dataset) 

 

The PS matching estimator of ATE is the following: 

rmatch_ate=function(data,endpoint,formula){ 

            model=glm(formula,family=gaussian,data=data,weights=weights) 

      data_new0=data 

      data_new0$tx=0 

      data_new1=data 

      data_new1$tx=1 

            m0=predict(model, newdata=data_new0, type="response") 

            m1=predict(model, newdata=data_new1, type="response")  

      mu1 <- mean(m1) 

      mu0 <- mean(m0) 

      my.ate.match.reg=mu1-mu0 

      return(my.ate.match.reg)       

            } 

 

This function is called to obtain the estimates of the ATE, for example:  

rPSmatch_Y=rmatch_ate(mdataset,mdataset$Y,reg.formula_y)  

Stata code for AIPTW  

use "L:\mylibrary\statasim.dta", clear 

First, run an unweighted regression: 

  reg Y tx Z1 Z2 Z3 Z4 

      gen truetx = tx 

Generate the predicted potential outcomes: 

 replace tx=1 

 predict mu1 

 replace tx=truetx 

 

 replace tx=0 

 predict mu0 

 replace tx=truetx 

Generate the predicted observed outcome: 

 predict mu 

Calculate the mean the predicted potential outcomes: 
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       summ mu1  

 scalar Ytreated=r(mean) 

  

 summ mu0  

 scalar Ycontrol=r(mean)  

Estimate the PS: 

 logit tx Z1 Z2 Z3 Z4 

 predict pscorelin, xb 

 predict pscore, pr 

Construct IPT weights:   

       gen pscw=1 

   replace pscw=1/invlogit( pscorelin) if tx==1 

    replace pscw=1/invlogit(-pscorelin) if tx==0 

Generate the sum of these weights, in order to obtain a normalised estimator: 

      egen sumpscw1= total(pscw) if tx==1 

      egen sumpscw0= total(pscw) if tx==0 

Generate augmented mean potential outcomes: 

    egen mu1Y = total(pscw*(Y-mu)/sumpscw1) if tx==1 

 egen mu0Y = total(pscw*(Y-mu)/sumpscw0) if tx==0   

  

       summ mu1Y 

       scalar meanmu1Y=r(mean)+ Ytreated 

       summ mu0Y 

       scalar meanmu0Y=r(mean) + Ycontrol  

 scalar aiptw_Y=meanmu1Y-meanmu0Y 

       di aiptw_ 

Stata code for weighted regression  

Again, the method of recycled predictions is used, using regression models weighted 

with the IPT weights (pscw):  

  reg Y tx Z1 Z2 Z3 Z4 
  reg Y tx Z1 Z2 Z3 Z4 [pweight= pscw] 

       gen truetx = tx 

  replace tx=1 

  predict mu1 

  replace tx=truetx 

replace tx=0 

  predict mu0 

  replace tx=truetx 

  summ mu1  

  scalar Ytreated=r(mean) 

  summ mu0  

  scalar Ycontrol=r(mean) 

  scalar wreg_Y  = Ytreated-Ycontrol  

  dis wreg_Y  

  

  drop mu1 mu0  

  scalar drop Ytreated Ycontrol wreg_Y 
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Stata code for regression-adjusted matching 

First we create an id which can be used to merge the main dataset the matched data: 

egen id= seq() 

sort id   

We save the data before the matching: 

save "L:\mylibrary\statasim1.dta", replace  

 

We perform nearest neighbor,  1:1 PS  matching, using the NNmatch package by 

Abadie et al. (2004) (Abadie et al., 2004b): 

  nnmatch Y tx pscorelin,  keep(matchdata_Y) replace 

  use matchdata_Y.dta, clear 

    

In order to be able to use the frequency weights for later analysis, the weight variable 

needs to be generated as follows:   

       gen km_mod=km+1 

We store these frequency weights and merge it with the unmatched dataset:  

  keep id km_mod 

  rename km_mod weight 

    save  "L:\mylibrary\matchweight.dta", replace 

  merge id using "L:\mylibrary\statasim1.dta" 

We save the combined dataset:  

   save  "L:\mylibrary \statasim2.dta", replace 

Now we use the same approach as in the case of weighted regression, but instead of 

using inverse probability weights, we use frequency weights from the matching 

(weight). 

 reg Y tx Z1 Z2 Z3 Z4 [fweight= weight] 

       replace tx=1 

 predict mu1 

 replace tx=truetx 

       replace tx=0 

 predict mu0 

 replace tx=truetx 

       summ mu1  

 scalar Ytreated=r(mean) 

 summ mu0  

 scalar Ycontrol=r(mean) 

 scalar rPSmatch_Y  = Ytreated-Ycontrol  

 dis rPSmatch_Y 

 drop mu1 mu0  

 scalar drop Ytreated Ycontrol rPSmatch_Y  
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Appendix 5.3 - R code for generating data in the simulations of 

research paper 3 

Here we provide the code that was used to generate data for Scenario 1 of the 

simulations. First, the necessary libraries need to be loaded: 

library(Rlab) 

library(Matching) 

library(stats) 

library(boot) 

library(copula) 

A simulated dataset, including the covariates Z1,Z2,Z3,Z4, the treatment variable 

tx and the endpoints cost and Y (denoting QALY) was created. First we 

generated the confounders from correlated normal distributions: 

Sigma<-matrix(c(1,0.2,0.2,1),2,2)      

Z12<-mvrnorm(n,c(2, 4), Sigma)        

Z1<-Z12[,1]          

Z2<-Z12[,2]          

Z34<-mvrnorm(n,c(2, 4), Sigma)       

Z3<-Z34[,1]        

Z4<-Z34[,2]  

 

Then we drew the treatment variable tx from a Bernoulli distribution with parameter 

psc (the true PS): 

psc_logit<- 0.4 + (-1*Z1) + (0.5*Z2) + (0.025*Z2^2 )+ (-0.25*Z3) - 

(0.1*Z4) 

psc<-inv.logit(psc_logit) 

tx<-rbern(n,psc) 

 

We generated the cost and QALY endpoints using the copula package in R:  

E.cost<-10000+ 6000*tx-2000*Z1+2000*Z2-2000*Z3+2000*Z4  

E.cost=ifelse(E.cost<=0,0.1,E.cost) 

E.Y <- 9+0.4*tx+(0.1*Z1)-(0.05*Z2)+(0.05*Z3) -(0.05*Z4)  

ngmvdc <- mvdc(normalCopula(0.4), c("norm", "gamma"), 

list(list(mean = E.Y, sd =0.2), list(shape=10,rate=10/E.cost))) 

rng <- rmvdc(ngmvdc, n) 

Y <- rng[,1] 

cost <- rng[,2] 

The misspecified variables were defined as follows: 

X1 = exp(Z1/10) 

X2 = Z2*(1+Z1)+10 

X3 = (Z3/25+0.6)^2 

X4 = (Z4+20)^2 

The final dataset was created as follows: 

dataset<-as.data.frame(cbind(X1,X2,X3,X4,Z1,Z2,Z3,Z4,Y,cost,tx)) 
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Chapter 6 - Estimating treatment effectiveness under 

model misspecification:  a comparison of targeted 

maximum likelihood estimation with bias-corrected 

matching 

6.1 Preamble to research paper 4 

The critical appraisal of the applied literature (research paper 1) showed that the 

specification of the PS and cost and effectiveness regression models is rarely 

appropriately assessed, raising concerns about biased parameter estimates in CEA. One 

area which received relatively little attention in the methodological literature in CEA is 

estimating incremental effectiveness parameters from HRQoL data (Basu and Manca, 

2011). The conceptual review identified machine learning techniques for estimating the 

PS and the endpoint regression, which can reduce bias due to functional form 

misspecification. Research paper 4 contrasts two approaches, TMLE and BCM, which 

combine the PS with endpoint regression, and can be coupled with machine learning 

estimation techniques. These methods are flexible extensions of the DR and regression-

adjusted matching approaches presented in research paper 3. These methods have not 

been used to estimate the effectiveness of treatment on HRQoL, and TMLE has not 

been compared to BCM in the general literature. Research paper 4 aims to address these 

gaps in the literature.  

The motivating case study of this paper extends research papers 2 and 3 in using a 

contrasting case study, where relative effectiveness parameters need to be estimated in 

order to populate a decision-analytical model. A related simulation study compares the 

relative performance of TMLE and BCM, alongside traditional PS, regression and DR 

methods, for estimating incremental effectiveness. I contrast these methods when using 
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fixed parametric models for the PS and the endpoint regression, and when using 

machine-learning estimation.  This paper focuses on the realistic scenario when the true 

parametric models are unknown.  

This paper provides recommendations to help future studies choose more appropriate 

methods for estimating treatment effects in realistic circumstances, and includes 

software code to help implement the proposed methods (Appendix 6.1). 
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I led the design of the research question, in collaboration with RG and an external 

collaborator, SG. I developed the simulation scenarios, with help from RR and RG. I 

wrote the simulation code and implemented the statistical methods in the motivating 

case study, with help from RR and SG. I led on the interpretation of the case study and 

simulation results, with contributions from SG, RR, RG and JS. I wrote the first draft of 

the manuscript. I managed each round of comments and suggestions from the co-

authors, in collaboration with RG. All authors read and approved the final draft prior to 

inclusion in the thesis. 
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Abstract 

This paper considers two approaches which combine the propensity score (PS) with an 

endpoint regression, when the functional forms of both models are misspecified (dual 

misspecification).  Targeted maximum likelihood estimation (TMLE) is a double-robust 

(DR) approach designed to reduce bias in the estimate of the parameter of interest.  

Bias-corrected matching (BCM) adjusts covariate imbalance between matched pairs 

using regression predictions. For both methods, we consider machine learning 

techniques such as boosted classification and regression trees and “super learning”, as 

well as using fixed parametric approaches to estimate the PS and endpoint regression. 

We contrast TMLE and BCM, alongside PS, regression and DR approaches, in a 

motivating example evaluating the effect of different types of hip prosthesis on health-

related quality of life (HRQoL) of patients with osteoarthritis. We find that the 

estimated effect of prosthesis type on HRQoL was similar across methods.  

 In a related simulation study we generated HRQoL data, with nonlinear functional form 

relationships, and good and poor overlap of the PS. Performance metrics included bias, 

root mean squared error (RMSE) and the 95% confidence interval (CI) coverage. 

In the scenarios when either the PS or regression model was correct, both TMLE and 

BCM remained unbiased and reported CI coverage close to nominal levels. With 

misspecified, fixed models for the PS and the endpoint, all methods reported relatively 

high bias. With machine learning estimation, this bias was reduced. When overlap of 

the PS was good, TMLE provided estimates with the lowest bias and RMSE, and with 

poor overlap BCM performed best.  

TMLE and BCM, when coupled with machine learning, are both appropriate methods 

for estimating of treatment effectiveness across the circumstances considered.  
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Introduction 

Health policy-makers require unbiased, precise estimates of the effectiveness and cost-

effectiveness of health interventions to inform the allocation of scarce health care 

resources (Rubin, 2010, Tunis et al., 2010, Fung et al., 2011).  Observational studies are 

widely used to estimate average treatment effects (ATEs), but the major concern is 

selection bias due to confounding. Researchers often model the conditional expectation 

of the endpoint given covariates, with parametric regression models. An alternative is 

using the propensity score (PS), defined as the probability of treatment assignment, 

given the covariates.  These methods however assume that the endpoint regression or 

PS model is correctly specified (Rubin, 1997).  When estimating ATEs on health 

endpoints, such as health-related quality of life (HRQoL), correctly specifying a 

regression model can be challenging, particularly if the distribution of the endpoint is 

skewed, and the relationship between the covariates and the endpoint is nonlinear (Basu 

and Manca, 2011). In an observational setting, the PS is unknown and needs to be 

estimated, taking into account potential nonlinearities and interactions between 

covariates that can predict the treatment assignment (Dehejia and Wahba, 2002, 

Westreich et al., 2010).  

Double-robust (DR) methods (Robins et al., 1994, Robins et al., 2007) combine 

endpoint regression models with the PS, and can be consistent if either the endpoint 

regression or the PS is correctly specified. However, for practical applications, there is 

an interest in the performance of these methods when both the endpoint regression and 

PS models are misspecified (dual misspecification) (Kang and Schafer, 2007a, 

Waernbaum, 2011, Gruber and van der Laan, 2012a). A further challenge is posed by 

poor overlap, also referred to as violation of the positivity assumption, which occurs 

when a certain set of baseline covariates is almost completely predictive of the 
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treatment within the sample (Westreich and Cole, 2010). Poor overlap can lead to 

unstable inverse probability of treatment (IPT) weights (Petersen et al., 2010). In 

circumstances where there is dual misspecification and unstable IPT weights, common 

DR approaches such as weighted regression can be more biased and less efficient than  

ordinary least squares (OLS) regression (Kang and Schafer, 2007a, Freedman and Berk, 

2008).   

An innovative DR method, targeted maximum likelihood estimation (TMLE) (van der 

Laan, 2010, van der Laan and Rubin, 2006) can outperform conventional DR methods 

when there is poor overlap (Porter et al., 2011, Stitelman and van der Laan, 2010, 

Gruber and van der Laan, 2010a). TMLE is a two-stage estimator, which fluctuates an 

initial regression prediction of the endpoint, using a function of the estimated PS. 

Another approach which can exploit information from the PS and the endpoint 

regression is bias-corrected matching (BCM) (Rubin, 1973, Abadie and Imbens, 2011). 

The idea behind this method is to subtract the estimate of the asymptotic bias from the 

nearest neighbour matching estimator, using regression predictions of the endpoint. 

Both TMLE and BCM have the potential to reduce bias under dual misspecification. 

For both methods, estimates of the endpoint regression function and the PS can be 

obtained with fixed parametric models, i.e. when the functional form and distribution of 

the endpoint is chosen by the analyst. However these approaches can also accommodate 

machine learning techniques, where the best fitting model is selected by an algorithm.  

Simulation studies have demonstrated that TMLE, coupled with machine learning 

estimation for the endpoint and the PS, can report low bias when the correct parametric 

models are unknown (Porter et al., 2011, Gruber and van der Laan, 2012c). BCM can be 

relatively robust under dual misspecification. When the response surface, defined as the 

functional form relationship between the covariates and the endpoint (Rubin, 1979), is 
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moderately nonlinear, bias due to a misspecified PS can be eliminated  even if 

adjustment is performed with an OLS regression model (Abadie and Imbens, 2011, 

Busso et al., 2011, Rubin and Thomas, 2000). Adjustment with OLS might be 

insufficient with highly nonlinear response surfaces, and so recommendations for BCM 

suggest that flexible approaches such as series regression are used for the bias-

adjustment (Abadie and Imbens, 2011). However no previous studies have formally 

considered flexible regression methods for BCM. 

