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Abstract

Background: Basecalling, the computational process of translating raw electrical signal to nucleotide sequence, is of
critical importance to the sequencing platforms produced by Oxford Nanopore Technologies (ONT). Here, we
examine the performance of different basecalling tools, looking at accuracy at the level of bases within individual
reads and at majority-rule consensus basecalls in an assembly. We also investigate some additional aspects of
basecalling: training using a taxon-specific dataset, using a larger neural network model and improving consensus
basecalls in an assembly by additional signal-level analysis with Nanopolish.

Results: Training basecallers on taxon-specific data results in a significant boost in consensus accuracy, mostly due to
the reduction of errors in methylation motifs. A larger neural network is able to improve both read and consensus
accuracy, but at a cost to speed. Improving consensus sequences (‘polishing’) with Nanopolish somewhat negates the
accuracy differences in basecallers, but pre-polish accuracy does have an effect on post-polish accuracy.

Conclusions: Basecalling accuracy has seen significant improvements over the last 2 years. The current version of
ONT’s Guppy basecaller performs well overall, with good accuracy and fast performance. If higher accuracy is required,
users should consider producing a custom model using a larger neural network and/or training data from the same
species.

Keywords: Oxford Nanopore, Basecalling, Long-read sequencing

Background
Oxford Nanopore Technologies (ONT) long-read
sequencing is based on the following concept: pass a sin-
gle strand of DNA through a membrane via a nanopore
and apply a voltage difference across the membrane.
The nucleotides present in the pore will affect the pore’s
electrical resistance, so current measurements over time
can indicate the sequence of DNA bases passing through
the pore. This electrical current signal (a.k.a. the ‘squig-
gle’ due to its appearance when plotted) is the raw data
gathered by an ONT sequencer. Basecalling for ONT
devices is the process of translating this raw signal into
a DNA sequence. It is not a trivial task as the electrical
signals come from single molecules, making for noisy and
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stochastic data. Furthermore, the electrical resistance
of a pore is determined by the bases present within
multiple nucleotides that reside in the pore’s narrowest
point (approximately five nucleotides for the R9.4 pore),
yielding a large number of possible states: 45 = 1024 for
a standard four-base model. When modified bases are
present, e.g. 5-methylcytosine, the number of possible
states can grow even higher: 55 = 3125. This makes
basecalling of ONT device signals a challenging machine
learning problem and a key factor determining the quality
and usability of ONT sequencing.
Basecalling is an active field, with both ONT and inde-

pendent researchers developing methods. Modern base-
callers all use neural networks, and these networks must
be trained using real data. The performance of any partic-
ular basecaller is therefore influenced by the data used to
train its model. This is especially relevant when basecall-
ing native (not PCR-amplified) DNA, which can contain
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base modifications. A basecaller’s performance in such a
case may depend on whether the modifications and their
sequence motifs were represented in its training set.
Basecalling accuracy can be assessed at the read level

(read accuracy) or in terms of accuracy of the consensus
sequence (consensus accuracy). Read accuracy measures
the sequence identity of individual basecalled reads rela-
tive to a trusted reference. Consensus accuracy measures
the identity of a consensus sequence constructed from
multiple overlapping reads originating from the same
genomic location. Consensus accuracy generally improves
with increased read depth, e.g. a consensus built from 10
reads is likely to be less accurate than one built from 100
reads.
While read and consensus accuracy may be correlated,

this relationship is not guaranteed. I.e. more accurate
reads do not necessarily produce a more accurate con-
sensus. Random read errors are unlikely to appear in the
consensus, as they occur in the minority of reads at their
locus. Systematic errors that occur in many reads can
however appear in the consensus. Low accuracy reads
can therefore produce a perfect consensus sequence, pro-
vided their errors are random and the read depth is
sufficiently large. Conversely, high accuracy reads can cre-
ate an imperfect consensus regardless of the read depth, if
they contain systematic errors.
Consensus accuracy is usually the main concern for

applications with high read depth, such as genome assem-
bly. For other applications, particularly those with low
read depths, read accuracy is important. For example,
clinical metagenomics may rely on data from a very
small number of non-human reads [1], and inaccurate
reads could make it harder to identify and characterise
pathogens.
ONT have released multiple pore types during their his-

