

LSHTM Research Online

Gibbins, MP; (2019) Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens. PhD (research paper style) thesis, London School of Hygiene & Tropical Medicine. DOI: https://doi.org/10.17037/PUBS.04653634

Downloaded from: http://researchonline.lshtm.ac.uk/4653634/

DOI: https://doi.org/10.17037/PUBS.04653634

Usage Guidelines:

 $Please \ refer \ to \ usage \ guidelines \ at \ https://researchonline.lshtm.ac.uk/policies.html \ or \ alternatively \ contact \ researchonline@lshtm.ac.uk.$

 $\label{eq:available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/$

Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens

Matthew Paul Gibbins

Thesis submitted in accordance with the requirements for the degree of

Doctor of Philosophy

of the

University of London

June 2019

Department of Immunology and Infection

Faculty of Infectious Tropical Diseases

London School of Hygiene and Tropical Medicine

No funding received

I, Matthew Paul Gibbins, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.

ABSTRACT

The pre-erythrocytic stages of malaria are the preliminary steps to a disease of massive global health importance. Following transmission of sporozoites by mosquito bite to a human host, a clinically silent period of parasite development in the liver preludes the harmful blood stages that characterise malarial infection. Creating a vaccine that targets these stages is a very attractive notion as it would prevent this burden of disease. Protection against the pre-erythrocytic stages has been shown to be dependent on CD8+ T cells. However, very few antigens that induce anti-*Plasmodium* CD8+ T cell responses have been identified, especially those expressed by the parasite when developing inside hepatocytes. Using mouse models, experimental genetics and bioinformatics tools, I present work that has progressed our understanding of CD8+ T cells induced in the pre-erythrocytic stages of malaria and assessed the ability of antigen-specific CD8+ T cells to protect against subsequent challenge following vaccination.

I have investigated and compared the differences in CD8+ T cell responses to a sporozoite (Circumsporozoite Protein) and a vacuolar membrane liver stage protein (Upregulated in Infectious Sporozoites gene 4) and showed that despite a divergence in immunogenicity when immunising with radiation attenuated sporozoites, both types of antigen are equally protective when mice are vaccinated with viral vectors to induce large antigen-specific CD8+ T cell populations. The natural immunogenicity of the liver stage antigen does not improve when liver stage development is extended by using drug prophylaxis. Additionally, I have compared the protection induced by liver stage antigens expressed constitutively after hepatocyte invasion and those expressed only after at least 12 hours post invasion. I have shown that some protection can be induced by the mid-late expressed Liver Specific Proteins 1 and 2, suggesting that these antigens are effectively presented and recognised by CD8+ T cells. This highlights the potential for the incorporation of liver stage antigens into next-generation malaria vaccines.

Additionally, I have investigated the role of the immunodominant CD8+ T cell epitope of Circumsporozoite Protein and showed that a significant level of protection is mediated by CD8+ T cells specific for this epitope. Nonetheless, following multiple immunisations with a parasite lacking this epitope, sterile protection can still be achieved, suggesting other antigens are important for parasite-induced protection. Thus, finally I go on to identify a number of novel CD8+ T cell epitopes from antigens expressed in the sporozoite and liver stage parasite, to further broaden our view of the CD8+ T cell responses induced during the pre-erythrocytic stages of malaria.

ACKNOWLEDGEMENTS

To the many people who have made this PhD happen, these words of thanks are for you.

To Julius, a great supervisor who has pushed me constantly. I am very grateful for the many opportunities you have bestowed upon me.

To Eleanor, for your wise words and critical assessment you have given me over the years. I hope I have become a better scientist for being able to garner your insight.

To Sam, my fellow PhD student in the Hafalla group, your cool, calm approach was always refreshing after a tough day in the lab. Best of luck in the future.

To Nic, The Swiss Guy, whose enthusiasm and drive spurred me on in times of doubt in the last couple of months. Thanks for your unabated assistance. Welcome back to the UK.

To Liya, Marta, Mark, Maya and Jasmine, who passed through the Hafalla lab as MSc project students, and have contributed to some of the work in this thesis.

To everyone in Lab 234, for your friendliness and making the lab work just a little bit more fun when it all got too much. The diversity of the lab also made asking questions a lot easier, as there has always been someone who can solve my problems.

To all the past and present members of Office 238c, I have really enjoyed sharing an office with you all. A crowded but enjoyable experience. Best of luck in your new job Tom, and to Lotus for a timely finish to your PhD.

To everyone in the BSF for your great animal husbandry and guidance, and your constant cheery smiles.

To Vanessa for being fantastic, and to Kat and Lindsey for patiently teaching me how to inject.

To James at the Babraham Institute, and Simon, Arturo and Adrian at the Jenner Institute for kindly providing us with reagents.

To Katja, in Berlin, for everything you have done for the projects detailed in this thesis amongst others. You have been incredibly helpful and knowledgeable for which I cannot thank you enough. We also had some great times outside the lab, thanks for showing me around Berlin, I very much enjoyed my visits.

To Kai, for allowing me to work in his lab in Berlin. The experience is very much appreciated.

To everyone in the Matuschewski lab for your help and the fun times we had. I miss Berlin!

To Olivier, Sylvie and the lab, in Paris, for teaching me molecular biology. It has been a great experience and I really want to continue in this field. It was a great place to work and I really enjoyed my trips to Paris. Thanks to the Company of Biologists for funding my Travel Scholarship to allow this to happen.

To Massimo, Emilio and Morten, for your insights and guidance into the world of bioinformatics.

To Hans and your group for the use your dissecting microscope.

To Mojca, for all your entomological guidance.

To Liz K, for all your flow cytometry guidance.

To Liz McC, for guiding me in the use of the confocal microscope.

To Carolynne, for the many orders you have placed for me and the Hafalla group.

To my housemates: Kate and Aga, my first housemates who helped me settle into London life, and to the 71 Sydney Road crew for making living in a London a truly unforgettable experience.

To my friends in London and beyond for your continual support.

To every music ensemble I have played with whilst in London, you have been a most wonderful distraction.

To my family, for constantly being there for me. Never more than a phone call away. It really means a lot to me. I'll try and call more often now.

And lastly, to Marta, for your insight, help and support but also for being incredibly patient with me.

STATEMENT OF CONTRIBUTIONS

The work presented in this thesis was conducted primarily at the London School of Hygiene and Tropical Medicine in the UK, but also at the Max Planck Institute for Infection Biology, in Berlin, Germany and at the Centre d'Immunologie et des Maladies Infectieuses at Sorbonne Université in Paris, France and the Instituto de Investigaciones Biotecnológicas at Universidad Nacional de San Martín in Buenos Aires, Argentina in concert with our collaborators.

Below I detail my contribution to all of the chapters I present here and the contributions of the collaborators listed as authors in the manuscripts that formulate these chapters. Julius Hafalla (JH, my supervisor) and our collaborators (as indicated) conceived the studies presented in this thesis. Eleanor Riley (my co-supervisor) acted as a mentor during my PhD, providing stimulating and critical discussion during laboratory meetings.

CHAPTER 1

This chapter summarises the current knowledge about host-parasite interactions and the immune responses induced during the pre-erythrocytic stages of malaria. I also outline the current understanding of pre-erythrocytic stage targeted vaccines currently under investigation by the malaria and vaccine community.

CHAPTER 2

Contrasting immunogenicities of malaria pre-erythrocytic stage antigens are overcome by vaccination

The original study was conceived by JH with Olivier Silvie (OS) in the laboratory of Kai Matuschewski (KMat). OS generated the transgenic parasites and Katja Müller (KMü) performed the characterisation of the parasites. JH, KMü and I performed the immunological experiments and I performed the corresponding statistical analyses. Arturo Reyes-Sandoval (AR-S), Adrian Hill (AH) and Simon Draper (SD) provided the adenovirus AdOVA used in the vaccination experiments. JH and KMü performed the

vaccination experiments. I wrote the first draft of the paper. JH and I wrote the paper presented here with contributions from all authors.

CHAPTER 3

Extending expression of *Plasmodium* liver stage antigens does not improve cognate CD8+ T cell responses

The original study was conceived by JH with additional discussion from OS and KMat. KMü and I performed the immunological experiments and I performed the corresponding statistical analyses. I wrote the paper as presented here.

CHAPTER 4

Late liver stage antigens confer partial protection against the pre-erythrocytic stages of malaria

The original study was conceived by JH and OS. I generated the transgenic parasites with Sylvie Briquet (SB) and OS in Paris. I characterised the parasites, performed immunology and vaccination experiments in London with Niculò Barandun (NB) and Liya Mathew (LM) as part of their ETH Zürich and LSHTM MSc theses respectively. AR-S, AH and SD provided the adenovirus AdOVA used in the vaccination experiments. I performed the statistical analyses presented in the paper. I wrote the paper as presented here.

CHAPTER 5

The importance of the immunodominant CD8+ T cell epitope of *Plasmodium* circumsporozoite protein in parasite- and vaccine-induced protection

The original study was conceived by JH. Maya Glover (MG) and Jasmine Liu (JL) performed the initial experiments as part of their LSHTM MSc theses with KMü in the laboratory of KMat. I validated the immunological experiments and confirmed the screen for non-CSP epitopes presented as an addendum. I performed the statistical analyses. Karolis Bauza and A.R.-S. generated the CSP-expressing viruses Ad*Pb*CSP and

MVA*Pb*CSP. I wrote the first draft of the paper. JH and I wrote the paper as presented here.

CHAPTER 6

Identification of novel CD8+ T cell epitopes from the pre-erythrocytic stages of malaria

The original study was conceived by JH with guidance from Morten Nielsen (MN). I performed the bioinformatics analysis with Emilio Fenoy (EF) and Massimo Andreatta (MA). I performed the immunological epitope screens. The feature analysis was performed by EF. I wrote the paper as presented here with contributions from all authors.

CHAPTER 7

This chapter is a discussion of the findings presented, the implications that they have and potential future experiments that could be performed.

ADDITIONAL PUBLICATIONS

I also contributed to other projects that were not part of my PhD work and have not been presented in this thesis accordingly:

Müller K, <u>Gibbins MP</u>, Matuschewski K, Hafalla JCR. Evidence of cross-stage CD8+ T cell epitopes in malaria pre-erythrocytic and blood stage infections. Parasite Immunol. 2017 Jul;39(7).

Brugman VA, Kristan M, <u>Gibbins MP</u>, Angrisano F, Sala KA, Dessens JT, Blagborough AM, Walker T. Detection of malaria sporozoites expelled during mosquito sugar feeding. Sci Rep. 2018 May 15;8(1):7545.

TABLE OF CONTENTS

Declaration
Abstract
Acknowledgements
Statement of Contributions and Additional Publications
Table of Contents
List of Figures
List of Tables
Abbreviations

CHAPTER 1: Introduction	19
Life cycle of <i>Plasmodium</i>	21
The pre-erythrocytic stages of malaria	24
Host-parasite interactions	25
Immune responses to the pre-erythrocytic stages	34
Pre-erythrocytic stage vaccines	45
Aims and research objectives	56
References	58

CHAPTER 2: Contrasting immunogenicities of malaria pre-erythrocytic stage antigens are overcome by vaccination stage

e antigens are overcome by vaccination	73
Title page	74
Abstract	75
Introduction	76
Results	79
Discussion	99
Methods	103
Author contributions	107
Acknowledgements	107
Competing interests	107
Supplementary Figures	108
Supplementary Experimental Procedures	110
Supplementary Table	112
References	113

CHAPTER 3: Extending expression of <i>Plasmodium</i> liver stage antigens does not improve cognate CD8+ T cell responses	117
Title page	118
Abstract	119
Introduction	120
Materials and Methods	124
Results	126
Discussion	134
Acknowledgements	137
References	138

litle page
Abstract
ntroduction
Aterials and Methods
Results
Discussion
Author Contributions
Acknowledgements
Competing interests
Supplementary Information
Supplementary Experimental Procedures
Supplementary Figures
Supplementary Table
References

-for portial protoction ED 4. Loto liver 41.... СН the

CHAPTER 5: The importance of the immunodominant CD8+ T cell epitope of Plasmodium circumsporozoite protein in parasite- and vaccine-induced

protection	189
Title page	190
Abstract	191
Introduction	192
Results and Discussion	194
Materials and Methods	207
Author Contributions	210
Acknowledgements	210
References	211

CHAPTER 6: Identification of novel CD8+ T cell epitopes from the

pre-erythrocytic stages of malaria	216
Title page	217
Abstract	218
Introduction	219
Materials and Methods	222
Results	225
Discussion	243
Acknowledgements	249
Addendum: Identification of non-CSP targets of CD8+ T cell	
responses to malaria pre-erythrocytic stages in a BALB/c model	250
Introduction	250
Results and Discussion	250
Additional Materials and Methods	254
References	256

260
261
262
263
265
267
269

APPENDIX 1

Inventory of novel H-2- ^b restricted CD8+ T cell epitopes and	
supplementary information	272

LIST OF FIGURES

CHAPTER 2

Figure 1: Generation and characterisation of recombinant CSP ^{SIINFEKL} and UIS4 ^{SIINFEKL} <i>P. berghei</i> parasites	80
Figure 2: Kinetics of CD8+ T cell responses induced by transgenic parasites	85
Figure 3: Sporozoite surface antigen induces a higher CD8+ T cell response	
than EEF vacuolar membrane antigen in the spleen and liver	89
Figure 4: OT-I cells are not required to detect SIINFEKL-specific CD8+ T cell	
responses	92
Figure 5: Increasing antigen dose does not improve antigen-specific CD8+	
T cell responses to an EEF vacuolar membrane protein	95
Figure 6: Sporozoite surface and EEF vacuolar membrane antigens are	
Presented to vaccine-induced CD8+ T cells for killing, leading to sterile	
protection	97
Supplementary Figure 1: Sporozoite surface antigen induces a greater effector	
CD8+ T cell phenotype than EEF vacuolar membrane antigen	108
Supplementary Figure 2: Antigen experienced SIINFEKL-specific CD8+ T cells	
also produce TNF- α and IL-2	109

CHAPTER 3

Figure 1: Flow cytometry gating strategies	127
Figure 2: Similar levels of antigen-experienced CD8+ T cells are induced in	
mice immunised with irradiated and drug attenuated sporozoites1	128
Figure 3: Extending the duration of EEF development during immunisation does	
not enhance CD8+ T cell responses to EEF vacuolar membrane proteins 1	130
Figure 4: CD8+ T cell responses to sporozoite antigens are not affected by an	
extended EEF development	132

CHAPTER 4

Figure 1: Generation of mCherry-SIINFEKL-UIS4 3' UTR containing plasmid Figure 2: Generation and characterisation of LISP1 ^{SIINFEKL} and	154
LISP2 ^{SIINFEKL} parasites	157
Figure 3: Generation and characterisation of pLISP1-UIS4 ^{SIINFEKL} and	
pLISP2-UIS4 ^{SIINFEKL} parasites	161
Figure 4: Early and mid-late expressed EEF proteins induce low frequencies of	
antigen specific CD8+ T cell responses when sporozoites are administrated	
intravenously or intradermally	165
Figure 5: Despite the poor immunogenicity of mid-late EEF antigens, following	
vaccination they induce a reduction in parasite load in the liver and unlikely	
levels of sterile protection	169
Supplementary Figure 1: Vaccination with AdOVA and OT-I cells	182

CHAPTER 5

Figure 1: SYIPSAEKI is dispensable for RAS immunisation but predominates	
protection with fewer immunisations	.196

Figure 2: Prime-boost vaccination with CSP expressing viruses induces strong	
anti-CSP antibody and CD8+ T cell responses but SYIPSAEKI-specific	
CD8+ T cell responses are absolutely required for protection	200
Figure 3: Prime-boost vaccination with CSP expressing viruses does not	
protect C57BL/6 mice, irrespective of induced antibody titres	203

CHAPTER 6

Figure 1: Flow chart for CD8+ T cell epitope discovery	227
Figure 2: Novel peptide restimulation of splenocytes from mice immunised with	
sporozoites under azithromycin prophylaxis	231
Figure 3: CD8+ T cell responses to novel epitopes are not significantly boosted	
by a secondary homologous immunisation	.233
Figure 4: Restimulating splenocytes with a pool of peptides can increase the	
production of IFN-γ by CD8+ T cells and allow more of the total CD11a ^{hi}	
CD8+ T cell response to be accounted for	241
Figure 5: Identification of a novel non-CSP CD8+ T cell epitope	.252

LIST OF TABLES

	page
CHAPTER 2	
Supplementary Table 1: Primers used to generate and genotype CSPSINFEKL	
and UIS4 ^{SIINFEKL} transgenic parasites	112
CHAPTER 4	
Supplementary Table 1: Table of primers for plasmid generation, parasite	
genotyping and parasite load in the liver qPCR	.183
CHAPTER 6	
Table 1: Prediction of protein features.	236
Table 2: The enrichment of features in immunogenic proteins	.238
Table 3: The depletion of features in immunogenic proteins	238

ABBREVIATIONS

Ad	adenovirus
APC	antigen presenting cell
AZ	azithromycin
CD	cluster of differentiation
CFSE	carboxyfluorescein succinimidyl ester
CHMI	controlled human malaria infection
CSP	circumsporozoite protein
DAPI	4',6-diamidino-2-phenylindole
DC	dendritic cell
DHFR/TS	dihydrofolate reductase/thymidylate synthase
dLN	draining lymph node
EEF	exo-erythrocytic form
ETRAMP	early transcribed membrane protein
FCS	foetal calf serum
GAP	genetically attenuated parasite
GAPDH	glyceraldehyde-3-phosphate dehyrogenase
GFP	green fluorescent protein
HSP	heat shock protein
HSPG	heparan sulphate proteoglycan
IFN	interferon
КС	Kupffer cell
КО	knock out
LISP1	liver-specific protein 1
LISP2	liver-specific protein 2
LSEC	liver sinusoid endothelial cell
MHC	major histocompatibility complex
MHC-I	major histocompatibility complex class I
MVA	modified vaccinia virus Ankara

NK	natural killer cell
Pb	Plasmodium berghei
PEXEL	Plasmodium export element
Py	Plasmodium yoelii
PPM	parasite plasma membrane
PV	parasitophorous vacuole
PVM	parasitophorous vacuole membrane
RAS	radiation attenuated sporozoites
S20	sporozoite-specific gene 20
SEM	standard error of the mean
TCR	T cell receptor
Tg	Toxoplasma gondii
TNF-α	tumour necrosis factor $\boldsymbol{\alpha}$
TRAP	thrombospondin related adhesive protein
T _{RM}	tissue resident memory T cell
UIS4	upregulated in sporozoites gene 4
WТ	wild type

CHAPTER 1

Introduction

INTRODUCTION

Malaria is a major global health challenge and remains a deadly disease with 3 billion people in the population at risk of infection¹. Malaria is endemic to 91 countries in the tropical and subtropical regions of the globe¹. There were around 216 million cases reported in 2016, resulting in around 445,000 deaths, with 80% of global cases occurring in 14 countries in sub-Saharan Africa and India¹.

Malaria sits on the world stage as one of the most high profile diseases and is one of the most heavily funded organisms destined for eradication although the resources are not always spread evenly between endemic countries^{2, 3}. Reports indicate a general decline in malaria over the last decades however there are recent cases of countries rebounding from the brink of eradication as has been seen previously⁴, including an increase of 5 million cases worldwide from that seen a year before in 2015¹. The global reduction in malaria prevalence and related deaths is likely through an increased use of insecticide treated bed nets, indoor residual spraying and improved access to and availability of effective anti-malarials. Nonetheless, to achieve the World Health Organisation (WHO) vision of "A world free of malaria" a highly efficacious malaria vaccine is warranted.

Malaria in humans is caused by five species of the Apicomplexan protozoan *Plasmodium. Plasmodium falciparum* is the most prevalent human malaria parasite in Africa⁵. *P. vivax* is the most widespread human malaria parasite, constituting the majority of malarial cases in Asia, Central and South America, though it is often wrongly deemed to be of lower importance in terms of mortality and morbidity compared to *P. falciparum*⁶. Less common species include *P. malariae* and *P. ovale* which cause milder forms of malaria⁷. With importance to morbidity, *P. vivax* and *P. ovale* can form hypnozoites within the liver; metabolically active parasites waiting for reactivation by some as yet unknown trigger⁸. Relapses can often occur years later, if only the intermittent blood stage infections, and not the liver resident hypnozoites, are treated⁹. Finally and relatively

recently, zoonotic *P. knowlesi*, first surveyed in Sarawak (Malaysian Borneo)¹⁰, was identified as the fifth species of *Plasmodium* that infects humans, though the natural hosts are macaque monkeys. Prior to this many malaria cases in Southeast Asia were microscopically misdiagnosed as *P. malariae*. However it has been shown that the severity and lethality of *P. knowlesi* infection is much greater than that of *P. malariae* infection¹¹.

The *Plasmodium* parasite is transmitted by female *Anopheles* mosquitoes and seeks to continuously cycle between the mosquito and vertebrate host. Many vertebrates are susceptible to malaria. *Plasmodia* species are known to infect sauropsids (birds and lizards), primates, bats and rodents¹². Transmission can occur anywhere where the *Plasmodium* species, preferred vector and preferred host reside. The life cycle of malaria (discussed below) can be divided into three broad phases: vector stages, pre-erythrocytic stages and erythrocytic stages. Symptoms of malarial infection in humans are only exhibited in the erythrocytic or blood stage which can include cycles of fever, headaches and nausea as the parasite asexually reproduces. Severe malaria can result in anaemia, organ failure and cerebral malaria in complicated cases and- in non-immune individuals- will often result in death if left untreated as acute parasite infection is non-limiting.

THE LIFE CYCLE OF PLASMODIUM

The initiation of the life cycle of *Plasmodium* in the vertebrate host (pre-erythrocytic stages) starts with the injection of infectious sporozoites from an infected female *Anopheles* mosquito. The mosquito probes the skin before taking a blood meal which involves injecting saliva, which contains factors that help locate a blood vessel through vasodilation amongst other mechanisms¹³. This probing and salivation release the parasite from the mosquito salivary glands. The parasite in its elongated sporozoite form then glides in the skin, trickling out the dermis until it finds a capillary blood vessel¹⁴. Finding a dermal capillary, the parasite traverses the endothelium and passes into the

bloodstream¹⁵. From here, the parasite will travel to the liver to seek a hepatocyte to invade and develop into its liver stage form, an exo-erythrocytic form (EEF).

The sporozoite must cross the liver sinusoid, made up of fenestrated liver sinusoid endothelial cells (LSECs) and Kupffer cells (KCs), resident macrophages in the liver, in order to reach the parenchyma and hepatocytes below¹⁶. Sporozoites traverse several hepatocytes before invading properly¹⁷ and initiating EEF development. Sporozoites traverse in a transient vacuole¹⁸, whereas genuine invasion results in parasitophorous vacuole (PV) formation that protects the parasite from the cytoplasm of the hepatocyte. The PV is enclosed by a membrane, the parasitophorous vacuole membrane (PVM), composed of host cell origin which is then rapidly modified with parasite-derived proteins¹⁹. The EEF grows and undergoes mitotic division of the genome without cytokinesis (schizogony) within the PV to form thousands of merozoites inside the hepatocyte²⁰. Membrane encompassed merozoites (merosomes) bud into the sinusoid of the liver and release merozoites into the bloodstream, where upon they can invade erythrocytes. This is the initiation of the erythrocytic stages and up until this point, an infected individual is unaware of the parasites in their body with the erythrocytic stages of malaria being the only stage responsible for the pathogenesis associated with malaria.

The merozoites replicate asexually, with invasion, development and rupture of erythrocytes occurring every 24, 48 or 72 hours, depending on the species of *Plasmodium*²¹. Merozoites invade erythrocytes through a variety of redundant mechanisms, utilising different erythrocyte and parasite membrane proteins. Erythrocyte proteins acting as receptors include glycophorins²²⁻²⁴, complement receptor 1²⁵, basigin²⁶ and duffy antigen receptor for chemokines (DARC) in *P. vivax* invasion²⁷ with the parasite interacting via different erythrocyte binding ligand (EBLs), reticulocyte binding protein (RBPs) and Duffy-binding proteins (DBPs), released from the micronemes and rhoptries of the parasite, though many interactions have still to be resolved²⁸. Once inside the erythrocyte, the merozoite replicates to form a schizont of 16-32 merozoites. Parasites

rupture their host erythrocyte synchronously before subsequently invading new nearby erythrocytes²¹. These processes induce a milieu of inflammatory cytokines and molecules from the immune system which induces the bouts of fever which are famously associated with malarial disease²⁹. If left untreated this replication will continue, which in non-immune individuals can result in death by anaemia, organ failure and/or cerebral malaria as parasites sequester in different locations in the body. Cerebral malaria has been proposed to occur by several different mechanisms and the pathogenesis of severe malaria has also been found to vary depending on endemic location and age of host³⁰.

At some stage, although it is not fully determined what the trigger(s) are, some asexual blood stage parasites change and commit to development into gametocytes, the sexual stage of the parasite. This switch requires the gene *ap2-g* to be epigenetically derepressed³¹ and through a positive feedback loop³² produce increasingly levels of AP2-G, an AP2 domain DNA-binding protein transcription factor. AP2-G is the master regulator of sexual commitment^{32, 33} and is a transcriptional activator for early gametocytogenesis genes³⁴. Once fully mature, gametocytes are believed to remain dormant in G₀ phase of the cell cycle inside erythrocytes until uptake by a mosquito³⁵. Both male and female gametocytes are required to be taken up by a mosquito to generate the next parasite progeny in the vector stages.