There is limited work on the relative performance of matching and reweighting 

estimators such as inverse probability of treatment weighing (IPTW) and DR methods 

(Busso et al., 2011, Busso et al., 2009, Waernbaum, 2011, Radice et al., 2012). These 

studies found that with correctly specified PS and good overlap, reweighting estimators 

can be less biased and more efficient than matching. However, nearest neighbour 

matching estimators are less sensitive to misspecification of the PS: while for matching 

it is sufficient for the estimated PS to be a balancing score, for weighting, the PS needs 

to be the correct conditional probability of treatment assignment (Busso et al., 2009, 

Waernbaum, 2011). The only study that, to our knowledge, considered both DR and 

BCM estimators found that, with poor overlap and correctly specified PS, BCM 

provided less biased and more efficient estimates of the average treatment effect on the 

treated (ATT) than reweighing estimators (Busso et al., 2011).  Machine learning 

estimation approaches for estimating the PS (Lee et al., 2010, Westreich et al., 2010, 

Setoguchi et al., 2008), and the endpoint regression function (Austin 2012) have been 

shown to reduce bias due to model misspecification, but few studies have investigated 

machine learning in the context of DR approaches (Porter et al., 2011, Ridgeway and 

McCaffrey, 2007) and no study has considered machine learning  for  BCM. 
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The objective of this paper is to compare the relative performance of TMLE and BCM 

in estimating the ATE of a binary treatment on a continuous endpoint, focusing on dual 

functional form misspecification of the PS and the endpoint regression.  We also 

compare TMLE and BCM to other commonly applied DR (Kang and Schafer, 2007a), 

PS matching (Austin, 2008, Caliendo and Kopeinig, 2008) and regression (Basu and 

Manca, 2011) approaches. We consider each method  with fixed parametric regression 

models but also with machine learning techniques, such as super learning for estimating 

the endpoint regression function (van der Laan et al., 2007) and boosted regression trees 

for the PS (McCaffrey et al., 2004, Lee et al., 2010, Xu et al., 2010). 

We consider the methods in a motivating case study and in a simulation study. The case 

study considers the relative effectiveness of alternative types of total hip replacement on 

post-operative HRQoL of patients with osteoarthritis. This study exploited a large UK 

survey, which collects patient reported outcome measures (PROMs). The resulting 

observational database includes HRQoL data on all patients who have had elective 

surgical procedures provided by the NHS in England (PROMs, 2010, Ousey and Cook, 

2011), with measurements of a rich set of pre-operative characteristics. While there was 

a good overlap in the distributions of potential confounders, important prognostic 

variables such as age and pre-operative health status were imbalanced. Correctly 

specifying the endpoint regression function was challenging in this dataset: the 

distribution of the HRQoL endpoint was bounded between a small negative value 

(indicating a health state worse than death) (Dolan et al., 1995) and 1 (perfect health), 

and in addition, there was a large spike at 1 in the distribution. We reported ATEs with 

each approach. 

 The simulation study was grounded in the case study, and compared the relative 

performance of the methods for a range of data-generating processes (DGPs) typical of 
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HRQoL data: in that the data were assumed to follow normal, gamma and two-part 

distributions, and the response surface was nonlinear. We considered scenarios of good 

overlap, as in the case study, but also scenarios with poor overlap, to explore the 

performance of the methods in the most challenging settings. We compare the relative 

performance of the methods according to bias, root mean squared error (RMSE), and 

coverage rates of nominal 95% confidence intervals (CIs).  

In the next section, we outline the statistical methods under comparison. The following 

section presents the motivating example. Then we report the design and results of the 

simulation study. The last section discusses the findings and suggests areas for further 

research. 

Statistical methods 

The parameter of interest is the ATE of a binary treatment 𝐴, defined as 

𝜓 = 𝐸[𝑌(1) − 𝑌(0)] , 

where 𝑌(1) is the potential outcome under treatment, i.e. the endpoint that would be 

observed under treatment state, and 𝑌(0) is the potential outcome under control state.  

The vector of confounding factors, that is all factors that influence the potential 

outcomes and treatment assignment, is defined as W.   Under unconfoundedness 

(Greenland et al., 1999), also known as conditional exchangeability, all elements of 𝑊 

are observed, and the mean of the conditional distribution of the potential outcomes 

corresponds with the mean of the conditional distribution of the observed endpoint Y:  

𝐸[𝑌(1)|𝑊] =  𝐸[𝑌|𝐴 = 1, 𝑊]  and    𝐸[𝑌(0)|𝑊] =  𝐸[𝑌|𝐴 = 0, 𝑊]. 

Under the additional assumptions of consistency and positivity, the ATE can be 

identified as 
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𝜓 = 𝐸[[𝑌|𝐴 = 1, 𝑊] − 𝐸[𝑌|𝐴 = 0, 𝑊]|𝑊]. 

The consistency assumption states that an individual’s potential outcome under the 

observed treatment is exactly the observed endpoint (Cole and Frangakis, 2009). The 

positivity assumption requires that there are both treated and control individuals at each 

combination of the values of observed confounders in the population (Westreich and 

Cole, 2010), formally, 0 < 𝑔(𝐴, 𝑊) < 1, for any stratum defined by W, where 

𝑔(𝐴, 𝑊) = 𝑃(𝐴|𝑊) is the model for the  treatment assignment. In finite samples, even 

in the absence of structural violations, practical positivity violations often arise; in 

particular covariate strata there might be few or no individuals from either treatment 

group (Westreich and Cole, 2010), and so the estimated �̂�(𝐴, 𝑊) can be close to 0 or 1.  

The econometric literature on matching methods refers to positivity violations as “poor 

overlap” (Imbens, 2004). Here we define both structural and practical violations of the 

positivity assumption as poor overlap, and use this terminology throughout. 

Regression estimators  

We consider a general regression estimator, also known as the G-computation estimator 

(Robins, 1986) , which uses estimates of the expected potential outcomes, conditional 

on observed characteristics, defined as 𝑄(𝐴, 𝑊) = 𝐸[𝑌|𝐴, 𝑊]. 

The estimator for the ATE is given by: 

�̂�𝑟𝑒𝑔 =
1

𝑁
∑ {�̂�(1, 𝑊𝑖) − �̂�(0, 𝑊𝑖)}𝑁

𝑖=1 ,                        (1) 

where �̂�(1, 𝑊) and �̂�(0, 𝑊) are the estimated potential outcomes for each individual 

under treatment and control states, respectively, and 𝑁 is the number of subjects in the 

sample. 
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�̂�(0, 𝑊) and �̂�(1, 𝑊) can be obtained by fitting a regression model that includes the 

observed covariates and a treatment variable, for example OLS or a generalised linear 

model (GLM). A more flexible method is to fit separate models for the treated and 

control samples (Imbens and Wooldridge, 2009b). Unbiased estimates of the ATE can 

only be achieved if 𝑄(1, 𝑊)  and 𝑄(0, 𝑊) are estimated consistently. When there is 

poor overlap, regression estimators extrapolate, which can lead to large biases if the 

regression model is misspecified (Ho et al., 2007, Rubin, 1997).  

Flexible estimation techniques of the endpoint regression function include series 

estimation (Imbens and Wooldridge, 2009b, Abadie and Imbens, 2011) and machine 

learning (Austin, 2012).  Both approaches can reduce bias which results from model 

misspecification. Here we consider a machine learning approach, the “super learning” 

algorithm (van der Laan et al., 2007). Super learning uses a collection of prediction 

algorithms pre-selected by the user, potentially including parametric and non-parametric 

regression models. The algorithm uses cross-validation to select a weighted 

combination of estimates given by the prediction procedures (Polley and van der Laan, 

2010b). Asymptotically, the super learner algorithm performs as well as the best 

possible combination of the candidate estimators  (van der Laan and Dudoit, 2003). 

Propensity score methods 

The propensity score (PS) is defined as the conditional probability of treatment 

assignment given 𝑊, 𝑔(1|𝑊) = 𝑃𝑟(𝐴 = 1|𝑊). Using the estimated PS, �̂�(. ), as a 

distance metric, matched treated and control comparison groups can be created 

(Rosenbaum  and Rubin, 1983). The matching estimator imputes the missing potential 

outcomes, 𝑌(0) and 𝑌(1), using the observed endpoints of the closest M individuals:   
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�̂�(0, 𝑊𝑖) = { 1

𝑀

𝑌𝑖

∑ 𝑌𝑗𝑗𝜖𝜁𝑀(𝑖)     

if  𝐴𝑖 = 0
if 𝐴𝑖 = 1

  , 

�̂�(1, 𝑊𝑖) = {
1

𝑀
∑ 𝑌𝑗𝑗𝜖𝜁𝑀(𝑖)

𝑌𝑖
    

if  𝐴𝑖 = 0
if  𝐴𝑖 = 1

  , 

 

where  𝜁𝑀(𝑖) is the set of M individuals matched to unit 𝑖. The estimator for the ATE is 

the mean of the estimated individual-level treatment effects: 

�̂�𝑚𝑎𝑡𝑐ℎ =
1

𝑁
∑{�̂�(1, 𝑊𝑖) − �̂�(0, 𝑊𝑖)}

𝑁

𝑖=1

 

Inverse probability of treatment weighting (IPTW) reweights the treated and control 

samples using inverse weights  
𝐴𝑖

�̂�(1|𝑊𝑖)
  for the treated and 

1−𝐴𝑖

1−�̂�(1|𝑊𝑖)
 for the control 

observations. The normalised IPTW estimator (Hirano and Imbens, 2001, Kang and 

Schafer, 2007a) is defined as: 

�̂�𝐼𝑃𝑇𝑊 =
∑ 𝐴𝑖

𝑌𝑖

�̂�(1|𝑊𝑖)
 𝑁

𝑖=1

∑
𝐴𝑖

�̂�(1|𝑊𝑖)
𝑁
𝑖=1

−
∑ (1 − 𝐴𝑖)

𝑌𝑖

1 − �̂�(1|𝑊𝑖)
  𝑁

𝑖=1

∑
1 − 𝐴𝑖

1 − �̂�(1|𝑊𝑖)
𝑁
𝑖=1

 

Matching estimators are consistent if �̂�(. ) is correctly specified (Waernbaum, 2011), 

but have larger finite sample bias and are less precise than a correctly specified 

regression estimator (Abadie and Imbens, 2006, Rubin, 1973).  With a correctly 

specified �̂�(. ), IPTW can also provide consistent and efficient estimates (Hirano et al., 

2003). However, poor overlap can result in unstable IPT weights, and biased or 

inefficient estimates of the ATEs (Kang and Schafer, 2007a, Lee et al., 2010, Busso et 

al., 2011, Radice et al., 2012). In these settings, recommended approaches include 

truncating IPT weights at fixed levels (Elliott, 2008) or percentiles of �̂�(. ) (Cole and 

Hernán, 2008), and estimating ATEs for a subsample with good overlap (Crump et al., 

2009). 
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Instead of estimating the PS with a fixed parametric model, such as a logistic regression 

including main terms, flexible approaches have been proposed to help correctly specify 

𝑔(. ). These include the series regression estimator (Hirano et al., 2003), and methods 

from the machine learning literature, including decision trees, neural networks, linear 

classifiers and boosting (McCaffrey et al., 2004, Setoguchi et al., 2008, Westreich et al., 

2010). This paper considers the machine learning approach of boosted classification and 

regression trees (CART). This approach has been shown to reduce bias in the estimated 

ATE compared to a misspecified logistic regression, under circumstances of unstable 

IPT weights (Lee et al., 2010), and outperformed alternative machine learning methods 

such as pruned CARTs. Boosted CART fits regression trees on random subsets of the 

data, and in each iteration, the data points that were incorrectly classified with the 

previous trees receive greater priority. According to general recommendations (Stuart, 

2010), the algorithm can be set to select the final PS model that maximises covariate 

balance (McCaffrey et al., 2004, Lee et al., 2010). 

 Double-robust methods 

Double-robust (DR) methods (Bang and Robins, 2005, Robins et al., 1994) combine 

models for 𝑄(. ) and 𝑔(. ) , with most estimators using �̂�(. ) as IPT weights (Kang and 

Schafer, 2007b). The distinctive property of DR estimators is that they are consistent if 

either (but not necessarily both) 𝑔(. ) or 𝑄(. ) is correctly specified (Robins et al., 1994). 

If both components are correct, the DR estimator can be a semiparametric efficient 

estimator (Robins et al., 2007, van der Laan and Rubin, 2006). A commonly used DR 

method is the weighted regression (Freedman and Berk, 2008, Kang and Schafer, 

2007a), which weights the covariates in an endpoint regression, using IPT weights.  
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In realistic settings such as when there is poor overlap and dual misspecification, 

weighted regression can report biased and inefficient estimates of ATEs (Kang and 

Schafer, 2007a, Porter et al., 2011, Freedman and Berk, 2008, Basu et al., 2011). An 

ongoing debate discusses the relative merits of different DR estimators in these 

circumstances (Porter et al., 2011, van der Laan and Gruber, 2010, Robins et al., 2007). 

One recommendation when faced with an unknown PS and unstable IPT weights is to 

use machine learning methods to estimate 𝑔(. ) (Ridgeway and McCaffrey, 2007).  Here 

we consider the weighted least squares estimator (WLS) and implement it with weights 

obtained from a fixed logistic regression but also using boosted CART. 

It has been suggested that DR estimators should have a “boundedness property”: they 

should respect the known bounds of the endpoint,  for example that an HRQoL endpoint 

is between small negative values and 1, so that the estimated parameter will always fall 

into the parameter space (Robins et al., 2007, Rotnitzky et al., 2012). This property can 

reduce bias and increase precision when the PS is used as weights, where large weights 

can lead to estimated values of the endpoint falling outside of a plausible  range (Gruber 

and van der Laan, 2010a). Below we discuss a DR estimator, TMLE, that can have this 

boundedness property (Rotnitzky et al., 2012), and is therefore appealing for settings of 

poor overlap (Gruber and van der Laan, 2010a, Gruber and van der Laan, 2012b).  

Targeted maximum likelihood estimation 

While standard maximum likelihood estimation aims to find parameter values that 

maximise the likelihood function for the whole distribution of the data, TMLE is 

concerned with a particular feature of the distribution such as the ATE  (van der Laan 

and Rubin, 2006, Moore and van der Laan, 2009). Maximising a global likelihood 

function may not yield the least biased estimate of the target parameter, so TMLE is 
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designed to target the initial estimate to reduce bias in the estimate of the parameter of 

interest. The TMLE estimator solves the efficient influence curve estimating equation,  

where an influence curve describes the behaviour of an estimator under slight changes 

of the data distribution (Hampel, 1974).  Performing TMLE involves two stages 

(Gruber and van der Laan, 2012c), which, for estimating the ATE, are: 

1: To obtain an initial estimate of the conditional mean of 𝑌 given A and W by using 

regression to predict the potential outcomes �̂�(1, 𝑊) and �̂�(0, 𝑊).   

2: To fluctuate this initial estimate, �̂�0(𝐴, 𝑊), exploiting the information in the 

treatment assignment mechanism, 𝑔(. ).  