tory, but the R9.4 pore (and its minor revision R9.4.1)
has been available for longest: from October 2016 to
the present. Its release also corresponds to approxi-
mately when command-line basecallers became available
– before that users needed to basecall with ONT’s cloud-
based Metrichor service. This study aims to quantify the
performance of various basecalling tools developed for
ONT’s R9.4 pore and to explore the impact of model train-
ing on basecalling accuracy. It may provide guidance to
those wishing to get the most out of ONT sequencing
signals, and in particular could help readers to decide
whether recent progress warrants re-basecalling older sig-
nal data with a newer basecaller or custom-trained model.
In this study, we tested four basecalling programs devel-

oped by ONT – Albacore, Guppy, Scrappie and Flappie –
and ran all available versions compatible with R9.4 reads.
Albacore is a general-purpose basecaller that runs on
CPUs. Guppy is similar to Albacore but can use GPUs
for improved basecalling speed. While the two basecallers

have coexisted for about a year, ONT has discontinued
development on Albacore in favour of the more perfor-
mant Guppy. Both Albacore and Guppy are only available
to ONT customers via their community site (https://
community.nanoporetech.com). Scrappie (https://github.
com/nanoporetech/scrappie) is an open-source basecaller
which ONT describes as a ‘technology demonstrator’.
It has often been the first of ONT’s basecallers to try
new approaches, with successes later being incorpo-
rated into Albacore and Guppy. Scrappie is really two
basecallers in one: Scrappie events, which carries out
an event-segmentation step prior to basecalling with
its neural network, and Scrappie raw, which basecalls
directly from raw signal. We excluded some older ver-
sions of Scrappie events which rely on events first being
defined by another program, as this requirement makes it
not a standalone basecaller. Flappie (https://github.com/
nanoporetech/flappie) has recently replaced Scrappie and
uses a CTC decoder to assign bases [2]. We also tested
Chiron (https://github.com/haotianteng/Chiron), a third-
party basecaller still under development that uses a deeper
neural network than ONT’s basecallers [3]. We excluded
older basecallers no longer under development, such as
Nanonet, DeepNano [4] and basecRAWller [5].

Results and discussion
Default model performance
Our primary benchmarking read set for assessing base-
caller performance consisted of 15,154 whole genome
sequencing reads from an isolate ofKlebsiella pneumoniae
(see ‘Methods’). These reads ranged from 22–134 kbp in
length (N50= 37 kbp) and were ∼ 550Mbp in total size,
equating to 100× read depth over the 5.5Mbp K. pneumo-
niae chromosome.
Albacore’s history contained two major developments

which resulted in distinct improvements in both read and
consensus accuracy: in April 2017 (v1.0.1) and August
2017 (v2.0.2) (Fig. 1). The first was the addition of a
transducer to the basecaller [6], which allowed for bet-
ter homopolymer calls (see error profile details below).
The second was the switch to raw basecalling, where
sequence is called directly from raw signal without an
event-segmentation step. After August 2017, Albacore’s
performance remained fairly constant with subsequent
releases, achieving read accuracy of Q9.2 and consensus
accuracy of Q21.9 with its final version (v2.3.4).
Guppy was publicly released in late 2017 (v0.3.0), and

its accuracy stayed relatively constant and similar to that
of Albacore for most of its version history (up to v1.8.5 in
October 2018). The last tested version of Guppy (v2.2.3,
released January 2019) performed worse on read accuracy
(Q8.9) but better on consensus accuracy (Q22.8) using its
default model. This version also comes with an optional
‘flip-flop’ model which has similar consensus accuracy

https://community.nanoporetech.com
https://community.nanoporetech.com
https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/scrappie
https://github.com/nanoporetech/flappie
https://github.com/nanoporetech/flappie
https://github.com/haotianteng/Chiron
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Fig. 1 Read accuracy, consensus accuracy and speed performance for each basecaller version, plotted against the release date (version numbers
specified in Additional file 2: Table S3). Accuracies are expressed as qscores (also known as Phred quality scores) on a logarithmic scale where
Q10 = 90%, Q20 = 99%, Q30 = 99.9%, etc. Each basecaller was run using its default model, except for Guppy v2.2.3 which was also run with its
included flip-flop model and our two custom-trained models

(Q23.0) but much better read accuracy (Q9.7). However,
the flip-flop model’s accuracy comes at the cost of speed
performance – it is considerably slower than the default
Guppy model, likely due to its larger size and complexity
(Additional file 1: Figure S1).
Scrappie events was the worst-performing basecaller

tested, likely due to its use of an outmoded event-
segmentation pre-processing step. Scrappie raw per-
formed better, and the latest version (v1.4.1) performs
similarly to Albacore (Q9.3 read accuracy and Q22.4 con-
sensus accuracy). Scrappie’s successor Flappie (released
November 2018) showed an improvement in read accu-
racy (Q9.6) but not consensus accuracy (Q22.0).