Following uptake of male and female gametocytes into a female mosquito, by means of blood meal, the mature gametocytes escape from their erythrocytes and form gametes. Inside the midgut of the mosquito, both gametocytes round up with the male gametocyte undergoing three rounds of rapid replication to form 8 motile microgametes which leave the erythrocyte and adhere to neighbouring erythrocytes in an observable process called exflagellation³⁶. Differentiation into gametes is caused by two environmental triggers: a drop in temperature³⁷ and mosquito derived xanthurenic acid^{38, 39}. Microgametes go in search for a female macrogamete, to initiate fertilisation, with fusion of plasma membranes and nuclear fusion to form a tetraploid, or diploid zygote⁴⁰. The zygote

transforms into a motile ookinete, which traverses the midgut epithelium and embeds itself between the basement epithelium and basal lamina to form an oocyst⁴¹. Following successful embedding, mitotic division occurs⁴⁰ and sporozoites are formed within syncytial lobes of the oocyst called sporoblasts⁴² in a process called sporogony. Rupture of the oocysts release sporozoites into the haemocoel of the mosquito either through sporozoites actively escaping the oocyst membrane⁴³ or the action of a protease⁴⁴. Once in the haemocoel, the sporozoites travel via haemolymph circulation and attach and invade salivary glands to further mature⁴⁵. The host mosquito now harbours infectious sporozoites ready to be released during probing and salivation, prior to blood feeding, thus restarting the *Plasmodium* life cycle.

THE PRE-ERYTHROCYTIC STAGES OF MALARIA

The development of an efficacious vaccine against malaria is still a long way away, though major advances in technology and techniques have allowed more information to be derived from the host-parasite interactions of the parasite at its different life stages and the immune responses that are induced. Alongside advances in vaccine development, there is now increased understanding of how to best induce appropriate immune responses to provide protection against parasite development in these stages. Focusing on the pre-erythrocytic stages, I will review the biological and immunological processes that occur at these stages, derived from murine and human studies and highlight recent advances in these fields. Creating a vaccine against the pre-erythrocytic stage is attractive because elimination of the parasite at an early time point following sporozoite injection by mosquito and prior to fulminant blood stage infection would prevent all malarial pathology associated with the erythrocytic stage and also prevent further transmission of the parasite.

Previously, the pre-erythrocytic stages of *Plasmodium* infection were considered a singular process. However, given the changes in parasite form and migration through multiple locations in the vertebrate host, we, amongst others, have seen it pertinent to

reconsider these stages in terms of these differences. While sporozoites and EEFs are perpetually interlinked, classical immunology would suggest that sporozoite and EEFs would be dealt with quite differently. Considerations of the environment in which the parasite is found will also likely have an impact on the immune responses that are induced.

HOST-PARASITE INTERACTIONS

Entry and exit from the skin

Sporozoites are injected intradermally into the skin of the host, by mosquito bite, where they search for a blood vessel in order to travel to the liver. Experimentally, only around 100 sporozoites are injected into the skin by a single infected mosquito, though inoculum dose and ability of infected mosquitoes to inject sporozoites varies⁴⁶, with around 1-2.5 sporozoites per second released from the proboscis^{47, 48}. There is recent evidence from human and mouse studies that mosquitoes with high numbers of sporozoites in the salivary gland post feeding are more likely to have transmitted the parasite⁴⁹. New advances with the engineering of enamel coated glass pipettes may allow more physiological injection of sporozoites intradermally for intravital imaging rather than that previously executed using metal needles⁵⁰.

Sporozoites move in the skin and liver by gliding on the extracellular substrate using the surface Thrombospondin Related Anonymous Protein (TRAP) that connects to a submembrane actin-myosin motor, which propels the parasite forward⁵¹. TRAP originates in the microneme organelles at the apical end of the sporozoite⁵², which also release other proteins important for adhesion and motility⁵³. In humans, the α v-subunit of integrins, with a preference for α v β 3 integrins, are the direct host receptors for *P*. *falciparum* TRAP⁵⁴. Sporozoites glide at an average speed of 1-2µm/s⁵⁵ but show an increasingly constrained motility at the inoculation site. The peak of sporozoite motile and dispersal activity occurs in the first 15 minutes, with more sporozoites exhibiting a

circling rather than meandering behaviour as time progresses¹⁵. Sporozoites face a tripartite fate once deposited in the skin^{14, 55} with ~60% parasites remaining in the skin (sporozoites start to be killed off after 3 hours in the dermis¹⁴) and the other sporozoites either successfully enter the bloodstream via a blood vessel (25%) or enter a lymphatic vessel (15%)⁵⁵. The sporozoite uses gliding motility and cell traversal to move between different cells including fibroblasts and leukocytes to reach a vessel⁵⁶ with traversal through endothelial cells to finally reach the lumen of the vessel. Several proteins that have important roles in gliding and cell traversal have been investigated for role in sporozoite exit from the skin. TRAP is essential for gliding^{57, 58}; the proteins Sporozoite microneme Protein Essential for Cell Traversal (SPECT) and Perforin-Like Protein 1 (PLP1) are important for cell traversal of phagocytes, to avoid clearance and prevent infection of cells in the skin which the parasite is not destined for⁵⁹. Also, TRAP-Like Protein (TLP) and Phospholipase (PL) both may have a role in sporozoite traversal in the dermis as parasite liver loads are significantly lower in mice receiving intradermal injections of murine infective *P. berghei PbTLP*⁻⁶⁰ or PbPL knock-out⁶¹ (KO) parasites compared to wild-type (WT) parasites. Invasion of blood vessels seems to be aided by some structural tropism, with a preference for blood vessels with a similar curvature to the sporozoite⁶⁰ that strengthens the argument that sporozoites are guided to blood vessels more by physical characteristics than a reliance of chemotactic signals⁶¹.

Entering the lymphatics is considered a dead end for the parasite⁶² in terms of development as sporozoites become trapped in the proximal draining lymph node where they mostly associate or are taken up by CD11c+ dendritic cells (DCs) and while EEFs do form in endothelial cells, they do not reach full development akin to intra-hepatocyte development⁵⁵. Interestingly, EEF development has also been shown to occur at the inoculation site in the skin^{63, 64}. Up to 10% of sporozoite remaining in the skin can develop into EEFs, which are comparable to those seen in the hepatocytes, but with a reduced susceptibility to primaquine^{63, 64}. However, the ability to induce a blood stage infection *in vivo* could not be demonstrated^{63, 64}. Only one study could induce parasitaemia, by

intravenous injection of skin derived *P. berghei* merozoites, in naïve mice⁶³. In fact, *P. berghei* has also been found growing in immunoprivileged hair follicles⁶³ although the possibility that they could represent a dormant reservoir has not been further investigated and it is not known how this may translate to human *Plasmodia*. However, sporozoites that lack the N-terminus of Circumsporozoite Protein (CSP), that masks the C-terminal Type I Thrombospondin Repeat (TSR) motif to prevent invasion of hepatocytes until the right time, cannot leave the skin but subsequently develop and induce a blood stage infection *in situ*, indicating a key role for CSP conformation in maintaining the sporozoite in a migratory state⁶⁵. CSP is the major surface protein of the sporozoite, attached to the parasite plasma membrane (PPM) by a C-terminal glycosylphosphatidylinositol anchor⁶⁶. It is a conserved protein across *Plasmodia* species with conserved N-terminal and C-terminal regions flanking a central species-specific repeat section⁶⁷. CSP is necessary for sporozoite development and hepatocyte targeting⁶⁸ and is constantly shed from the sporozoite during gliding motility⁶⁹.

Seeking a hepatocyte

Once sporozoites have traversed the endothelia of dermal blood vessels and entered the bloodstream, the destination they seek is the hepatocytes of the liver. Development in hepatocytes in mammals is an obligatory step in the *Plasmodia* life cycle and sporozoites are passively transported to the liver sinusoid in a matter of minutes⁷⁰. The liver sinusoid is the open pore capillary network of the liver which perfuses the parenchyma plates of hepatocytes made up of Liver Sinusoid Endothelial Cells (LSECs), whose fenestrations allows passage of small molecules across their cytoplasm into the perisinusoidal space of Disse which separates the vessel from the hepatocytes⁷¹. The sinusoid also contains Kupffer cells (KCs), vascular resident macrophages, found in the lumen, and stellate cells, in the space of Disse, which secrete Heparan Sulphated Proteoglycans (HSPGs). Sporozoites passing through the liver in the blood are essentially stalled in the sinusoid and associate with the lumen by interaction between the parasite surface CSP with HSPGs⁷² that protrude through the LSEC fenestrations,

like a signal indicating that the sporozoite has reached the liver⁷³. Sporozoites need to traverse the sinusoid to arrive at the hepatocytes. Sporozoites can cross the endothelium in a number of ways. They can traverse KCs^{16, 74, 75}, LSECs¹⁶ or migrate between LSECs¹⁶ with the vast majority of entry events being traversal related through KCs¹⁶. Cell traversal seems to act two-fold, as the quickest way to get across the sinusoid to the hepatocytes and as a mechanism to avoid phagocytosis by KCs¹⁶. Traversal of KCs has been proposed to occur by interaction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the sporozoite surface with CD68, a transmembrane glycoprotein, expressed on cells of the macrophage lineage, with interference of this interaction conferring protection from sporozoite challenge⁷⁶.

The CSP-HSPG interaction as well as acting as the pathway marker is also believed to be the driver of shifting sporozoites into an invasive phenotype⁷⁷. The sporozoites exhibit cell traversal as a normal phenotype, however when they come into contact with the uniquely high level of sulphation on HSPGs as seen in the liver, parasite calcium dependent protein kinase 6 (CDPK6) is activated⁷⁷ that leads to N-terminal CSP cleavage by a cysteine protease⁷⁸, which in turn exposes the TSR C-terminal fragment⁶⁵. This exposure of the TSR is the indicator of an invasive phenotype. However, it is unclear when sporozoites switch to invasive phenotype, which could occur in the sinusoid lumen, later in the space of Disse or in the parenchyma. Switching to invasion appears not to be a binary process, with several signals likely required to execute a fully invasive phenotype⁷⁹ and thus sporozoites are seen to continue to exhibit cell traversal, passing through several hepatocytes before 'choosing' a hepatocyte to invade and develop in¹⁷. It has been shown that sporozoites traverse hepatocytes using transient vacuoles, which they can escape from before leaving the cell through the action of PLP1¹⁸, though whether this is the case in other cell types it is not known. SPECT and PLP1 have been shown to be essential for human hepatocyte traversal of *P. falciparum* and that traversal is important for invasion for human hepatocytes in humanised mice in vivo⁸⁰. A further traversal related protein, LIMP (referring to the sporozoite phenotype when the protein

is epitope tagged), has been characterised with KO parasites $\Delta limp$ showing a severe reduction in gliding and adhesion to hepatocytes, a complete inability to traverse hepatocytes and a vastly reduced ability to invade hepatocytes⁸¹.

The trigger for the unmasking of the TSR of CSP and the exact interactions that the TSR has with the hepatocyte to initiate invasion are not known. Using experimental genetics, several proteins have been found to have critical and major roles in invasion, but the actual series of events that occur during invasion have not been completely realised, in contrast to the extensive knowledge of events occurring during erythrocyte invasion of merozoites²⁸. Sporozoite invasion of hepatocytes has been shown to be influenced by cGMP and Ca²⁺ signalling with an essential and important role for cGMP-dependent protein kinase (PKG) and calcium-dependent protein kinase 4 (CDPK4) respectively, with invasion affected by the enzymes limiting sporozoite motility⁸². TRAP binds to HSPGs through its extracellular domain and binds the actin-myosin motor through its cytoplasmic domain⁸³ using aldolase as a bridge^{84, 85}. P52 and P36 are members of the 6-cys protein family and are likely interlinked in their invasive roles. 6-cys proteins contain one or multiple s48/45 domains, a conserved protein fold containing 6-cysteines which can form disulphide bridges⁸⁶. Proteins containing these domains have been found on the surface of gametes, sporozoites and merozoites with many having adhesion related functions⁸⁶. Deletions or disruptions of P52 and/or P36 genes in *P. berghei^{87, 88}, P. yoelii⁸⁹* and *P. falciparum^{88, 90}* have been shown to result in inabilities to invade or subsequent disruption in PVM and EEF development. CD81 and SR-BI are hepatocyte membrane proteins required for invasion but in P. berghei, P. yoelii and P. falciparum, the different species have differing usage of the receptors to mediate invasion with P36 mediating these interactions⁹¹. Invasion results with the movement of the parasite through a moving junction involving actin remodelling⁹² and invagination of the hepatocyte. A number of rhoptry proteins have been shown to be important in the formation of the moving junction^{93, 94}, though the roles of rhoptry proteins in sporozoite invasion have been less well understood in comparison to their role in merozoite invasion²⁸. During invasion,

TRAP also provides the traction for the parasite to move against and as such is translocated to the posterior end of the parasite where it is then cleaved to release the bond with HSPG⁵⁸.

Thus, the parasite has successfully invaded and now resides in a parasitophorous vacuole (PV) encapsulated by a parasitophorous vacuole membrane (PVM) of host cell origin, essentially evading detection inside the cell and destruction through the endosomal-lysosomal pathway. The next stage begins with the parasite changing from an invasive phenotype, by clearing its micronemes⁹⁵, to a replicative and metabolically active phenotype. Upon invasion, the sporozoite localises proximal to the hepatocyte nucleus and endoplasmic reticulum¹⁹. The sporozoite undergoes cytoskeleton remodelling starting with a hump proximal to its nucleus. The inner membrane complex (IMC) breaks down, the micronemes and contents are released into the PV and the parasite rounds up, containing only the organelles it requires for biosynthesis⁹⁶.

Development inside a hepatocyte

In the hepatocyte, the parasite remodels the PVM with parasite-derived proteins to allow it to complete EEF development⁹⁷. Many proteins associate with the PVM providing different functions to ensure survival. Although the parasite is metabolically capable, the acquisition of host factors and metabolites surely aids its development. Only two sets of molecules have been formally shown to have host-PVM interactions and these are with respect to host factor acquisition. Both Exported Protein 1 (EXP1) and Upregulated In Sporozoites gene 3 (UIS3) protein are expressed early on in EEF development^{45, 98} and have been shown to recruit Apolipoprotein H (ApoH)⁹⁹ and Liver Fatty Acid Binding Protein 1 (FABP1)¹⁰⁰ respectively which are proposed to be crucial for EEF development. UIS3 is essential for development¹⁰¹, and while an EXP1 knock-out could not be generated, deletion of the C-terminal fragment of EXP1 that interacts with ApoH significantly reduced liver parasite burden⁹⁹. Acquisition of other metabolites from the host including lipids¹⁰²⁻¹⁰⁴, glucose¹⁰⁵, arginine¹⁰⁶, biotin¹⁰⁷ and metal ions¹⁰⁸⁻¹¹⁰ have also

been shown to promote EEF development. Of the parasite expressed membrane transporters¹⁰⁹⁻¹¹¹ described, with two being described as required for liver stage infection^{110, 111}, all have been identified in the PPM and until recently none have been characterised at the PVM. Aquaporin-3 has been shown to locate to the PVM and its absence significantly reduces EEF development but whether a disruption in transport of water and glycerol in *Plasmodium* causes this defect has yet to be determined¹¹². It has been noted that molecules up to 855Da can pass through the PVM¹⁹ but how larger molecules make it through remains a mystery. Several publications have pointed to methods relating to vesicular transport involving the endocytic^{113, 114} and autophagy¹¹⁵ pathways as additional methods for acquisition of nutrients from the host, possibly through the use of the tubovesicular network of the parasite¹¹⁶. Parasite-derived subversion of the autophagy machinery has also been described¹¹⁷, perhaps ensuring the parasite can benefit fully from the nutrition autophagy could supply.

Other parasite-derived proteins have also been shown to have an association with the PVM at various stages in EEF development, however their functions remain a mystery despite absences in these proteins leading to impaired or completely ablated EEF development⁹⁷. The early expressed PVM protein encoded by Upregulated in Infectious Sporozoites gene 4 (UIS4) ⁴⁵ is crucial for EEF development¹¹⁸ and like UIS3, is highly transcribed in the sporozoite¹¹⁹ presumably to allow quick remodelling of the PVM, with translational repression preventing UIS4 protein expression until the sporozoite formatively invades a hepatocyte¹²⁰. Liver-specific proteins 1 and 2 (LISP1 and LISP2) have peaks of expression later in EEF development^{121, 122}. LISP1 KO parasites, *Lisp1* Δ , have an impaired ability to rupture the PVM¹²¹ and LISP2 have also been shown to translocate into the hepatocyte cytosol and nucleus where they are proposed to modify the host environment for the benefit of the parasite¹²². Recently, Sporozoite surface Protein Essential for Liver stage Development (SPELD), as the name suggests, is a protein expressed in sporozoites and early stage EEFs and is required for early EEF development¹²³. *SPELD* localises at the PVM at 17 hours but not later¹²³. *pbspeld* KO

parasites arrest with a very significant impairment in development and no merozoites are formed when mice receive infectious mosquito bites¹²³. Regarding the disposal of waste products from the EEF, there is no clear evidence for how the parasite manages this while remaining hidden from the host with no description of a food vacuole as described in blood stage parasites¹²⁴. Nonetheless, a potential iron detoxification mechanism has been proposed, as *Plasmodium* express an orthologue of a plant vacuolar iron transporter (VIT) which transports Fe²⁺ ions. VIT has been shown to be important for parasite EEF and blood stage (BS) growth¹²⁵.

The process of DNA replication and division of the parasite begins around 20 hours after invasion of the hepatocyte¹²⁶. It involves schizogony, an obscure variation of mitosis to that exhibited normally in eukaryotes. The nucleus undergoes division and replication 13-14 times to generate a syncytium, a multinucleated schizont containing tens of thousands of nuclei¹²⁷. At the same time, the apicoplast and mitochondria form intertwined branched structures, appearing to remain singular organelles and do not associate with the nuclei¹²⁸. Entering the cytomere stage after nuclear division has been completed; the PPM invaginates and leads to the partitioning of the cytoplasm, nuclei associate with the plasma membrane with close proximity to the apicoplast, and the mitochondria clump in the centre. In a synchronous fashion, the apicoplast divides, followed by the mitochondria and the invagination of the PPM ultimately results in cytokinesis and daughter merozoite formation. The RNA-binding protein PlasMei2 has been shown to be a critical factor in late schizogony¹²⁹. P. yoelii plasmei2⁻ KO parasites exhibit incorrect DNA segregation and organelle maturation with no cytomere formation and a failure in merozoites formation¹²⁹. Autophagy (ATG)-related protein 8, ATG8, an ubiquitin-like protein associated with autophagosome formation¹³⁰, has also been implicated in apicoplast maintenance, in addition to microneme dissolution after invasion and merozoite differentiation⁹⁵. With relevance to hypnozoite forming *Plasmodia*, the hypnozoite EEFs of *P. vivax* in human liver-chimeric mice do not undergo schizogony

but stay as dormant trophozoites⁸, though the processes involved in preventing schizogony or later re-activation of hypnozoites are not known.

Egress of merozoites out of the hepatocyte is the next step in the journey. The release of merozoites and the death of the host hepatocyte is very much interlinked, to ensure the parasite evades destruction by hepatocyte-driven and immune system-driven responses for the greatest possible time and reach the blood with the minimum of fuss. Egress again involves the parasite using the host cell for its own benefit, before killing it and leaving little trace for the immune system¹³¹. First the PVM is broken down inside the hepatocyte which is mediated by phospholipase (PL)¹³². LISP1 is also important for PVM rupture¹²¹, however it has no functional protease domain and its mechanism of action has yet to be formally shown: it may act as a receptor or upstream molecule for PL or other protease action. The release of merozoites into the hepatocyte cytoplasm is closely followed by the disintegration of the host mitochondria essentially preventing the cell from producing ATP¹³¹. Upon PVM rupture, the actin cytoskeleton of the hepatocyte dissociates from the plasma membrane with a concomitant modulation of membrane content possibly caused by a disruption in protein biosynthesis²⁰. This actin-membrane disruption leads to detachment of the hepatocyte from the parenchyma. The dissociated hepatocyte, with the parasites inside, passes through the sinusoid, squeezing through the gaps between LSECs, whereby it comes into contact with the shear forces in the blood vessel which cause merosomes (pockets of membrane containing merozoites) to bud off from the hepatocyte²⁰. These merosomes have then been shown, in rodent models, to release the merozoites in the pulmonary capillaries of the lung¹³³, presumably to enhance erythrocyte infection. Over time, the membrane of what remains of the hepatocyte, after most of the parasites have been released, loses phosphatidylserine asymmetry and membrane integrity¹³¹ which signals to phagocytes to engulf the remains. The wrapping of the merozoites inside a hepatocyte derived membrane also mediates extra protection against KCs, who would recognise merozoites as foreign, and the removal of major histocompatibility complex (MHC) class I molecules from the merosome

prevents recognition by T cells¹³¹. All in all, the parasite has a very elegant and coordinated approach to entry, development and egress out of hepatocytes to ensure full development and survival.

IMMUNE RESPONSES TO THE PRE-ERYTHROCYTIC STAGES

There is limited data for naturally acquired immunity against the pre-erythrocytic stages of *Plasmodium* infection, with contributions from antibodies and T-cells¹³⁴ but ultimately never the acquisition of sterile protection. A number of factors contribute to this lack of protective immunity including the size and site of sporozoite inoculum, the tolerogenicity of the liver, protection of the EEF by PVM and immunosuppressive nature of the blood stages¹³⁵. Thus, it is imperative to understand the immune responses that are induced by the parasite in order to be able to enhance them through vaccination and induce, develop and sustain sterile protection. While clinically these stages may appear silent, immune responses are most definitely being induced, with the parasite simultaneously trying to avoid them. Through experimentation, mainly using mouse models, the immune responses occurring during the pre-erythrocytic stages, particularly those that can induce protection, are being established. With this knowledge, the next generations of malaria vaccines can be developed to enhance immune responses and subvert parasite immune evasion.

Innate immune response evasion and exploitation

The first induction of host immunological responses occurs as soon as the mosquito probes the skin looking for a blood vessel to feed from. The saliva of the mosquito has immunomodulatory properties¹³⁶ and probing contributes to Damage-Associated Molecular Patterns (DAMPs) and presumably Pathogen-Associated Molecular Patterns (PAMPs), although no sporozoite PAMPs have been discovered yet¹³⁷. Mast cells have also been shown to be recruited upon probing by mosquitos¹³⁸. Mast cell degranulation and release of histamine increases extravasation of fluid in blood vessels¹³⁹, which the sporozoites may exploit in their search for a dermal blood vessel. This increase in

vascular permeability also leads to influx of leukocytes¹³⁸, including neutrophils and resident myeloid cells first, followed by the recruitment of monocytes at the inoculation site and proximal draining lymph node¹⁴⁰. The skin stage is possibly the most overlooked part of the pre-erythrocytic stages of malaria. The longest time that the parasite is exposed and extracellular in the vertebrate host is when sporozoites are deposited in the skin, so this would be a great avenue for targeting⁷⁰.

Upon entering the liver, *Plasmodium* elicits further responses from the innate immune system with the secretion of Type I and II interferons (IFNs) by hepatocytes. Also produced in response to *Plasmodium* blood stages¹⁴¹, *in vivo* type I IFN release by hepatocytes infected with *P. berghei*¹⁴² or *P. yoelii*¹⁴³ results in recruitment of leukocytes to the liver by signalling through the cytosolic receptor melanoma differentiation-associated protein 5 (MDA5). This suggests host sensing of parasite RNA with further signalling through mitochondrial antiviral signalling protein (MAVS) and transcription factors Interferon-Regulatory Factors 3 (IRF3) and IRF7^{142, 143}. While this release of Type I IFN does not peak until the final stages of EEF development in mouse models and thus subsequently does not affect EEF development upon primary infection, their release has been shown to recruit Natural Killer (NK) T cells which have been shown to be crucial in combating subsequent infections through IFN- γ production¹⁴³. The role of Type I IFNs following sensing of hepatic parasites in human infection and the subsequent downstream responses remain to be determined.

Parasite antigen presentation and T cell priming

Early on, CD8+ T cells were shown in mouse models to be the critical leukocyte for preerythrocytic driven protection following vaccination with radiation attenuated sporozoites (RAS)¹⁴⁴ with a correlation between CD8+ T cells and protection later observed in humans vaccine studies^{145, 146}. The role of CD4+ T cells in pre-erythrocytic immunity is less clear. In mouse models their role seems to be dependent on mouse strain, vaccine strategy and parasite used¹⁴⁷. In humans, different vaccination strategies indicate 35
conflicting correlations between CD4+ T cells and protection^{145, 146, 148}. The process of pre-erythrocytic parasite antigen processing and presentation and T cell priming is poorly understood. Vertebrate hosts are exposed to sporozoite antigens as sporozoites migrate and traverse cells or through cross-presentation following sporozoite degradation by phagocytosis. Exposure to liver stage antigens occurs following arrested development of the EEF or following phagocytosis of the dead infected hepatocyte after the merosomes have been released¹⁴⁹.