Here, the fluctuation corresponds to extending the parametric model for 𝑄(𝐴, 𝑊) with 

“clever covariates” (ℎ): 

ℎ0(𝐴, 𝑊) =
1 − 𝐴

1 − 𝑔(𝐴 = 1|𝑊)
 

ℎ1(𝐴, 𝑊) =
𝐴

𝑔(𝐴 = 1|𝑊)
 

For continuous endpoints, it is recommended (Gruber and van der Laan, 2012b, Gruber 

and van der Laan, 2010a) that known bounds of the endpoint are exploited by rescaling  

𝑌 to between 0 and 1, to ensure the boundedness of the TMLE estimator. The rescaled 

endpoint is defined as  𝑌∗ =
𝑌−𝑎

𝑏−𝑎
 , where 𝑎 and 𝑏  are known limits of Y. Using 𝑌∗, 

𝑄∗(𝐴, 𝑊) =  
𝑄(𝐴,𝑊)− 𝑎

𝑏−𝑎
 can be defined. The fluctuation can then be performed on the 

logistic scale:  

𝑙𝑜𝑔𝑖𝑡 (𝑄∗̂1
(0, 𝑊)) = 𝑙𝑜𝑔𝑖𝑡 (𝑄∗̂0

(0, 𝑊)) + ε̂0ℎ̂0(0,W) and  

𝑙𝑜𝑔𝑖𝑡(𝑄∗̂1
(1, 𝑊)) = 𝑙𝑜𝑔𝑖𝑡(𝑄∗̂0

(1, 𝑊)) + ε̂1ℎ̂1(1,W). 

Here, ε̂0 and ε̂1 can be estimated by logistic regression with quasi-binomial distribution 

of Y∗ on  ℎ̂0 and ℎ̂1, and offset 𝑙𝑜𝑔𝑖𝑡(𝑄∗̂0
(𝐴, 𝑊)). ℎ0 and ℎ1 are constructed to solve 
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the efficient influence curve estimating equation for the ATE. This regression can be 

interpreted as explaining the residual variability of the predicted endpoint, using 

information in the treatment assignment mechanism. �̂�1(𝐴, 𝑊) can be obtained by 

back-transforming 𝑄∗̂1
(𝐴, 𝑊) to the original scale. 

The resulting targeted estimates of the potential outcomes, �̂�1(0, 𝑊) and �̂�1(1, 𝑊) are 

applied in the G-computation formula in order to obtain the TMLE estimator: 

�̂�𝑇𝑀𝐿𝐸 =
1

𝑁
∑ Q̂1(1, 𝑊𝑖) −

𝑁

𝑖=1

Q̂1(0, 𝑊𝑖) 

TMLE has the property of double-robustness: if either the initial estimate of 𝑄(. ) or 

𝑔(. ) are correctly specified, the estimator is consistent. TMLE is also an asymptotically 

efficient estimator, and if both 𝑄(. ) or 𝑔(. ) are correct, it reaches the semiparametric 

efficiency bound (van der Laan, 2010). The estimator can use predictions from any 

fixed parametric model for the initial 𝑄(. ) (for example OLS or GLM) and 𝑔(. ) (for 

example logistic regression). However, with machine learning methods, TMLE has 

been shown to reduce bias when the models for the assignment mechanism and the 

endpoint are unknown (Porter et al., 2011). As in the previous sections, we consider 

super learning for the initial 𝑄(. ) and boosted CARTs for 𝑔(. ). 

Bias-corrected matching 

It is generally recommended that matching methods are followed by regression 

adjustment (Rubin, 1973, Rubin and Thomas, 2000, Abadie and Imbens, 2006). The 

idea is similar to regression-adjustment in randomised trials: regression is used to “clean 

up” residual imbalances between treatment groups after matching (Stuart, 2010). BCM 

(Abadie et al., 2004, Abadie and Imbens, 2011) adjusts the imputed potential outcome 

with the difference in the predicted endpoint that can be attributed to covariate 
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imbalance between the matched pairs. These predictions are obtained by a regression of 

the endpoint on covariates, stratified by treatment assignment. The bias-corrected 

predictions of the potential outcomes are obtained as follows: 

�̂�(0, 𝑊𝑖) = { 1

𝑀

𝑌𝑖

∑ 𝑌𝑗 + �̂�(0, 𝑊𝑖) − �̂�(0, 𝑊𝑗)𝑗𝜖𝜁𝑀(𝑖)     

if  𝐴𝑖 = 0
if 𝐴𝑖 = 1

  , 

�̂�(1, 𝑊𝑖) = {
1

𝑀
∑ 𝑌𝑗 + �̂�(1, 𝑊𝑖) − �̂�(1, 𝑊𝑗)𝑗𝜖𝜁𝑀(𝑖)

𝑌𝑖
    

if  𝐴𝑖 = 0
if  𝐴𝑖 = 1

  , 

For example, for an individual 𝑖 who receives control, the imputed potential outcome 

under the treatment state is the average outcome of the M closest matches from the 

treatment group (indexed by j), adjusted with the difference between the predicted 

outcomes under treatment, when covariate values are set to those of its own values, 

�̂�(1, 𝑊𝑖) and the covariate values of the match, �̂�(1, 𝑊𝑗). The corresponding estimator 

is the mean difference of these predictions: 

�̂�𝐵𝐶𝑀 =
1

𝑁
∑ �̂�(1, 𝑊𝑖) − �̂�(0, 𝑊𝑖)

𝑁

𝑖=1

 

BCM is consistent if 𝑄(0, 𝑊) and 𝑄(1, 𝑊) are consistently estimated (Abadie and 

Imbens, 2011). Matching can decrease the sensitivity of estimates to the 

misspecification of the endpoint regression model (Ho et al., 2007) and, for moderately 

nonlinear response surfaces, adjustment even with a misspecified OLS  model can 

reduce bias (Rubin, 1973, Rubin and Thomas, 2000, Abadie and Imbens, 2011, Busso et 

al., 2011). Because an OLS regression, even including nonlinear terms, might not 

capture highly nonlinear response surfaces, we consider super learning for predicting 

the potential outcomes, as well as fixed parametric models. Following 

recommendations, we select the number of matches (M ) to 1 (Stuart, 2010, Caliendo 

and Kopeinig, 2008), and match on the liner predictor of PS with replacement, allowing 
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for ties. As for the DR methods, we estimate the PS using logistic regression and also 

using boosted CARTs.  

 Motivating case study 

Overview 

We consider the methods in a case study that evaluates the effect of alternate hip 

prosthesis types on the HRQoL of patients with osteoarthritis, using an observational 

database on patients with total hip replacement (THR). THR is one of the most common 

surgical procedures in the UK, with over 50,000 hip procedures performed in the NHS 

in England and Wales in 2011 (NICE, 2012). With a large number of brands of 

prosthesis in use, with differing costs,  UK health care decision makers have a 

considerable interest in evaluating the clinical and cost-effectiveness of different 

prosthesis types in routine care (NICE, 2012). A large scale UK survey that collects 

patient-reported outcome measures (PROMs) on all patients who undergo elective 

surgery in the NHS provides a key data source for this evaluation. The resulting 

observational dataset, used in this case study, includes pre-  and post-operative HRQoL 

of patients with THR procedures (PROMs, 2010, Ousey and Cook, 2011).  

The dataset measures the HRQoL endpoint as EQ-5D-3L scores (EuroQol Group, 

1990). The EQ-5D-3L is a generic instrument with five dimensions of health (mobility, 

self care, usual activities, pain and discomfort, anxiety and depression) and three levels 

(no problems, some problems, severe problems). The EQ-5D-3L profiles were 

combined with health state preference values from the UK general population, to give 

utility index scores on a scale ranging from 1 (perfect health), through  0 (death) to the 

worst possible health state, -0.59 (Dolan et al., 1995). This results in a bounded 
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distribution of the endpoint that exhibited a spike at 1, posing a challenge for the 

specification of the regression model (Basu and Manca, 2011). 

A previous analysis of this dataset (Pennington et al., 2012) reported the relative 

effectiveness on EQ-5D-3L scores of common prosthesis types,  such as cemented,  

cementless, and “hybrid” prostheses. The analysis used multivariate matching and linear 

regression to adjust for confounding, and found a small but statistically significant 

advantage of hybrid compared to cementless prostheses.  

The objective of this case study is to estimate the ATE on EQ-5D-3L, 6 months after 

operation, in patients with hybrid hip prosthesis, compared to cementless hip prosthesis. 

For this motivating example, we constrained the population of interest to be UK males 

patients with osteoarthritis, aged 65-74 (n = 3583). We contrast TMLE and BCM, and 

also compare them to standard statistical approaches such as regression, matching, 

IPTW and WLS. We implement each method with fixed parametric models and 

machine learning estimation techniques. 

Statistical methods in the case study 

Measured potential confounders included patient characteristics such as age, sex, body 

mass index, pre-operative heath status (“Oxford Hip score” and HRQoL), 

comorbidities, disability, index of multiple deprivation, and characteristics related to the 

intervention, such as surgeon experience (senior surgeon or not) and hospital type 

(NHS, private sector hospital, or treatment centre). Of the 3,583 patients included in the 

analysis, 32% had missing data on post-operative HRQoL and 39% on BMI. Other 

covariates were complete for over 90% of the sample. Multiple imputation using 

chained equations was applied to impute missing covariate and endpoint values 

(Pennington et al., 2012). Following recommendations (Rubin, 1996), five multiply 
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imputed datasets were created, and the analysis described below was performed on each 

dataset. Point estimates and variances were combined using Rubin’s rule (Rubin, 1996). 

Fixed parametric approaches for estimating 𝑄(. ) included OLS regression and a two-

part model which can account for the spike in the observed distribution of the endpoint 

(Buntin and Zaslavsky, 2004, Basu and Manca, 2011). Here the continuous part (𝑌′ =

1 − 𝑌  when 𝑌 < 1)  was modelled with a gamma regression, and logistic regression 

was used for modelling 𝑃(𝑌 < 1).  The PS was estimated using logistic regression. In 

order to allow for nonlinearities, for each model, continuous variables were fitted with 

smoothing splines (using default degrees of freedom of 4).  

For machine learning estimation of 𝑄(. ), we used the R package “Super Learner” 

(Polley and van der Laan, 2010a), where the user-defined library included the following 

prediction algorithms:  “glm” (main terms linear regression), “glm.interaction” (glm 

with covariate interactions), and a package that implements multivariate adaptive 

polynomial spline regression methods, “polymars” (Kooperberg, 2010). Machine 

learning estimation of  𝑔(. ) relied on boosted (logistic) CARTs, using the R package 

“twang” (Ridgeway et al., 2006), with tuning parameters recommended by the 

developers (McCaffrey et al., 2004, Lee et al., 2010). This implementation aimed to 

minimise mean covariate imbalance measured using Kolmogorov-Smirnov tests, 

reweighed by the estimated IPT weights.   

We applied WLS using smoothing splines, with IPT weights obtained from the logistic 

model and also from the boosted CARTs. TMLE used the known minimum and 

maximum values of the endpoint as bounds, -0.59 and 1 (Dolan et al., 1995). Standard 

errors and 95% CIs were calculated using the sandwich estimator for IPTW and WLS, 

and using the influence curve (van der Laan, 2010), for TMLE. For matching and BCM, 

estimated standard errors took into account the matching process, conditional on the 
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estimated PS (Abadie and Imbens, 2011, Abadie and Imbens, 2006). For the two-part 

model and the super learning regression estimator, we used the non-parametric 

bootstrap (Davison and Hinkley, 1997) to obtain standard errors.  

Case study results 

Table 6.1 shows balance on the main pre-operative characteristics of patients with 

hybrid and cementless hip replacement, reported as absolute standardised mean 

differences. Patients with hybrid hip replacement were slightly older, had more co-

morbidities (measured as a co-morbidity score), worse social status, and were less likely 

to have been treated by a consultant or in a treatment centre.  
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Table 6.1 - Balance on pre-operative characteristics, means and % standardised mean 

differences  

Covariate Mean hybrid (n=631) Mean cementless (n=2952) SMD (%) 

Age 69.71 69.25 15.98 

Oxford hip score1 20.17 19.93 2.83 

Pre-operative EQ-5D1 0.40 0.40 0.63 

Index of deprivation1 3.26 3.03 15.92 

ASA grade 1 (%)1 1.00 0.96 4.14 

ASA grade 2 (%)1 0.09 0.12 9.55 

Disability (%) 0.74 0.74 0.52 

Obese (%)1 0.27 0.27 0.69 

Morbidly obese (%)1 0.10 0.11 4.30 

Nr of co-morbidities 1.00 0.96 4.14 

Co-morbidities 
   

    Heart disease  0.18 0.15 7.86 

    High bp 0.40 0.42 4.55 

    Stroke  0.03 0.02 7.78 

    Circulation  0.08 0.07 4.08 

    Lung disease  0.06 0.06 3.61 

    Diabetes  0.13 0.12 2.20 

    Kidney disease  0.01 0.02 6.24 

    Nervous system  0.01 0.01 5.20 

    Liver disease  0.01 0.00 7.65 

    Cancer  0.06 0.05 3.80 

    Depression   0.05 0.04 5.84 

Consultant  (%) 0.80 0.87 17.64 

Treatment centre (%) 0.05 0.12 26.16 

Notes: SMD - standardised mean difference. SMD was calculated as 𝑑 = 100 ∗
|�̅�ℎ−�̅�𝑐|

√𝑠2
ℎ+ 𝑠2𝑐

2

, where x̅h and x̅c 

are the means for the hybrid and cementless group, while in the denominator  includes the pooled 

standard deviation of the two groups, for a given covariate. Variables are dichotomous, with the exception 

of age, Oxford hip score, pre-operative EQ-5D score, index of deprivation and number of co-morbidities. 
1 Variables with missing values. Here, SMDs were combined using Rubin’s rule.  

 

There was good overlap between the densities of the estimated PSs for hybrid and 

cementless groups, when 𝑔(. ) was obtained using logistic regression (Figure 6.1). The 

plots obtained using boosted CART for estimating the PS were similar.   
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Figure 6.1 - Estimated PS using logistic regression, hybrid vs. cementless hip prosthesis 

 

 

Notes: Hybrid (grey line) vs. cementless (black line). The rug plots, at the top and bottom, show the 

corresponding values of the PS. Estimates are based on the first imputed dataset. 

 

Figure 6.2 shows the point estimates and 95% CIs after combining the estimates 

obtained for the imputed datasets. All methods reported a small positive advantage in 

mean EQ-5D-3L scores for hybrid versus cementless prostheses, but with CIs including 

zero.  
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Figure 6.2 - Point estimates and 95% CIs of ATE in terms of EQ-5D-3L score, hybrid vs. 

cementless hip prosthesis, across statistical methods. 