Relative to ONT’s basecallers, Chiron performed poorly
on read accuracy (Fig. 1). Chiron v0.3 had the highest
consensus accuracy (Q25.9) of all tested basecallers using
their default models, but the latest version (v0.4.2) did
not perform as well on our benchmarking set (Q7.7 read
accuracy and Q21.4 consensus accuracy). This variation
in accuracy for different versions of Chiron is explained by
the taxonomy of the training data used to produce their
default models (E. coli vs human, see ‘Consensus error
profiles’).
While Albacore and Guppy are similar in terms of

accuracy metrics, Guppy is an order of magnitude faster
(∼ 1,500,000 bp/s vs ∼ 120,000 bp/s) due to its use of GPU
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acceleration (Fig. 1). Despite also using GPU acceleration,
Chiron was the slowest basecaller tested (∼ 2500 bp/s),
with the INF032 test set takingmore than 2.5 days to base-
call. This means that Chiron would take over a month
to basecall a typical MinION yield of 10Gbp, making it
impractical for anything but very small read sets. Flappie
also suffered from low speed performance (∼ 14,000 bp/s).

Custommodel performance
Running Guppy v2.2.3 with our custom-Kp model
(trained on unamplified DNA from 30 K. pneumoniae,
10 other Enterobacteriaceae and 10 other Proteobacteria,
see ‘Methods’ and Additional file 1: Figure S2) produced
a modest increase in read accuracy (Q9.5) and a large
increase in consensus accuracy (Q28.5) for the bench-
marking set, relative to the default model (Fig. 1). This
demonstrates that there is a benefit for using taxon-
specific training data. The default and custom-Kpmodels
performed similarly in terms of speed.
Our custom-Kp-big-net model (trained on the same

data as custom-Kp but with a larger neural network, Addi-
tional file 1: Figure S2) delivered even further improve-
ments in both read accuracy (Q10.4) and consensus accu-
racy (Q31.6), showing that more complex neural networks
also have the potential to give improved results, but at a
cost to speed performance. The custom-Kp-big-net model
could not be run on the GPU because it uses neural net-
work layers that are not pre-compiled into the Guppy
program. It had to be run on the CPU instead, which
along with the increased complexity of its neural net-
work, resulted in a speed of ∼13,000 bp/s – two orders
of magnitude slower than Guppy run with the default or
custom-Kpmodels on the GPU.
Our custom-trained models were designed for K. pneu-

moniae and performed well on the K. pneumoniae bench-
marking set. To see if these results generalise to other
genomes (both K. pneumoniae and more distantly-related
species), we also ran all available Guppy models on addi-
tional read sets (Fig. 2). The flip-flop model performed
better than the default model for all genomes, with a
mean improvement of +0.71 in the read qscore and +0.36
in the consensus qscore. The custom-Kp model per-
formed much better than the default model for genomes
in Enterobacteriaceae (K. pneumoniae and S. sonnei),
with mean qscore improvements of +0.63 (read) and
+ 4.72 (consensus). However, these benefits were not seen
for species outside Enterobacteriaceae, where the mean
qscore changes were 0.00 (read) and -1.64 (consensus).
This taxon-specific improvement is likely due to the
custom-Kp model’s ability to more accurately call Dcm-
methylation motifs which are found in Enterobacteriaceae
[7] (see details below). The improved performance of
custom-Kp-big-net over the custom-Kp model was not
taxon-dependent and showedmean qscore improvements

of +1.01 (read) and +3.15 (consensus) across all genomes.
In almost all cases, the custom-Kp-big-net model pro-
duced the most accurate reads and consensus, the excep-
tion being S. aureus where the flip-flop model produced
the most accurate reads.
Neither the custom-Kp model nor the custom-Kp-

big-net model use the new neural network architecture
present in Guppy’s flip-flop model. Presumably, a model
based on this flip-flop architecture and trained on our
custom training data would enjoy both the benefits of the
flip-flop model (improved accuracy for all genomes) and
of the custom-Kp model (improved accuracy for Enter-
obacteriaceae). However, the current version of Sloika
(v2.1.0) does not allow for custom training with the flip-
flop architecture.