Sporozoites antigens are presented by cells in the liver as well as in the draining lymph nodes (dLNs). Despite entering the lymphatics and reaching a developmental dead end, the sporozoite plays a crucial role in priming the immune system against sporozoite antigens. In the skin dLN, migratory sporozoites have been shown to prime protective P. yoelii CSP-specific CD8+ T cells¹⁵⁰, with P. berghei CSP-specific CD8+ T cells being primed by dLN-resident CD8 α + DCs¹⁵¹. While data suggests that the skin dLN is the major site for priming of CD8+ T cells specific for sporozoite antigens following natural intradermal inoculation of sporozoites¹⁵⁰, dermal inoculation of live attenuated sporozoites induces weaker CD8+ T cell responses than intravenous inoculation¹⁵². Previously this was thought to be a result of a reduced number of parasites reaching the liver but it now seems that inoculation and prolonged exposure in the skin induces more regulatory adaptive immune responses with a development preference for IL-10 producing B and T cells, though the reason for this and the interactions in the skin that induce this dampening of immune responses in liver and skin dLNs is not known. In addition to the dLN, intravenous injection of RAS leads to priming of CD8+ T cells by CD8 α + DCs in the spleen¹⁵³.

Antigen presentation and CD8+ T cell priming in the liver is equally poorly understood. LSECs, KCs, DCs and hepatocytes in the liver can all present antigen with differing degrees of efficiency which most often lead to tolerance in the liver, however immune

responses can be induced. The liver is inherently a tolerogenic organ given the large amount of blood and lymph that flows through it, containing food breakdown products and microbial antigens from the gastrointestinal tract and systemic blood circulation. A continuous production of IL-10 in the liver maintains this tolerogenic environment¹⁵⁴, though in the case of infection, the switch can be made. IFN production can lead to an upregulation of major histocompatibility complex (MHC) class I and II presentation although how tolerogenic signals are overcome is not known with the likely involvement of many factors making the process very complex¹⁵⁵.

LSECs are likely heavily exposed to sporozoite surface antigens including CSP, which can translocate into the cytosol following cell contact¹⁵⁶, or antigens can be crosspresented by LSECs acting as antigen presenting cells (APCs) to activate naïve CD8+157 and CD4+ T cells¹⁵⁸. However, most entry events by sporozoites seeking the hepatic parenchyma occur with an involvement with KCs¹⁶. Traversal would lead to release of sporozoite antigens in the KC cytoplasm, which has been shown for CSP in vitro⁷⁴. However, it is unknown what the role of KCs is in relation to immunity and antigen presentation. CSP has shown to have a ribotoxic effect on macrophages¹⁵⁹ and there is in vitro evidence that KCs do not survive sporozoite traversal and undergo apoptosis¹⁶⁰. This would limit the capacity of KCs as APCs. However, in vivo responses of KCs following challenge of naïve and RAS-immunised mice are vastly different. Upon challenge, immunised mice induced an upregulation of antigen presentation with an increase in MHC class I (MHC-I) molecules, costimulatory molecules and IL-12 expression on KCs¹⁶¹. The mechanism of RAS inducing this activation of KCs is not known, but it seems to mediate the transition of the liver from a tolerogenic to a more inflammatory environment. Inflammation in other systems has also been shown to abrogate tolerance induction by KCs¹⁶². This suggests that KCs do not have a definitive role as APCs in the context of malaria, but activation of KCs (by an unknown mechanism) leads to increased capacity for phagocytosis by KCs in immunised individuals. Other data suggests a similar notion that sporozoites use their cell traversal capabilities to be

able to avoid KCs to successfully infect the liver, otherwise they would be rapidly phagocytosed¹⁶. Further research is required to fully determine the roles of LSECs and KCs in parasite antigen presentation in the liver and their capacity to prime and recall effector T cell responses, rather than induce tolerance^{163, 164}.

Hepatic DCs are immature at resting state¹⁵⁴. The exact mechanisms of recruitment and/or priming of DCs associated with *Plasmodium* liver infection is poorly understood. Hepatic DCs are located in the periportal and pericentral regions¹⁵⁴ and draining lymph nodes¹⁶⁵. Protective immunity induced in a *P. berghei* model presented an association with CD8 α + DC accumulation in the liver after RAS immunisation^{166, 167}. This recruitment and movement of DCs to the liver takes time. There are several options that might occur to activate CD8+ T cells in the liver. These DCs may travel back to the portal regions and draining lymph nodes to present antigen and activate CD8+ T cells, or directly present and activate CD8+ T cells in the liver sinusoid. The fact that large numbers of CD8+ T cells are required for protection¹⁶⁸ indicates that the elimination of infected hepatocytes is an inefficient process which likely requires large numbers of DCs for optimal antigen presentation and CD8+ T cell activation¹⁴⁹. More work is required to determine where and how hepatic DCs sample and present parasite antigens and the mechanism by which CD8+ T cells are activated and act upon infected hepatocytes. Given the priming seen in the skin dLNs, it also been proposed that liver dLNs could be most likely site for priming of CD8+ T cells against liver stage and blood stage antigens¹⁴⁹. Hepatic DCs have also been shown to be able to present antigens after phagocytosing dead infected hepatocytes (following merosome release or EEF arrest)¹⁶⁹ but whether these migrate to the dLNs is unknown¹⁷⁰.

Parasite development in hepatocytes (in addition to EEF development in the skin) is the only time EEF antigens are expressed so hepatocytes are a crucial cell type for presentation of these antigens as well as signalling their infected status. While antigen presentation on hepatocytes usually results in tolerisation¹⁷⁰, hepatocytes have been

shown to successfully prime naïve CSP-specific CD8+ T cells¹⁷¹ and convert systemically primed effector CD8+ T cells to become liver-resident memory cells¹⁷². Parasite-derived peptides have been shown to reach the cytosol of the hepatocyte, with loading of MHC-I molecules occurring in an endosomal-independent TAP-dependent manner^{173, 174}. Using bone chimeras, it has also been determined that the elimination of hepatocytes occurs in an antigen dependent manner^{150, 173, 175}. While the repertoire of proteins expressed by the EEF is vast, only a few proteins have been shown to induce antigen-specific CD8+ T cell driven responses that protect against sporozoite infection. That being said, these include sporozoite surface proteins^{176, 177}, proteins involved in traversal¹⁷⁸, EEF proteins¹⁷⁹ and PVM associated proteins¹⁸⁰. This illustrates the range of proteins that can potentially be presented by hepatocytes and induce protective responses. Protective CD8+ T cell responses can also be induced using a parasite that expresses SIINFEKL from ovalbumin in the context of heat shock protein 70 (HSP70), indicating cytosolic parasite antigen can also be presented on hepatocytes¹⁷³.

Effector functions of CD8+ T cells

As mentioned before, a key role for CD8+ T cells in protective immunity was determined early on¹⁴⁴ with CD8+ T cell depletion abrogating protection^{144, 181}. However now it has also been shown that for long lasting complete protection, a threshold of parasite-specific memory CD8+ T cells are required which is postulated to be 100-1000 times greater than that needed for protection against viral or bacterial pathogens¹⁸². The reason for this is not fully understood but it is generally accepted that very few sporozoites reach the liver, which is a massive organ and given the short duration of EEF development in mice (2 days), this means that a very large CD8+ T cell compartment would be required to find and kill all the infected hepatocytes. It has also been found, however, that fewer parasites also lead to reduced CD8+ T cell responses, presumably because it is harder to initiate proliferation and a large response if the target is so small¹⁸³. Thus a fine balance connects the number of inoculated sporozoites and memory CD8+ T cells to drive an optimum response which will result in the killing of all infected hepatocytes and sterile

protection¹⁸³. Naïve CD8+ T cells take several days to become fully activated, proliferate and gain effector function. Proliferation of adoptively transferred naïve CSP-specific transgenic CD8+ T cells could only be detected in the spleen after 2 days following immunisation with *P. yoelii* RAS¹⁸⁴. While induction of IFN- γ production in transferred naïve CD8+ T cells was rapidly observable after 24 hours following antigen exposure with RAS, only mice harbouring activated effector CD8+ T cells at the time of challenge could kill infected hepatocytes¹⁸⁴. Mice harbouring naïve CD8+ T cells at challenge did not induce significant levels of killing presumably because all EEFs had developed and merozoites had been released before the CD8+ T cells could be activated, proliferate and exercise their effector functions¹⁸⁴. This stands in contrast to memory CD8+ T cells which can produce IFN- γ within 4 hours after reactivation¹⁵⁰. In humans, the role of naïve CD8+ T cells may be different given the extended development of the EEF (~7 days depending on the species of *Plasmodium*). Immunisation with viral vectors against P. falciparum TRAP¹⁸⁵ indicated that fewer IFN- γ producing CD8+ T cells were required for protection in humans compared to that required in mice. Still CD8+ T cells are estimated to be looking for one infected hepatocyte out of 10⁶ in mice and one out of 10⁹ in humans which is quite the race against time with a single infected hepatocyte able to propagate a blood stage infection¹⁸⁶.

Following clearance of infections, a subset of effector CD8+ T cells differentiate into memory T cells: either central memory (T_{CM}) or effector memory T cells (T_{EM})¹⁸⁷. Central memory T cells have shown to have a limited role in providing protection against sporozoite infection¹⁸⁸ with the majority of parasite-specific T cells in the liver following RAS immunisation exhibiting a T_{EM} phenotype¹⁸⁹. Recently tissue resident memory (T_{RM}) CD8+ T cells have also been described as being crucial for protection of RAS immunised mice from sporozoite challenge¹⁷². Tissue resident T cells are a non-circulating population of memory T cells found in all non-lymphoid tissues with a distinct phenotype to T_{CM} and T_{EM} , expressing CD69¹⁹⁰ and low levels of KLRG1¹⁷² and are retained in the

liver by their expression of CXCR6¹⁹¹. They have been shown to patrol the sinusoid¹⁹² and targeting CD8+ T cells to the liver using a systemic prime and liver trap immunisation protects immunised mice from sporozoite challenge¹⁷². This immunisation strategy could be a great tool for the generation of new malaria vaccines to improve killing of EEFs in the liver.

As previously mentioned, infected hepatocytes are required to express and present parasite specific peptides on MHC molecules to be eliminated by the cognate CD8+ T cell^{150, 173, 175}. It has been shown that antigen-specific^{173, 193} and non-specific CD8+ T cells¹⁹³ cluster around EEFs. Through using antigenically different parasites it has also been shown that there is a lack of bystander effect in EEF elimination by CD8+ T cells¹⁹⁴. The mechanism for elimination of EEFs by CD8+ T cells has been heavily researched; however, the exact mechanism is still to be determined. It is clear from mouse studies that depending on the strain of mouse and species of *Plasmodium* used, that the effector CD8+ T cell mechanisms differ^{147, 195}. Effector molecules investigated include cytokines, cytotoxic proteins and death receptors. However, there is contention over whether cytotoxic granules can be released onto hepatocytes by CD8+ T cells given that significant contact between CD8+ T cell and target is normally required.

It has been suggested that contact-dependent killing can occur *in vitro* with the release of perforin¹⁹⁶ however; there is little *in vivo* evidence of contact dependent mechanisms for EEF elimination. Intravital imaging in mice has demonstrated that antigen-specific CD8+ T cells cluster around EEFs but contact between lymphocyte and hepatocyte was not conclusively demonstrated^{173, 193}. Another study showed that parasite-specific CD8+ T cells are immobilised in the liver but no contact is made with EEFs¹⁹². Adoptively transferred CD8+ T cells have been shown to exhibit slow velocity^{192, 193} and immobilisation in the liver for at least 3 days following transfer¹⁹², which may be due to differing anatomical locations and microenvironmental changes altering local T cell differentiation¹⁴⁹ or a slowing to survey presenting hepatocytes in an antigen-specific

manner¹⁹⁷. Thus, the lack of contact with EEFs but an observed reduction in EEFs following adoptive transfer of parasite-specific CD8+ T cells^{192, 193} heavily suggests a role for soluble factors and contact independent mechanisms i.e. not the release of cytotoxic granules. In fact, using perforin^{-/-} or granzyme B^{-/-} KO mice or mice homozygous for Fas ligand (FasL) mutations indicated that these factors were dispensable for protecting RAS or viral vector immunised mice challenged with sporozoites^{147, 198, 199}. In addition, where clustering was seen, multiple EEF death phenotypes were observed¹⁹³ and protection could be maintained by adoptively transferring CD8+ T cells lacking the ability to produce IFN-y and/or perforin¹⁷³ which indicates that multiple mechanisms are involved in protection. It has been found that T cells can monitor hepatocytes using trans-endothelial hepatocyte-lymphocyte interactions (TEHLIs) that stretch through the fenestrations of the LSECs avoiding the need for extravasation across the sinusoid²⁰⁰. However, given the division between lymphocyte and hepatocyte and the lack of evidence for extravasation in vivo, it is unlikely that sufficient contact is made by TEHLI to form a functional immunological synapse and allow cytotoxic granule release²⁰¹. Thus, it has been proposed that CD8+ T cells in the liver use TEHLIs to survey hepatocytes, and when a cognate interaction has been made, the minimal contact of the TEHLI forms a stimulatory synapse that is sufficient to allow cytokines to be released and act on the infected hepatocytes^{149, 202}.

IFN- γ is generally considered the central mediator of protection against EEFs²⁰³. Recombinant IFN- γ was first shown to inhibit murine and human *Plasmodia* EEF development *in vitro*²⁰⁴⁻²⁰⁶. Then *in vivo*, systemic blockage of IFN- γ was shown to inhibit EEF development in immunised mice that were normally protected against sporozoite challenge¹⁴⁴. The first CD8+ T cell response that definitively demonstrated that antigen-specific protection based on IFN- γ secretion was identified from a CD8+ T cell clone specific for an epitope from CSP with cross-specificity for *P. berghei* and *P. yoelij*²⁰⁷. IFN- γ from CD8+ T cells has been shown to function by activating the L-arginine-dependent

inducible production of nitric oxide synthase pathway, which was shown to be crucial for protection in RAS immunised mice²⁰⁸. IFN- γ production induces increased production of inducible nitric oxide synthase (iNOS), the enzyme that converts L-arginine to L-citrulline and nitric oxide. Nitric oxide then acts on several metabolic pathways by reaction with iron centres, formation of reactive oxygen species and nitrosation of nucleophilic centres²⁰⁹ which are toxic to the EEF²⁰⁸. iNOS can act to inhibit EEF development¹⁹² or kill the parasite in the hepatocyte completely²⁰⁸. This will likely depend on the concentration of CD8+ T cells and IFN- γ in the local area surrounding the EEF¹⁴⁹. Long lasting protection, in mice immunised with *P. berghei* RAS or infectious sporozoites under drug prophylaxis, correlates with sustained IFN- γ responses from hepatic memory CD8+ T cells²¹⁰.

However, as mentioned before, multiple soluble effector molecules may act on infected hepatocytes as IFN- γ independent protection has been reported^{147, 195}. It is becoming clear in mouse models that levels of protection are dependent on murine host strain and Plasmodium species. Comparing two commonly used mouse strains, C57BL/6 mice require more immunisations to induce a greater antigen-specific memory CD8+ T cell response and afford protection than in BALB/c and protection against P. berghei is more easily achieved than against *P. yoelii*¹⁶⁸. Using mice that express the same MHC alleles, differences in protection have shown to be due to the murine genetic background²¹¹. In terms of effector molecules, blockage of IFN-y in P. yoelii challenged RAS immunised B10.D2 mice had no effect on protection and only a partial effect in CD-1 mice¹⁴⁷. P. *yoelii* or *P. berghei* challenge of IFN- $\gamma^{-/-}$ BALB/c mice, immunised by prime-boost (DCs and recombinant Listeria monocytogenes) to induce CSP-specific CD8+ T cell responses, showed a 35% and 50% reduction in protection respectively in the absence of IFN-y¹⁹⁵. This incomplete abolition of protection indicates that other effector molecules can mediate protection. In the same study, neutralisation of TNF- α reduced protection against P. berghei challenge by 40% and P. yoelii challenge by 85%¹⁹⁵. Depletion of

perforin had no effect on protecting mice from *P. berghei* infection but reduced protection by 50% when mice were challenged with *P. yoelii*¹⁹⁵. The role of perforin has not been fully determined as some models show correlation with protection while others indicate a dispensability for protection. It is particularly interesting that there is a correlation in RAS vaccinated human volunteers between perforin producing CD8+ T cells and protection¹⁴⁵. Further work will be required to determine the role of perforin given that immunological synapses between T cells and hepatocytes have yet to be described *in vivo*. But this shows that, in addition to IFN- γ , other cytokines can have a role in protecting against sporozoite infection, indicating that CD8+ T cell mediated protection occurs in a multi-faceted manner. Consequently, in addition to a requirement for CD8+ T cells above a certain threshold, the ability of these cells to produce IFN- γ and other cytokines, alternatively or in concert, seems to define whether a host can be robustly protected from sporozoite infection.

Antibodies against *Plasmodium* sporozoites

Anti-sporozoite antibodies are induced by individuals living in malaria endemic areas, however antibody titres against sporozoite antigens are lower than those against blood stage antigens²¹². This is probably due to the much shorter time that the sporozoite is visible to the immune system, compared to merozoites. Passive transfer of IgG from immune adults was shown to reduce parasitaemia in children²¹³, and more recently administering monoclonal antibodies from individuals naturally exposed to *P. falciparum* has been shown to reduce parasite liver development in liver-chimeric humanised mice following *P. falciparum* challenge²¹⁴. Using RAS, the first sporozoite surface protein, with transfer of monoclonal antibodies shown to protect mice from sporozoite challenge²¹⁶. This finding inspired the development of a CSP-based vaccine²¹⁷ which would then lead to the development of RTS,S/AS01, the most advanced malaria vaccine to date. There is an association between titres of anti-CSP antibodies and vaccine efficacy in RTS,S

trials²¹⁸. Thus while antibodies have been shown to immobilise sporozoites in the skin²¹⁹, it is likely that a very high titre of anti-sporozoite antibodies would be required to prevent all sporozoites from leaving the skin and prevent sporozoites infecting hepatocytes if they manage to exit the dermis unscathed. Antibodies against other parasite antigens have also been identified with titres for TRAP and LSA-1 correlating with reduced incidence of clinical malaria in *P. falciparum* naturally exposed Kenyan children²²⁰. While antibodies clearly play a role in reducing *Plasmodium* sporozoite infections (and particularly acting against blood stage infection), complete protection from sporozoite challenge can be achieved in B-cell depleted mice²²¹, indicating that they are not the major player in providing protection against pre-erythrocytic immunity.

PRE-ERYTHROCYTIC STAGE VACCINES

Over the last 50 years, malaria vaccines have been gathering momentum. Despite the reduction in malaria incidence seen over the last couple of decades, elimination of malaria is highly unlikely without the advent, introduction and deployment of an efficacious vaccine. There have been major breakthroughs and movements in malaria vaccine generation however, it has become apparent that the complexity of *Plasmodium* compared to other pathogens such as viruses is slowing down vaccine development in terms of time from inception to successful, deployed vaccine.

The initial inklings that a malaria vaccine was possible, came from two major findings. Firstly, in endemic settings, individuals that are constantly exposed to infectious mosquito bites and malaria infection develop immunity against the disease over time²²². While it is extremely rare, and thus probably undocumented, that individuals develop sterile immunity against parasites, asymptomatic malaria infections are very common. This development of immunity has been associated with age though the immunological basis has yet to be fully unravelled²²². The other finding resulting in actual sterile protection, which spearheaded the malaria vaccine movement was the use of radiation treated sporozoites as an experimental vaccine. Multiple immunisations with sporozoites

attenuated by radiation, leading to random DNA damage, were first shown to protect mice²²³ and then humans^{224, 225} and non-human primates²²⁶ from infectious nonirradiated sporozoite challenge in a stage²²⁷ and species²²⁸ specific manner. These findings show that the immune system develops following exposure to parasite antigens and upon reinfection these responses can be recalled to slow parasite replication in the blood or impact parasite development in the liver. In this way, a vaccine could be developed to prime and enhance the immune system to fight *Plasmodium* parasites. Here I focus on the development of pre-erythrocytic vaccines.

With the discovery that radiation-attenuated sporozoite (RAS) vaccination induces sterile protection, this should have been the end of malaria. However, the technicalities behind production of a RAS vaccine stymied its introduction. Challenges include dissection of salivary gland sporozoites from mosquitoes by hand (to date no automated machine exists) followed by purification, the exposure of sporozoites to a standardised level of radiation (too much will make sporozoites nonviable and non-immunogenic, too little and breakthrough blood stage infections could occur) and a suitable method of cryopreservation and transport to site, followed by appropriate storage.

While RAS was established as the 'gold standard' vaccine against pre-erythrocytic malaria, research became more focused on generating a subunit vaccine, akin to more traditional vaccines, which would probably be less onerous to manufacture under regulations.

Pre-erythrocytic subunit vaccines

Subunit vaccines to date targeting the pre-erythrocytic stages have been designed to induce antibody responses against the sporozoite or induce T cell responses against the EEFs. RTS,S/AS01 is the most advanced *P. falciparum* malaria vaccine which is currently seeking approval for licensure. RTS,S is based on the central repeat region and C-terminal region of *P. falciparum* CSP, which contains B cell and T cell epitopes respectively, conjugated to hepatitis B virus surface antigen (HBsAg). The latest

longitudinal results come from a large multi-site Phase III trial in Africa, conducted with children (5-17 months) and young infants (6-12 weeks) who received three doses of RTS,S (or control rabies or meningococcal serogroup C conjugate vaccines - C3C), one month apart, with an RTS,S booster (R3R) or a control boost (R3C - control boost was meningococcal serogroup C conjugate vaccine) at month 20²²⁹. Assessing the number of clinical malaria cases compared to control groups, vaccine efficacy of RTS,S/AS01 to prevent episodes of clinical malaria in children over 48 months was 36.3% in the R3R group and 28.3% in the R3C group. In young infants, over 38 months, vaccine efficacy was 25.9% in the R3R group and 18.3% in the R3C group²²⁹. The trial detailed a gradual waning of vaccine efficacy as has been previous noted^{230, 231}. The booster dose in children provided incremental efficacy of 25.6% in the first 12 months following booster administration which drops to 16.2% by the study end 27 months later. In infants, incremental efficacy of the booster dose was 22.3% after 12 months and 17.5% after 18 months²²⁹. The efficacy of RTS,S/AS01 against severe malaria was much less pronounced than that preventing clinical episodes. In vaccinated children, RTS,S/AS01 induced anti-CSP antibody titres and anti-CSP CD4+ T cell responses, which have been proposed to correlate with protection^{232, 233}. Thus RTS,S/AS01 induces modest vaccine efficacy with value gained from an additional booster dose. However there is concern over cases of meningitis and febrile convulsions following administration of RTS,S/AS01 which has yet to be explained²²⁹. In addition, it has been noted that children who received RTS,S/AS01 experienced more malaria episodes, than those in the control group, several years after vaccination possibly because while the vaccine provided immunity against sporozoites, the children had a delay in developing blood stage immunity²³⁴. It is unclear whether additional boosters every year or so will benefit. This notion, as well as safety, are being considered as RTS,S/AS01 is further analysed before it can be approved to be rolled out. With antibody titres likely to be the mode of action of RTS,S/AS01, additional steps are being taken in earlier stage clinical trials to improve antibody titres and thus protection by altering the dose regimen²³⁵ or *P. falciparum* CSP composition in the vaccine^{236, 237}.

Subunit vaccines against the liver stage of *Plasmodium* infection have tended towards the need to induce high numbers of parasite-specific CD8+ T cells which target infected hepatocytes. As previously mentioned, a numerical threshold of CD8+ T cells is required to protect mice¹⁸² from subsequent sporozoite challenge and therefore this requires the use of different vaccine platforms compared to those that are designed to induce high antibody titres. This has included the use of viral vectors to administer malaria antigens into the host²³⁸. While it is well accepted that boosting with subsequent immunisations improves a vaccine's efficacy, it seems that using heterologous viral vectors encoding the same antigen improves efficacy better than homologous boosting²³⁹. So far, the most effective regimen for inducing high levels of human malaria antigen-specific CD8+ T cell is using AdCh63 prime followed by MVA boost encoding PfTRAP linked to a multiepitope string of other malaria epitopes (ME-TRAP)^{185, 238}. This vaccine induces IFN-y producing CD8+ T cells observable in peripheral blood which correlates with protection from sporozoite challenge in humans¹⁸⁵. Research is ongoing to determine other antigens that are presented on hepatocytes, including antigen combinations, which could produce large viral vectored vaccine-induced CD8+ T cell responses.

Whole sporozoite vaccines

With the concept of using multiple antigens in a vaccine and the less than satisfactory vaccine efficacy imparted particularly by RTS,S/AS01, research has returned to whole sporozoite vaccines (WSVs). As mentioned before, WSVs in animals and humans have been shown to induce protective responses^{223-225 226}. WSV benefit from the exposure of the host to many different parasite antigens, not just the one or two encoded in the subunit vaccine. There are four WSV strategies currently under investigation in humans and animal models²⁴⁰.