 

Notes: SL- super learner 

 

Simulation study 

Overview 

The simulation study aimed to compare the performance of BCM and TMLE, in 

estimating the ATE of a binary treatment on a continuous endpoint with a nonlinear 

response surface. As in the case study, we compared these methods to regression, PS 

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04

BCM (SL + boosted CART)

BCM (2pt + logistic)

BCM (OLS + logistic)

TMLE (SL + boosted CART)

TMLE (2pt + logistic)

TMLE (OLS + logistic)

WLS (boosted CART)

WLS (logistic)

IPTW boosted CART

IPTW logistic

PS matching (logistic)

Regression (SL)

Regression (2 part model)

 Regression (OLS)

Unadjusted

Point estimates and 95% CIs



242 

 

matching, IPTW and WLS, and for each method, we considered fixed parametric 

models and machine learning estimation for 𝑄(. ) and 𝑔(. ). Motivated by the case study 

and previous methodological work, we designed a range of scenarios with typical 

characteristics of HRQoL data. Irregular distributions (Manning et al., 2005, Basu, 

2011) of HRQoL data were recognised by generating endpoints from distributions such 

as the gamma and two part distributions. Following previous simulation studies (Basu 

and Manca, 2011, Porter et al., 2011, Austin, 2012), we considered data-generating 

processes (DGPs) with nonlinear response surfaces, good and poor overlap, and with 

moderate and strong association between confounders and the endpoints. These DGPs 

were selected to highlight the differences between the performance of the methods 

under realistic circumstances, by investigating the following hypotheses: 

1. Reweighting methods are anticipated to outperform BCM when overlap is good 

(Busso et al., 2011). In such scenarios, TMLE is expected to outperform BCM in 

terms of bias and efficiency. 

 

2. When overlap is poor, BCM is expected to outperform TMLE, because matching 

can be less sensitive than weighting to extreme PS values and to the 

misspecification of 𝑔(. ) (Lee et al., 2010, Busso et al., 2011, Waernbaum, 

2011). 

 

3. Using appropriate machine learning methods is anticipated to reduce bias 

compared to using misspecified parametric models for 𝑄(. ) and 𝑔(. ) (Porter et 

al., 2011, Austin, 2012), across all methods considered. 

 

Table 6.2 summarises the selected DGPs. We assumed a PS mechanism that generated 

good overlap of the densities of the true PS (DGP 1 and 2) and one that generated poor 

overlap (DGP 3 to 5). We considered moderate (DGP 1) and strong (DGP 2 to 5) 

association between the confounders and the endpoints. DGPs 1-3 considered a normal 

endpoint with an identity link function between the linear predictor and the endpoint, 

DGP 4 considered an endpoint which followed a gamma distribution with a log link, 
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while DGP 5 considered a two part data-generating distribution, with a mixture of a 

beta-distributed random variable and values of 1.  

For each DGP, five scenarios were considered: (a) when fixed parametric models were 

used for both the PS and the endpoint regression, and these were correctly specified, (b 

and c) when one of the two was misspecified and (d) when neither model was correctly 

specified. In scenario (e) we considered machine learning estimates of 𝑄(. ) and 𝑔(. ) 

for each method, under the assumption that the investigator, similarly to (d), does not 

know the correct parametric models, hence the correct model is not included among the 

candidate prediction algorithms. For DGP 1, we report results from each of the five 

scenarios, while for DGP 2 to 5, we only report the results for scenarios (d) and (e), as 

these were a priori judged the most realistic. The results for the remaining scenarios are 

available upon request.  

Bias, variance, root mean squared error (RMSE) and the coverage rate for nominal 95% 

CIs of the estimated ATEs were obtained.  Relative bias was calculated as the 

percentage of the absolute bias of the true parameter value, where absolute bias is the 

difference between the true parameter value and the mean of the estimated parameter. 

The RMSE was taken as the square root of the mean squared differences between the 

true and estimated parameter values.  

Table 6.2 - Summary of DGPs used in the simulation study 

 Overlap Confounder-endpoint association Endpoint distribution 

DGP 1 Good Moderate Normal 

DGP 2 Good  Strong Normal 

DGP 3  Poor  Strong Normal 

DGP 4 Poor Strong Gamma 

DGP 5 Poor  Strong Two part 
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Data generating process 

For each DGP, we generated 1000 datasets of n=1000, with binary (𝑊1 to 𝑊5) and 

standard normally distributed covariates (𝑊6 to 𝑊8). This mix of binary and continuous 

covariates reflects the case study.  The correlation coefficients between the covariates 

were set between 0.075 and 0.6. All covariates were true confounders, i.e. they 

influenced both the treatment assignment and the endpoint. Treatment was assigned 

according to a true PS that, like previous simulation studies, included main terms,  

higher order terms and interactions (Austin, 2012, Waernbaum, 2011).  

For DGP 1, the PS model resulted in a good overlap of the true PS (see Figure 6.3): 

𝑙𝑜𝑔𝑖𝑡(𝑃𝑆) = −1 + 𝑘1(0.3𝑊1 − 0.1𝑊2 − 0.2𝑊3 + 0.4𝑊4 + 0.7𝑊5 + 0.2𝑊6 +
0.2𝑊7 − 0.25𝑊8 + 0.8𝑊6

2 − 0.3𝑊7
2 − 0.3𝑊8

2 − 0.05𝑊1𝑊2 − 0.05𝑊1𝑊3) , 

 

where 𝑘1 = 0.3. 

The treatment variable 𝐴 was drawn from a Bernoulli distribution, using the PS as the 

parameter of success probability. The endpoint was drawn from a normal distribution 

with mean 

𝜇𝑛𝑜𝑟𝑚 = 15 + 0.4𝐴 + 𝑘2(1𝑊1 − 0.1𝑊2 + 0.1𝑊3 − 0.1𝑊4 + 0.1𝑊5 − 0.1𝑊6 +

0.1𝑊7 + 0.1𝑊8 − 0.2𝑊6
2 − 0.1𝑊7

2 − 0.1𝑊8
2 + 0.2𝑊6

3 + 0.1𝑊7
3 + 0.1𝑊8

3 −
 0.1𝑊1𝑊2 + 0.5𝑊1𝑊7), 

 

standard deviation of 1 and 𝑘2 = 1. 

In DGP 2, setting 𝑘2 to 4 increased the strength of the confounder-endpoint association. 

In DGP 3, changing  𝑘1 to 1 created a poor overlap of the true PS distributions (see 

Figure 6.3). 
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Figure 6.3 - Densities of the true PS in the simulations for a typical sample (n =10,000) 

 

 

Notes: Treated (grey line) vs. control (black line). The rug plots at the top and bottom show the 

corresponding values of the PS. 

 

In DGP 4, the endpoint was drawn from a gamma distribution, with a log link, shape 

parameter of 100 and a scale parameter of  
μgam

100
, where the linear predictor was 

𝑙𝑜𝑔 (𝜇𝑔𝑎𝑚) = 3 + 0.2𝐴 − 0.2𝑊1 + 0.2𝑊2 − 0.2𝑊3 + 0.5𝑊4 − 1𝑊5 + 0.5𝑊6 −

0.5𝑊7 + 0.2𝑊8 − 0.2𝑊6
2 − 0.01𝑊7

2 − 0.01𝑊8
2 − 0.01𝑊6

3 − 0.01𝑊7
3 − 0.01𝑊8

3 −
                                                                                         0.01𝑊1𝑊2 − 0.4𝑊6𝑊7. 

In DGP 5, motivated by the case study and previous simulation studies (see Basu and 

Manca, 2011), the endpoint was generated as a mixture of a beta distributed continuous 

variable Y′ and 1, using a Bernoulli distribution with parameter p to select between 

values from the two distributions : 
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𝑌~(1 − 𝑝) ∗ 1 + 𝑝(1 − 𝑌′), 

where  

                                𝑙𝑜𝑔𝑖𝑡(𝑝) = 4 − 1𝐴 − 0.2𝑊1 + 0.5𝑊2 − 0.5𝑊3 − 1𝑊4 − 0.3𝑊5 +
0.2𝑊6 + 0.5𝑊7 − 0.5𝑊8, 

𝑌′~𝐵𝑒𝑡𝑎(𝜇𝑏𝑒𝑡𝑎 ∗ 𝑝ℎ𝑖,   𝜇𝑏𝑒𝑡𝑎 ∗ (1 − 𝑝ℎ𝑖)), 

𝑙𝑜𝑔𝑖𝑡(𝜇𝑏𝑒𝑡𝑎) = −1 − 0.2𝐴 − 0.5𝑊1 − 0.5𝑊2 − 0.5𝑊3 + 0.5𝑊4 − 0.5𝑊5 − 0.5𝑊6 −

                                      0.5𝑊7 −   0.5𝑊8 − 0.2𝑊6
2 − 0.2𝑊7

2 − 0.2𝑊8
2 − 0.2𝑊6

3 −
0.2𝑊7

3 − 0.2𝑊8
3 − 0.2𝑊1𝑊2 − 0.2𝑊6𝑊7). 

 

The resulting distribution with a spike at 1 reflects the observed endpoint in the case 

study. The true ATE was 0.4 in DGP 1 to 3, it was 9.98 for DGP 4 and 0.062 for DGP 

5. While in DGP 1 to 3 the treatment effect was constant across individuals, for DGP 4 

and 5, the true ATE was obtained by simulating both potential outcomes for each 

individual, and taking the mean of the individual-level additive treatment effects.  

Implementation of the methods 

Correct specification was defined as applying a fixed parametric model with the 

knowledge of features of the true DGP, such as the link function, the functional form 

between the covariates and the linear predictor, and the error distribution. For each 

DGP, the misspecified parametric 𝑔(. ) and 𝑄(. ) models were logistic and OLS 

regressions with main terms only. Machine learning estimation of 𝑔(. ) and 𝑄(. ) was as 

described in the case study section. The WLS estimator was implemented with main 

terms only, hence in this estimator the 𝑄(. ) component is misspecified. For the DGPs 

with poor overlap, in a sensitivity analysis we modified the IPTW, WLS and TMLE 

estimators, and used weights based on 𝑔(. ) truncated at fixed levels of 0.025 and 0.975. 

For calculating coverage rates of nominal 95% CIs, standard errors were obtained as 

described in the case study section. 
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Simulation study results 

Tables 6.3-6.5 report the relative bias (%), variance, RMSE and 95% CI coverage for 

the estimators considered, and Figure 6.4 presents quintiles of the estimated ATE. 

Table 6.3 reports results for DGP 1, when there was good overlap, with a moderate 

association between the confounders and a normally distributed endpoint. When both 

𝑄(. ) and 𝑔(. ) were correctly specified, all methods reported minimal bias, with 

parametric regression (OLS with nonlinear terms) and TMLE reporting the lowest 

RMSE. Regression, TMLE and BCM all provided coverage at the nominal 95%, while 

IPTW and PS matching reported coverage rates higher (98% and 99%) than the nominal 

level. When only one of the PS or endpoint model was misspecified, BCM and both DR 

methods (WLS and TML) remained unbiased. With dual misspecification, each method 

reported moderate levels of bias, but when machine learning estimation was used for 

𝑄(. ) and 𝑔(. ), bias was reduced to close to zero for all the methods that combined these 

components, with WLS and TMLE providing estimates with the lowest RMSE.  

For DGPs 2-5, results showed a similar pattern to DGP 1 when either 𝑔(. ) or  𝑄(. ) was 

correctly specified, hence we only report result with dual misspecification. In DGP 2, 

with misspecified fixed parametric methods, stronger association between the 

confounders and the endpoint led to higher biases, but with machine learning estimation 

the bias for the methods that combined 𝑔(. ) and 𝑄(. ) again decreased to below 10%. 

WLS and TMLE reported lower bias and RMSE than BCM. In DGPs 3-5, where there 

was poor overlap, with misspecified fixed parameteric models, each method reported 

high bias. For each of these DGPs, machine learning estimation improved performance 

of the methods that combined 𝑔(. ) and 𝑄(. ). In DGP 3, TMLE provided the lowest bias 

and RMSE, albeit with CI coverage that was lower than the nominal level. In DGP 4 
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where we considered an endpoint with a gamma distribution, with machine learning 

approaches BCM showed less relative bias (2.5%) than TMLE (20.7%). In DGP 5, 

where we considered an endpoint with a two-part distribution, TMLE and BCM with 

machine learning estimation performed best; BCM gave the lowest relative bias (1.1% 

vs. 7.2%) and best CI coverage whereas TMLE reported the lowest RMSE.  

 IPTW using machine learning weights often reported high bias: for example for DGP 5, 

it reported higher bias than using a misspecified, fixed logistic regression to obtain the 

PS. This indicated that using machine learning estimation for the PS alone was 

insufficient to eliminate bias.  For DGPs 3 to 5, where overlap was poor, truncating the 

IPT weights for IPTW and TMLE for either the logistic or the boosted PS models did 

not change the results.   
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Table 6.3 - Simulation results for DGP 1, over 1000 replications: normal endpoint, 

moderate association confounder-endpoint association, good overlap 

Scenario  
                   

Relative bias Variance 
    

RMSE 
     95 % CI 

coverage 

(a) Q correct - g correct     
OLS -0.1% 0.005 0.070 95% 

IPTW 0.5% 0.008 0.091 99% 

PS matching 1.2% 0.011 0.106 98% 

TMLE -0.1% 0.005 0.071 95% 

BCM -0.1% 0.007 0.082 95% 

(b) Q correct - g misspecified     
OLS -0.1% 0.005 0.070 95% 

IPTW -15.0% 0.008 0.110 97% 

PS matching -8.1% 0.013 0.117 96% 

TMLE -0.2% 0.005 0.070 94% 

BCM 0.7% 0.007 0.085 93% 

(c) Q misspecified - g correct     
OLS -11.7% 0.008 0.098 90% 

IPTW 0.5% 0.008 0.091 99% 

PS matching 1.2% 0.011 0.106 98% 

WLS 0.6% 0.008 0.087 95% 

TMLE 0.6% 0.008 0.087 95% 

BCM 0.7% 0.009 0.097 95% 

(d) Q misspecified - g misspecified     
OLS -11.7% 0.008 0.098 90% 

IPTW -15.0% 0.008 0.110 97% 

PS matching -8.1% 0.013 0.117 96% 

WLS  -12.7% 0.008 0.103 90% 

TMLE -12.9% 0.008 0.104 90% 

BCM  -7.4% 0.011 0.108 93% 

(e) Machine learning     
Regression (Q super learner) -3.1% 0.006 0.079 95% 

IPTW  (g boosted CART) 10.2% 0.007 0.091 98% 

WLS (Q OLS, g boosted CART) 0.5% 0.006 0.076 97% 

TMLE (Q SL, g boosted CART) 1.1% 0.006 0.074 94% 

BCM  (Q SL, g boosted CART) 2.1% 0.008 0.092 95% 
Notes: In DGP 1 the true ATE was 0.4 and the bias using a naive estimator based on the mean difference 

was 20%. WLS is implemented as main terms only regression; hence it is reported as a misspecified 

estimator. 
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Table 6.4 - Simulation results for DGP 2 and 3, over 1000 replications: normal endpoint, 

strong confounder-endpoint association, good and poor overlap 

DGP 2: Normally distributed endpoint, strong confounder-endpoint association, good 

overlap 

 