Consensus error profiles
In order to understand the impact of the various base-
callers on different kinds of consensus basecalling errors,
we quantified error profiles for the K. pneumoniae bench-
marking genome in terms of the number of errors in
Dcm-methylation sites, homopolymers and other sites
(Fig. 3). All ONT basecallers performed poorly with Dcm-
methylation sites when using the default models, and
these made up a large proportion of consensus errors: for
current versions of ONT basecallers ∼ 70% of the errors
were in Dcmmotifs and they created ∼ 0.4% error relative
to the reference. This implies that the models were trained
on data lacking Dcm methylation and have therefore
not learned to call the sites reliably. Conversely, running
Guppy v2.2.3 with our custom-trained models resulted in
almost no Dcm errors (∼ 0.002%) because Dcm methyla-
tion was well represented in our training set. The model
included in versions 0.2 and 0.3 of Chiron was trained on
E. coli reads [3] where Dcm modifications are expected
[7], and those versions accordingly yielded very few Dcm
errors (<0.025%). The model in Chiron v0.4.2 was trained
on human reads and thus yielded 0.29% Dcm errors (and
more errors in general).
After Dcm motifs, incorrect homopolymer lengths

made up the majority of errors (Fig. 3). ONT’s progress
on this front is evident in the performance of Albacore,
for which consensus accuracy improvements over time
have mostly come from a reduction in homopolymer
errors, from 0.53% in v0.8.4 down to 0.13% in v2.3.4. More
recently, Guppy v2.2.3 has shown further improvement,
bringing homopolymer errors down to 0.07%. While our
custom-Kp model performed slightly worse than Guppy’s
default model for homopolymers (0.10%), the custom-Kp-
big-net model performed better (0.05%).

Nanopolish performance
Nanopolish can use the raw signal data to fix errors in
a consensus sequence, and it includes special logic for
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Fig. 2 Read and consensus accuracy from Guppy v2.2.3 for a variety of genomes using different models: the default RGRGR model, the included
flip-flop model and the two custommodels we trained for this study. Both custom models used the same training set which focused primarily on
K. pneumoniae, secondarily on the Enterobacteriaceae family and lastly on the Proteobacteria phylum

both Dcm methylation and homopolymers. We found
that Nanopolish improved the consensus accuracy for our
benchmarking set in nearly all cases, with the exception
of our custom-Kp-big-net model (Fig. 4). The pre-
Nanopolish consensus accuracy was correlated with the
post-Nanopolish accuracy (R2 = 0.580), indicating that a
basecaller’s consensus accuracy still matters even
if Nanopolish is also used. While Nanopolish was
able to account for Dcm methylation (using its
--methylation-aware option), it often only cor-
rected ∼ 70–80% of Dcm errors (Additional file 1:
Figure S3). Accordingly, the rate of Dcm errors in the
pre-Nanopolish assembly was the strongest predictor of
post-Nanopolish accuracy (R2 = 0.809), with the best
results (>Q29 consensus) coming from the four base-
callers with very low Dcm error rates (Chiron v0.2–v0.3

and both custom models). The effect of additional rounds
of Nanopolish was tested on the Guppy v2.2.3 assembly
and gave only a small increase in accuracy (from Q27.5
after one round to Q28.3 after four rounds, Additional
file 1: Figure S4).
DNA base substitutions (often referred to as sin-

gle nucleotide polymorphisms or SNPs) identified from
pathogen whole genome sequence comparisons are now
used routinely by public health and infection control lab-
oratories to investigate suspected outbreaks of foodborne
and other infectious diseases [8]. ONT platforms could
potentially be useful in such investigations due to their
portability and cost effectiveness for small sample sizes.
However, the smallest number of substitution errors we
encountered in a genome assembly (using Guppy v2.2.3
with the custom-Kp-big-net model and Nanopolish) was
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Fig. 3 Consensus errors per basecaller for the K. pneumoniae benchmarking set, broken down by type. Dcm refers to errors occurring in the
CCAGG/CCTGG Dcmmotif. Homopolymer errors are changes in the length of a homopolymer three or more bases in length (in the reference). This
plot is limited to basecallers/versions with less than 1.2% consensus error and excludes redundant results from similar versions