Published in 2002, vaccination with RAS was shown to promote long lasting sterile immunity against challenge, when individuals were immunised with a thousands of bites from *P. falciparum* infected mosquitoes²⁴¹. Extensive research into using RAS as a

vaccine outside of experimental medicine followed this result with the development of Sanaria Inc., a company that is able to produce, purify, attenuate and cryopreserve a metabolically active, non-replicating P. falciparum sporozoite vaccine (PfSPZ) in a standardised manner than meets all the regulatory requirements of the United States Food and Drug Administration²⁴². With the intention of delivering a radiation attenuated whole sporozoite vaccine, they produced a vaccine that could induce complete sterile protection, through multiple high dose intravenous immunisations¹⁴⁵. While intravenous injection may not seem the best method of administration, it has been shown that intradermal or subcutaneous injection of PfSPZ induced weaker immune responses and failed to protect from infectious mosquito bite challenge²⁴³. However, recently it has been shown that intradermal vaccination using a needle and a laser to locally damage blood vessels near the injection site is a better proxy for mosquito infection than traditional needle-administered intradermal inoculation as it mimics the damage induced by the mosquito proboscis²⁴⁴. While induction of immune responses with this method was vastly improved compared to traditional intradermal inoculation, CD8+ T cell responses did not completely match those induced by intravenous inoculation. Nonetheless, immunisation with purified P. yoelii RAS by this method was able to completely protect against sporozoite challenge equivocal to intravenous immunisation²⁴⁴. The authors suggest that technical developments in vaccine administration could permit PfSPZ to be administered intradermally, which is less effort than intravenous injection and would be more costeffective²⁴⁴, though whether the same results are replicated in humans has yet to be determined.

Other whole sporozoite vaccines have entered clinical trials following on from advances in genetic manipulation of *Plasmodia*. Genetically attenuated parasites (GAPs) administered as sporozoites, were first developed in order to achieve parasites that arrest at a more precise time than occurring with irradiated sporozoites¹⁰¹. GAPs involve the knock-out (KO) of particular gene(s) that are crucial for liver stage development but do not affect other stages of the *Plasmodia* life cycle²⁴⁰. GAPs need to be safe attenuated

parasites (abrogating blood stage infection following sporozoite infection) but the parasite also needs to induce potent sterilising protective responses²⁴⁰. The first GAP to enter clinical testing in humans¹⁴⁶ was a double KO of two proteins of the 6-cys family (P52 and P36) which are vital for EEF development^{87, 88, 91, 245}. But, upon high bite exposure from infected mosquitoes, a breakthrough infection with $p52^{-}/p36^{-}$ occurred¹⁴⁶. However, further removing the sap1 (slarp) gene from the parasite lead to a fully attenuated GAP following mosquito bite²⁴⁶. These two GAPs target the early stages of EEF development, however a GAP lacking *fabb/f*²⁴⁷, a gene that encodes a protein involved in fatty acid synthesis, led to parasites that arrested later than early arresting RAS²⁴⁸. fabb/f⁻ GAP gave long lasting sterile immunity against sporozoites challenge²⁴⁸ as well as blood-stage challenge highlighting stage-transcending immunity^{248, 249}. However, FabB/F is essential for P. falciparum to produce sporozoites and thus is not an option for human GAPs²⁵⁰. Nonetheless the generation of the GAP *lisp2⁻/plasmei2⁻*, a double KO in *P. yoelii*, showed very late liver arrest with no breakthrough infections and long lasting sterile immunity against infectious sporozoites with induction of liver resident memory CD8+ T cells²⁵¹. With high conservation of these genes in human *Plasmodia*, the generation of a long lasting sterilely protecting human GAPs could be soon on the horizon.

A further WSV strategy that has shown promise is the administration of infectious sporozoites concomitantly with anti-malarial drugs (ChemoProphylaxis and Sporozoites – CPS). Similar to GAPs, drug prophylaxis would ensure full EEF development and thus increased antigen exposure to the host immune system, with the premise of inducing broader action immune responses. Immunisation of sporozoites by mosquito bite^{252, 253} or intravenous injection¹⁴⁸ with chloroquine cover provided complete sterile protection. While efficacy against heterologous challenge was shown to be limited²⁵⁴, continual administration of chloroquine not appearing to be the most appropriate regimen considering chloroquine resistance in endemic settings and the potential regulatory issues of generating a live unattenuated parasite, the amount of sporozoites required for

CPS immunisation to achieve protection is 10-100-fold less than that required for RAS immunisations²⁵⁵. While subjects are exposed to transient low level parasitaemia during vaccination, immunity is targeted mainly against pre-erythrocytic antigens²⁵⁶, with the contribution of chloroquine to induce cross-stage protective immunity, as seen in animals studies^{257, 258}, impossible to study in human vaccine studies where monitoring parasitaemia over time is not possible.

Other drugs have been tested as alternatives to chloroquine for CPS. Mefloquine was shown in humans to give equivalent results to chloroquine following human trails receiving infectious *P. falciparum* mosquito bites²⁵⁹ in humans. In mice, primaquine²⁶⁰, pyrimethamine²⁶¹, piperaquine²⁶², artesunate²⁶³, azithromycin^{260, 264} and clindamycin^{260, 264} have been tested and compared, with azithromycin inducing the best immunity and protection²⁶⁰. This suggests that full EEF development without the release of viable merozoites is most beneficial for protection, which corroborates data suggesting blood stage infections negatively impacts pre-erythrocytic immunity²⁶⁵.

The least investigated WSV strategy has been using chemically attenuated parasites, where sporozoites^{266, 267} or blood stage merozoites²⁶⁸ are incubated with centamycin or Tafuramycin-A, *Seco*-cyclopropyl pyrrolo indole analogues, that are thought to irreversibly alkylate polyA rich DNA regions. In both stages of the life cycle, complete attenuation of growth occurs, and sterile immunity induced. While there are concerns over complete attenuation and the possibility of reversion and drug toxicity to hosts, safety and immunogenicity trials in humans using *P. falciparum* infected erythrocytes treated with Tafuramycin-A is underway to assess the viability of this strategy for vaccination²⁶⁹ which may then lead on to vaccination with sporozoites.

Nonetheless, while many still deem the use of whole sporozoite vaccines, especially in malaria endemic areas, as unlikely, the use of RAS, GAPs and CPS has allowed many immunological determinants induced by these vaccines to be identified. Correlates of

protection have been achieved and the contribution of different arms of the immune system induced by these vaccines have been investigated, first in mice and then tested and translated into human vaccine studies. Despite few clinical studies, of which many were conducted in malaria-naïve cohorts, some assertions have been made to the responses induced by WSVs.

CD8+ T cells are considered the major effector immune response eliciting sterile protection following WSV, with varying contributions from CD4+ T cells and antibodies²⁷⁰. In humans, studying the contribution of T cells is difficult as depletion studies and determining the presence of liver resident memory T cells is not possible. However, vaccination with RAS¹⁴⁵ or *p52/p36*⁻ GAP¹⁴⁶ induced parasite-specific IFN- γ producing CD8+ T cells detectable in peripheral blood in most subjects, with a dose dependent response¹⁴⁵. In a CPS study using chloroquine, only 2/9 protected individuals had observable parasite-specific IFN- γ CD8+ T cells in peripheral blood¹⁴⁸. This may be the result of the protective CD8+ T cells remaining trapped in the liver as has been shown in mouse models using a late arresting GAP²⁵¹ and RAS immunised non-human primates²⁴³, though why RAS and GAP generally induce this peripheral blood correlate but not CPS is not known. Another CPS study found an association between Granzyme B expression on peripheral blood CD8+ T cells, following stimulation with *P. falciparum* infected erythrocytes, and protection, which may indicate the induction of protective responses to late-liver stage antigens²⁷¹.

The protective role of CD4+ T cells in pre-erythrocytic immunity after vaccination is less clear. Mouse models suggest the role is dependent on mouse strain, vaccine strategy and parasite used¹⁴⁷. It has also been proposed that the role of CD4+ T cells in protection is dependent on timing of challenge in RAS²⁷⁰ and possibly other WSVs. In humans, intravenous vaccination with RAS induces CD4+ T cell response whose magnitude correlates with vaccine dose¹⁴⁵. In addition, immunisation with *p52⁻/p36⁻* GAP¹⁴⁶ and

sporozoites administered under chloroquine prophylaxis¹⁴⁸, induced polyfunctional cytokine-producing memory CD4+ T cell responses. This correlated with pre-erythrocytic and erythrocytic protection in the CPS study¹⁴⁸ but correlations to protection could not be determined when using a GAP¹⁴⁶. A further association in a CPS study was found between protection and CD107a expression on peripheral blood CD4+ T cells, following stimulation with *P. falciparum* infected erythrocytes, which may again indicate responses to late-liver stage antigens²⁷¹.

The contribution of antibodies to protection is the least clear adaptive immune response. As mentioned before, anti-sporozoite antibody responses can be induced in mice using WSVs^{215, 216} however protection is also achievable upon depletion of B cells²²¹. In human studies, vaccination with RAS induced high anti-CSP antibody titres, which correlated with immunisation dose, and higher titres were observed in protected individuals compared to non-protected individuals¹⁴⁵. Results from CPS studies show that antibodies against CSP^{148, 252, 256, 272} and other proteins expressed in sporozoites and EEFs^{148, 272} were induced, but anti-CSP antibodies were deemed to be short-lived²⁵³ and no correlation was found between protection and antibody responses to any protein¹⁴⁸. Immunisation with p52⁻/p36⁻¹⁴⁶ and p52⁻/p36⁻/sap1⁻²⁴⁶ GAPs also elicited antibodies against CSP^{146, 246} and other sporozoite and EEF proteins²⁴⁶. It is clear that while antibodies induced by WSVs have significant functional activity in the ability to block sporozoite invasion *in vitro*^{145, 146, 148, 243, 273} and in chimeric mice²⁷⁴, they are probably not the main effector of the immune system targeting *Plasmodium* in the liver. The role of blood-stage reactive antibodies to protect against blood stage parasites following sporozoite vaccination has also not been fully determined. It is not determined in humans what level of exposure to blood stage parasites is required to confer protection, whether human late arresting GAPs could induce stage-transcending immunity^{249, 251} and the full impact of blood stage parasites on immunoregulatory mechanisms which may negatively impact other immune responses²⁶⁵.

Further insights into WSV-induced immunity will be achieved with the increasing number of clinical trials using RAS, GAPs and CPS. Through this, the differences in the strategies and (protective) immune responses induced can be delineated. It is also imperative to have more data from clinical trials in malaria endemic settings to determine correlates of protection.

Overall, whole sporozoite vaccines have been very useful in informing how the immune system responds to malaria parasites and also how best to modulate immune responses to achieve protection against the pre-erythrocytic stages. Given the complexity of the parasite and natural immune responses, fast-forwarding natural acquired immunity is probably not the most appropriate method as sterile protection is never induced²⁷⁵. Instead, vaccines against pre-erythrocytic immunity should be more focused towards developing unnaturally high immune responses to induce sterile protection²⁴⁰.

To improve existing vaccines, it is this unnatural immunity that needs to be maintained to sustain protection. In terms of targeting sporozoites, strong and durable titres of broad acting polyclonal antibodies are required to maximise inhibition of sporozoite traversal and invasion. A strong, broad acting antibody response would likely also favour a reduction in merozoites in the blood, however, the acquisition of sterile protection against blood stage parasites, and the role of blood stage parasites in dampening pre-erythrocytic responses, has yet to be fully unravelled despite stage-transcending immunity being possible in mouse models with late arresting GAPs^{249, 251}. The identification of new targets is also a high priority using the plethora of new genetic, transcriptomic and proteomic data sets and tools.

To improve current CD8+ T cell inducing strategies, while it may be difficult to determine, assessing the ability of vaccines to induce *Plasmodium* specific-liver resident CD8+ T cells will be vital as a correlate for protection, as these cells have been shown to play a major role in protection and can be induced by vaccination^{172, 251, 276-278} in mice and non-

human primates. Developing a vaccine to induce large numbers of potent liver resident CD8+ T cells as well as developing an assay to determine this induction will be crucial next stages in developing and testing efficacious pre-erythrocytic targeting malaria vaccines. Further identification of the targets of these protective responses will also aid the development of next generation T-cell targeting vaccines, particularly late expressed EEF antigens which have been shown to give superior immunity to earlier expressed EEF antigens²⁴⁸.

Vaccines targeting the other stages of the *Plasmodium* life cycle also exist, based on inducing strong antibody responses against merozoites and sexual stages, to protect against blood stage infection and prevent transmission of the parasite to the mosquito²⁵⁵. The advent of an efficacious subunit vaccine could involve combining antigenic elements from all of the *Plasmodium* life cycle stages to achieve long-lasting, cross-stage immunity against malaria.

AIMS AND RESEARCH OBJECTIVES

The importance of CD8+ T cells in conferring protection to the pre-erythrocytic stages of malaria is apparent, however few antigens have been described as being responsible for these immunological responses. More work has been carried out looking at the responses to sporozoite antigens, particularly CSP, with EEF antigens being very much a mystery in terms of induced CD8+ T cell responses and protective capability. Sporozoites are extracellular and thus antigens would be accessible to the immune system for presentation prior to hepatocyte invasion. Conversely, EEFs are hidden inside a hepatocyte and surrounded by a parasitophorous vacuole membrane, blocking access to the cytosol and antigen processing machinery. Given this, my working hypothesis was that sporozoite antigens are more immunogenic than EEF antigens, as they are more likely to be presented to CD8+ T cells.

The overall aim of this PhD project was to determine the CD8+ T cell responses and subsequent protection induced by different antigens expressed in the pre-erythrocytic stages of *Plasmodium* infection with a focus on EEF antigens.

My research objectives were to:

- Compare a sporozoite surface and an EEF vacuolar membrane antigen and investigate the effect of spatial and temporal differences of pre-erythrocytic antigen expression on CD8+ T cell responses and their roles in vaccine-induced protection (Chapters 2 and 3).
- Compare early and later expressed EEF antigens to investigate the effect of temporal expression of antigens expressed by EEFs on CD8+ T cell responses and vaccine-induced protection (Chapter 4).
- Investigate CD8+ T cell responses and protection induced by the immunodominant CD8+ T cell epitope of sporozoite surface circumsporozoite protein (Chapter 5).

 Identify novel CD8+ T cell epitopes from pre-erythrocytic antigens, especially those expressed in the EEF, using bioinformatics tools and laboratory screening (Chapter 6).

REFERENCES

- 1. WHO, *World Malaria Report 2017* 2017, World Health Organisation: Geneva, Switzerland.
- 2. Head, M.G., et al., *Global funding trends for malaria research in sub-Saharan Africa: a systematic analysis.* Lancet Glob Health, 2017. **5**(8): p. e772-e781.
- 3. Snow, R.W., et al., *Equity and adequacy of international donor assistance for global malaria control: an analysis of populations at risk and external funding commitments.* Lancet, 2010. **376**(9750): p. 1409-16.
- 4. Cohen, J.M., et al., *Malaria resurgence: a systematic review and assessment of its causes.* Malar J, 2012. **11**: p. 122.
- 5. Snow, R.W., et al., *The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900.* Nature, 2017. **550**(7677): p. 515-518.
- 6. Baird, J.K., *Evidence and implications of mortality associated with acute Plasmodium vivax malaria*. Clin Microbiol Rev, 2013. **26**(1): p. 36-57.
- 7. Mueller, I., P.A. Zimmerman, and J.C. Reeder, *Plasmodium malariae and Plasmodium ovale--the "bashful" malaria parasites.* Trends Parasitol, 2007. **23**(6): p. 278-83.
- 8. Mikolajczak, S.A., et al., *Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice*. Cell Host Microbe, 2015. **17**(4): p. 526-35.
- 9. Markus, M.B., *The hypnozoite concept, with particular reference to malaria.* Parasitol Res, 2011. **108**(1): p. 247-52.
- 10. Singh, B., et al., *A large focus of naturally acquired Plasmodium knowlesi infections in human beings.* Lancet, 2004. **363**(9414): p. 1017-24.
- 11. Cox-Singh, J., et al., *Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening*. Clin Infect Dis, 2008. **46**(2): p. 165-71.
- 12. Perkins, S.L. and J. Schaer, *A Modern Menagerie of Mammalian Malaria*. Trends Parasitol, 2016. **32**(10): p. 772-782.
- Ribeiro, J.M., R.H. Nussenzveig, and G. Tortorella, Salivary vasodilators of Aedes triseriatus and Anopheles gambiae (Diptera: Culicidae). J Med Entomol, 1994. **31**(5): p. 747-53.
- 14. Yamauchi, L.M., et al., *Plasmodium sporozoites trickle out of the injection site*. Cell Microbiol, 2007. **9**(5): p. 1215-22.
- 15. Hopp, C.S., et al., *Longitudinal analysis of sporozoite motility in the dermis reveals component of blood vessel recognition.* Elife, 2015. **4**.
- 16. Tavares, J., et al., *Role of host cell traversal by the malaria sporozoite during liver infection*. J Exp Med, 2013. **210**(5): p. 905-15.
- 17. Mota, M.M., et al., *Migration of Plasmodium sporozoites through cells before infection*. Science, 2001. **291**(5501): p. 141-4.
- 18. Risco-Castillo, V., et al., *Malaria Sporozoites Traverse Host Cells within Transient Vacuoles.* Cell Host Microbe, 2015.
- 19. Bano, N., et al., *Cellular interactions of Plasmodium liver stage with its host mammalian cell*. Int J Parasitol, 2007. **37**(12): p. 1329-41.
- 20. Burda, P.C., R. Caldelari, and V.T. Heussler, *Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress*. MBio, 2017. **8**(2).
- 21. Mideo, N., et al., *The Cinderella syndrome: why do malaria-infected cells burst at midnight?* Trends Parasitol, 2013. **29**(1): p. 10-6.
- 22. Camus, D. and T.J. Hadley, *A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites.* Science, 1985. **230**(4725): p. 553-6.
- 23. Maier, A.G., et al., *Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations.* Nat Med, 2003. **9**(1): p. 87-92.
- 24. Mayer, D.C., et al., *Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1.* Proc Natl Acad Sci U S A, 2009. **106**(13): p. 5348-52.

- 25. Spadafora, C., et al., *Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum.* PLoS Pathog, 2010. **6**(6): p. e1000968.
- 26. Crosnier, C., et al., *Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum.* Nature, 2011. **480**(7378): p. 534-7.
- Miller, L.H., et al., RESISTANCE FACTOR TO PLASMODIUM-VIVAX IN BLACKS DUFFY-BLOOD-GROUP GENOTYPE, FYFY. New England Journal of Medicine, 1976. 295(6): p. 302-304.
- 28. Cowman, A.F., et al., *The Molecular Basis of Erythrocyte Invasion by Malaria Parasites*. Cell Host Microbe, 2017. **22**(2): p. 232-245.
- 29. Oakley, M.S., et al., *Clinical and molecular aspects of malaria fever*. Trends Parasitol, 2011. **27**(10): p. 442-9.
- Wassmer, S.C., et al., Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg, 2015. 93(3 Suppl): p. 42-56.
- 31. Coleman, B.I., et al., *A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion*. Cell Host Microbe, 2014. **16**(2): p. 177-186.
- 32. Sinha, A., et al., A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature, 2014. **507**(7491): p. 253-257.
- 33. Kafsack, B.F., et al., *A transcriptional switch underlies commitment to sexual development in malaria parasites.* Nature, 2014. **507**(7491): p. 248-52.
- 34. Poran, A., et al., *Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites.* Nature, 2017. **551**(7678): p. 95-99.
- 35. Baker, D.A., *Malaria gametocytogenesis*. Mol Biochem Parasitol, 2010. **172**(2): p. 57-65.
- 36. Kuehn, A. and G. Pradel, *The coming-out of malaria gametocytes*. J Biomed Biotechnol, 2010. **2010**: p. 976827.
- Billker, O., et al., The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology, 1997. 115 (Pt 1): p. 1-7.
- 38. Billker, O., et al., *Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito.* Nature, 1998. **392**(6673): p. 289-92.
- 39. Garcia, G.E., et al., *Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite.* J Biol Chem, 1998. **273**(20): p. 12003-5.
- 40. Janse, C.J., et al., *DNA synthesis in Plasmodium berghei during asexual and sexual development*. Mol Biochem Parasitol, 1986. **20**(2): p. 173-82.
- 41. Aly, A.S., A.M. Vaughan, and S.H. Kappe, *Malaria parasite development in the mosquito and infection of the mammalian host.* Annu Rev Microbiol, 2009. **63**: p. 195-221.
- 42. Sinden, R.E. and K. Strong, *An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae.* Trans R Soc Trop Med Hyg, 1978. **72**(5): p. 477-91.
- 43. Orfano, A.S., et al., *Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.* Malar J, 2016. **15**(1): p. 394.
- 44. Aly, A.S. and K. Matuschewski, *A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts.* J Exp Med, 2005. **202**(2): p. 225-30.
- 45. Matuschewski, K., et al., *Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage.* J Biol Chem, 2002. **277**(44): p. 41948-53.
- 46. Medica, D.L. and P. Sinnis, *Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes*. Infect Immun, 2005. **73**(7): p. 4363-9.
- 47. Frischknecht, F., et al., *Imaging movement of malaria parasites during transmission by Anopheles mosquitoes.* Cell Microbiol, 2004. **6**(7): p. 687-94.
- 48. Jin, Y., C. Kebaier, and J. Vanderberg, *Direct microscopic quantification of dynamics of Plasmodium berghei sporozoite transmission from mosquitoes to mice.* Infect Immun, 2007. **75**(11): p. 5532-9.

- 49. Churcher, T.S., et al., *Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naive and Vaccinated Hosts.* PLoS Pathog, 2017. **13**(1): p. e1006108.
- 50. Balaban, A.E., et al., *Robust fluorescent labelling of micropipettes for use in fluorescence microscopy: application to the observation of a mosquito borne parasite infection.* J Microsc, 2018. **269**(1): p. 78-84.
- 51. Kappe, S.H., C.A. Buscaglia, and V. Nussenzweig, *Plasmodium sporozoite molecular cell biology*. Annu Rev Cell Dev Biol, 2004. **20**: p. 29-59.
- 52. Rogers, W.O., et al., *Characterization of Plasmodium falciparum sporozoite surface protein 2*. Proc Natl Acad Sci U S A, 1992. **89**(19): p. 9176-80.
- 53. Carruthers, V.B. and F.M. Tomley, *Microneme proteins in apicomplexans*. Subcell Biochem, 2008. **47**: p. 33-45.
- 54. Dundas, K., et al., *Alpha-v-containing integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP.* Proc Natl Acad Sci U S A, 2018. **115**(17): p. 4477-4482.
- 55. Amino, R., et al., *Quantitative imaging of Plasmodium transmission from mosquito to mammal.* Nat Med, 2006. **12**(2): p. 220-4.
- 56. Yang, A.S. and J.A. Boddey, *Molecular mechanisms of host cell traversal by malaria sporozoites*. Int J Parasitol, 2017. **47**(2-3): p. 129-136.
- 57. Sultan, A.A., et al., *TRAP is necessary for gliding motility and infectivity of plasmodium sporozoites*. Cell, 1997. **90**(3): p. 511-22.
- 58. Ejigiri, I., et al., Shedding of TRAP by a rhomboid protease from the malaria sporozoite surface is essential for gliding motility and sporozoite infectivity. PLoS Pathog, 2012.
 8(7): p. e1002725.
- 59. Amino, R., et al., *Host cell traversal is important for progression of the malaria parasite through the dermis to the liver.* Cell Host Microbe, 2008. **3**(2): p. 88-96.
- 60. Muthinja, M.J., et al., *Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites.* Adv Healthc Mater, 2017. **6**(6).
- 61. Hellmann, J.K., et al., *Environmental constraints guide migration of malaria parasites during transmission*. PLoS Pathog, 2011. **7**(6): p. e1002080.
- 62. Menard, R., et al., *Looking under the skin: the first steps in malarial infection and immunity.* Nat Rev Microbiol, 2013. **11**(10): p. 701-12.
- 63. Gueirard, P., et al., *Development of the malaria parasite in the skin of the mammalian host.* Proc Natl Acad Sci U S A, 2010. **107**(43): p. 18640-5.
- 64. Voza, T., C. Kebaier, and J.P. Vanderberg, *Intradermal immunization of mice with radiation-attenuated sporozoites of Plasmodium yoelii induces effective protective immunity.* Malar J, 2010. **9**: p. 362.
- 65. Coppi, A., et al., *The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host.* J Exp Med, 2011. **208**(2): p. 341-56.
- 66. Wang, Q., H. Fujioka, and V. Nussenzweig, *Mutational analysis of the GPI-anchor* addition sequence from the circumsporozoite protein of Plasmodium. Cell Microbiol, 2005. **7**(11): p. 1616-26.
- 67. Sinnis, P. and E. Nardin, *Sporozoite antigens: biology and immunology of the circumsporozoite protein and thrombospondin-related anonymous protein.* Chem Immunol, 2002. **80**: p. 70-96.
- 68. Menard, R., *The journey of the malaria sporozoite through its hosts: two parasite proteins lead the way.* Microbes Infect, 2000. **2**(6): p. 633-42.
- 69. Stewart, M.J. and J.P. Vanderberg, Malaria sporozoites release circumsporozoite protein from their apical end and translocate it along their surface. J Protozool, 1991.
 38(4): p. 411-21.
- 70. Douglas, R.G., et al., *Active migration and passive transport of malaria parasites.* Trends Parasitol, 2015. **31**(8): p. 357-62.