 

Relative 

bias Variance RMSE 
95 % CI 

coverage 
(d)    Q misspecified - g 

misspecified     
OLS regression -45.9% 0.052 0.292 86% 

IPTW -59.1% 0.067 0.350 98% 

PS matching -34.0% 0.099 0.342 96% 

WLS  -50.2% 0.059 0.315 87% 

TMLE -45.7% 0.041 0.272 86% 

BCM  -31.4% 0.074 0.299 90% 

(e)    Machine learning     
Regression (Q super learner) -8.6% 0.025 0.162 96% 

IPTW  (g boosted CART) 41.0% 0.036 0.251 99% 

WLS (Q OLS, g boosted CART) 2.6% 0.022 0.149 100% 

TMLE (Q SL, g boosted CART) 3.1% 0.011 0.106 95% 

BCM  (Q SL, g boosted CART) 9.8% 0.029 0.174 98% 

 
DGP 3: Normally distributed endpoint, strong confounder-endpoint association, poor 

overlap 
 
(d)    Q misspecified - g 

misspecified     
OLS regression -119.2% 0.050 0.527 40% 

IPTW -160.6% 0.082 0.703 71% 

PS matching -81.1% 0.100 0.453 84% 

WLS  -137.9% 0.063 0.606 39% 

TMLE -129.7% 0.046 0.561 35% 

BCM  -73.8% 0.072 0.399 74% 

(e)    Machine learning     
Regression (Q super learner) -22.0% 0.046 0.233 94% 

IPTW  (g boosted CART) 100.6% 0.034 0.442 82% 

WLS (Q OLS, g boosted CART) -12.8% 0.025 0.165 99% 

TMLE (Q SL, g boosted CART) 5.6% 0.019 0.139 87% 

BCM  (Q SL, g boosted CART) 12.3% 0.034 0.191 98% 
Notes: In DGPs 2 and 3, the true ATE was 0.4 and the biases, using a naive estimator based on the mean 

difference, were 80% and 190%, respectively. 
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Table 6.5 - Simulation results for DGP 4 and 5, over 1000 replications: Normal and 

gamma endpoints, strong confounder-endpoint relationship, poor overlap 

DGP 4: Gamma endpoint,  strong confounder-endpoint association, poor overlap 

 

Relative 

bias 
Varianc

e 
RMS

E 
95 % CI 

coverage 
(d)    Q misspecified - g 

misspecified     
OLS -93.3% 10.175 9.843 16% 

IPTW -102.7% 11.850 
10.81

7 34% 

PS matching -85.6% 19.120 9.595 59% 

WLS  -96.9% 11.475 
10.25

2 19% 

TMLE -96.4% 10.303 
10.14

0 17% 

BCM  -80.7% 17.642 9.085 37% 

(e)    Machine learning     
Regression (Q super learner) -11.8% 7.600 2.998 90% 

IPTW  (g boosted CART) -80.1% 16.585 8.974 62% 

WLS (Q OLS, g boosted CART) -32.1% 11.024 4.612 81% 

TMLE (Q SL, g boosted CART) -20.7% 6.115 3.224 70% 

BCM  (Q SL, g boosted CART) -2.5% 6.755 2.610 98% 

     
DGP 5: Two part endpoint, strong confounder-endpoint association, poor overlap 
(d)    Q misspecified - g 

misspecified     
OLS 26.0% 0.0002 0.022 78% 

IPTW 15.0% 0.0003 0.019 99% 

PS matching 26.9% 0.0004 0.026 93% 

WLS  23.9% 0.0003 0.022 83% 

TMLE 17.9% 0.0002 0.019 90% 

BCM  27.1% 0.0003 0.024 82% 

(e)    Machine learning      
Regression (Q super learner) 13.5% 0.0002 0.017 91% 

IPTW  (g boosted CART) 59.4% 0.0003 0.041 72% 

WLS (Q OLS, g boosted CART) 12.9% 0.0002 0.017 90% 

TMLE (Q SL, g boosted CART) 7.2% 0.0002 0.016 87% 

BCM  (Q SL, g boosted CART) -1.1% 0.0004 0.019 95% 
Notes: In DGPs 4 and 5, the true ATE was 9.98 and 0.062, respectively. The bias using a naive estimator 

based on the mean difference was 170% and 150%, respectively. 
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Figure 6.4 - Estimated ATEs in the simulations 

 

 

 

Notes:  The boxplots show bias and variation, as median, quartiles and 1.5 times interquartile range for the estimated ATEs across 

1,000 replications. The dashed lines are the true values. The left panel provides results for when the PS model and endpoint were 

estimated with misspecified fixed parametric methods, the right panel for when machine learning estimation was used. 
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DGP 4 

DGP 5 

 

Misspecified parametric models                  Machine learning estimation  
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Discussion 

This paper finds that combining information from the conditional distribution of the 

endpoint and the treatment assignment mechanism can reduce bias due to observed 

confounding. Both methods under comparison, TMLE and BCM, can exploit machine 

learning estimation of the endpoint regression function and the PS, and can be robust 

even when the true parametric models are unknown.  

We considered these methods, alongside more traditional PS, regression and DR 

methods in a case study of evaluating the effect of alternative types of hip prosthesis on 

HRQoL for patients with osteoarthritis. Here, a major challenge was to specify a 

regression model for an endpoint with a spike at 1, and bounded at a small negative 

value. This case study motivated the simulation studies, where we generated HRQoL 

data with skewed distributions and nonlinear response surfaces, in order to create 

settings where the correct specification of an endpoint regression and PS model is 

challenging. In the simulations, when machine learning techniques were used to 

estimate the endpoint regression function and the PS, both TMLE and BCM could 

almost fully eliminate bias, in contrast to the high bias where misspecified fixed 

parametric models were used. We found that the relative advantage of TMLE vs. BCM 

was dependent on the features of the DGPs considered. Confirming the first hypothesis 

of the simulation study, in favourable settings such as good overlap and moderate 

association between the confounder and the endpoint, TMLE outperformed BCM in 

terms of bias and precision. This result corresponds to previous work that found that 

reweighting estimators outperformed BCM under good overlap (Busso et al., 2011). In a 

more challenging setting, when overlap was poor, and there was a strong association 

between the confounders and the endpoint, we found a bias-variance trade off between 

the methods under comparison: BCM showed less bias, but was more variable than 
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TMLE. We also found that another DR method, WLS, performed similarly well to 

TMLE in the less challenging settings such as normally distributed endpoint and good 

overlap. However, similarly to findings from previous studies (Porter et al., 2011), WLS 

was outperformed by TMLE in the more challenging DGPs. We followed recent 

recommendations when reporting CIs after matching estimators (Abadie and Imbens, 

2006), and like previous studies, we found that they reported somewhat higher than 

nominal coverage (Abadie and Imbens, 2011). 

Our work extends the previous literature in several aspects. First, this is the first paper 

that compares the relative performance of BCM and TMLE, and also compares these 

methods to traditional approaches. Second, while BCM has been proposed with flexible 

approaches for estimating the endpoint regression function, previous studies used OLS 

for adjustment (Abadie and Imbens, 2011, Busso et al., 2011). This study considers 

super learning, a machine learning method for bias correction, and finds that when 

matching is based on a PS that was also estimated using machine learning, the bias due 

to model misspecification was almost fully eliminated. We find this result across a 

range of DGPs including highly nonlinear response surfaces. Third, unlike previous 

studies that used machine learning only for selected combined methods such as TMLE 

(Porter et al., 2011), this paper took a systematic approach, and evaluate the impact of 

using machine learning estimation for single methods, such as regression and IPTW, 

and for combined methods, such as TMLE and BCM. Our main finding is that 

combining the PS and endpoint regression from misspecified fixed parametric models 

does not in itself provide an advantage compared to using these models in single 

methods such as IPTW. This corresponds to the findings on Kang and Schafer (2007). 

Similarly, using a machine learning approach alone, for example boosted CART for 

IPTW is not sufficient to reduce bias. Possible remaining misspecification of the PS 
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using the boosted CART is indicated by the low coverage rates reported by TMLE, 

where the nominal standard errors, obtained using the influence curve, are only 

expected to be valid when 𝑔(. ) is correct. In the scenarios considered in this study, it 

was the combined use of machine learning approaches for estimating the endpoint 

regression and the PS, that helped eliminate most of the bias due to observed 

confounding.   

This work has some caveats. The methods considered and the simulation settings all 

assume no unobserved confounding.  Machine learning methods cannot replace subject 

matter knowledge when selecting the set of confounders that need to be controlled for 

(Rubin, 2007). In the case study, while we used a rich set of measured cofounders 

suggested by previous literature and clinical expert opinion (Pennington et al., 2012), 

some unobserved confounding such as unobserved patient preferences may prevail.  

This paper did not have the scope to compare alternative machine learning approaches. 

We found that boosted CARTs for estimating the PS,  a method that has been found to 

outperform logistic regression and alternative machine learning approaches (Lee et al., 

2010), did not always reduce bias compared to misspecified logistic regression. Hence 

further machine learning approaches may be considered for the PS, such as random 

forests (Lee et al., 2010) or neural networks (Westreich et al., 2010). These approaches 

also have promising application for estimating the endpoint regression function (Austin, 

2012). 

Any machine learning method relies on subjective choices of the user. For boosted 

CARTs, tuning parameters such as the shrinkage parameter had to be selected 

(McCaffrey et al., 2004). When applying the super learner, subject-matter knowledge 

can be used to select a wide range of prediction algorithms. A richer set of prediction 
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algorithms, while subject to constraints in computational resources, can facilitate the 

consistent estimation of the regression function (Polley and van der Laan, 2010b).  

This paper considered an innovative DR method, TMLE, alongside a more commonly 

used DR approach, WLS (Kang and Schafer, 2007a, Freedman and Berk, 2008). We did 

not consider another standard DR method, augmented inverse probability of treatment 

weighting (Glynn and Quinn, 2010), because  previous  studies  demonstrated that it can 

be particularly biased and inefficient under circumstances of poor overlap (Porter et al., 

2011, van der Laan and Gruber, 2010). A recently developed improved DR estimator 

(Rotnitzky et al., 2012), similarly to TMLE, is proposed to have the boundedness 

property and may be of interest in further methodological comparisons.  

This work also opens up areas for further research. In the common settings of poor 

overlap, an extension of TMLE, collaborative maximum likelihood estimation (C-

TMLE) (van der Laan and Gruber, 2010, Gruber and van der Laan, 2010b) can 

outperform TMLE. C-TMLE uses machine learning to select a sufficient set of 

covariates for inclusion in 𝑔(. ) that reduces bias while minimising overall mean 

squared error.  Furthermore, rather than PS matching, multivariate matching approaches 

such as Genetic Matching warrant consideration (Diamond and Sekhon, 2012, Sekhon, 

2011). Genetic Matching uses machine learning to directly maximise covariate balance 

in the matched data (Grieve et al., 2008, Sekhon and Grieve, 2011, Ramsahai et al., 

2011, Kreif et al., 2012, Radice et al., 2012), and can be combined with regression-

adjustment. 

We conclude that both TMLE and BCM have the potential to reduce bias due to 

observed confounding, in common settings of dual misspecification, if coupled with 

machine learning methods for estimating the PS and the endpoint regression function. 

With the increasing interest in using observational data for deriving measures of 
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effectiveness of health interventions it is crucial that statistical methods make plausible 

underlying assumptions (Rubin, 2010), and are relatively robust in challenging settings 

such as dual misspecification and poor overlap. The methods considered in this paper 

have the potential to provide robust estimates to inform clinical and policy decisions. 

TMLE is implemented as a readily available software package (Gruber and van der 

Laan, 2012c). For BCM, the available packages currently allow for regression 

adjustment using OLS only (Abadie et al., 2004, Sekhon, 2011). In order to facilitate the 

uptake of the methods, Appendix 6.1 provides code for the implementation of TMLE 

and BCM with machine learning.  
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Appendix 6.1- R code for the implementation of TMLE and BCM  

 

This section provides code for the implementation of TMLE and BCM, coupled with 

machine learning estimation approaches proposed in the paper, using the R statistical 

software (R Development Core Team, 2011). We also present code for the machine 

learning methods: “super learning” for predicting the endpoint and boosted CARTs for 

estimating the PS. The user-written functions implemented here call some pre-written R 

routines, for example the tmle (Gruber and van der Laan, 2012),   Matching 

(Sekhon, 2011), Super Learner (Polley and van der Laan, 2010) and  twang 

(Ridgeway et al., 2006)  packages. These packages need to be installed and loaded in 

the R workspace order to use the functions presented here. 

First, the necessary libraries need to be loaded: 

library(splines) 

library(twang) 

library(SuperLearner) 

library(Matching) 

 

Then, we define the data frame, data,used in the analysis. This dataset includes the 

endpoint q2_eq5d_index, the treatment indicator Hyb and the covariates. 