337 substitutions (Additional file 1: Figure S5, Additional
file 2: Table S3), which at ∼ 10 times the number of
true SNPs expected between bacterial pathogen genomes
linked to the same outbreak [8] would constitute an
unacceptably high false positive rate for this applica-
tion. While it is possible that tailored strategies for
SNP calling from ONT reads could reduce the num-
ber of false positives, assembly-based sequence compar-
isons (which are frequently used in public health labs [9,
10]) would require dramatic improvements in basecalling
accuracy.

Conclusions
Best results, in terms of both read and consensus accuracy
for the K. pneumoniae benchmarking set, were obtained
using Guppy v2.2.3 with a custom model trained on

data mostly from the same species (Fig. 1). This superior
performance seems to largely come from correct handling
of Dcmmethylation (Fig. 3). Since DNAmodification pat-
terns can differ between taxa, we propose our results may
represent a more general trend: native DNA basecalling
accuracy is best when the model was trained on native
DNA from the same species or a sufficiently close relative
to have similar DNA modifications. For example, a model
trained on native human DNA may also perform well on
native mouse DNA and vice versa, as CpG methylation
is common to both species [11]. The benefits of custom
training may further extend to direct RNA sequencing,
where base modifications can be more extensive than in
DNA [12, 13].
For most basecallers, full information is not disclosed

on the taxa and DNA type (native or amplified) used to

Fig. 4 Consensus accuracy before (red) and after Nanopolish (blue) for the assemblies of K. pneumoniae benchmarking set
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train the default model. We encourage developers to be
more transparent in this regard and to consider provid-
ing multiple trained models when possible (e.g. amplified,
native human, native E. coli) so users can choose one
whichmost closely matches their organism. For users with
sufficient quantities of training data, high-performance
computers with GPUs and computational expertise, we
recommend custom model training to maximise base-
calling accuracy. Our custom-Kp-big-net model shows
that even more accurate results are possible with bigger
neural networks, including substantial improvements in
read-level accuracy, but at a cost to speed performance
(Fig. 1).
ONT sequencing has seen enormous gains in both yield

and accuracy over the past few years, but our results
show there is still much room for improvement. Across
all basecallers, models and genomes, the best consensus
accuracy we observed was Q32.2 (99.94% identity). This
equates, on average, to ∼ 3000 errors in a 5Mbp genome.
Many of these errors are substitutions which could lead to
false-positive SNP calls, a potentially major impediment
to outbreak investigations. In order to achieve a perfect
bacterial genome assembly, the consensus accuracy will
need to be orders of magnitude higher, e.g. Q70 (one
error per 10Mbp). Progress will likely come from many
fronts: changes in technology and chemistry, improve-
ments in basecalling, and development of post-assembly
polishing tools. Until this goal is reached, hybrid assembly
or polishing with Illumina reads will remain a necessity for
researchers that depend on highly accurate sequences.

Methods
Custommodel training
Sloika (https://github.com/nanoporetech/sloika) is ONT’s
neural network training toolkit which can be used tomake
models for use in Guppy. To explore the effect of the
training set on basecalling performance, we used Sloika
v2.1 to train a model (‘custom-Kp’) tailored to K. pneu-
moniae. The training reads came from 50 different isolate
genomes: 30K. pneumoniae (chosen based on their phylo-
genetic uniqueness, each from a different lineage), 10 from
other species of Enterobacteriaceae and 10 from other
families of Proteobacteria (Additional file 1: Figure S2,
Additional file 2: Table S6). Our training reads came from
20 different MinION runs, 10 of which were barcoded
runs that contributed multiple genomes to the training
set. Illumina reads were also available for all genomes,
and we used SKESA [14] (v2.3.0) to produce high-quality
contigs for each.
From an initial collection of 5,629,714 reads, we

trimmed each read’s signal at the fast5 level, removing
low-variance open-pore signal [5] and then an additional
2000 signal values from the start and end of the reads
which served to remove adapter and barcode signals.