- 71. Ishibashi, H., et al., *Liver architecture, cell function, and disease*. Semin Immunopathol, 2009. **31**(3): p. 399-409.
- Frevert, U., et al., Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J Exp Med, 1993.
 177(5): p. 1287-98.
- 73. Pradel, G., S. Garapaty, and U. Frevert, *Proteoglycans mediate malaria sporozoite targeting to the liver*. Mol Microbiol, 2002. **45**(3): p. 637-51.
- 74. Pradel, G. and U. Frevert, *Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion.* Hepatology, 2001. **33**(5): p. 1154-65.
- 75. Frevert, U., et al., *Intravital observation of Plasmodium berghei sporozoite infection of the liver.* PLoS Biol, 2005. **3**(6): p. e192.
- 76. Cha, S.J., et al., *Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion.* J Exp Med, 2016. **213**(10): p. 2099-112.
- 77. Coppi, A., et al., *Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells.* Cell Host Microbe, 2007. **2**(5): p. 316-27.
- 78. Coppi, A., et al., *The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion.* J Exp Med, 2005. **201**(1): p. 27-33.
- 79. Ejigiri, I. and P. Sinnis, *Plasmodium sporozoite-host interactions from the dermis to the hepatocyte*. Curr Opin Microbiol, 2009. **12**(4): p. 401-7.
- 80. Yang, A.S.P., et al., *Cell Traversal Activity Is Important for Plasmodium falciparum Liver Infection in Humanized Mice.* Cell Rep, 2017. **18**(13): p. 3105-3116.
- 81. Santos, J.M., et al., *Malaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts*. Elife, 2017. **6**.
- 82. Govindasamy, K., et al., *Invasion of hepatocytes by Plasmodium sporozoites requires cGMP-dependent protein kinase and calcium dependent protein kinase 4.* Mol Microbiol, 2016. **102**(2): p. 349-363.
- 83. Kappe, S., et al., *Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites.* J Cell Biol, 1999. **147**(5): p. 937-44.
- 84. Jewett, T.J. and L.D. Sibley, *Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites.* Mol Cell, 2003. **11**(4): p. 885-94.
- 85. Buscaglia, C.A., et al., *Sites of interaction between aldolase and thrombospondinrelated anonymous protein in plasmodium.* Mol Biol Cell, 2003. **14**(12): p. 4947-57.
- 86. Arredondo, S.A., et al., *Structure of the Plasmodium 6-cysteine s48/45 domain.* Proc Natl Acad Sci U S A, 2012. **109**(17): p. 6692-7.
- 87. Ishino, T., Y. Chinzei, and M. Yuda, *Two proteins with 6-cys motifs are required for malarial parasites to commit to infection of the hepatocyte.* Mol Microbiol, 2005.
 58(5): p. 1264-75.
- 88. van Schaijk, B.C., et al., *Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.* PLoS One, 2008. **3**(10): p. e3549.
- 89. Labaied, M., et al., *Plasmodium yoelii sporozoites with simultaneous deletion of P52* and P36 are completely attenuated and confer sterile immunity against infection. Infect Immun, 2007. **75**(8): p. 3758-68.
- 90. VanBuskirk, K.M., et al., *Preerythrocytic, live-attenuated Plasmodium falciparum* vaccine candidates by design. Proc Natl Acad Sci U S A, 2009. **106**(31): p. 13004-9.
- 91. Manzoni, G., et al., *Plasmodium P36 determines host cell receptor usage during sporozoite invasion*. Elife, 2017. **6**.
- 92. Gonzalez, V., et al., *Host cell entry by apicomplexa parasites requires actin polymerization in the host cell.* Cell Host Microbe, 2009. **5**(3): p. 259-72.

- 93. Tufet-Bayona, M., et al., Localisation and timing of expression of putative Plasmodium berghei rhoptry proteins in merozoites and sporozoites. Mol Biochem Parasitol, 2009.
 166(1): p. 22-31.
- 94. Giovannini, D., et al., *Independent roles of apical membrane antigen 1 and rhoptry neck proteins during host cell invasion by apicomplexa*. Cell Host Microbe, 2011. **10**(6): p. 591-602.
- 95. Voss, C., et al., Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. MBio, 2016. **7**(3).
- 96. Jayabalasingham, B., N. Bano, and I. Coppens, *Metamorphosis of the malaria parasite in the liver is associated with organelle clearance.* Cell Res, 2010. **20**(9): p. 1043-59.
- 97. Nyboer, B., et al., *The Plasmodium liver-stage parasitophorous vacuole: A front-line of communication between parasite and host.* Int J Med Microbiol, 2017.
- 98. Sanchez, G.I., et al., *Plasmodium falciparum: exported protein-1, a blood stage antigen, is expressed in liver stage parasites.* Exp Parasitol, 1994. **79**(1): p. 59-62.
- 99. Sa, E.C.C., et al., *Plasmodium berghei EXP-1 interacts with host Apolipoprotein H during Plasmodium liver-stage development*. Proc Natl Acad Sci U S A, 2017. **114**(7): p. E1138-E1147.
- 100. Mikolajczak, S.A., et al., *L-FABP is a critical host factor for successful malaria liver stage development.* Int J Parasitol, 2007. **37**(5): p. 483-9.
- 101. Mueller, A.K., et al., *Genetically modified Plasmodium parasites as a protective experimental malaria vaccine.* Nature, 2005. **433**(7022): p. 164-7.
- 102. Labaied, M., et al., *Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver.* Cell Microbiol, 2011. **13**(4): p. 569-86.
- 103. Itoe, M.A., et al., *Host cell phosphatidylcholine is a key mediator of malaria parasite survival during liver stage infection.* Cell Host Microbe, 2014. **16**(6): p. 778-86.
- 104. Deschermeier, C., et al., *Mitochondrial lipoic acid scavenging is essential for Plasmodium berghei liver stage development*. Cell Microbiol, 2012. **14**(3): p. 416-30.
- 105. Meireles, P., et al., *GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection.* Cell Microbiol, 2017. **19**(2).
- 106. Meireles, P., et al., *Uptake and metabolism of arginine impact Plasmodium development in the liver.* Sci Rep, 2017. **7**(1): p. 4072.
- 107. Dellibovi-Ragheb, T.A., et al., *Host biotin is required for liver stage development in malaria parasites.* Proc Natl Acad Sci U S A, 2018. **115**(11): p. E2604-E2613.
- 108. Portugal, S., et al., *Host-mediated regulation of superinfection in malaria*. Nat Med, 2011. **17**(6): p. 732-7.
- 109. Sahu, T., et al., *ZIPCO, a putative metal ion transporter, is crucial for Plasmodium liverstage development.* EMBO Mol Med, 2014. **6**(11): p. 1387-97.
- 110. Kenthirapalan, S., et al., *Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite.* Nat Commun, 2016. **7**: p. 10519.
- 111. Rijpma, S.R., et al., *Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.* Cell Microbiol, 2016. **18**(3): p. 369-83.
- 112. Posfai, D., et al., *Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection*. PLoS Pathog, 2018. **14**(5): p. e1007057.
- 113. Petersen, W., et al., *Sequestration of cholesterol within the host late endocytic pathway restricts liver-stage Plasmodium development*. Mol Biol Cell, 2017. **28**(6): p. 726-735.
- 114. Thieleke-Matos, C., et al., *Host cell autophagy contributes to Plasmodium liver development.* Cell Microbiol, 2016. **18**(3): p. 437-50.
- 115. Prado, M., et al., Long-term live imaging reveals cytosolic immune responses of host hepatocytes against Plasmodium infection and parasite escape mechanisms. Autophagy, 2015. **11**(9): p. 1561-79.

- 116. Grutzke, J., et al., *The spatiotemporal dynamics and membranous features of the Plasmodium liver stage tubovesicular network*. Traffic, 2014. **15**(4): p. 362-82.
- 117. Real, E., et al., *Plasmodium UIS3 sequesters host LC3 to avoid elimination by autophagy in hepatocytes.* Nat Microbiol, 2018. **3**(1): p. 17-25.
- 118. Mueller, A.K., et al., *Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface*. Proc Natl Acad Sci U S A, 2005. **102**(8): p. 3022-7.
- 119. Le Roch, K.G., et al., *Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle.* Genome Res, 2004. **14**(11): p. 2308-18.
- 120. Silva, P.A., et al., *Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites*. PLoS One, 2016. **11**(1): p. e0147940.
- 121. Ishino, T., et al., *LISP1 is important for the egress of Plasmodium berghei parasites from liver cells*. Cell Microbiol, 2009. **11**(9): p. 1329-39.
- 122. Orito, Y., et al., *Liver-specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation*. Mol Microbiol, 2013.
 87(1): p. 66-79.
- 123. Al-Nihmi, F.M., et al., *A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms.* Sci Rep, 2017. **7**: p. 40407.
- 124. Goldie, P., et al., *Biochemical characterization of Plasmodium falciparum hemozoin*. Am J Trop Med Hyg, 1990. **43**(6): p. 584-96.
- 125. Slavic, K., et al., A vacuolar iron-transporter homologue acts as a detoxifier in *Plasmodium*. Nat Commun, 2016. **7**: p. 10403.
- 126. Graewe, S., et al., *Chronicle of a death foretold: Plasmodium liver stage parasites decide on the fate of the host cell.* FEMS Microbiol Rev, 2012. **36**(1): p. 111-30.
- 127. Gerald, N., B. Mahajan, and S. Kumar, *Mitosis in the human malaria parasite Plasmodium falciparum.* Eukaryot Cell, 2011. **10**(4): p. 474-82.
- 128. Stanway, R.R., et al., *Organelle segregation into Plasmodium liver stage merozoites*. Cell Microbiol, 2011. **13**(11): p. 1768-82.
- 129. Dankwa, D.A., et al., *A Plasmodium yoelii Mei2-Like RNA Binding Protein Is Essential for Completion of Liver Stage Schizogony*. Infect Immun, 2016. **84**(5): p. 1336-1345.
- 130. Xie, Z. and D.J. Klionsky, *Autophagosome formation: core machinery and adaptations.* Nat Cell Biol, 2007. **9**(10): p. 1102-9.
- 131. Graewe, S., et al., *Hostile takeover by Plasmodium: reorganization of parasite and host cell membranes during liver stage egress.* PLoS Pathog, 2011. **7**(9): p. e1002224.
- 132. Burda, P.C., et al., *A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane*. PLoS Pathog, 2015. **11**(3): p. e1004760.
- 133. Baer, K., et al., *Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature.* PLoS Pathog, 2007. **3**(11): p. e171.
- 134. Offeddu, V., et al., *Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection*. Int J Parasitol, 2012. **42**(6): p. 535-48.
- 135. Silvie, O., R. Amino, and J.C. Hafalla, *Tissue-specific cellular immune responses to malaria pre-erythrocytic stages.* Curr Opin Microbiol, 2017. **40**: p. 160-167.
- 136. Mecheri, S., *Contribution of allergic inflammatory response to the pathogenesis of malaria disease*. Biochim Biophys Acta, 2012. **1822**(1): p. 49-56.
- 137. Morrot, A. and M.M. Rodrigues, *Tissue signatures influence the activation of intrahepatic CD8(+) T cells against malaria sporozoites*. Front Microbiol, 2014. 5: p. 440.
- 138. Demeure, C.E., et al., Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol, 2005.
 174(7): p. 3932-40.

- 139. Heltianu, C., M. Simionescu, and N. Simionescu, *Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high-affinity binding sites in venules.* J Cell Biol, 1982. **93**(2): p. 357-64.
- 140. Mac-Daniel, L., et al., *Local immune response to injection of Plasmodium sporozoites into the skin.* J Immunol, 2014. **193**(3): p. 1246-57.
- 141. Mooney, J.P., S.C. Wassmer, and J.C. Hafalla, *Type I Interferon in Malaria: A Balancing Act.* Trends in Parasitology, 2017. **33**(4): p. 257-260.
- 142. Liehl, P., et al., *Host-cell sensors for Plasmodium activate innate immunity against liverstage infection.* Nat Med, 2014. **20**(1): p. 47-53.
- 143. Miller, J.L., et al., *Interferon-mediated innate immune responses against malaria parasite liver stages.* Cell Rep, 2014. **7**(2): p. 436-47.
- 144. Schofield, L., et al., *Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.* Nature, 1987. **330**(6149): p. 664-6.
- 145. Seder, R.A., et al., *Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine.* Science, 2013. **341**(6152): p. 1359-65.
- 146. Spring, M., et al., *First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers.* Vaccine, 2013. **31**(43): p. 4975-83.
- 147. Doolan, D.L. and S.L. Hoffman, *The complexity of protective immunity against liverstage malaria.* J Immunol, 2000. **165**(3): p. 1453-62.
- 148. Mordmuller, B., et al., *Sterile protection against human malaria by chemoattenuated PfSPZ vaccine.* Nature, 2017. **542**(7642): p. 445-449.
- 149. Frevert, U. and U. Krzych, *Plasmodium cellular effector mechanisms and the hepatic microenvironment*. Front Microbiol, 2015. **6**: p. 482.
- 150. Chakravarty, S., et al., *CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes*. Nat Med, 2007. **13**(9): p. 1035-41.
- 151. Radtke, A.J., et al., *Lymph-node resident CD8alpha+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses.* PLoS Pathog, 2015. **11**(2): p. e1004637.
- 152. Haeberlein, S., et al., *Protective immunity differs between routes of administration of attenuated malaria parasites independent of parasite liver load.* Sci Rep, 2017. **7**(1): p. 10372.
- 153. Lau, L.S., et al., *CD8+ T cells from a novel T cell receptor transgenic mouse induce liverstage immunity that can be boosted by blood-stage infection in rodent malaria.* PLoS Pathog, 2014. **10**(5): p. e1004135.
- 154. Thomson, A.W. and P.A. Knolle, *Antigen-presenting cell function in the tolerogenic liver environment.* Nat Rev Immunol, 2010. **10**(11): p. 753-66.
- 155. Crispe, I.N., et al., *Cellular and molecular mechanisms of liver tolerance*. Immunol Rev, 2006. **213**: p. 101-18.
- Hugel, F.U., G. Pradel, and U. Frevert, *Release of malaria circumsporozoite protein into the host cell cytoplasm and interaction with ribosomes.* Mol Biochem Parasitol, 1996.
 81(2): p. 151-70.
- 157. Limmer, A., et al., *Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance*. Eur J Immunol, 2005. **35**(10): p. 2970-81.
- 158. Knolle, P.A., et al., *Induction of cytokine production in naive CD4(+) T cells by antigenpresenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells.* Gastroenterology, 1999. **116**(6): p. 1428-40.
- 159. Frevert, U., et al., *Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells.* EMBO J, 1998. **17**(14): p. 3816-26.
- 160. Klotz, C. and U. Frevert, *Plasmodium yoelii sporozoites modulate cytokine profile and induce apoptosis in murine Kupffer cells*. Int J Parasitol, 2008. **38**(14): p. 1639-50.

- 161. Steers, N., et al., *The immune status of Kupffer cells profoundly influences their responses to infectious Plasmodium berghei sporozoites.* Eur J Immunol, 2005. **35**(8): p. 2335-46.
- 162. Heymann, F., et al., *Liver inflammation abrogates immunological tolerance induced by Kupffer cells.* Hepatology, 2015. **62**(1): p. 279-91.
- 163. Berg, M., et al., *Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance.* Eur J Immunol, 2006. **36**(11): p. 2960-70.
- 164. Frevert, U., et al., *Nomadic or sessile: can Kupffer cells function as portals for malaria sporozoites to the liver?* Cell Microbiol, 2006. **8**(10): p. 1537-46.
- 165. Barbier, L., et al., *Two lymph nodes draining the mouse liver are the preferential site of DC migration and T cell activation.* J Hepatol, 2012. **57**(2): p. 352-8.
- 166. Jobe, O., et al., *Immunization with radiation-attenuated Plasmodium berghei* sporozoites induces liver cCD8alpha+DC that activate CD8+T cells against liver-stage malaria. PLoS One, 2009. **4**(4): p. e5075.
- Montagna, G.N., et al., *Batf3 deficiency proves the pivotal role of CD8alpha(+) dendritic cells in protection induced by vaccination with attenuated Plasmodium sporozoites.* Parasite Immunol, 2015. **37**(10): p. 533-543.
- 168. Schmidt, N.W., et al., *Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites.* PLoS Pathog, 2010. **6**(7): p. e1000998.
- 169. Leiriao, P., M.M. Mota, and A. Rodriguez, *Apoptotic Plasmodium-infected hepatocytes provide antigens to liver dendritic cells.* J Infect Dis, 2005. **191**(10): p. 1576-81.
- 170. Bertolino, P. and D.G. Bowen, *Malaria and the liver: immunological hide-and-seek or subversion of immunity from within?* Front Microbiol, 2015. **6**: p. 41.
- 171. Balam, S., et al., *CSP--a model for in vivo presentation of Plasmodium berghei sporozoite antigens by hepatocytes*. PLoS One, 2012. **7**(12): p. e51875.
- 172. Fernandez-Ruiz, D., et al., *Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection.* Immunity, 2016. **45**(4): p. 889-902.
- 173. Kimura, K., et al., *CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection.* Infect Immun, 2013. **81**(10): p. 3825-34.
- 174. Cockburn, I.A., et al., *Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo.* PLoS Pathog, 2011. **7**(3): p. e1001318.
- 175. Huang, J., et al., *A sufficient role of MHC class I molecules on hepatocytes in anti*plasmodial activity of CD8 (+) T cells in vivo. Front Microbiol, 2015. **6**: p. 69.
- 176. Romero, P., et al., *Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria.* Nature, 1989. **341**(6240): p. 323-6.
- 177. Hafalla, J.C., et al., *Identification of targets of CD8(+) T cell responses to malaria liver stages by genome-wide epitope profiling*. PLoS Pathog, 2013. **9**(5): p. e1003303.
- 178. Bergmann-Leitner, E.S., et al., *Cellular and humoral immune effector mechanisms* required for sterile protection against sporozoite challenge induced with the novel malaria vaccine candidate CelTOS. Vaccine, 2011. **29**(35): p. 5940-9.
- 179. Longley, R.J., et al., *Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates.* Sci Rep, 2015. **5**: p. 11820.
- 180. Longley, R.J., et al., *Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine*. Infect Immun, 2017. **85**(3).
- Weiss, W.R., et al., CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A, 1988. 85(2): p. 573-6.
- Schmidt, N.W., et al., Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A, 2008.
 105(37): p. 14017-22.

- 183. Spencer, A.J., et al., *The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8(+) T Cells Present in the Liver.* J Immunol, 2017. **198**(5): p. 2006-2016.
- 184. Sano, G., et al., Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. J Exp Med, 2001. **194**(2): p. 173-80.
- 185. Ewer, K.J., et al., *Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation*. Nat Commun, 2013. **4**: p. 2836.
- 186. Van Braeckel-Budimir, N. and J.T. Harty, *CD8 T-cell-mediated protection against liver*stage malaria: lessons from a mouse model. Front Microbiol, 2014. **5**: p. 272.
- 187. Sallusto, F., et al., *Two subsets of memory T lymphocytes with distinct homing potentials and effector functions.* Nature, 1999. **401**(6754): p. 708-12.
- 188. Reyes-Sandoval, A., et al., *CD8+ T effector memory cells protect against liver-stage malaria*. J Immunol, 2011. **187**(3): p. 1347-57.
- 189. Berenzon, D., et al., *Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells.* J Immunol, 2003. **171**(4): p. 2024-34.
- 190. Schenkel, J.M. and D. Masopust, *Tissue-resident memory T cells*. Immunity, 2014.41(6): p. 886-97.
- 191. Tse, S.W., et al., *The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8(+) T cells specific for infectious pathogens.* J Infect Dis, 2014. **210**(9): p. 1508-16.
- 192. Cabrera, M., et al., *In vivo CD8+ T cell dynamics in the liver of Plasmodium yoelii immunized and infected mice.* PLoS One, 2013. **8**(8): p. e70842.
- 193. Cockburn, I.A., et al., *In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages.* Proc Natl Acad Sci U S A, 2013. **110**(22): p. 9090-5.
- Cockburn, I.A., S.W. Tse, and F. Zavala, CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun, 2014. 82(4): p. 1460-4.
- 195. Butler, N.S., N.W. Schmidt, and J.T. Harty, *Differential effector pathways regulate memory CD8 T cell immunity against Plasmodium berghei versus P. yoelii sporozoites.* J Immunol, 2010. **184**(5): p. 2528-38.
- 196. Trimnell, A., et al., *Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes.* J Immunol, 2009. **183**(9): p. 5870-8.
- 197. Dustin, M.L., *T-cell activation through immunological synapses and kinapses.* Immunol Rev, 2008. **221**: p. 77-89.
- 198. Renggli, J., et al., *Elimination of P. berghei liver stages is independent of Fas* (*CD95/Apo-I*) or perforin-mediated cytotoxicity. Parasite Immunol, 1997. 19(3): p. 145-8.
- 199. Morrot, A. and F. Zavala, *Effector and memory CD8+ T cells as seen in immunity to malaria*. Immunol Rev, 2004. **201**: p. 291-303.
- 200. Warren, A., et al., *T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells.* Hepatology, 2006. **44**(5): p. 1182-90.
- 201. Stinchcombe, J.C., et al., *The immunological synapse of CTL contains a secretory domain and membrane bridges.* Immunity, 2001. **15**(5): p. 751-61.
- 202. Faroudi, M., et al., *Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold.* Proc Natl Acad Sci U S A, 2003. **100**(24): p. 14145-50.
- 203. McCall, M.B. and R.W. Sauerwein, *Interferon-gamma--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria*. J Leukoc Biol, 2010. **88**(6): p. 1131-43.
- 204. Ferreira, A., et al., *Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon.* Science, 1986. **232**(4752): p. 881-4.

- 205. Schofield, L., et al., *Interferon-gamma inhibits the intrahepatocytic development of malaria parasites in vitro*. J Immunol, 1987. **139**(6): p. 2020-5.
- 206. Mellouk, S., et al., *Inhibitory activity of interferons and interleukin 1 on the development of Plasmodium falciparum in human hepatocyte cultures.* J Immunol, 1987. **139**(12): p. 4192-5.
- 207. Weiss, W.R., et al., A T cell clone directed at the circumsporozoite protein which protects mice against both Plasmodium yoelii and Plasmodium berghei. J Immunol, 1992. **149**(6): p. 2103-9.
- 208. Seguin, M.C., et al., Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: involvement of interferon gamma and CD8+ T cells. J Exp Med, 1994. **180**(1): p. 353-8.
- 209. James, S.L., *Role of nitric oxide in parasitic infections*. Microbiol Rev, 1995. **59**(4): p. 533-47.
- 210. Nganou-Makamdop, K., et al., *Long term protection after immunization with P. berghei* sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells. PLoS One, 2012. **7**(5): p. e36508.
- 211. Schmidt, N.W., N.S. Butler, and J.T. Harty, *Plasmodium-host interactions directly influence the threshold of memory CD8 T cells required for protective immunity.* J Immunol, 2011. **186**(10): p. 5873-84.
- 212. Dodoo, D., et al., *Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults.* Malar J, 2011. **10**: p. 168.
- 213. Cohen, S., G.I. Mc, and S. Carrington, *Gamma-globulin and acquired immunity to human malaria*. Nature, 1961. **192**: p. 733-7.
- 214. Triller, G., et al., *Natural Parasite Exposure Induces Protective Human Anti-Malarial Antibodies*. Immunity, 2017. **47**(6): p. 1197-1209 e10.
- 215. Yoshida, N., et al., *Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite*. Science, 1980. **207**(4426): p. 71-3.
- 216. Potocnjak, P., et al., *Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection.* J Exp Med, 1980. **151**(6): p. 1504-13.
- 217. Nussenzweig, V. and R.S. Nussenzweig, *Rationale for the development of an engineered sporozoite malaria vaccine*. Adv Immunol, 1989. **45**: p. 283-334.
- 218. White, M.T., et al., *A combined analysis of immunogenicity, antibody kinetics and vaccine efficacy from phase 2 trials of the RTS,S malaria vaccine.* BMC Med, 2014. **12**: p. 117.
- 219. Vanderberg, J.P. and U. Frevert, *Intravital microscopy demonstrating antibodymediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes.* Int J Parasitol, 2004. **34**(9): p. 991-6.
- 220. John, C.C., et al., *Correlation of high levels of antibodies to multiple pre-erythrocytic Plasmodium falciparum antigens and protection from infection.* Am J Trop Med Hyg, 2005. **73**(1): p. 222-8.
- 221. Chen, D.H., R.E. Tigelaar, and F.I. Weinbaum, *Immunity to sporozoite-induced malaria infeciton in mice. I. The effect of immunization of T and B cell-deficient mice.* J Immunol, 1977. **118**(4): p. 1322-7.
- 222. Doolan, D.L., C. Dobano, and J.K. Baird, *Acquired immunity to malaria*. Clin Microbiol Rev, 2009. **22**(1): p. 13-36, Table of Contents.
- 223. Nussenzweig, R.S., et al., *Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei*. Nature, 1967. **216**(5111): p. 160-2.
- 224. Clyde, D.F., et al., *Immunization of man against sporozite-induced falciparum malaria*. Am J Med Sci, 1973. **266**(3): p. 169-77.
- Rieckmann, K.H., et al., *Letter: Sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum.* Trans R Soc Trop Med Hyg, 1974. 68(3): p. 258-9.