 

data=as.data.frame(dataset_men_M1)  

 

We create the design matrix that will be used by some of the corresponding user defined 

R functions: 

designreg=glm( Hyb ~ age 

               +  q1_score 

               +  q1_eq5d_index 

               +  factor(IMD) 

     +  ASAgrade1 

               +  ASAgrade2 

               +  q1_disability 

               +  obese 
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               +  morbobese 

               +  heart_disease 

               +  high_bp 

     +  stroke 

     +  circulation 

     +  lung_disease 

     +  diabetes 

     +  kidney_disease 

     +  nervous_system 

     +  liver_disease 

     +  cancer 

     +  depression 

               +  Consultant 

               +  TC, family=binomial(link="logit"), data=data) 

 

design=model.matrix(designreg) 

 

We also define the formula for the PS: 

 

boost.CART.form <- as.formula(Hyb ~ age 

               +  q1_score 

               +  q1_eq5d_index 

               +  IMD 

     +  ASAgrade1 

               +  ASAgrade2 

               +  q1_disability 

               +  obese 

               +  morbobese             

               +  heart_disease 

               +  high_bp 

     +  stroke 

     +  circulation 

     +  lung_disease 

     + diabetes 

     +  kidney_disease 

     +  nervous_system 

     +  liver_disease 

     +  cancer 

     +  depression 

               +   Consultant 

               +   TC) 

 

Estimating the PS 

The function named  boost.CART.func estimates a PS using boosted logistic 

CARTs. The function takes the arguments formula, which specifies the variables the 

user wants to include in the PS model, and data. The function sets the tuning 

parameters to the values recommended by the developers (McCaffrey et al., 2004), and 
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maximises balance based on the mean of the KS statistic. The function returns the 

estimated PS, the linear predictor of the estimated PS, and the IPT weight. 

boost.CART.func = function(formula, data) { 

 

                  boost.CART.ps=ps(formula=formula, 

                  data=data, 

                  shrinkage = 0.0005, 

                  n.trees=10000, 

                  interaction.depth=2, 

                  iterlim=20000, 

                  stop.method="ks.mean") 

  

                  w.boost.CART = boost.CART.ps$w 

                  ps.boost.CART = boost.CART.ps$ps 

                  linpred.boost.CART= 

predict.gbm(boost.CART.ps$gbm.obj,            data, 

boost.CART.ps$n.trees) 

return(list(w.boost.CART=w.boost.CART, 

ps.boost.CART=ps.boost.CART,  

linpred.boost.CART=linpred.boost.CART)) 

                                                                      

} 

 

By calling the function, we can obtain the estimated PS, and attach it to data: 

 

res.boost<-boost.CART.func(boost.CART.form, data=data) 

  

ps.boost = unlist(res.boost$ps.boost.CART) 

 

data=cbind(data, ps.boost) 

rm(ps.boost) 

  

Creating PS matched data                                                                     

Before BCM is performed, a matched dataset needs to be created. The function named 

PSmatch.function calls the Match() function (Sekhon, 2011), taking the 

following arguments: data, and pscore , the estimated propensity score. The 

function returns the original return object of the Match() function (Sekhon, 2011), 

which includes the matched dataset, here named mtchout.Y. The function also 

returns the matching frequency weights K, as well as transformed version of this 

vector, Kprime, later used for calculating the standard errors around for matching 

estimator (Abadie and Imbens, 2011).  
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PSmatch.function=function(data,pscore)  {  

 mtchout.Y=Match(Y=data$q2_eq5d_index,Tr=data$Hyb,X=pscore, 

            estimand="ATE", ties=TRUE)     

            n <- length(data$q2_eq5d_index) 

            K <- rep(0, n) 

            names(K) <- 1:n 

            Kprime <- K 

            extra <- by(mtchout.Y$MatchLoopC[,3],  

                   mtchout.Y$MatchLoopC[,2], sum) 

            K[rownames(extra)] <-  extra 

            Kprime.extra <- by(mtchout.Y$MatchLoopC[,3], 

mtchout.Y$MatchLoopC[,2], 

function(x){sum(x^2)}) 

            Kprime[rownames(Kprime.extra)] <-  Kprime.extra 

            return(list(mtchout.Y=mtchout.Y,K=K, Kprime=Kprime)) 

                                                                 } 

 

Now the function can be called to obtain the matched dataset, 

ps.match.data.w.boost, and the vectors of frequency weights ( K.boost and 

K.prime.boost).  

PS.match.object.boost=PSmatch.function(data,data$ps.boost) 

 

ps.match.data.boost=PS.match.object.boost$mtchout.Y 

ps.match.data.w.boost <-

rbind(data[ps.match.data.boost$index.treated,], 

data[ps.match.data.boost$index.control,]) 

 

ps.match.data.w.boost <- cbind(ps.match.data.w.boost, 

weights=c(ps.match.data.boost$weights,ps.match.data.boost$weight

s)) 

 

K.boost=PS.match.object.boost$K 

K.prime.boost=PS.match.object.boost$Kprime 

 

Predicting the expected potential outcome with the super learner 

The user defined function named my.SL.ate predicts the expected potential 

outcomes under treated and control states, using the Super Learner (Polley and van der 

Laan, 2010). The function takes the arguments W (the covariates), A (the observed 

treatment), and Y, the observed endpoint. We use super learner for estimating two 

regressions functions, stratified by treatment, as suggested by Abadie and Imbens 

(2011). This provides the algorithm flexibility to select different models for estimating 
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the potential outcomes under treatment and control states. The function returns the 

original “Super Learner” object that includes information on the final models selected, 

m0 for the regression function selected to estimate the potential outcome under control 

and m1 under treatment. The predictions for the potential outcomes are stored in the 

matrix Q.SL.object, which includes two vectors, the predicted potential outcomes 

under control and treatment, each with the length of the number of individuals in the 

sample.  

my.SL.ate=function(W,A,Y) { 

 

  matrix <- data.frame(W) 

 

 m0 <- SuperLearner(Y[A==0], matrix[A==0,], newX = matrix, 

         SL.library =  my.SL.library.short, 

             family = gaussian()) 

 

  m1 <- SuperLearner(Y[A==1], matrix[A==1,], newX = matrix, 

         SL.library = my.SL.library.short, 

             family = gaussian()) 

 

Yhat.0 <- m0$SL.predict 

   Yhat.1 <- m1$SL.predict 

 

   Q.SL.object=cbind(Yhat.0,Yhat.1) 

   ate_SL=mean(Yhat.1-Yhat.0) 

   return(list(Q.SL.object=Q.SL.object,m0=m0,m1=m1)) 

                                                         } 

                                                                 

This function can be extended to incorporate weights, the modified function is named 

my.SL.ate.matchw. This is necessary, because for the bias-corrected matching 

estimator it is recommended that regression predictions are obtained using data 

weighted with the matching frequency weights, K (Abadie and Imbens, 2011).  

my.SL.ate.matchw=function(W,A,Y,K) { 

 

 matrix <- data.frame(W) 

 

 m0 <- SuperLearner(Y[A==0], matrix[A==0,], newX = matrix,  

 SL.library =  my.SL.library.short, 

       family = gaussian(),obsWeights=K[A==0]) 

 

 m1 <- SuperLearner(Y[A==1], matrix[A==1,], newX = matrix, 

    SL.library = my.SL.library.short, 

       family = gaussian(),obsWeights=K[A==1]) 
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Yhat.0 <- m0$SL.predict 

Yhat.1 <- m1$SL.predict 

 

Q.SL.object=cbind(Yhat.0,Yhat.1) 

ate_SL=mean(Yhat.1-Yhat.0) 

 

return(list(Q.SL.object=Q.SL.object,ate_SL=ate_SL,m0=m0,m1=m1)) 

                                                                       

} 

 

Before calling the function, the super learner library, including all the prediction 

algorithms selected by the user, needs to be defined. 

my.SL.library.short <-c("SL.glm","SL.glm.interaction", "SL.polymars") 

 Here we include the algorithms "SL.glm", "SL.glm.interaction" and 

"SL.polymars". 

 

SL.object=my.SL.ate(design,data$Hyb,data$q2_eq5d_index), 

 

then with matching frequency weights. 

 

SL.object.BCM.boost   <-  my.SL.ate.matchw(design,data$Hyb, 

                          data$q2_eq5d_index,K=K.boost) 

 

Implementing BCM 

The function BCM.AI implements the BCM estimator proposed by Abadie and Imbens 

(2011). The function takes the following objects:  Y (the observed endpoint),  A (the 

observed treatment), d.match, the matched data obtained from the PS matching, 

Yhat.0, the vector of predicted potential outcomes under control, and Yhat.1, the 

vector of predicted potential outcome under treatment, as well as the K and Kprime 

vectors, describing the matching frequency weights. The function returns the point 

estimate of the ATE, tau,and the estimated variance of the ATE, AIvar. 
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BCM.AI <- function(Y,A, d.match,Yhat.0,Yhat.1, K, Kprime) { 

 Y_j.0 <- Y_j.1 <- Y   

 Ycounterfactual <- by(Y[d.match$MatchLoopC[,2]], 

                       d.match$MatchLoopC[,1], mean)   

 Y_j.1[A==0] <- Ycounterfactual[A==0] 

 Y_j.0[A==1] <- Ycounterfactual[A==1] 

 

      mu_0.Xi <- Yhat.0 

   mu_0.Xj <- by(Yhat.0[d.match$MatchLoopC[,2]], 

                 d.match$MatchLoopC[,1], mean) 

 mu_1.Xi <- Yhat.1 

   mu_1.Xj <- by(Yhat.1[d.match$MatchLoopC[,2]], 

                 d.match$MatchLoopC[,1], mean) 

  

 Ytilde.0 <- Y_j.0 

 Ytilde.1 <- Y_j.1 

 Ytilde.0[A==1] <- Y_j.0[A==1] + mu_0.Xi[A==1] - mu_0.Xj[A==1] 

 Ytilde.1[A==0] <- Y_j.1[A==0]  + mu_1.Xi[A==0] - mu_1.Xj[A==0] 

 

 tau.bcm <- mean(Ytilde.1 - Ytilde.0) 

 n <- length(Y)   

sigmasq.X <- 1/(2*n) * sum((Ytilde.1 - Ytilde.0 - 

tau.bcm)^2) 

   

 var.SATE <- 1/n^2 *  sum(( 1 + K)^2 * sigmasq.X) 

 var.PATE <- 1/n^2 * sum ( (Ytilde.1 - Ytilde.0 - tau.bcm)^2 + 

                 ( K^2 + 2*K - Kprime)*sigmasq.X) 

  

 return(list(tau = tau.bcm, AIvar=max(var.SATE, var.PATE), 

                                           var.PATE = var.PATE)) 

                                                                        

} 

 

The point estimate and CI around the ATE is estimated by calling the function: 

BCM.SL.boost <- BCM.AI(dataset_men_M1$q2_eq5d_index, 

dataset_men_M1$Hyb,                   

ps.match.data.boost, 

SL.object.BCM.boost$Q.SL.object[,1], 

SL.object.BCM.boost$Q.SL.object[,2], 

PS.match.object.boost$K, 

PS.match.object.boost$Kprime) 

 

The estimated ATE, with its standard error can be obtained as follows: 

coef.BCM.SL.boost <- BCM.SL.boost$tau 

se.BCM.SL.boost <- sqrt(BCM.SL.boost$AIvar) 

Implementing TMLE 

The R package tmle()offers an accessible implementation of TMLE (Gruber and van 

der Laan, 2012). The tmle() function takes the arguments Y (the observed 
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endpoint),  A (the observed treatment),W (the design matrix), and Q (the two vectors 

of potential outcomes). As a default, the tmle() function applies logistic fluctuation, 

and bounds the endpoint between the observed minimum and maximum values (here, 

between -0.59 and 1). 

tmle.SL.boost=tmle(Y=data$q2_eq5d_index,A=data$Hyb,W=design, Q=Q.SL, 

g1W=data$pscore.boost) 

 

The estimated ATE and its confidence intervals can be then obtained: 

coef.tmle.SL.boost <- tmle.SL.boost$estimates$ATE$psi 

ciU.tmle.SL.boost <- summary(tmle.SL.boost)$estimates$ATE$CI[2] 

ciL.tmle.SL.boost <- summary(tmle.SL.boost)$estimates$ATE$CI[1]  
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Chapter 7 – Discussion 

7.1 Introduction 

Cost-effectiveness analyses (CEA) often make use of non-randomised studies (NRS), 

when randomised controlled trials (RCTs) are inappropriate or insufficient to provide 

the evidence required to inform decisions (NICE, 2008). Here the main methodological 

challenge is to address potential selection bias, due to confounding.  Where individual 

patient data (IPD) from NRS is available for estimating parameters for CEA, selection 

bias can be addressed with appropriate statistical methods (Polsky and Basu, 2006). At 

the outset of this thesis, there was no comprehensive guidance on using statistical 

methods for CEA that use NRS, which was raised as a priority for methodological 

research in a recent review of NICE methods for health technology assessment (HTA) 

(Longworth et al., 2009).  This thesis helped address this gap in the literature.  

The overall objective of this thesis was to consider alternative statistical methods for 

addressing selection bias in CEA that use patient-level observational data. The specific 

objectives were: 

1. To develop and apply a new checklist for assessing the underlying assumptions 

made by statistical methods for addressing selection bias in CEA, that use 

patient-level observational data;  

2. To consider which further statistical methods from the general causal inference 

literature may be appropriate for addressing selection bias in CEA;  

3. To compare the relative performance of propensity score (PS) approaches and 

Genetic Matching (GM), a multivariate matching method, for estimating 

subgroup-effects in CEA; 
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4. To compare methods that combine regression with PS approaches for addressing 

selection bias when estimating incremental effectiveness and cost-effectiveness 

parameters.  

The next section discusses the overall findings from the thesis. Sections 7.3 and 7.4 

highlight the contributions of the thesis to the methodological literature. Sections 7.5 

and 7.6 summarise the limitations and identify areas for future research. Section 7.7 and 

7.8 discuss the implications for applied researchers and policy making. The last section 

concludes. 

7.2 Overall findings of the thesis 

The methods currently recommended in CEA for addressing selection bias make some 

key underlying assumptions, which the conceptual review (chapter 2) examined.  The 

unconfoundedness assumption implies that all variables which are prognostic for the 

cost or effectiveness endpoints, and also influence treatment assignment, are observed. 

The assumption of good overlap across covariate distributions between the treatment 

groups requires that there are no combinations of observed covariates which fully 

predict assignment to the treated or control group. Regression and PS approaches also 

assume that the relationship between the covariates and the endpoints, or the covariates 

and the treatment assignment is correctly specified. The conceptual review found that 

for CEA that use NRS, the correct specification of endpoint regression models and the 

PS can be challenging, especially when there is an interest in cost-effectiveness 

estimates at the subgroup-level. Due to these challenges, structural uncertainty from the 

choice or specification of the statistical method needs to be acknowledged when 

presenting and interpreting results from a CEA that use patient-level observational data.  



272 

 

I developed a new checklist (research paper 1, chapter 3) for critical appraisal of applied 

CEA, informed by the findings from the conceptual review. I then applied the checklist 

in a systematic review of published CEA. A key finding was that the majority of the 81 

studies reviewed relied on the unconfoundedness assumption, and used regression or 

matching to try and address selection bias, without appropriately assessing their 

underlying assumptions. Half of the studies did not consider structural uncertainty from 

the choice of statistical method.  

The conceptual review (chapter 2) identified alternative statistical methods that have the 

potential to make less restrictive assumptions about the specification of the PS or the 

endpoint regression model. These methods are GM, a multivariate matching method 

that uses a machine learning algorithm to directly maximise covariate balance; double-

robust (DR) methods and regression-adjusted matching. I also found that machine 

learning techniques hold promise for estimating the PS and the endpoint regression.  I 

contrasted the relative performance of these methods in simulation studies, informed by 

case studies that represented typical circumstances faced by CEA.  

In research paper 2 (chapter 4) I compared GM, PS matching and inverse probability of 

treatment weighting (IPTW) for estimating cost-effectiveness for patient subgroups. In 

the motivating CEA of Drotrecogin alfa activated (DrotAA) in patients with severe 

sepsis, I found that covariate balance for the subgroups of interest improved, when each 

method aimed to optimise balance by subgroup.  GM achieved the best balance, and the 

cost-effectiveness results for subgroups differed by method, with IPTW producing poor 

covariate balance and reporting the widest confidence intervals (CIs) of the estimated 

incremental net benefit (INB).  The simulations demonstrated that the key criterion for 

choosing among statistical methods is the covariate balance created for each subgroup.  
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I found that GM, unlike PS matching or IPTW, was relatively robust to functional form 

misspecification of the PS, such as the omission of nonlinear terms. 