We also discarded short reads (< 50,000 signal values),
leaving 1,985,997 trimmed reads. We basecalled these
reads (using Albacore v2.3.4) to select reads based on
length (> 5 kbp), completeness of alignment to the SKESA
contigs (< 30 bp unaligned) and quality over a sliding
window (no indel regions exceeding 25 bp in size). This
further reduced our set to 766,551 reads. We filtered the
reads once more (following Sloika’s training instructions:
https://github.com/nanoporetech/sloika/blob/master/
scripts/example_training.sh), this time on the quality of
the raw-signal-to-reference alignment. We set aside 20
of the resulting reads from each genome (1000 in total)
to use as a validation set, leaving 226,166 for training
the neural network. Sloika subdivides these reads into
‘chunks’ of 4000 signal values, of which there were
7,693,885.
Using Sloika with this entire training set would have

required hundreds of gigabytes of RAM, so we produced a
fork of Sloika (https://github.com/rrwick/sloika) modified
to load a random subset of the training data at periodic
intervals. By only training on 5% of the data at a time and
reloading a new 5% every 250 training batches, we were
able to use the entirety of our training data while keep-
ing RAM usage under 10 GB. We trained the custom-Kp
model for 47,500 batches (100 chunks per batch) on an
NVIDIA P100 GPU, which took 36.5 h.
Albacore, Guppy and Scrappie all use an architecture

that ONT calls RGRGR – named after its alternating
reverse-GRU and GRU layers (Additional file 1: Figure
S1, top-left). To test whether more complex networks
perform better, we modified ONT’s RGRGR network by
widening the convolutional layer and doubling the hid-
den layer size (Additional file 1: Figure S1, top-right). We
trained this ‘custom-Kp-big-net’ model on the same bac-
terial training set using our fork of Sloika. Training on an
NVIDIA P100 GPU for 44,000 batches took 48 hours.

Read sets
To test basecaller performance, we used a set of reads gen-
erated using a MinION R9.4 flowcell to sequence native
DNA extracted from the bacterium Klebsiella pneu-
moniae. The bacterial sample (isolate INF032, BioSam-
ple accession https://www.ncbi.nlm.nih.gov/biosample/
SAMEA3356991) was isolated from a urinary tract infec-
tion in an Australian hospital [15]. It was sequenced as
part of a barcoded MinION run with other Klebsiella
isolates, following the DNA extraction and library prepa-
ration protocol described in Wick et al. 2017 [16]. This
particular sample was chosen for benchmarking basecall-
ing accuracy because it had a good yield of ONT reads
(see below) and contained no plasmids, making for a
simpler assembly. It is not in the same K. pneumoniae
lineage as any of the genomes used to train our custom
models (Additional file 1: Figure S2). Since the sequenced

https://github.com/nanoporetech/sloika
https://github.com/nanoporetech/sloika/blob/master/scripts/example_training.sh
https://github.com/nanoporetech/sloika/blob/master/scripts/example_training.sh
https://github.com/rrwick/sloika
https://www.ncbi.nlm.nih.gov/biosample/SAMEA3356991
https://www.ncbi.nlm.nih.gov/biosample/SAMEA3356991
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DNA was native, it contains base modifications, the most
relevant of which is Dcmmethylation (conversion of cyto-
sine to 5-methylcytosine at particular motifs) which is
common in some species of Enterobacteriaceae [7]. High-
quality Illumina reads were available for this sample: DNA
was extracted and sequenced as 125 bp paired-end reads
via Illumina HiSeq 2000 at the Sanger Institute, pro-
ducing 5,455,870 reads (ENA accession https://www.ebi.
ac.uk/ena/data/view/ERR1023765) with 133× read depth
over the INF032 chromosome [15]. This allowed us to
generate an accurate reference sequence via hybrid assem-
bly using Unicycler [16] (v0.4.0) which produced a single
5,111,537 bp contig with a GC-content of 57.6%. This
reference was used as the ground truth sequence when
assessing read and consensus accuracy for each basecaller
(see below).
A subset of ONT reads was extracted for bench-