- 226. Gwadz, R.W., et al., *Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites.* Bull World Health Organ, 1979. **57 Suppl 1**: p. 165-73.
- 227. Nussenzweig, R.S., et al., *Specificity of protective immunity produced by x-irradiated Plasmodium berghei sporozoites*. Nature, 1969. **222**(5192): p. 488-9.
- 228. Clyde, D.F., *Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites*. Am J Trop Med Hyg, 1975. **24**(3): p. 397-401.
- 229. Rts, S.C.T.P., *Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.* Lancet, 2015. **386**(9988): p. 31-45.
- 230. Rts, S.C.T.P., et al., *A phase 3 trial of RTS,S/ASO1 malaria vaccine in African infants.* N Engl J Med, 2012. **367**(24): p. 2284-95.
- 231. Rts, S.C.T.P., et al., *First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children*. N Engl J Med, 2011. **365**(20): p. 1863-75.
- 232. White, M.T., et al., *Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial.* Lancet Infect Dis, 2015. **15**(12): p. 1450-8.
- 233. Olotu, A., et al., Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/ASO1E and protection against P falciparum clinical malaria. PLoS One, 2011.
 6(10): p. e25786.
- 234. Olotu, A., et al., *Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among Young African Children*. N Engl J Med, 2016. **374**(26): p. 2519-29.
- 235. Regules, J.A., et al., *Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study.* J Infect Dis, 2016. **214**(5): p. 762-71.
- 236. Collins, K.A., et al., *Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine*. Sci Rep, 2017. **7**: p. 46621.
- 237. Genito, C.J., et al., *Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013.* Vaccine, 2017. **35**(31): p. 3865-3874.
- 238. Ewer, K.J., et al., *Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".* Vaccine, 2015. **33**(52): p. 7444-51.
- 239. Lu, S., *Heterologous prime-boost vaccination*. Curr Opin Immunol, 2009. **21**(3): p. 346-51.
- 240. Bijker, E.M., et al., *Novel approaches to whole sporozoite vaccination against malaria*. Vaccine, 2015. **33**(52): p. 7462-8.
- 241. Hoffman, S.L., et al., *Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites.* J Infect Dis, 2002. **185**(8): p. 1155-64.
- 242. Hoffman, S.L., et al., *Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria.* Hum Vaccin, 2010. **6**(1): p. 97-106.
- 243. Epstein, J.E., et al., *Live attenuated malaria vaccine designed to protect through hepatic CD8(+) T cell immunity.* Science, 2011. **334**(6055): p. 475-80.
- 244. Zhou, C., et al., *Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines.* J Control Release, 2015. **204**: p. 30-7.
- 245. van Dijk, M.R., et al., *Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.* Proc Natl Acad Sci U S A, 2005. **102**(34): p. 12194-9.
- 246. Kublin, J.G., et al., *Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects.* Sci Transl Med, 2017. **9**(371).
- 247. Vaughan, A.M., et al., *Type II fatty acid synthesis is essential only for malaria parasite late liver stage development.* Cell Microbiol, 2009. **11**(3): p. 506-20.

- Butler, N.S., et al., Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe, 2011. 9(6): p. 451-62.
- 249. Sack, B.K., et al., *Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.* PLoS Pathog, 2015. **11**(5): p. e1004855.
- 250. van Schaijk, B.C., et al., *Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes.* Eukaryot Cell, 2014. **13**(5): p. 550-9.
- 251. Vaughan, A.M., et al., *A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice.* Infect Immun, 2018. **86**(5).
- 252. Roestenberg, M., et al., *Protection against a malaria challenge by sporozoite inoculation*. N Engl J Med, 2009. **361**(5): p. 468-77.
- 253. Roestenberg, M., et al., *Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study.* Lancet, 2011. **377**(9779): p. 1770-6.
- 254. Walk, J., et al., Modest heterologous protection after Plasmodium falciparum sporozoite immunization: a double-blind randomized controlled clinical trial. BMC Med, 2017. 15(1): p. 168.
- 255. Draper, S.J., et al., *Malaria Vaccines: Recent Advances and New Horizons*. Cell Host Microbe, 2018. **24**(1): p. 43-56.
- 256. Bijker, E.M., et al., *Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity*. Proc Natl Acad Sci U S A, 2013. **110**(19): p. 7862-7.
- 257. Belnoue, E., et al., Protective T cell immunity against malaria liver stage after vaccination with live sporozoites under chloroquine treatment. J Immunol, 2004.
 172(4): p. 2487-95.
- 258. Doll, K.L., N.S. Butler, and J.T. Harty, *CD8 T cell independent immunity after single dose infection-treatment-vaccination (ITV) against Plasmodium yoelii*. Vaccine, 2014. **32**(4): p. 483-91.
- 259. Bijker, E.M., et al., *Sporozoite immunization of human volunteers under mefloquine prophylaxis is safe, immunogenic and protective: a double-blind randomized controlled clinical trial.* PLoS One, 2014. **9**(11): p. e112910.
- 260. Friesen, J. and K. Matuschewski, *Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.* Vaccine, 2011. **29**(40): p. 7002-8.
- 261. Friesen, J., S. Borrmann, and K. Matuschewski, *Induction of antimalaria immunity by pyrimethamine prophylaxis during exposure to sporozoites is curtailed by parasite resistance*. Antimicrob Agents Chemother, 2011. **55**(6): p. 2760-7.
- Pfeil, J., et al., Protection against malaria by immunization with non-attenuated sporozoites under single-dose piperaquine-tetraphosphate chemoprophylaxis. Vaccine, 2014. 32(45): p. 6005-11.
- Peng, X., et al., Artesunate versus chloroquine infection-treatment-vaccination defines stage-specific immune responses associated with prolonged sterile protection against both pre-erythrocytic and erythrocytic Plasmodium yoelii infection. J Immunol, 2014. 193(3): p. 1268-77.
- 264. Friesen, J., et al., *Natural immunization against malaria: causal prophylaxis with antibiotics.* Sci Transl Med, 2010. **2**(40): p. 40ra49.
- 265. Ocana-Morgner, C., M.M. Mota, and A. Rodriguez, *Malaria blood stage suppression of liver stage immunity by dendritic cells*. J Exp Med, 2003. **197**(2): p. 143-51.
- 266. Purcell, L.A., et al., *Chemical attenuation of Plasmodium berghei sporozoites induces sterile immunity in mice.* Infect Immun, 2008. **76**(3): p. 1193-9.

- 267. Purcell, L.A., et al., *Chemically attenuated Plasmodium sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous challenge.* Vaccine, 2008. **26**(38): p. 4880-4.
- 268. Good, M.F., et al., *Cross-species malaria immunity induced by chemically attenuated parasites.* J Clin Invest, 2013.
- 269. Stanisic, D.I. and M.F. Good, *Whole organism blood stage vaccines against malaria*. Vaccine, 2015. **33**(52): p. 7469-75.
- 270. Doll, K.L. and J.T. Harty, *Correlates of protective immunity following whole sporozoite vaccination against malaria.* Immunol Res, 2014. **59**(1-3): p. 166-76.
- 271. Bijker, E.M., et al., *Cytotoxic markers associate with protection against malaria in human volunteers immunized with Plasmodium falciparum sporozoites.* J Infect Dis, 2014. **210**(10): p. 1605-15.
- 272. Felgner, P.L., et al., *Pre-erythrocytic antibody profiles induced by controlled human malaria infections in healthy volunteers under chloroquine prophylaxis.* Sci Rep, 2013.
 3: p. 3549.
- 273. Finney, O.C., et al., *Immunization with genetically attenuated P. falciparum parasites induces long-lived antibodies that efficiently block hepatocyte invasion by sporozoites.* Vaccine, 2014. **32**(19): p. 2135-8.
- 274. Behet, M.C., et al., Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. Malar J, 2014. **13**: p. 136.
- 275. Hafalla, J.C., O. Silvie, and K. Matuschewski, *Cell biology and immunology of malaria*. Immunol Rev, 2011. **240**(1): p. 297-316.
- 276. Pichyangkul, S., et al., *Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver*. PLoS One, 2017. **12**(2): p. e0171826.
- 277. Frank, R., et al., Varying Immunizations With Plasmodium Radiation-Attenuated Sporozoites Alter Tissue-Specific CD8(+) T Cell Dynamics. Front Immunol, 2018. 9: p. 1137.
- 278. Olsen, T.M., et al., *Prime-and-Trap Malaria Vaccination To Generate Protective CD8(+) Liver-Resident Memory T Cells.* J Immunol, 2018.

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT www.lshtm.ac.uk

Registry

T: +44(0)20 7299 4646 F: +44(0)20 7299 4656 E: registry@lshtm.ac.uk

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED <u>FOR EACH</u> RESEARCH PAPER INCLUDED IN A THESIS.

SECTION A – Student Details

Student	Matthew Paul Gibbins
Principal Supervisor	Julius Clemence R. Hafalla
Thesis Title	Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens

<u>If the Research Paper has previously been published please complete Section B, if not please move to</u> <u>Section C</u>

SECTION B – Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			×
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	Nature Medicine
Please list the paper's authors in the intended authorship order:	Katja Müller*, Matthew P. Gibbins*, Arturo Reyes-Sandoval, Adrian V. S. Hill, Simon J. Draper, Kai Matuschewski, Olivier Silvie & Julius Clemence R. Hafalla
	*contributed equally
Stage of publication	Not yet submitted

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in	I performed immunological experiments,
the research included in the paper and in the preparation	analysed data and performed the statistical
of the paper. (Attach a further sheet if necessary)	analyses. I wrote the first draft of the paper.

Improving health worldwide

www.lshtm.ac.uk
Student Signature:	M.P. Col	Date:	17/09/18
Supervisor Signature: _	Enfilue.	Date:	17/09/18

Improving health worldwide

Page 2 of 2

www.lshtm.ac.uk

CHAPTER 2

Contrasting immunogenicities of malaria pre-erythrocytic stage antigens are overcome by vaccination

Contrasting immunogenicities of malaria pre-erythrocytic stage antigens are overcome by vaccination

Katja Müller^{1,2,*}, Matthew P. Gibbins^{3,*}, Arturo Reyes-Sandoval⁴, Adrian V. S. Hill⁴, Simon J. Draper⁴, Kai Matuschewski^{1,2}, Olivier Silvie⁵ & Julius Clemence R. Hafalla^{3,†}

¹ Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.

² Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.

³ Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.

⁴ Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, United Kingdom.

⁵ Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France.

* Contributed equally to this work

[†] Corresponding author: Julius.Hafalla@lshtm.ac.uk

Keywords: malaria, *Plasmodium*, antigen, vaccine, immunogenicity, protective efficacy, sporozoite, liver stage.

ABSTRACT

Vaccine discovery and development critically depends on predictive assays, which prioritise protective antigens. Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation, including phase I/ II trials. Here, we tested this assumption in an infection and vaccination model for malaria preerythrocytic stages. We engineered Plasmodium berghei parasites that harbour a wellcharacterised H-2-K^b epitope for stimulation of CD8+ T cells either as an antigen in the circumsporozoite protein (CSP), the surface coat protein of extracellular sporozoites or in the upregulated in sporozoites gene 4 (UIS4), a major protein associated with the parasitophorous vacuole membrane (PVM) that surrounds the intracellular exoerythrocytic forms (EEF). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust and superior antigen-specific CD8+ T cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes. Recognition and targeting by vaccineinduced, antigen-specific effector CD8+ T cells results in high levels of protection when targeting both antigens. Our study is the first demonstration that poor immunogenicity of EEF antigens does not preclude their susceptibility to antigen-specific CD8+ T cell killing. Our findings that antigen immunogenicity is an inadequate predictor of vaccine susceptibility have wide-ranging implications on antigen prioritisation for the design and testing of next-generation malaria vaccines.

INTRODUCTION

Malaria, caused by the apicomplexan parasites *Plasmodium*, is responsible for more than 200 million clinical cases and over 440,000 deaths annually worldwide¹. Whilst current malaria control strategies have led to marked reduction in incidence rate, cases, and mortality for the past 16 years, a highly efficacious vaccine is likely essential to approach the ambitious World Health Organisation's (WHO) vision of "a world free of malaria". Targeting the malaria pre-erythrocytic stages, an obligatory and clinically silent phase of the parasite's life cycle, is considered an ideal and attractive strategy for vaccination; inhibiting parasite infection of and development in hepatocytes results in preclusion of both disease-causing blood stages and transmissible sexual stages. Yet, despite intensive research for over 25 years, a highly efficacious pre-erythrocytic stage vaccine remains elusive². An in-depth characterisation of how the complex biology of pre-erythrocytic stages influences the generation of protective immune responses is warranted to inform the design of future malaria vaccines.

CD8+ T cells are crucial mediators of protective immunity to malaria preerythrocytic stages³. Whilst often considered as a single phase of the parasite's life cycle, the malaria pre-erythrocytic stage is comprised of two different parasite forms: (i) sporozoites, which are motile extracellular parasites that are delivered by infected mosquitoes to the mammalian host, and (ii) exo-erythrocytic forms (EEF; also known as liver stages), which are intracellular parasites resulting from the differentiation and growth of sporozoites inside a parasitophorous vacuole (PV) within hepatocytes⁴. How these two spatially different parasite forms and the ensuing temporal expression of parasite-derived antigens impact the magnitudes, kinetics and phenotypes of CD8+ T cell responses elicited following infection is poorly understood. Furthermore, the complexity within the pre-erythrocytic stages has fuelled a long-standing debate focused on the contributions of distinct sporozoite and EEF antigens in parasite-induced responses, and whether sporozoite or EEF proteins are better targets of vaccines.

Our current understanding of CD8+ T cell responses to malaria pre-erythrocytic stages has been largely based on measuring responses to the H-2-K^d-restricted epitopes

of *P. yoelii* (*Py*)⁵ and *P. berghei* (*Pb*)⁶ circumsporozoite proteins (CSP), the major surface antigen of sporozoites. Many of these fundamental studies have focused on using infections with irradiated sporozoites, the gold-standard vaccine model for malaria. Infection with Py sporozoites elicits an expected T cell response typified by early activation and induction of effector CSP-specific CD8+ T cells followed by contraction and establishment of quantifiable memory populations⁷. CSP-specific CD8+ T cells are primed by dendritic cells that cross-present sporozoite antigens via the endosome-tocytosol pathway⁸. Yet, CSP is a unique antigen because it is expressed in both sporozoites and EEFs⁹. Whilst the expression of CSP mRNA ceases after sporozoite invasion, the protein on the parasite surface is stable and endures in EEFs during development in hepatocytes¹⁰. In vitro data indicate that primary hepatocytes process and present PbCSP-derived peptides to CD8+ T cells in a proteasome-dependent manner, involving export of antigen to the cytosol⁸. Taken together, these data imply that sporozoite antigens induce quantifiable CD8+ T cell responses after infection. Antigens that have similar expression to CSP, persisting to EEFs and with epitope determinants expressed on hepatocytes, are excellent targets of CD8+ T cell-based vaccines.

The paucity of EEF-specific epitopes has hindered not only our ability to understand the immune responses that are evoked whilst the parasite is in the liver, but also their utility as targets of vaccination. Accordingly, the contribution of EEF-infected hepatocytes in the *in vivo* induction of CD8+ T cell responses is poorly understood. The liver is an organ where the primary activation of CD8+ T cells is generally biased towards the induction of tolerance^{11,12}. Yet, studies in other model systems have demonstrated antigen-specific primary activation within the liver¹³. Another confounding issue with EEFs is their development in PVs with constrained access to the hepatocyte's cytosol⁴. Nonetheless, if CD8+ T cells specific for EEF antigens are primed, do they expand and contract with distinct kinetics? Moreover, are EEF-specific epitopes efficiently generated for recognition and targeting by vaccine-induced CD8+ T cells? Answers to these questions will be key for antigen selection and design of future malaria vaccines.

In this study, we compared the initiation and development of CD8+ T cell

responses – elicited following parasite infection – to CSP, a sporozoite antigen, and to upregulated in infective sporozoites gene 4 (UIS4), an EEF-specific vacuolar protein¹⁴. UIS4, a member of the early transcribed membrane protein (ETRAMP) family, is abundantly expressed in EEFs and associates with the PVM¹⁴. Whilst UIS4 mRNA expression is present in sporozoites, translation is repressed until when EEFs develop¹⁰. To control for epitope specificity, we generated *Pb* transgenic parasites that incorporate the H-2-K^b epitope SIINFEKL, from ovalbumin, in either CSP or UIS4. We assessed the immunogenic properties of SIINFEKL expressed in the context of CSP and UIS4, defining immunogenicity as the ability of CSP and UIS4 to induce SIINFEKL-specific CD8+ T cell responses following immunisation with irradiated *Pb* transgenic paraoites. We followed the kinetics of the CD8+ T cell response to each antigen and effector functions induced. Furthermore, we evaluated the capacity of vaccine-induced CD8+ T cells to target these parasites in a mouse challenge model. Our data shows disparate immunogenic properties between a sporozoite and an EEF vacuolar membrane antigen but equivalent susceptibility to vaccine-induced CD8+ T cells.

RESULTS

Transgenic CSP^{SIINFKEL} and UIS4^{SIINFEKL} parasites display normal sporozoite motility and liver invasion

We generated, by double homologous recombination, transgenic *Pb* parasites expressing the immunodominant H-2-K^b-restricted CD8+ T cell epitope of ovalbumin (SIINFEKL) in the context of the sporozoite surface antigen CSP or the EEF vacuolar membrane antigen UIS4 (Figure 1a, b). Constructs included the *TgDHFR/TS* positive selection cassette and incorporated SIINFEKL in the context of the gene open reading frame. For CSP^{SIINFEKL}, SIINFEKL replaced SYIPSAEKI, the immunodominant H-2-K^d-restricted CD8+ T cell epitope of CSP, which allowed for recognition in H-2-K^b-carrying C57BL/6 mice. For UIS4^{SIINFEKL}, the SIINFEKL epitope was added to the immediate C-terminus of the UIS4 protein. Appending the C-terminus was chosen because it had been shown in *Toxoplasma gondii* that the potency of the immunodominant epitope of GRA6 was associated with its C-terminal location, which may have enhanced the presentation by parasite-infected cells¹⁵. Whilst undefined for UIS4 itself, it has been shown for several other ETRAMPs that the C-terminus faces the host cell cytoplasm¹⁶, which might enhance exposure to the MHC I machinery.

The resulting parasites showed a phenotype comparable to WT parasites, with comparable midgut infectivity (Figure 1c), number of salivary gland sporozoites (Figure 1d), functional sporozoite motility (Figure 1e) and normal invasive capacity and development inside hepatocytes (Figure 1f). Thus, the introduced mutations to generate CSP^{SIINFEKL} and UIS4^{SIINFEKL} parasites did not interfere with the completion of the life cycle, in either mosquito vector or mouse. All C57BL/6 mice that received 800 sporozoites of either CSP^{SIINFEKL} or UIS4^{SIINFEKL} intravenously developed a patent blood stage infection by day 4, comparable to infection with WT sporozoites (data not shown).

Figure 1: Generation and characterisation of transgenic CSP^{SIINFEKL} and UIS4^{SIINFEKL} *P. berghei* lines

Plasmodium berghei parasites expressing the CD8+ T cell epitope of ovalbumin, SIINFEKL, in the context of CSP or UIS4 were generated using double homologous recombination, combining drug-resistance selection (through incorporation of the *dhfr/ts* gene from *Toxoplasma gondii*) and cloning by limiting dilution to select for correctly recombined parasites. **(a,b)** Diagrams illustrate the reverse genetics strategy. **(a)** In CSP^{SIINFEKL} SIINFEKL replaces the immunodominant CD8+ T cell epitope SYIPSAEK(I) of CSP. **(b)** In UIS4^{SIINFEKL} SIINFEKL is adjoined to the carboxyl-terminus of the UIS4 protein. Purified schizonts of WT *P. berghei* ANKA were transfected with linearized plasmid by electroporation as described¹⁷, and immediately injected intravenously in the tail vein of a mouse. The day after transfection, pyrimethamine (70 mg/l) was orally administered in the drinking water for selection of transgenic parasites. Transgenic clones were generated in mice by in vivo cloning by limiting dilution. Correct integration of the constructs and purity of the transgenic lines was verified by diagnostic PCR using primer combinations specific for the unmodified CSP or UIS4 locus, and for the 5' and 3' recombination events as indicated by lines, arrows and expected fragment sizes. (c) Oocyst midgut infectivity of mosquitoes infected with WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL}. The mean (±SD) of infected midguts was enumerated 10-14 days after infection (n= at least 7 infections). (d) Salivary glands were isolated from WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} infected mosquitoes and mean sporozoite numbers (±SD) were enumerated between 18-23 days after infection (n= at least 13 infections). (e) Sporozoite immunofluorescent antibody staining of WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites after gliding on BSAcoated glass slides. Shown are microscopic images of the respective sporozoites that were stained with anti-CSP (green), anti-UIS4 (red) and nuclear stain Hoechst 33342 (blue). Scale bars, 10µm. The numbers show mean percentage (±SD) of sporozoites with trails (n≥220 sporozoites viewed from two independent experiments). (f) Fluorescent-microscopic images of EEF-infected Huh7 hepatoma cells. 24 and 48 hours after infection with WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites, the cells were fixed and stained with anti-UIS4 (red), anti-HSP70 (green) and the nuclear stain Hoechst (blue). Scale bars: 10 μ m. The numbers show mean numbers of intracellular parasites (±SD; n≥ 200 EEFs viewed, from three independent experiments, and for WT from two independent experiments).

Peripheral blood CD8+ T cell responses and early proliferative capacity of splenic CD8+ T cells are superior if elicited by a sporozoite surface protein in contrast to a vacuolar membrane protein in the infected liver

We first wanted to determine whether the generated transgenic parasites allow antigenspecific responses to be tracked using SIINFEKL as a surrogate CD8+ T cell epitope for sporozoite surface and EEF vacuolar membrane antigens. To this end, we assessed the kinetics of the CD8+ T cell response following intravenous immunisation with CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. To augment the CD8+ T cell response, mice were adoptively transferred with 2 x 10⁶ OT-I cells expressing a SIINFEKL-specific TCR⁸, prior to receiving 10,000 γ -radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. Prior work showed that γ -radiation attenuation of *P. berghei* sporozoites does not impact host cell invasion and UIS4 expression¹⁸.

Peripheral blood was taken at days 4, 7, 14, 21, 42 and 88 after immunisation and CD8+ T cell responses were analysed after staining with H-2-K^b-SIINFEKL pentamers and for CD11a, a marker for antigen-experienced T cells^{19,20} (**Figure 2a**). A substantial proportion of K^b-SIINFEKL+ CD11a+ CD8+ T cells were observed in mice immunised with CSP^{SIINFEKL}; the response was highest on day 4, reaching 5% of all antigenexperienced CD8+ T cells, and declined steadily until day 21, when the response stabilised and remained unchanged for several weeks (**Figure 2b**). In marked contrast, UIS4^{SIINFEKL} immunisation induced a poor CD8+ T cell response; the proportion of K^b-SIINFEKL+ CD11a+ CD8+ T cells was only higher than the control groups at day 4 after immunisation, and the response remained within background levels for the duration of the experiment. Control groups included mice receiving OT-I cells only or in addition to WT sporozoites, which lack SIINFEKL sequences.

The poor CD8+ T cell response induced by UIS4^{SIINFEKL} sporozoites, as compared to CSP^{SIINFEKL}, led us to characterise the early events in the proliferation and differentiation of these cells. Mice were adoptively transferred with CFSE-labelled OT-I cells and immunised with γ -radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL}

sporozoites. 5 days later, as shown by gating on CD8+ T cells (Figure 2c, g), immunisation with CSP^{SIINFEKL} sporozoites recruited K^b-SIINFEKL+ CD8+ T cells to undergo massive proliferative activity, which was 6x larger than that observed with UIS4^{SIINFEKL} sporozoites, in good agreement with the peripheral blood data described above (Figure 2b). Consistent with the activation of these cells, the proliferation of antigen-specific CD8+ T cells by both parasites was associated with the development of effector and effector-memory phenotypes as evidenced by upregulation of CD11a and CD49d, and downregulation of CD62L, respectively (Figure 2d-f).

Taken together, these findings establish that immunisations with CSP^{SIINFEKL} and UIS4^{SIINFEKL} sporozoites permit antigen-specific responses to be tracked longitudinally in the peripheral blood. Importantly, we demonstrate that a sporozoite surface protein evokes a CD8+ T cell response of superior magnitude than an EEF vacuolar membrane protein following immunisation with malaria sporozoites.

Figure 2: Kinetics of CD8+ T cell responses induced by transgenic parasites.