In research paper 3 (chapter 5) I considered methods that combine the PS with endpoint 

regression (combined methods), such as DR methods and regression-adjusted matching, 

and compared them to regression, PS matching and IPTW. When contrasting these 

methods in the CEA of DrotAA, I found that combined methods reported differing point 

estimates and narrower CIs of the INB than methods that relied on the estimated PS 

only. In the simulations, I found that using combined methods could reduce bias and 

root mean squared error (RMSE) in the estimated INB when compared to using PS 

matching or IPTW, across a range of scenarios characteristic of CEA.  In the realistic 

scenario of functional form misspecification of both the PS and the endpoint regression 

(dual misspecification), and unstable IPT weights, regression-adjusted matching 

reported lower bias and RMSE than the DR methods considered. 

Research paper 4 (chapter 6) considered extensions of these combined methods, for 

estimating incremental effectiveness parameters. The motivating case study was an 

evaluation of the effect of alternative hip prostheses on patients’ health related quality 

of life (HRQoL), where the HRQoL endpoint had a skewed distribution with a spike at 

1.  I considered an innovative DR method, targeted maximum likelihood estimation 

(TMLE), and compared it to bias-corrected matching (BCM), where initially both 

methods were implemented with fixed parametric models. I then coupled both methods 

with using machine-learning techniques to estimate the PS and the endpoint regression. 

In the simulation study I found that both TMLE and BCM reported relatively robust 

estimates of treatment effects when coupled with machine-learning techniques, as 

opposed to when using fixed parametric models that were misspecified. When overlap 



274 

 

between the covariate distributions was good, TMLE reported the lowest bias and 

RMSE, and BCM performed best when overlap was poor.  

7.3 Main contributions of the thesis 

This thesis contributed to the literature on analytical methods for CEA (Hoch et al., 

2002, Willan et al., 2004, Nixon and Thompson, 2005, Polsky and Basu, 2006, Sekhon 

and Grieve, 2011),  drawing on insights from the causal inference (Rosenbaum  and 

Rubin, 1983, Robins et al., 2000, Imbens and Wooldridge, 2009a) and health 

econometrics literature (Jones, 2007, Jones, 2010, Jones and Rice, 2011). An important 

contribution of this thesis is that it directly compares methods across these strands of 

literature which tend to progress independently.  For example research paper 4 contrasts 

a two-part model,  recommended in the health econometrics and CEA literature for 

handling HRQoL data (Buntin and Zaslavsky, 2004, Basu and Manca, 2011), with 

TMLE, a recently recommended DR method from the causal inference literature. In the 

research papers contrasting statistical methods, I generated hypotheses based on insights 

from the general causal inference literature, but grounded in typical features of CEA 

data (chapter 2). The simulation scenarios were informed by the systematic review of 

applied CEA (research paper 1) and by the motivating examples (research paper 2, 3 

and 4). The following sections describe the specific contributions of this thesis. 

7.3.1 Developing a new checklist for critical appraisal of statistical methods 

for addressing selection bias in CEA 

I developed a critical appraisal tool for assessing the underlying assumptions made by 

statistical methods for addressing selection bias in CEA that use patient-level 

observational data (research paper 1). This checklist complements previous quality-

assessment tools and methodological guidance (Drummond et al., 2005, Philips et al., 



275 

 

2006, Glick et al., 2007), which did not include specific criteria for the statistical 

analysis of patient-level data from observational studies. The systematic review 

presented in research paper 1 was the first study that assessed an important aspect of the 

quality of CEA which use patient-level observational data: the statistical methods used 

to address selection bias. I found that the underlying assumptions of statistical methods 

were not appropriately assessed, and statistical approaches that have the potential to 

make less restrictive assumptions were not used in practice.  The main contribution of 

the new checklist is that it can raise awareness of the assumptions underlying alternative 

statistical methods. The checklist should prove helpful for the applied researcher 

conducting statistical analysis, for reviewers and journal editors considering future CEA 

articles, and for decision makers appraising and using published CEA.   

7.3.2 Methodological insights on statistical approaches for estimating 

subgroup effects in CEA that use observational data 

This thesis provided the first simulation study which compared alternative statistical 

methods for reducing selection bias when cost-effectiveness results are required for 

patient subgroups. Previous methodological guidance recommended regression methods 

for estimating cost-effectiveness parameters for subgroups (Nixon and Thompson, 

2005, Willan et al., 2004). These methods can, however, be sensitive to the choice of 

model specification in a NRS setting (Ho et al., 2007). In research paper 2, I considered 

alternative methods: PS matching, IPTW, and GM for estimating subgroup effects in 

CEA. This paper extended previous work by Sekhon and Grieve (2011) who compared 

GM to PS matching in reporting overall cost-effectiveness parameters. Research paper 2 

considered the context of subgroup analysis, and included IPTW as a methodological 

comparator.   
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7.3.3 Considering methods that combine the PS and endpoint regression for 

estimating parameters for CEA 

This thesis considered approaches that can combine information from the treatment 

assignment mechanism with that from the cost and effectiveness endpoint models for 

the first time in CEA.  Research paper 3 considered DR methods such as weighted 

regression and augmented inverse probability of treatment weighting (AIPTW), and 

regression-adjusted matching. Previous simulation studies considered DR methods for a 

generic continuous endpoint (Porter et al., 2011, Kang and Schafer, 2007), and for cost 

analysis (Basu et al., 2011). Research paper 3 extended these studies to the bivariate 

CEA context, where the correct specification of regression models for both the cost and 

effectiveness endpoints is a concern.  

Research paper 4 extended this work by investigating combined approaches on the 

forefront of causal inference research, TMLE and BCM, for estimating treatment 

effectiveness.  This study also extended a previous simulation study which estimated 

parameters  for HRQoL data using regression methods (Basu and Manca, 2011). This is 

the first study to use machine learning estimation techniques to estimate incremental 

effectiveness. 

7.4 Other general methodological contributions emerging from 

the thesis 

Findings from this thesis also contributed to the general causal inference literature on 

estimating treatment effects, by providing new methodological comparisons, as well as 

by considering statistical methods in the bivariate context of CEA for the first time.  
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7.4.1 New methodological comparisons 

This thesis contributed to the limited comparative work on the relative performance of 

DR and matching approaches (Waernbaum, 2011, Busso et al., 2011, Busso et al., 2009, 

Basu et al., 2011), by presenting two simulation studies that compared regression-

adjusted matching to DR methods. In research paper 3, I considered the implementation 

of regression-adjusted matching as “non-parametric pre-processing”,  proposed by Ho et 

al. (2007). This approach has not been considered in simulation studies before. I 

extended previous simulation studies (Kang and Schafer, 2007, Porter et al., 2011, Basu 

et al., 2011, Freedman and Berk, 2008), which found that, with unstable IPT weights 

and dual misspecification, DR methods can report more biased and less efficient results 

than ordinary least squares (OLS) regression. I found that with a more severe 

misspecification, weighted regression could outperform a misspecified regression 

estimator. I also found that regression-adjusted matching can be more robust to 

misspecification of the PS and the endpoint regression, than DR methods. 

Research paper 4 compared TMLE with BCM for the first time. I extended the findings 

of  Busso et al. (2011), who showed that with correctly specified PS and  poor overlap, 

BCM provides less biased estimates than reweighting estimators. I find similar results, 

that for the more realistic scenario of misspecified PS, BCM outperformed TMLE.  The 

main finding of research paper 4 was that when coupled with machine learning 

estimation methods, both TMLE and BCM could reduce bias due to dual 

misspecification, as opposed to using OLS for adjustment, considered in previous 

studies (Abadie and Imbens, 2011, Busso et al., 2011). 
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7.4.2 Insights from using machine learning methods for estimating 

treatment effects 

This thesis followed recent recommendations that suggest machine learning approaches 

for estimating the PS (Westreich et al., 2010, Lee et al., 2010) and the endpoint 

regression function (Austin, 2012, Porter et al., 2011). An important contribution of 

research paper 4 was that it took a systematic approach in comparing advanced, 

combined approaches to traditional methods, therefore extended previous studies which 

used machine learning only for selected methods such as TMLE (Porter et al., 2011).  

Research paper 4 demonstrated the impact of moving from single (such as IPTW) to 

combined methods (DR methods or BCM), using both fixed parametric methods and 

machine learning techniques. In addition, both within the single and combined 

approaches, I looked at the impact of moving from fixed to machine learning 

approaches. I found that in challenging circumstances such as dual misspecification and 

poor overlap, combined methods using fixed parametric models reported high bias, and 

when machine learning techniques were used, this bias was much reduced. 

7.4.3 Considering statistical methods in a bivariate context  

This thesis considers IPTW, PS matching, GM (research paper 2), DR methods and 

regression-adjusted matching (research paper 3) in the bivariate context of CEA. Here a 

general challenge is that statistical methods need to recognise that the endpoints of 

interest can be correlated (O'Hagan and Stevens, 2001, Nixon et al., 2010).  The CEA of 

DrotAA (research papers 2 and 3) demonstrated that for each of the statistical 

approaches considered, the non-parametric bootstrap can be used to calculate 

uncertainty around the estimates of incremental cost-effectiveness, while recognising 

the correlation between the endpoints. The simulation study in research paper 2 
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highlighted that in CEA, potential confounders can differ between the cost and 

effectiveness endpoints, for example, baseline HRQoL might influence the QALY but 

not the cost endpoint. The simulations showed that in order to reduce selection bias, 

balance needs to be maximised for potential confounders for both endpoints.                                                                              

7.5 Limitations 

While this thesis presented a comprehensive assessment and comparison of alternative 

statistical methods for addressing selection bias in CEA that use patient-level 

observational data, it has some limitations. In this section, I acknowledge general 

weaknesses regarding the scope of thesis, the range of statistical methods considered 

and the circumstances considered for the methodological comparisons. 

7. 5.1 Scope of the thesis  

Alternative use of observational data for CEA 

Observational data can be used to estimate a wide range of parameters in CEA, 

including  incremental cost and effectiveness endpoints, but also other parameters such 

as relative risks  (Drummond, 1998, Philips et al., 2006). The type of observational data 

available to obtain these parameters also varies, including IPD, the focus of this thesis, 

but studies commonly use aggregate data from published observational studies (Cooper 

et al., 2007).  Examples of settings that this thesis did not cover include using  

published, aggregate data to derive parameters such as effectiveness or baseline 

probabilities (Philips et al., 2006), or  where patient-level data is used to develop risk 

equations to populate decision models (Caro et al., 2012).  

While the focus of the simulation studies (research paper 2 and 3) was using IPD from a 

single observational study to calculate incremental effectiveness and cost-effectiveness 
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parameters, the case studies made more general use of observational data. The DrotAA 

case study (research paper 2 and 3) combined patient-level mortality data with 

aggregate estimates of long term survival and quality of life. Research paper 4 

reanalysed a large observational dataset on health outcomes following total hip 

replacement, where estimates of relative treatment effectiveness on HRQoL provided 

input parameters for a decision analytical model (Pennington et al., 2012). Here, when 

applying the estimated parameters in the cost-effectiveness model, hybrid hip prosthesis 

remained the dominant alternative compared to uncemented prosthesis, with lower 

mean costs, and positive incremental QALYs (0.16 for OLS, 0.11 for PS matching, and 

0.19 for BCM with machine learning). While research paper 4 did not consider methods 

in a bivariate setting, recommendations apply to the general context when patient-level 

observational data is used to estimate input parameters for CEA. The checklist (research 

paper 1) also pertains to this more general use of observational data, for example when 

only one incremental parameter is estimated using patient-level observational data.  

 Further statistical challenges in CEA that use patient-level observational data 

The focus of this thesis is to investigate statistical methods that can address selection 

bias in CEA. The use of patient-level data in CEA often poses further statistical 

challenges. Statistical analysis may also need to recognise the data hierarchy in 

multicenter trials (Grieve et al., 2007, Manca et al., 2007) and cluster-randomised trials 

(Gomes et al., 2012, Grieve et al., 2010), as well as missing data (Noble et al., 2012), 

non-compliance to randomised treatment (Hughes et al., 2001), censoring  (Willan et 

al., 2002, Willan et al., 2005, Raikou and McGuire, 2004) or measurement error 

(Marschner, 2006). These issues are beyond the scope of the thesis.  

file:///C:/Users/lsh247596/AppData/Local/Temp/XPGrpWise/50CA063FLSHTM_POphpmailb1001667A351472C1/GW_00002.HTM%23_ENREF_72
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Some of the methods considered in this thesis, for example IPTW (Willan et al., 2002) 

and DR methods (Bang and Robins, 2005, Bang and Tsiatis, 2000) can be applied to 

account for censoring and missing data in CEA. However, it is unknown whether the 

findings from this thesis in the context of addressing selection bias would translate 

directly to the context of censored or missing CEA data, and hence further research is 

warranted. 

7.5.2 Range of statistical methods considered for this thesis 

Methods assume no unobserved confounding 

The statistical methods that were contrasted in the case studies and simulation studies 

all assumed no unobserved confounding. The conceptual review (chapter 2) highlighted 

the importance of this assumption, and proposed instrumental variable (IV) estimation 

as an alternative. IV methods can potentially reduce selection bias due to both observed 

and unobserved confounding, however, they make alternative untestable assumptions 

that may be unrealistic in a CEA setting (Polsky and Basu, 2006). The critical appraisal 

tool provides some guidance in assessing these assumptions (research paper 1). After 

careful assessment I found that neither of the case studies considered in the thesis had 

an appropriate IV.  The systematic review of applied CEA (research paper 1) identified 

only two studies which used IV methods.  

The critical appraisal tool presented in research paper 1 provides detailed guidance on 

how to appropriately assess the plausibility of the unconfoundedness assumption in the 

CEA context. Following these suggestions, the case studies carefully considered the 

previous clinical literature on prognostic factors, before selecting the potential 

confounders for adjustment. A further recommendation, not covered in this thesis, is to 

use placebo tests (Imbens, 2004, Jones, 2007, Abadie et al., 2010). Placebo tests offer 
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an indirect way to use the data to assess the validity of the no unobserved confounding 

assumption through using the set of measured confounders to estimate a treatment effect 

on a variable, where it is known to be zero, for example on the pre-treatment health 

status. 

Alternative implementations of statistical methods not considered in the thesis 

Regression methods 

This thesis considered regression methods recommended for estimating parameters of 

cost and effectiveness endpoints, such as GLMs (Barber and Thompson, 2004) and two-

part models (Buntin and Zaslavsky, 2004, Basu and Manca, 2011). More flexible 

regression approaches have recently been proposed for skewed cost and effectiveness 

data, such as extended estimating equations (Basu and Rathouz, 2005), the use of beta-

distributions with quasi-likelihood estimation (Basu and Manca, 2011), or beta-type size 

distributions (Jones et al., 2011). This thesis did not consider these methods, but took 

the approach of machine learning estimation for handling skewed HRQoL data. The 

super learner approach considered in research paper 4 is a flexible prediction method 

which can also incorporate the above regression approaches (Polley and van der Laan, 

2010). 