marking basecallers against the reference genome of
INF032. The entire barcoded MinION run containing
INF032 was demultiplexed using Deepbinner [17], using
its --require_both option for high-precision demul-
tiplexing. This produced 70,494 reads (∼ 1.1Gbp) for the
barcode corresponding to INF032. We further reduced
this dataset by basecalling with Guppy v1.6.0 (the cur-
rent version at the time of read selection), aligning the
resulting reads (using minimap2 [18] v2.14) to the INF032
reference genome and selecting those with a ≥ 22 kbp
alignment to the reference. This served to exclude ‘junk’
reads, very low-quality reads, improperly demultiplexed
reads (belonging to a different isolate) and short reads.
The threshold of ≥ 22 kbp was chosen because it reduced
the dataset to approximately 100× mean read depth
for the INF032 genome while maintaining even cov-
erage (Additional file 1: Figure S6). The resulting set
contained 15,154 reads with lengths ranging from 22 –
134 kbp (N50 = 37 kbp) and totalling ∼ 550Mbp. These
reads are significantly longer than the longest repeat in
the INF032 genome (the ∼ 5.5 kbp rRNA operon) so each
can be reliably mapped to its correct location on the refer-
ence genome. The Guppy qscore distributions (Additional
file 1: Figure S6) show that while the selection process
removed the lowest quality reads, the resulting reads still
span a wide quality range, with 458 (∼ 3%) falling below
ONT’s ‘fail’ threshold of Q7. This read set (hereafter
referred to as the ‘benchmarking set’) was used with all
basecallers and versions.
In addition to the primary K. pneumoniae bench-

marking set, we also prepared test read sets for
nine additional genomes. These include three other
K. pneumoniae genomes and one genome each from
six different bacterial species: Shigella sonnei, Serra-
tia marcescens, Haemophilus haemolyticus, Acinetobacter
pittii, Stenotrophomonas maltophilia and Staphylococcus
aureus. As well as covering a wider range of species, these

read sets span a wider date range (Feb 2017–Aug 2018)
and include both R9.4 and R9.4.1 flowcells (Additional
file 2: Table S1). They were prepared in the same man-
ner as the benchmarking set, but we adjusted the align-
ment length threshold for each set as appropriate for the
genome and read depth (3 kbp to 33 kbp, see Additional
file 2: Table S1). These read sets (hereafter referred to as
the ‘additional sets’) were used to more thoroughly assess
the current version of Guppy (v2.2.3) using its default
model, its included flip-flop model and our two custom
models (custom-Kp and custom-Kp-big-net).
Despite the research interest in human DNA, we chose

to limit our read sets to bacterial samples because
they allow for a more confident ‘ground truth’ reference
sequence against which to calculate accuracy than do
complex eukaryote genomes. Bacterial genomes are hap-
loid and have relatively low repetitive content (due in part
to >85% of sequence being protein coding), facilitating
complete assembly and accurate Illumina-read polish-
ing against which to calculate ONT basecalling accuracy.
A recent study on de novo assembly of human ONT
reads [6] found a 0.04% error rate between an Illumina-
polished assembly and reference sequence. This level of
uncertainty in the reference would make a Q50 consen-
sus appear to be Q34, so estimates of consensus sequence
accuracy could only provide a lower bound on the true
value. Additionally, the small sizes of bacterial genomes
make computational tasks more tractable and facilitate
higher read depths. For these reasons, bacterial and phage
DNA have been the standard in ONT accuracy testing
and basecaller development, with previous studies either
exclusively using bacterial DNA [4] or limiting human
DNA to read-level analyses (i.e. excluding consensus-level
analyses) [3, 5].

Read accuracy
We ran all basecallers on the benchmarking read set, with
each producing either a FASTQ or FASTA file suitable
for downstream analysis. To allow a comparison of speed
performance, all basecalling was carried out on the same
computer: six core (12 thread) Intel Xeon W-2135 CPU,
32 GB RAM, NVIDIA GTX 1080 GPU and 1 TB NVMe
SSD. Basecalling was carried out using all 12 CPU threads,
or if supported by the basecaller, on the GPU.
To assess read accuracy, we aligned each basecalled read

set to the reference INF032 genome using minimap2 [18]
(v2.12). Each read’s identity was defined as the number
of matching bases in its alignment divided by the total
alignment length including insertions and deletions, a.k.a.
the ‘BLAST identity’ (https://lh3.github.io/2018/11/25/
on-the-definition-of-sequence-identity). Our read iden-
tity values were therefore based only on the fraction of
each read which aligned to the reference (‘per-read aligned
fraction’), though if less than half of a read aligned it was