(a-b) C57BL/6 mice (n=3-5 per group) received 2x10⁶ OT-I cells alone (diamonds) or were additionally immunised with 10,000 γ-radiation attenuated WT (triangles), CSP^{SIINFEKL} (squares) or UIS4^{SIINFEKL} (circles) sporozoites intravenously. **(a)** Flow cytometry plots show the gating strategy for identifying K^b-SIINFEKL+ CD11a+ CD8+ T cells. **(b)** Peripheral blood was obtained on days 4, 7, 14, 21, 42 and 88 after immunisation and stained for K^b-SIINFEKL+ CD11a+ CD8+ T cells. Line graph shows data pooled from two experiments (mean values ± SEM; *, p<0.05; **, p<0.01; ***, p<0.001; Welch's t-test comparing CSP^{SIINFEKL} and UIS4^{SIINFEKL}). **(c-g)** C57BL/6 mice (n=4 per group), which received 2x10⁶ CFSE-labelled OT-I splenocytes, were immunised with 10,000 γ-radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites intravenously. 5 days later, mice were sacrificed, spleens harvested and splenocytes assessed for **(c)** CFSE dilution and stained *ex vivo* **(d-f)** for effector CD8+ T cell surface markers. Shown are flow cytometry plots of K^b-SIINFEKL co-staining with markers of effector phenotypes: **(d)** CD11a^{hi}, **(e)** CD62L^{Io}, **(f)** CD49d^{hi} and **(g)** the proliferation of CFSE-labelled antigen experienced K^b-SIINFEKL+ CD11a+ CD8+ T cells. **High magnitude splenic and hepatic CD8+ T cell responses to a sporozoite antigen** Previous research has shown that CD8+ T cells are primed primarily in the spleen following intravenous immunisation with malaria sporozoites²¹ and that liver lymphocytes form a front-line defence against developing EEFs in hepatocytes^{22,23}. Thus, we further analysed the development of CD8+ T cell responses in the spleens and livers of mice adoptively transferred with OT-I cells and intravenously immunised with WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. Consistent with our aforementioned results, surface staining of splenic and liver lymphocytes showed higher proportion and absolute numbers of K^b-SIINFEKL+ CD11a+ CD8+ T cells at day 14 and day 42 following immunisation with CSP^{SIINFEKL} compared to UIS4^{SIINFEKL} sporozoites (**Figure 3a-c**). In addition to CD11a upregulation, the splenic and liver CD8+ T cells, elicited by both CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites, had effector and effector memory cell phenotypes (CD62L-, CD49d+ and CD44+) (**Supplementary Figure 1**). Although low, the numbers of antigenspecific CD8+ T cells induced by UIS4^{SIINFEKL} sporozoites were within the detection limits of the assay.

To assess for effector functions, splenic and liver lymphocytes were stimulated *ex vivo* with the SIINFEKL peptide. Generally, higher numbers (proportion and absolute numbers) of IFN-γ-secreting CD8+ T cells were observed at day 14 and day 42 following immunization with CSP^{SIINFEKL} compared to UIS4^{SIINFEKL} sporozoites (Figure 3d-f). In addition, these CD8+ T cells also expressed TNF and IL-2, suggesting some potential polyfunctionality (Supplementary Figure 2).

Altogether, even though effector and effector memory CD8+ T cell responses can be detected against both sporozoite surface protein and EEF vacuolar membrane protein antigens following immunisation with malaria sporozoites, the two antigens show a striking difference in the magnitude of CD8+ T cell responses they induce.

Figure 3: Sporozoite surface antigen induces a higher CD8+ T cell response than EEF vacuolar membrane antigen in the spleen and liver.

C57BL/6 mice (n=3-5 per group) received $2x10^6$ OT-I cells alone or were additionally immunised with 10,000 γ -radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites intravenously. Spleens and livers were harvested either at day 14 or day 42. Proportions and numbers of **(a-c)** K^b-SIINFEKL+ CD8+ T cells were enumerated or **(d-f)** IFN- γ secreting CD8+ T cells following restimulation *ex vivo* with SIINFEKL peptide were quantified. Flow cytometry plots show representative percentages of CD8+ T cells costained with CD11a and **(a)** K^b-SIINFEKL or **(d)** IFN- γ . The upper panel of bar charts **(b, e)** show the percentage of co-stained CD8+ T cells and the lower panel **(c, f)** the absolute cell counts. Bar charts show mean values (±SEM) from one representative experiment of two experiments performed (*, p<0.05; **, p<0.01; ***, p<0.001; one-way ANOVA with Tukey's multiple comparison test).

Quantification of endogenously produced antigen-specific CD8+ T cells following intravenous or intradermal parasite immunisation

Previous work tracking responses to SIINFEKL-tagged proteins has used adoptively transferred cells from OT-I mice, with all T cells from these mice expressing T cell receptors specific to SIINFEKL^{8,24}. We employed this robust approach by adoptively transferring a fixed amount of OT-I splenocytes in order to augment the response and allow visualisation (Figures 2 and 3). Next, we wanted to explore whether we can capture the endogenous K^b-SIINFEKL+ CD11a+ CD8+ T cell population, which is elicited by immunising with parasites without OT-I cell transfer. We performed *ex vivo* restimulation of lymphocytes with SIINFEKL peptide followed by flow cytometry and were able to clearly identify the endogenous population with a trend complementary to our earlier results (Figure 4a-c). Immunisation with CSP^{SIINFEKL} sporozoites elicited a superior splenic and liver CD8+ T cell response than with UIS4^{SIINFEKL} sporozoites. As expected, the proportion and absolute cell numbers were considerably lower than with adoptive transfer of OT-I cells, but this did not preclude the ability to visualise IFN-γ-secreting CD8+ T cells and capture the differences between the two groups.

Under normal conditions of transmission, sporozoites are delivered into the host skin by mosquito bite. All preceding immunisation experiments were performed with parasites injected intravenously. As a proxy for the natural route of infection, whilst ensuring consistent quantities of parasites were inoculated, CSP^{SIINFEKL} and UIS4^{SIINFEKL} sporozoites were injected via the intradermal route into the ear pinnae. Under these conditions, CSP still induced a greater number of IFN-γ-secreting SIINFEKL-specific CD8+ T cells following restimulation with SIINFEKL compared to UIS4, with a comparable magnitude as after intravenous injection (**Figure 4d-f**). Thus, these biologically and immunologically more appropriate data entirely recapitulate the strong immunogenicity of a sporozoite surface antigen compared to an EEF vacuolar membrane protein.

g

Figure 4: OT-I cells are not required to detect SIINFEKL-specific CD8+ T cell responses.

C57BL/6 mice (n=3-6 per group) received 10,000 γ -radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites, either (**a-c**) intravenously or (**d-f**) intradermally. Additional control mice did not receive sporozoites. Spleens and livers were harvested either at day 14 or day 42, and IFN- γ -secreting lymphocytes following restimulation *ex vivo* with SIINFEKL peptide were quantified. Flow cytometry plots show representative percentages of CD8+ T cells co-stained with IFN- γ and CD11a (**a**, **d**). The upper panel of bar charts (**b**, **e**) show the percentage of CD11a+ IFN- γ + CD8+ T cells and the lower panel (**c**, **f**) the absolute cell counts. (**b-c**) Bar charts show mean values (±SEM) from one representative experiment of two experiments performed (*, p<0.05; **, p<0.01; ***, p<0.001; one-way ANOVA with Tukey's multiple comparison test). (**e-f**) Bar charts show mean values (±SEM) from one-way ANOVA with Tukey's multiple comparison test).

Increasing the amount of EEF vacuolar membrane antigen does not impact on

CD8+ T cell responses

Both CSP and UIS4 are essential proteins expressed by the sporozoite and EEF respectively, and both proteins are important for survival and succession into the subsequent life stage and parasite form^{10,14,25}. Previous studies have shown that the magnitude of the CD8+ T cell response to a sporozoite surface antigen depended on the amount of parasites used for immunisation²⁶. Hence, poor immunogenicity of an EEF vacuolar membrane protein could be a result of the lower level of protein expression during parasite infection. It is possible to enhance CD8+ T cell responses by increasing the number of parasites used for immunisation²⁶. Therefore, we immunised groups of mice with 8,000 CSP^{SIINFEKL}, 8,000 UIS4^{SIINFEKL} or 64,000 UIS4^{SIINFEKL} sporozoites and compared the magnitude of the elicited antigen-specific responses. Strikingly, the CD8+ T cell response following 8x sporozoite immunisation dose with UIS4^{SIINFEKL} did not increase proportionally and was not significantly higher than immunisation with a 1x dose (Figure 5a, b). This result suggests that, in the context of attenuated sporozoite immunisation, EEF vacuolar membrane antigens induce poor CD8+ cell responses and increasing antigen fails to substantially improve the magnitude of these CD8+ T cell responses.

Figure 5: Increasing antigen dose does not improve antigen-specific CD8+ T cell responses to an EEF vacuolar membrane protein.

C57BL/6 mice (n=4 per group) received an intravenous dose of 8,000 γ -radiation attenuated CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites or 64,000 γ -radiation attenuated UIS4^{SIINFEKL} sporozoites. Spleens and livers were harvested at day 12 and IFN- γ secreting lymphocytes following restimulation *ex vivo* with SIINFEKL peptide were quantified. **(a)** Flow cytometry plots show representative CD8+ T cells co-stained with IFN- γ and CD11a. **(b)** The upper panel of bar charts show the percentage of CD11a+ IFN- γ + CD8+ T cells and the lower panel the absolute cell counts. Bar charts show mean values (±SEM) from one representative experiment of two experiments performed (***, p<0.001; one-way ANOVA with Tukey's multiple comparison test).

Immunogenicity of parasite antigens does not predict effector responses following vaccination

Our findings thus far showed that sporozoite surface proteins appear more immunogenic than EEF vacuolar membrane proteins and raised an intriguing and important question; does immunogenicity predict susceptibility to vaccine-induced effector responses? To address this, we vaccinated mice, which had received OT-I cells, with a recombinant adenovirus expressing full-length ovalbumin²⁷. This vaccination protocol resulted in frequencies of ~7.5% SIINFEKL-specific CD8+ T cells in peripheral blood (Figure 6a, b). Vaccinated mice were then challenged with CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites, and protection was assessed by two complementary assays; (i) determination of the reduction of parasite load in the liver (Figure 6c), and (ii) induction of sterile protection (Figure 6d). Vaccinated mice challenged with CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites showed a dramatic reduction in parasite load in the liver (Figure 6c) as compared to vaccinated mice challenged with WT parasites. Strikingly, there was no statistical difference in the protection observed when vaccinated mice were challenged with either CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. Consistent with these findings, both groups of vaccinated mice challenged with either CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites exhibited sterile protection of comparable levels (Figure 6d). These findings indicate that spatial and temporal aspects of antigen expression may affect protein immunogenicity in the context of parasitic infection but not necessarily the same target's susceptibility to antigen-specific CD8+ T cell killing.

Figure 6: Sporozoite surface and EEF vacuolar membrane antigens are presented to vaccine-induced CD8+ T cells for killing, leading to sterile protection.

Mice received 1x10⁸ ifu recombinant AdHu5 expressing whole ovalbumin (AdOVA) and/or 2x10⁶ OT-I splenocytes. **(a)** Flow cytometry and **(b)** scatter plots represent CD8+ T cells derived from peripheral blood co-stained with IFN-γ and CD11a, following *ex vivo* restimulation with SIINFEKL. **(c)** Protective efficacy as measured by quantitative realtime PCR. Groups of mice (n=3-11 per group) were vaccinated as described and challenged 19 days later with 10,000 WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. 42 hours later livers were removed and parasite load was assessed by qPCR. Plots show the relative parasite load of mice in each condition (**, p<0.01; Mann-Whitney U test). **(d)** Proportion of sterile protection after immunization. Mice (n=8 per group) were vaccinated as described and were challenged with 1,000 WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. Data for **a-d** are from one representative experiment of two experiments performed with scatter plots showing median values + interquartile range.

DISCUSSION

The malaria pre-erythrocytic stages have been a prime target for the development of a *Pf* vaccine for more than 35 years. Indeed, RTS,S/AS01, the most advanced malaria sub-unit vaccine candidate to date is based on CSP, the major surface protein of sporozoites²⁸. Yet, final results of the Phase III trial showed that RTS,S/AS01 offers only modest efficacy, which rapidly wanes over time²⁹. Thus, there is an imperative need not only to widen the pursuit for new sub-unit vaccine candidates, but also to radically improve the antigen selection process. Antigens are generally prioritised based on a range of criteria, including their immunogenicity in the context of parasitic infection. We examined this notion in an infection and vaccination model for malaria pre-erythrocytic stages.

The malaria pre-erythrocytic stages consist of two spatially-different parasite forms: extracellular sporozoites and intracellular EEFs. The transformation of sporozoites into EEFs involves regulation at both transcriptional³⁰ and translational^{31,32} levels, resulting in both spatial and temporal expression of many antigens that are distinct for each parasite form³³. Whilst our current understanding of immune responses to malaria pre-erythrocytic stages has focused on CSP, the lack of well-defined epitopes that are expressed only by EEFs has restrained fundamental studies investigating the contributions of EEF antigens in parasite-induced CD8+ T cell responses and their value as target of vaccines.

In this study, we contrasted the development of CD8+ T cell responses induced by CSP and UIS4, two major proteins expressed by sporozoites and EEFs, respectively. We generated transgenic *Pb* parasites where SIINFEKL is expressed as part of either CSP or UIS4, allowing the presentation of the epitope at the same space and time as the respective protein. This approach is in contrast to a more common strategy of inserting the whole ORF of ovalbumin to be expressed as part of an *Pb* endogenous gene and then tracking the immune response elicited by this extraneous molecule^{24,34}. Since CSP is expressed in both sporozoites and EEFs, the processing and presentation

of the SIINFEKL in CSP^{SIINFEKL} occurs as soon as sporozoites are inoculated and are able to interact with dendritic cells, which present antigens via an endosome-to-cytosol pathway⁸. CSP also has direct access to the hepatocyte's cytosol for processing and presentation of the CSP-derived epitope⁸. However, since UIS4 is expressed only in the PVM of EEFs, processing and presentation of the epitope in UIS4^{SIINFEKL} is restricted to just hepatocytes.

Our results establish that following sporozoite-immunisation, a sporozoite surface protein induces superior CD8+ T cell responses – as measured both by pentamer staining and by IFN-γ secretion following peptide stimulation – than an EEF vacuolar membrane protein. Detailed kinetic and phenotypic analysis of the development of antigen-specific CD8+ T cells to both CSP and UIS4 revealed that the responses only differ in magnitude but not in durability, demonstrating the ability of both antigens to elicit effector and effector memory responses. There was no difference in our results whether sporozoites are delivered using the commonly used intravenous immunisation or the more physiological intradermal delivery. We also showed that increasing the number of UIS4^{SIINFEKL} parasites used for immunisation did not augment CD8+ T cell responses, signifying that the poor immunogenicity of an EEF vacuolar membrane protein is not a due to the level of UIS4 expression during parasite infection. Our findings support the idea that EEF antigens have minimal contributions to the magnitude of immune responses following whole sporozoite immunisation, which corroborates with prior data showing that that hepatocytes are poor at priming T cell responses^{11,12}.

Regardless of their differing CD8+ T cell immunogenicities in the context of parasitic infection, we further demonstrated that both sporozoite and EEF antigens are effectively targeted by antigen-specific effector CD8+ T cells, which were generated by vaccination using priming and boosting with recombinant viruses expressing the epitope. Importantly, mice harbouring vaccine-induced, antigen-specific CD8+ T cells were comparably protected when challenged with either CSP^{SIINFEKL} or UIS4^{SIINFEKL}. These findings imply that both sporozoite and EEF antigens comparably access the antigen presentation pathways in hepatocytes leading to recognition of defined epitopes.

Our study is the first demonstration that poor natural immunogenicity, in this case of an EEF antigen, does not preclude antigen-specific CD8+ T cell killing. Our findings that antigen immunogenicity in this context is an inadequate predictor of vaccine efficacy have wide-ranging implications on antigen prioritisation for the design and testing of next generation malaria vaccines. To broaden the repertoire of liver-stage malaria vaccines, antigens secreted into the hepatocytes of either infected or traversed cells must be tested as these constitute promising targets of anti-malaria vaccines. Additionally, combining EEF antigens with CSP would be a favourable concept.

While CSP and UIS4 only represent one antigen expressed in the sporozoite or EEF, they act as good surrogates for assessing CD8+ T cell responses to sporozoite and EEF antigens. Both antigens are highly abundant in their respective life stages, so should represent antigens that are likely to have significant access to the antigen presentation machinery compared to lesser expressed proteins. These antigens have also offered an insight into the effect of temporal and spatial factors of antigen expression on CD8+ T cell responses. Temporally, CSP protein is expressed early in the preerythrocytic stages like other sporozoite antigens, while UIS4 protein is expressed later, following hepatocyte invasion, like all EEF-specific antigens. Spatially, CSP is expressed on the sporozoite surface as it travels through the skin and bloodstream in search of the liver and so other sporozoite antigens have similar niches, contacting many cells and increasing their propensity to be presented. UIS4 protein is expressed solely by the parasite in the hepatocyte and exported to the PVM, much like other EEF proteins. The close proximity of the PVM to the hepatocyte cytosol may also increase the likelihood of the protein being processed and presented, compared to a protein remaining inside the parasite plasma membrane. This is not to say that CSP or UIS4 are completely akin to all sporozoite or EEF antigens respectively. To fully resolve the spatiality effects of antigen expression on CD8+ T cell responses in the pre-erythrocytic stages of malaria, further antigens would need to be investigated. For instance, the differences between intracellular and extracellular sporozoite antigens, and intracellular EEF antigens and those exported to the PVM should be compared in their capability to induce CD8+ T cell

responses and be susceptible to vaccine-induced CD8+ T cells. The temporal effects of EEF antigen expression on CD8+ T cell responses have also been started to be probed to see if later expressed EEF antigens induce similar CD8+ T cell responses compared to those expressed earlier like UIS4 (Chapter 4: Gibbins et al., paper in preparation).

A key direction for future research will be identifying the mechanisms by which EEF antigens elicit protection and finding new assays to easily distinguish good vaccine targets, namely those antigens that can protect (via susceptibility to vaccine-induced CD8+ T cells) rather than those that naturally induce strongly immunogenic responses. Ultimately, the molecular mechanisms of presentation of EEF antigens, those expressed in the PVM and within the parasite itself, onto the surface of infected hepatocytes remains to be fully understood. Determination of the processes involved in parasite antigen presentation in the pre-erythrocytic stages of malaria may elucidate links to protection and the identification of further antigens that could drive the development of an efficacious protective malaria vaccine.

METHODS

Ethics and animal experimentation

Animal procedures were performed in accordance with the German 'Tierschutzgesetz in der Fassung vom 18. Mai 2006 (BGBI. I S. 1207)' which implements the directive 2010/6 3/EU from the European Union. Animal experiments at London School of Hygiene and Tropical Medicine were conducted under license from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986. NMRI, CD-1, C57BL/6 and OT-I laboratory mouse strains were bred in house at LSHTM or purchased from Charles River Laboratories (Margate, UK or Sulzfeld, Germany). Female mice were used for experiments at the age of 6-8 weeks.

Generation of transgenic parasites

Transgenic *P. berghei* ANKA mutants CSP^{SIINFEKL} and UIS4^{SIINFEKL} were developed using double homologous recombination. In the CSP^{SIINFEKL} mutant, the CSP gene is altered so the epitope SYIPSAEKI (residues 252-260) is replaced with the H-2^b restricted *Gallus gallus* ovalbumin epitope SIINFEKL. In the UIS4^{SIINFEKL} mutant, the SIINFEKL epitope is appended to the C-terminal end of the UIS4 protein. Clonal parasite lines were generated by limiting dilution. Details of plasmid design, including the primers used and the cloning of parasites can be found in **Supplementary Experimental Procedures** and **Supplementary Table 1**.

Plasmodium berghei ANKA immunisation

P. berghei wild type (WT; strain ANKA clone c15cy1 or clone 507) parasites and CSP^{SIINFEKL} and UIS4^{SIINFEKL} (clone c15cy1) parasites were maintained by continuous cycling between murine hosts (NMRI or CD-1) and *Anopheles stephensi* mosquitoes. Infected mosquitoes were kept in incubators (Panasonic and Mytron) at 80% humidity and 20°C. Sporozoites were isolated from salivary glands and γ -irradiated at 1.2 x 10⁴ cGy. Mice were immunised intravenously in the lateral tail vein or intradermally in the ear pinnae with 10,000 sporozoites, unless otherwise stated, and challenged with either

1,000 or 10,000 sporozoites injected intravenously.

Indirect fluorescent antibody staining (IFA) of sporozoites

Epoxy-covered 8-well glass slides were coated with 3% BSA-RPMI. 10,000 sporozoites were added per well in 3% BSA-RPMI and incubated for 45 minutes during which the shed surface proteins are deposited in the gliding motility process. Sporozoites and their trails were stained with a mouse anti-CSP³⁵ primary antibody and a rabbit polyclonal anti-*Pb*UIS4³¹ primary antibody and the respective fluorescently labelled secondary antibodies. Nuclei were stained with Hoechst 33342 and slides mounted with 'Fluoromount-G' (Southern Biotech). Sporozoites and trails were analysed by fluorescent microscopy (Zeiss Axio Observer).

In vitro infection of hepatoma cells and fluorescent staining

In vitro EEF development was analysed in infected Huh7 hepatoma cells for 24 and 48 hours. Triplicate Labtek (Permanox plastic - Nunc) wells were infected with 10,000 transgenic CSP^{SIINFEKL} or UIS4^{SIINFEKL} parasites and duplicate wells were infected with 10,000 WT parasites. Infected cells were analysed by fluorescence microscopy using a mouse anti-*Pb*HSP70³⁶ and a rabbit polyclonal anti-*Pb*UIS4³¹ primary antibody, the respective fluorescently labelled secondary antibodies and nuclear staining with Hoechst 33342. Staining were analysed by fluorescent microscopy (Zeiss Axio Observer).

Quantification of SIINFEKL-specific CD8+ T cell responses

Spleens and livers were harvested from immunised or naïve mice and perfused with PBS. Lymphocytes were derived from spleens by passing through 40 or 70µm cell strainers (Corning) and from livers by passing through 70µm cell strainers (Corning). Red blood cells were lysed with PharmLyse (BD), and lymphocytes were resuspended in complete RPMI (cRPMI- RPMI + 10% FCS + 2% Penicillin-Streptomycin + 1% L-glutamine (Gibco)). For cell counting, lymphocytes were diluted 40x with Trypan Blue

(ThermoFisher Scientific) and enumerated using a Neubauer 'Improved' haemocytometer (Biochrom). Alternatively, lymphocytes were counted using a MACSQuant flow cytometer (Miltenyi Biotec), using propidium iodide (PI) (Sigma Aldrich) or, in the case of hepatic lymphocytes, using CD45.2-Alexa647 (Biolegend) to distinguish between hepatocytes and lymphocytes, prior to PI administration and counting. Peripheral blood was acquired by tail vein puncture collected in Na⁺ heparin capillary tubes (Brand) and assayed in 96-well flat bottom plates (Corning). For CD8+ T cell stimulations, 2-3x10⁶ splenocytes or 1-2x10⁵ liver cells were incubated with SIINFEKL peptide (Peptides and Elephants, Henningsdorf) at a final concentration of $10\mu g/ml$ in the presence of Brefeldin A (eBioScience). Cells were incubated at 37°C, 5% CO₂ for 5-6 hours, before incubation at 4°C overnight. For staining of cell surface markers and intracellular cytokines, cells were incubated for 1 hour at 4°C. Cells derived from the spleen or liver were fixed with 4% paraformaldehyde, and cells from peripheral blood were fixed with 1% paraformaldehyde between the extra- and intracellular staining steps. Data was acquired by flow cytometry using an LSRII or LSRFortessa (BD). Antibodies used for staining were as follows; BD: CD3 (500A2); eBioScience: CD8 (53-6.7), CD11a (M17/4), CD49d (R1-2), CD62L (MEL-14), CD44 (IM7), IFN-γ (XMG1.2), TNF-α (MP6-XT22) and IL-2 (JES6-5H4); Prolmmune: H-2-K^b-SIINFEKL pentamers.

CFSE labelling of OT-I cells

Spleens from OT-I mice were lysed and cells washed twice in PBS without serum. Splenocytes resuspended at a density of 5x10⁶ cells/ml in PBS had 1:5,000 CFSE (ThermoFisher Scientific) added and were incubated in the dark at room temperature, with gentle inversion for 4 minutes. The labelling reaction was quenched with cRPMI and cells washed twice in cRPMI. Cells were recounted and 2x10⁶ cells were injected per mouse.

Vaccination with OVA expressing recombinant adenovirus

To assess parasite liver load after vaccination with virus-expressed OVA, groups of C57BL/6 mice were immunised with recombinant human adenovirus serotype 5 (AdHu5) expressing full-length chicken ovalbumin (AdOVA)²⁷. Each mouse received 1x10⁸ infective units (ifu) in a volume of 100µl administered intramuscularly (50µl into each thigh). At the same time vaccinated and control mice received OT-I splenocytes intravenously (2x10⁶ cells/mouse). 19 days after vaccination, mice were challenged with 10,000 WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites administered intravenously. 42 hours after the challenge the livers were harvested and homogenised in TRIzol (ThermoFisher Scientific) for total RNA isolation. Afterwards, cDNA was generated using the RETROScript Kit (Ambion). Quantitative real-time PCR was performed using the StepOnePlus Real-Time PCR System and Power SYBR Green PCR Master Mix (Applied Biosystems). Relative liver parasite levels were quantified using the $\Delta\Delta$ Ct method comparing levels of *P. berghei* 18S rRNA normalised to mouse GAPDH mRNA³¹. To assess sterile protection, AdHu5 OVA-vaccinated and control mice received 2x10⁶ OT-I splenocytes one day prior to vaccination. 14 days after vaccination, all mice were challenged with 1,000 WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites. Blood smears were taken from day 3-14 after challenge to determine the presence of blood stage parasites.