DR methods 

This thesis did not compare all currently available implementations of DR methods. I 

implemented methods that are commonly used in the general causal inference literature, 

such as AIPTW (research paper 3) and weighted regression (research papers 3 and 4); as 

well as a recently proposed DR method, TMLE.  Further approaches such as an 

improved DR substitution estimator (Rotnitzky et al., 2012), or an extension of TMLE, 



283 

 

collaborative maximum likelihood estimation (C-TMLE) (van der Laan and Gruber, 

2010) are promising alternatives, and warrant further consideration. 

Machine learning estimation techniques for estimating the PS and the endpoint 

This thesis highlights the potential for machine learning estimation techniques to reduce 

bias due to functional form misspecification, compared to using fixed parametric 

models. Following recommendations from previous simulation studies, this thesis 

considered boosted CARTs for estimating the PS, and super learning to estimate the 

endpoint regression function. This thesis did not compare alternative machine learning 

approaches from the computer science and data mining literature, such as bagged 

regression trees, random forests (Austin, 2012), decision trees, neural networks or linear 

classifiers (Westreich et al., 2010).  

Considering GM with bias-adjustment 

Like previous studies (Diamond and Sekhon, 2012, Sekhon and Grieve, 2011), this 

thesis found that GM can provide excellent balance and unbiased estimates of treatment 

effects, even if the PS is misspecified (research paper 2). Research papers 3 and 4 take a 

further approach for reducing bias in matching estimators, by using regression-

adjustment after matching. In order to allow for a systematic comparison across 

methods, in these papers I used the estimated PS to create matched data.  The 

methodological literature suggests bias correction for a general family of nearest 

neighbour matching estimators, including PS matching and multivariate matching 

(Abadie and Imbens, 2011). Hence the bias-reduction reported when using regression-

adjustment after matching (research papers 3 and 4) is expected to hold in the case of 

the multivariate matching approach of GM as well.  
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7.5.4 Range of circumstances considered for the methodological 

comparisons 

Types of misspecification considered in the simulations 

The simulation scenarios considered in research papers 2, 3 and 4 focused on functional 

form misspecification of the PS and endpoint regression models, following previous 

simulation studies identified in the conceptual review (chapter 2), and motivated by the 

case studies.  Types of misspecifications included ignoring differential treatment 

assignment by subgroup, misspecifying the linear predictor in the PS model, ignoring 

nonlinear functional form relationships between the covariates and the endpoints, 

misspecifying the link function of the cost endpoint, as well as misspecifying a two-part 

data generating distribution.  

A further type of misspecification often considered in the general causal inference 

literature (e.g. Glynn and Quinn, 2010, Gruber and van der Laan, 2010) is omission of 

confounders, i.e. in simulation studies ignoring variables that are known to influence the 

treatment assignment and the endpoint.  This misspecification was not the focus of this 

thesis. All the methods considered rely on the assumption of no unobserved 

confounding, and so it can be anticipated that all methods are biased when influential 

confounders are omitted. This was confirmed in the simulation study of research paper 

2, which demonstrated that unless confounders influential for both the cost and 

effectiveness endpoints are adjusted for, each method reported biased estimates of the 

INB. 

Types of heterogeneity in cost-effectiveness considered 

Research paper 2 considered heterogeneous treatment effects and heterogeneous 

assignment to treatment, across subgroups defined by an observed confounder, baseline 



285 

 

disease severity. Here, patient subgroups of interest for CEA were pre-specified using 

reasoning from the clinical literature. The optimal number and definition of subgroups 

could be also established as part of the CEA, using for example expected health benefits 

(Espinoza et al., 2011). Heterogeneity in cost-effectiveness can also stem from other 

sources (Sculpher, 2008), including unobserved patient characteristics such as 

preferences for treatment.  For decision makers implementing personalised medicine,  

accounting for such heterogeneity can be relevant (Basu, 2011, Ioannidis and Garber, 

2011). The conceptual review identified statistical methods that have potential to handle 

unobserved heterogeneity, such as instrumental variables (Basu et al., 2007, Evans and 

Basu, 2011) and control functions (Basu, 2011), this thesis however did not cover these 

approaches. 

A further form of heterogeneous treatment effects comes from non-linear response 

surfaces for cost and effectiveness endpoints (Basu et al., 2011, Basu et al., 2008). 

While applying traditional regression approaches such as OLS regression might mask 

this heterogeneity, the method of recycled predictions, considered in this thesis, can 

account for it. 

7.6 Areas of further research 

This thesis identified the following areas for further investigation: applying formal 

methods of sensitivity analysis to assess the impact of potential violations of statistical 

assumptions, further examination of methods for estimating the variance of treatment 

effects in a bivariate context of CEA, and extending the methods to estimate parameters 

other than the additive treatment effects, such as odds ratios or hazard ratios.  



286 

 

7.6.1 Using formal tools of sensitivity analysis to address structural 

uncertainty  

Structural uncertainty is a relatively under-researched area of uncertainty in CEA (Gray 

et al., 2010), hence contributing to developing methodological guidance in this area is 

warranted. Specifically, this thesis highlighted that uncertainty due to the possible 

violations of underlying assumptions of statistical methods can be characterised as a 

source of structural uncertainty in CEA (Jackson et al., 2011).  The case studies 

presented in this thesis (research papers 2 to 4) acknowledged structural uncertainty due 

to the choice or specification of statistical method by presenting a range of estimates 

obtained with different statistical approaches, and interpreting the differences in the 

estimated cost-effectiveness.  

The conceptual review (chapter 2) also identified quantitative approaches that can help 

acknowledge the uncertainty, due to possible violations of statistical assumptions.  A 

recommended approach for assessing the sensitivity of estimated treatment effects to the 

potential for unobserved confounding is to use Rosenbaum’s method of sensitivity 

analysis (Rosenbaum, 2002). This method provides a statement on the strength of 

unobserved confounding, which is necessary to change the conclusions regarding the 

estimated treatment effect. In the CEA context, this approach could be combined with 

reporting cost-effectiveness acceptability curves, to provide information on the 

necessary strength of unobserved confounding to alter the estimated probability that the 

intervention is cost-effective. Software implementation of this approach for matching 

estimators is available (Keele, 2011), and its use has been demonstrated for clinical 

evaluations (Noah et al., 2011).  

 A further source of structural uncertainty stems from the unknown nature of the correct 

endpoint regression model. Here, uncertainty in the choice of regression model 
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specification can be quantified by using Bayesian model averaging (Hoeting et al., 

1999). This approach combines estimates from competing regression models, using 

weights derived from some measure of model appropriateness, for example the Akaike 

information criterion. Bayesian model averaging has been proposed for the more 

general context of decision models in CEA (Jackson et al., 2009). 

7.6.2 Estimating uncertainty for cost-effectiveness parameters 

In the case studies presented in this thesis, I used the non-parametric bootstrap (Davison 

and Hinkley, 1997) for estimating the standard errors for the estimated INB (Nixon et 

al., 2010). Previous studies indicated that the nonparametric bootstrap can report valid 

confidence intervals around the INB (Nixon et al., 2010). Bivariate regression models 

such as “seemingly unrelated regressions” or Bayesian bivariate models (Willan et al., 

2004, Nixon and Thompson, 2005, Manca and Austin, 2008) provide alternative ways 

of estimating standard errors. This thesis did not consider bivariate approaches, because 

implementing DR methods or regression on matched data using bivariate modelling 

may prove complex (Manca and Austin, 2008). Future simulation studies can provide 

additional information on the performance of the bootstrapped variance estimator, by 

also reporting the coverage properties of the 95% CIs, and where feasible, comparing it 

to bivariate modelling approaches.  

The estimation of variance for matching approaches has been widely debated in the 

methodological literature (Hill, 2008, Hill and Reiter, 2005, Abadie and Imbens, 2006b, 

Austin, 2008a, Stuart, 2010). Inference after PS matching needs to account for several 

sources of uncertainty: from using the estimated PS instead of the true PS, as well as 

uncertainty from the matching process. There is a consensus that under relatively 

general circumstances, using the estimated PS instead of the true PS provides 
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conservative variance estimates (Stuart, 2010). Analytical variance formulas which can 

account for the matching process for certain matching estimators are available, however 

they are subject to ongoing research (Abadie and Imbens, 2009, Abadie and Imbens, 

2006a).  

In research papers 2 and 3 I followed the suggestion of estimating bootstrapped standard 

errors conditional on the matched data (Ho et al., 2007). In research paper 4, when 

considering a univariate endpoint, I applied recommended analytical formulas for 

variance estimators for PS matching and BCM (Abadie and Imbens, 2011, Abadie and 

Imbens, 2006a). The extension of these analytical formulas for a bivariate context of 

CEA is a potential subject of further methodological investigation.  

7.6.3 Extending statistical methods for different types of data 

This thesis focused on statistical methods that can address selection bias in CEA that 

use IPD to estimate incremental parameters of continuous endpoints, such as 

incremental costs, QALYs or HRQoL. Each method proposed by this thesis can be 

extended for endpoints such as binary, count or event time data, and corresponding 

estimands such as odds ratios (Radice et al., 2012, Moore and van der Laan, 2009), 

relative risks (Austin, 2008b, Austin, 2010a, Austin, 2010b) or hazard ratios (Stitelman 

and van der Laan, 2010, Thompson et al., 2010).  

This thesis compared methods that can estimate the effect of a time constant treatment. 

IPTW and DR methods can be extended to handle treatment and confounders that vary 

over time (Robins et al., 2000). Such methods can be useful when estimating parameters 

for decision models which needs to allow for cross-over between treatments, or 

treatment starting at different time points (Caro et al., 2012). Exploring these alternative 
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methods in settings characteristic of CEA is a subject of further methodological 

research.  

7.7 Recommendations for applied researchers 

Findings from this thesis can help the applied researcher conducting CEA, when 

applying statistical methods to address selection bias. This thesis recommends that the 

applied researcher follows the general steps below.   

1. To assess the plausibility of the fundamental assumptions of unconfoundendess and 

overlap. 

The checklist and accompanying guidance presented in research paper 1 suggest 

appropriate methods to assess the plausibility of these assumptions (checklist questions 

1a and 2). For example it is recommended that researchers carefully use subject matter 

knowledge to assess whether all potential confounders have been observed, both for the 

cost and the effectiveness endpoints. 

2. To use statistical methods which are potentially robust to the misspecification of the 

endpoint regression models and the PS. 

This thesis identified a number of methods that can be appropriate for estimating 

parameters in realistic CEA circumstances. In general, this thesis found that matching 

methods can help provide robust estimates of cost-effectiveness, as they are relatively 

insensitive to PS misspecification, as opposed to other methods such as IPTW.  

GM does not rely on the correctly specified PS, and can directly maximise balance in 

the matched data using machine learning.  When cost-effectiveness for patient 

subgroups are of interest, this thesis suggests that covariate balance is assessed for each 

subgroup of policy relevance. This thesis recommends that GM is applied to directly 
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maximise balance for patient subgroups. Research papers 1 and 2 provide guidance on 

appropriate assessment of balance, for overall populations and for subgroups of interest. 

To assist the applied researcher implement GM, sample code is provided in Appendix 

4.2.  

This thesis recommends that matching is followed by regression-adjustment, in order to 

reduce bias due to finite sample imbalance, and to increase efficiency. Research paper 3 

proposes a straightforward two-step approach for performing regression-adjustment on 

the matched data (for software code, see Appendix 5.2). This approach reduces the 

sensitivity of the estimates to the regression specification, by first improving covariate 

balance. 

As an alternative remedy for the challenge of model misspecification, research paper 4 

proposes machine learning techniques for estimating the PS and the endpoint 

regression. In particular, this paper proposes another implementation of regression-

adjusted matching, BCM, which can be used with machine-learning. Amongst the DR 

methods examined in this thesis, TMLE is recommended when coupled with machine 

learning estimation techniques.  I provide the applied researcher with guidance for 

implementing these methods in Appendix 6.1. 

One consideration for the choice of methods is the computing time and resources 

involved. TMLE and BCM run instantly when using fixed parametric approaches, 

however when coupled with machine learning, each approach can take more than 3 

hours with a standard PC. Therefore the use of high performance computing (HPC) is 

recommended, for example the LSHTM HPC cluster 

(http://wiki.lshtm.ac.uk/hpc/index.php5/Main_Page). GM exploits the parallel 

computing abilities of an HPC cluster, however depending on the dimensions of the 

dataset and the number of variables to balance on, can be computationally intensive. So 

http://wiki.lshtm.ac.uk/hpc/index.php5/Main_Page
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for example for the analysis of the case study in research paper 2, running GM on the 

HPC cluster took between 3 and 10 hours. 

3. To report structural uncertainty according to the choice or specification of the 

statistical method. 

This thesis also recommends that researchers acknowledge structural uncertainty from 

the choice or specification of the statistical approach used for addressing selection bias.  

The quality assessment tool provides suggestions on ways to account for this structural 

uncertainty (research paper 1, checklist question 5). For example, following the example 

of the case studies presented in this thesis, the applied researcher is advised to 

implement several statistical approaches which rely on different assumptions, and then 

present cost-effectiveness results after each approach, interpreting potential differences 

in the resulting point estimates, confidence intervals and CEACs.  

7.8 Implications for policy making 

Observational data can provide a valuable source of evidence for health care decision 

makers who aim to allocate scarce resources. Current methodological guidelines 

propagate the use of patient-level data for deriving parameters for CEA (NICE, 2008, 

Briggs et al., 2012). While developing methods for incorporating observational data was 

raised as a priority for methodological research in CEA (Longworth et al., 2009, Kearns 

et al., 2012), there is currently no detailed guidance for critical appraisal of CEA that 

use observational data. The checklist developed in this thesis (research paper 1) 

provides decision makers with a critical appraisal tool for evaluating an important 

aspect of the quality of CEA that use observational data: the statistical methods that are 

used to address selection bias.  
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While this thesis focused on statistical methods, it also provides some insights for the 

design of CEA that use observational data. With large investments in observational 

databases worldwide, it is desirable that observational studies are designed so as to help 

subsequent statistical analysis make more plausible assumptions (Rubin, 2010, Rubin, 

2008).  For the purposes of CEA, observational data collected on health care 

interventions should ideally include the potential confounders that are judged to be 

prognostic of either the effectiveness or the cost endpoint. If it is unlikely that all the 

confounders can be observed, the researcher is recommended to consider whether there 

are plausible IVs that could be measured (Grootendorst, 2007). 

7.9 Conclusion 

This thesis aimed to address the relative lack of methodological guidance on statistical 

methods for CEA that use patient-level observational data. The critical appraisal of 

applied CEA highlighted that studies using observational data did not appropriately 

assess the underlying assumptions their statistical methods make. The conceptual 

review drew on insights from the causal inference literature, and identified promising 

further methods for CEA.  

This thesis found that methods that can avoid assuming that the endpoint regression and 

the PS are correctly specified, can give less biased and more precise estimates of cost-

effectiveness than methods previously recommended for CEA. In particular, combining 

matching methods with regression is a robust, appropriate and accessible method that 

should be adopted in future studies. This thesis presents methods that can improve the 

quality of CEA that use patient-level observational data, to help future studies provide a 

sounder basis for policy making.  
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