https://www.ebi.ac.uk/ena/data/view/ERR1023765
https://www.ebi.ac.uk/ena/data/view/ERR1023765
https://lh3.github.io/2018/11/25/on-the-definition-of-sequence-identity
https://lh3.github.io/2018/11/25/on-the-definition-of-sequence-identity
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given an identity of 0% (<6% of reads for all basecallers,
see Additional file 2: Table S3). While this approach could
overestimate the identity of each read (which may consist
of both aligned and unaligned regions), our read selection
process (only using reads with a long alignment to the ref-
erence, see above) resulted in reads with few unaligned
regions: for our benchmarking set, each basecaller had a
median per-read aligned fraction of >99.5% (Additional
file 2: Table S3), with most of the unaligned regions due
to sequencing adapters and barcode sequences. Basing
read identity on aligned regions should therefore provide
a valid assessment of overall read identity for our test sets
(although note this same approach may not be appropri-
ate for other read sets where quality control has not been
performed).
Another possible concern is that some basecallers might

only output a selective subset of the data, i.e. instead of
producing basecalled sequence for all reads, they might
only output the higher-quality reads, resulting in an
inflated average identity. To guard against this possibility,
any reads missing from the output were given an identity
of 0%. However, of all basecallers and versions, only Alba-
core v0.7.5 (the oldest version tested) failed to output all
15,154 reads in our benchmarking set (3% missing reads,
see Additional file 2: Table S3). The distribution of per-
read identities for each basecaller was broad, with most
reads in the range of 70% to 95%. We thus defined each
basecaller’s overall read accuracy as the median identity
across all reads in the set (counting the small fraction that
were not reported or not alignable along >50% of the read
length as 0% identity).

Consensus accuracy
We used Rebaler (https://github.com/rrwick/Rebaler) to
generate a consensus sequence from each basecalled read
set. Rebaler is a reference-based assembler written for the
purpose of comparing basecallers. It works by first replac-
ing all parts of the reference genome using read sequences
and then polishing the genome with multiple rounds of
Racon [19]. This approach ensures that the assembled
genome will have the same large-scale structure as the
reference, but small-scale details (e.g. basecalls) will not
be affected by the reference sequence. Even after multi-
ple rounds, Racon does not always converge to the best
possible sequence, so we used Rebaler with an iterative
approach: running the assembly multiple times, each with
shuffled input reads and a rotated (shifted start position)
reference genome.We used 10 iterations, each resulting in
a slightly different assembly which were then used as the
‘reads’ for a final Rebaler assembly. This iterative approach
was able to reduce assembly errors by about 20%: indi-
vidual Rebaler assemblies of the Guppy v2.2.3 reads had
a consensus accuracy of 99.33% (Q21.74) but the final
iterative assembly had an accuracy of 99.47% (Q22.76).

To assess consensus accuracy, we divided each final
Rebaler assembly into 10 kbp pieces and analysed them in
the same manner used for the reads: aligning to the ref-
erence and calculating identity. Each basecaller’s overall
consensus accuracy was defined as the median identity
of these 10 kbp pieces. The distributions of identities for
assembly pieces were narrow and had standard deviations
of < 0.1%.
To classify consensus sequence errors by type, we

aligned each assembly to the reference using NUCmer
[20] (v3.1) and then classified each error based on the
reference context. An error was classified as ‘Dcm’ if
it occurred in a Dcm-methylation motif (CCAGG or
CCTGG). It was classified as ‘homopolymer insertion’ or
‘homopolymer deletion’ if the error added or removed
a base from a homopolymer three or more bases in
length. If the previous categories did not apply, the error
was classified as ‘insertion’, ‘deletion’ or ‘substitution’ as
appropriate.

Polishing
This study is focused on the performance of basecall-
ing tools, and post-assembly polishing with raw signal
data is a separate topic that falls outside our scope.
However, many users who produce ONT-only assem-
blies will run Nanopolish on their result, which uses the
raw read signals to improve the consensus accuracy of
an assembly. This raises the question: does basecaller
choice matter if Nanopolish is used downstream? To
assess this, we ran Nanopolish v0.10.2 [21] on each final
Rebaler assembly and assessed the consensus accuracy as
described above.
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