Statistics

Data were analysed using FlowJo version 9.5.3 (Tree Star Inc., Oregon, USA), Microsoft Excel and GraphPad Prism v7 (GraphPad Software Inc., CA, USA). We used Mann-Whitney U test for analysing data from two groups that were not normally distributed, and Welch's t-test or one-way ANOVA with Tukey's multiple comparison test for normally distributed data.

AUTHOR CONTRIBUTIONS

O.S. and J.C.R.H. designed the experiments in the laboratory of K.Matuschewski; O.S. generated the transgenic parasites CSP^{SIINFEKL} and UIS4^{SIINFEKL}; K.Müller, M.P.G., O.S. and J.C.R.H. performed experiments and analysed data; A.R.-S., A.V.S.H. and S.J.D. provided the adenovirus AdOVA; M.P.G. and J.C.R.H. wrote the paper; all authors commented and revised the manuscript.

ACKNOWLEDGEMENTS

S.J.D. is a Jenner Investigator, Lister Institute Research Prize Fellow and Wellcome Trust Senior Fellow (106917/Z/15/Z). K.Matuschewski was supported by the Max Planck Society and grants from the European Commission (EviMalaR Network of Excellence #34) and the Chica and Heinz Schaller Foundation. O.S. was funded in part by the Laboratoire d'Excellence ParaFrap (ANR-11-LABX-0024). J.C.R.H. was funded by grants from The Royal Society (University Research Fellowship UF0762736/UF120026 and Project Grant RG130034) and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (Project Grant NC/L000601/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS

S.J.D. is a named inventor on patent applications relating to malaria vaccines, adenovirus vaccines and immunisation regimens.

C57BL/6 mice (n=3-5 per group) received 2x10⁶ OT-I cells alone or were additionally immunised with 10,000 γ-radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites intravenously. Spleens and livers were harvested either 14 or 42 days later, and proportions of CD8+ T cells expressing effector surface markers were quantified. Flow cytometry plots show representative percentages of CD8+ T cells co-staining K^b-SIINFEKL and markers of effector phenotype (CD11a^{hi}, CD49d^{hi}, CD62L^{lo}, CD44^{hi}).

Supplementary Figure 2: Antigen experienced SIINFEKL-specific CD8+ T cells also produce TNF- α and IL-2.

C57BL/6 mice (n=3-5 per group) received $2x10^6$ OT-I cells alone or were additionally immunised with 10,000 γ -radiation attenuated WT, CSP^{SIINFEKL} or UIS4^{SIINFEKL} sporozoites intravenously. Spleens and livers were harvested either 14 or 42 days after immunisation and lymphocytes restimulated *ex vivo* with SIINFEKL peptide at 10µg/ml per well for 5-6 hours. The upper panel of bar charts show the percentage of CD11a+ TNF- α secreting CD8+ T cells, the bottom panel CD11a+ IL-2 secreting CD8+ T cells. This is a representation of one experiment from two experiments performed. Bar charts show mean values (±SEM) from representative experiments (*, p<0.05, **, p<0.01, ***, p<0.001; one-way ANOVA with Tukey's multiple comparison test).

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

Generation of CSP^{SIINFEKL} and UIS4^{SIINFEKL} transgenic *P. berghei* parasite lines

B3D-CSP^{SIINFEKL} plasmid was assembled by successive cloning of three fragments, CSP-C, CSP-B and CSP-A, obtained by PCR amplification from *P. berghei* ANKA genomic DNA followed by restriction enzyme digestion. These fragments correspond respectively to a 3' homology region downstream of CSP (CSP-C, 0.7 kb), a fragment comprising the CSP ORF downstream of the SYIPSAEKI epitope followed by the CSP 3' UTR (CSP-B, 0.8 kb) and a fragment comprising a 5' promoter region followed by the CSP modified ORF where the SYIPSAEK coding sequence has been replaced by a SIINFEKL coding sequence (CSP-A, 1.8 kb). The resulting B3D-CSP^{SIINFEKL} plasmid, containing the Toxoplasma gondii dihydrofolate reductase/thymidylate synthase (TgDHFR/TS) pyrimethamine resistance cassette flanked by CSP-A and CSP-B on one side, and CSP-C on the other, was linearized with Notl and Sacll before transfection. Integration of the construct after double crossover homologous recombination results in replacement of the WT CSP gene by a modified copy containing the SIINFEKL coding sequence instead of the SYIPSAEKI coding sequence. The B3D-UIS4^{SIINFEKL} plasmid was assembled by successive cloning of three fragments, UIS4-A, UIS4-B and UIS4-C, obtained by PCR amplification from P. berghei ANKA genomic DNA followed by restriction enzyme digestion. These fragments correspond respectively to a fragment comprising a 5' upstream sequence followed by the UIS4 entire ORF fused in frame to the SIINFEKL coding sequence (UIS4-A, 1.2 kb), to the UIS4 3' UTR sequence (UIS4-B, 0.6 kb) and to a 3' homology region downstream of UIS4 (UIS4-C, 0.9 kb). The resulting B3D-UIS4^{SIINFEKL} plasmid, containing the *TgDHFR/TS* pyrimethamine resistance cassette flanked by UIS4-A and UIS4-B on one side, and UIS4-C on the other, was linearized with Sacll and Kpnl before transfection. Integration of the construct after double crossover homologous recombination results in replacement of the WT UIS4 gene by a modified copy containing the SIINFEKL coding sequence just upstream of a STOP codon. P. berghei CSP^{SIINFEKL} and UIS4^{SIINFEKL} parasites were generated by transfection of *P*.

berghei ANKA with linearized B3D-CSP^{SIINFEKL} and B3D-UIS4^{SIINFEKL} plasmids, respectively. Purified schizonts of WT *P. berghei* ANKA (clone c15cy1) were transfected with 5-10µg of linearized plasmid by electroporation using the AMAXA Nucleofector device (program U33), as described¹⁷, and immediately injected intravenously in the tail vein of a mouse. The day after transfection, pyrimethamine (70 mg/l) was administrated in the mouse drinking water, for selection of transgenic parasites. Transgenic clones were isolated after limiting dilution and injection into mice. Correct integration of the constructs and purity of the transgenic lines was verified by analytical PCR using primer combinations specific for the unmodified CSP or UIS4 locus, and for the 5' and 3' recombination events. All primers used in this study are indicated in **Supplementary Table 1**.

	Oligonucleotide	Sequence $5^{\prime} \rightarrow 3^{\prime}$
Production of	CSP-A forward	ATAAGAAT <u>GCGGCCGC</u> ATGGTTATATTTTGT
B3D-		GCAATGCTAAAATGG
	CSP-A reverse	CG <u>GAATTC</u> TAGTATCAGTTTTTCAAAGTTGA
construct		TTATACTATCGTCATTATTATTATTTTGTTA
		TTG
	CSP-B forward	GG <u>ACTAGTGAATTC</u> GTTAAACAGATCAGGG
		ATAGTATCACAGAGG
	CSP-B reverse	CCG <u>CAATTG</u> TACAAAAAATATTTTCGACAAA
		GGATAACG
	CSP-C forward	CCC <u>AAGCTT</u> TGGGAATCTATTTTACAATATT
		ATTTAAGGG
	CSP-C reverse	CGG <u>GGTACCCCGCGG</u> TTATTGAAAAAGACA
		CAAAATAGCTAG
Production of	UIS4-A forward	TCC <u>CCGCGG</u> ATAGCTATATTTTATGGTTGAT
B3D-		CCTTTCC
	UIS4-A reverse	GG <u>ACTAGT</u> TTACAGTTTTTCAAAGTTGATTA
construct		TACTTATGTATGGGCCGAATGATTTATTTTC
		С
	UIS4-B forward	GG <u>ACTAGT</u> TTCATTATGAGTAGTGTAATTCA
		GAAAGAG
	UIS4-B reverse	CCG <u>GAATTC</u> TATGTAAAAAAGTTTGCATATA
		CGGCTG
	UIS4-C forward	CCC <u>AAGCTT</u> AGTGAAATATAAATATGAATGG
		AAGCAGCC
	UIS4-C reverse	CGG <u>GGTACC</u> AGCAGCTAATGTCAATATATT
		TTATGCAC
Genotyping of	TgDHFR forward	CGCATTATATGAGTTCATTTTACACAATCC
transgenic	OVA reverse	CTAGTTTACAGTTTTTCAAAGTTGATTATAC
parasites	CSP WT forward	TGTGAACTTTTCCTTATTTATTACGATTATG
	CSP test forward	AATATGAGCACGCTTTTACTTTGTCCAGG
	CSP test reverse	ACGAATCGAAATAAGTTACTATTCGTGCC
	UIS4 test forward	TGGTTCTTAATATTATTTTGGATACATGC
	UIS4 test reverse	CTCGTGTCCTTTGTAGTAAAAATAAACC

Supplementary Table 1 – Primers used to generate and genotype CSP^{SIINFEKL} and

UIS4^{SIINFEKL} transgenic parasites.

Restriction sites in the primer sequences are underlined.

REFERENCES

- 1. WHO. World Malaria Report 2017 (World Health Organisation, Geneva, Switzerland, 2017).
- 2. Draper, S.J., *et al.* Malaria Vaccines: Recent Advances and New Horizons. *Cell Host Microbe* **24**, 43-56 (2018).
- 3. Doolan, D.L. & Hoffman, S.L. The complexity of protective immunity against liver-stage malaria. *J Immunol* **165**, 1453-1462 (2000).
- 4. Hafalla, J.C., Silvie, O. & Matuschewski, K. Cell biology and immunology of malaria. *Immunol Rev* **240**, 297-316 (2011).
- 5. Weiss, W.R., *et al.* Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. *J Exp Med* **171**, 763-773 (1990).
- 6. Romero, P., *et al.* Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. *Nature* **341**, 323-326 (1989).
- 7. Sano, G., *et al.* Swift development of protective effector functions in naive CD8(+) T cells against malaria liver stages. *J Exp Med* **194**, 173-180 (2001).
- 8. Cockburn, I.A., *et al.* Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo. *PLoS Pathog* **7**, e1001318 (2011).
- 9. Hollingdale, M.R., Leland, P., Leef, J.L., Leef, M.F. & Beaudoin, R.L. Serological reactivity of in vitro cultured exoerythrocytic stages of Plasmodium berghei in indirect immunofluorescent or immunoperoxidase antibody tests. *Am J Trop Med Hyg* **32**, 24-30 (1983).
- 10. Silvie, O., Briquet, S., Muller, K., Manzoni, G. & Matuschewski, K. Post-transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is important for host switch. *Mol Microbiol* **91**, 1200-1213 (2014).
- 11. Bertolino, P. & Bowen, D.G. Malaria and the liver: immunological hide-and-seek or subversion of immunity from within? *Front Microbiol* **6**, 41 (2015).
- 12. Thomson, A.W. & Knolle, P.A. Antigen-presenting cell function in the tolerogenic liver environment. *Nat Rev Immunol* **10**, 753-766 (2010).
- 13. Bertolino, P., Bowen, D.G., McCaughan, G.W. & Fazekas de St Groth, B. Antigenspecific primary activation of CD8+ T cells within the liver. *J Immunol* **166**, 5430-5438 (2001).
- 14. Mueller, A.K., *et al.* Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. *Proc Natl Acad Sci U S A* **102**, 3022-3027 (2005).
- 15. Feliu, V., *et al.* Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite. *PLoS Pathog* **9**, e1003449 (2013).
- 16. Spielmann, T., Fergusen, D.J. & Beck, H.P. etramps, a new Plasmodium falciparum gene family coding for developmentally regulated and highly charged membrane proteins located at the parasite-host cell interface. *Mol Biol Cell* **14**, 1529-1544 (2003).
- 17. Janse, C.J., *et al.* High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. *Mol Biochem Parasitol* **145**, 60-70 (2006).
- 18. Mac-Daniel, L., *et al.* Local immune response to injection of Plasmodium sporozoites into the skin. *J Immunol* **193**, 1246-1257 (2014).
- 19. Rai, D., Pham, N.L., Harty, J.T. & Badovinac, V.P. Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. *J Immunol* **183**, 7672-7681 (2009).
- 20. Schmidt, N.W., Butler, N.S., Badovinac, V.P. & Harty, J.T. Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. *PLoS Pathog* **6**, e1000998 (2010).
- 21. Lau, L.S., *et al.* CD8+ T cells from a novel T cell receptor transgenic mouse induce liverstage immunity that can be boosted by blood-stage infection in rodent malaria. *PLoS Pathog* **10**, e1004135 (2014).

- 22. Guebre-Xabier, M., Schwenk, R. & Krzych, U. Memory phenotype CD8(+) T cells persist in livers of mice protected against malaria by immunization with attenuated Plasmodium berghei sporozoites. *Eur J Immunol* **29**, 3978-3986 (1999).
- 23. Fernandez-Ruiz, D., *et al.* Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. *Immunity* **45**, 889-902 (2016).
- 24. Montagna, G.N., *et al.* Antigen export during liver infection of the malaria parasite augments protective immunity. *MBio* **5**, e01321-01314 (2014).
- 25. Coppi, A., *et al.* The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. *J Exp Med* **208**, 341-356 (2011).
- 26. Hafalla, J.C., Sano, G., Carvalho, L.H., Morrot, A. & Zavala, F. Short-term antigen presentation and single clonal burst limit the magnitude of the CD8(+) T cell responses to malaria liver stages. *Proc Natl Acad Sci U S A* **99**, 11819-11824 (2002).
- 27. de Cassan, S.C., *et al.* The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus. *J Immunol* **187**, 2602-2616 (2011).
- 28. Cohen, J., Nussenzweig, V., Nussenzweig, R., Vekemans, J. & Leach, A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. *Hum Vaccin* **6**, 90-96 (2010).
- 29. Rts, S.C.T.P. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. *Lancet* **386**, 31-45 (2015).
- 30. Iwanaga, S., Kaneko, I., Kato, T. & Yuda, M. Identification of an AP2-family protein that is critical for malaria liver stage development. *PLoS One* **7**, e47557 (2012).
- 31. Muller, K., Matuschewski, K. & Silvie, O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. *PLoS One* **6**, e19860 (2011).
- Zhang, M., Mishra, S., Sakthivel, R., Fontoura, B.M. & Nussenzweig, V. UIS2: A Unique Phosphatase Required for the Development of Plasmodium Liver Stages. *PLoS Pathog* 12, e1005370 (2016).
- 33. Tarun, A.S., *et al.* A combined transcriptome and proteome survey of malaria parasite liver stages. *Proc Natl Acad Sci U S A* **105**, 305-310 (2008).
- 34. Lin, J.W., *et al.* The subcellular location of ovalbumin in Plasmodium berghei blood stages influences the magnitude of T-cell responses. *Infect Immun* **82**, 4654-4665 (2014).
- 35. Potocnjak, P., Yoshida, N., Nussenzweig, R.S. & Nussenzweig, V. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. *J Exp Med* **151**, 1504-1513 (1980).
- 36. Tsuji, M., Mattei, D., Nussenzweig, R.S., Eichinger, D. & Zavala, F. Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites. *Parasitol Res* **80**, 16-21 (1994).

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT www.lshtm.ac.uk

Registry T: +44(0)20 7299 4646 F: +44(0)20 7299 4656 E: registry@lshtm.ac.uk

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED <u>FOR EACH</u> RESEARCH PAPER INCLUDED IN A THESIS.

SECTION A – Student Details

Student	Matthew Paul Gibbins	
Principal Supervisor	Julius Clemence R. Hafalla	
Thesis Title	Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens	

<u>If the Research Paper has previously been published please complete Section B, if not please move to</u> <u>Section C</u>

SECTION B – Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	Matthew P. Gibbins, Katja Müller, Kai Matuschewski, Olivier Silvie & Julius Clemence R. Hafalla
Stage of publication	Not yet submitted

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in	I performed experiments, analysed data and
the research included in the paper and in the preparation	performed the statistical analyses. I wrote the
of the paper. (Attach a further sheet if necessary)	paper.

Improving health worldwide

www.lshtm.ac.uk

 Student Signature:
 M. P. J.
 Date:
 17/09/18

 Supervisor Signature:
 The supervisor Signature:
 Date:
 17/09/18

Improving health worldwide

Page 2 of 2

www.lshtm.ac.uk

CHAPTER 3

Extending expression of *Plasmodium* liver stage antigens does not improve cognate CD8+ T cell responses

Extending expression of *Plasmodium* liver stage antigens does not improve cognate CD8+ T cell responses

Matthew P. Gibbins¹, Katja Müller^{2,3}, Kai Matuschewski^{2,3}, Olivier Silvie⁴ & Julius Clemence R. Hafalla^{1,†}

¹ Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases,

London School of Hygiene and Tropical Medicine, London, United Kingdom.

² Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany.

³ Institute of Biology, Humboldt University, Berlin, Germany.

⁴ Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France.

+Corresponding author: <u>Julius.Hafalla@lshtm.ac.uk</u>

ABSTRACT

Sporozoite antigens are the basis of many vaccines currently being tested against the pre-erythrocytic stages of malaria. Research focusing on liver stage antigens is lacking and their contribution to pre-erythrocytic immunity is less well understood. Whole sporozoite vaccination studies have shown that immunisation with late liver stage arresting parasites lead to improved protection against infectious sporozoite challenge. Nonetheless, few liver stage antigens have been discovered that can induce protection against sporozoite challenge. Previously our group had shown that UIS4, a parasitophorous vacuolar membrane (PVM) protein, expressed constitutively during liver stage development of the parasite, induces poor CD8+ T cell responses following immunisation with radiation attenuated P. berghei sporozoites. Given that radiation attenuated P. berghei sporozoites arrest early in their host hepatocytes, we employed an alternative sporozoite immunisation strategy in an effort to improve endogenous CD8+ T cell responses to UIS4. Here we employed azithromycin prophylaxis to ensure full liver stage development. However, we found that increasing the duration of expression of UIS4 in the liver stage parasite does not improve its cognate CD8+ T cell responses. Therefore, it is now important to define if late-expressing EEF antigens can contribute to protective CD8+ T cell responses against the pre-erythrocytic stages of malaria.

INTRODUCTION

There is a far greater abundance of research delineating *Plasmodium* sporozoite antigens, the immune responses they induce and their potential for use in malaria preerythrocytic vaccines compared to antigens expressed in the liver stage or exoerythrocytic forms (EEFs) of malaria infection. Early identification of pre-erythrocytic antigens focused on sporozoite antigens due to their high immunogenic capacity. Sporozoites are an extracellular form of the parasite, clearly visible to the immune system and have been found to induce strong antibody responses¹. Experimentally, the generation of sporozoites from mosquitoes is also much easier than generating EEFs, which require a suitable hepatocyte tissue system². However, to generate an efficacious pre-erythrocytic vaccine, it is imperative to investigate immune responses to the parasite as it resides in the liver. During this development in a hepatocyte, the parasite is stationary, thus fit for immune-mediated destruction, which would prevent the subsequent symptomatic and transmissible stages.

Vaccination induced protection against the pre-erythrocytic stages of malaria was first shown to be possible in animals and humans using radiation attenuation sporozoites (RAS)³⁻⁵. RAS became the gold standard that all future malaria vaccines were compared to. Sterile protection induced by RAS has been shown to be mediated primarily by CD8+ T cells^{6, 7}. Efficient recall of CD8+ T cell responses following presentation of parasite antigens on hepatocytes is crucial due to the short liver stage (in mice infected with *Plasmodium berghei* this is around 48-52 hours⁸), in order to kill all the developing EEFs. Despite the protection RAS can mediate, around 24 hours post immunisation with *Plasmodium berghei* RAS, parasites arrest their development in the hepatocyte as they reach the early schizont stage^{9, 10}. In contrast, genetically attenuated parasites (GAPs) that arrest later in EEF development have been generated, with immunisation offering greater levels of sterile protection against pre-erythrocytic infection compared to RAS or early-arresting GAPs^{11, 12}.

In addition, another whole sporozoite vaccine approach involving administration of antibiotics as anti-malarial chemoprophylaxis can protect mice from challenge¹³. Antibiotics target the apicoplast of the parasite, which are a relict plastid-like organelle obtained by endosymbiosis. The apicoplast has lost its photosynthetic properties however it is still an essential organelle for the parasite, with antibiotic treated asexual forms of P. falciparum unable to develop inside red blood cells (RBCs) following reinvasion, and perpetuate the infection¹⁴, leading to a 'delayed death' phenotype. Apicoplasts in the progeny are unable to branch and segregate, unlike the nucleus¹⁴. Thus, where daughter merozoites do not contain a nucleus and an apicoplast, perpetuation of the infection is not possible. In the EEF, the action of antibiotics on the parasite is similar. EEF development appears to occur as normal, with clear schizogony of the nucleus. However, the antibiotics target the apicoplast, with a lack of branching occurring upon schizogony^{15, 16}. The merosomes that are produced following P. berghei sporozoite infection of hepatoma cells treated with antibiotics in vitro contain non-viable merozoites, with these merozoites unable to infect mice when administered intravenously¹⁶. As in the RBC, antibiotics target the apicoplast of the EEFs in hepatocytes to prevent normal branching morphology during schizogony and daughter merozoites fail to be infectious and produce progeny because they fail to inherit an apicoplast¹⁶.

Several antibiotics have been tested as prophylactic drugs concomitant with sporozoite immunisation and the greatest levels of sterile protection, following challenge, occurred when mice were immunised multiple times under azithromycin cover¹³. The level of protection was also greater compared to immunisation with chloroquine prophylaxis or RAS¹³ and mice receiving three immunising doses of sporozoites with azithromycin prophylaxis survived a second re-challenge 6 months after the first challenge¹⁶. In these investigations, azithromycin was given as three doses of 160mg/kg intraperitoneally^{13, 16}, however in humans this can be given orally. Prevention of malaria by daily dosing with azithromycin has been shown to be effective in Kenya¹⁷ and

Indonesia¹⁸ indicating a generally safe, widely available antibiotic could be repurposed as a malaria prophylactic¹⁹.

Molecular docking techniques have tried to identify the mode of action of azithromycin. There is evidence that point mutations in the apicoplast large subunit unit (LSU) rRNA gene and apicoplast-encoded ribosomal protein L4 (*rpl4*) gene confer azithromycin resistance in *P. falciparum*. With these mutations, azithromycin is unable to bind to L4, which complexes with L22 and the LSU rRNA at the nascent peptide exit tunnel²⁰. This suggests that azithromycin blocks apicoplast development by inhibiting the apicoplast translation machinery, preventing new apicoplast-encoded polypeptides from being released from the ribosome. Using *in silico* docking software suggests this docking of azithromycin to apicoplast ribosomal proteins is organelle specific, as azithromycin does not dock in mitochondrial ribosomal proteins with the same affinity due to different side chains affecting the environment of the docking site²¹.

As mentioned above, azithromycin allows full development of the EEF and merosome formation, which may be the reason for the increased sterile protection it induces. This increased protection may be achieved using the same mode of action as seen for late arresting GAPs¹². It is hypothesised that upon extended EEF development, extended repertoires of antigens are expressed thus leading to a more diverse CD8+ T cell repertoire¹². In addition to increased repertoires, the length of single antigen expression may also be increased. However, the CD8+ T cell responses induced by EEF proteins are currently not well defined.

Previous research from our group has shown that CD8+ T cell responses to an EEF vacuolar membrane protein, UIS4²², were weaker compared to those against circumsporozoite protein (CSP) when mice were immunised with *P. berghei* RAS. Nonetheless, both sporozoite and EEF antigen could robustly protect when used in a viral vaccination regimen (Chapter 2: Müller and Gibbins, paper in preparation). Both

antigens are abundantly expressed, with CSP constitutively present at the sporozoite surface and UIS4 constitutively present at the PVM following sporozoite invasion of a hepatocyte^{22, 23}. Here we wanted to determine if the magnitude of antigen-specific CD8+ T cells responses to this EEF antigen could be improved by altering the method of parasite attenuation. In a side-by-side study, we compared CD8+ T cell responses following different immunisation strategies of C57BL/6 mice with *P. berghei* transgenic parasites expressing the reporter CD8+ T cell epitope SIINFEKL in the context of CSP or UIS4 (Chapter 2: Müller & Gibbins, paper in preparation). Mice were immunised either with RAS or sporozoites and azithromycin prophylaxis. Here we hypothesised that prolonged PVM protein expression would increase CD8+ T cell responses against EEF vacuolar membrane proteins.

MATERIALS AND METHODS

Ethics and animal experimentation

All animal work was conducted in accordance with the German Tierschutzgesetz in der Fassung von 18. Mai 2006 (BGB1. I S. 1207), which implements the Directive 86/609/EEC from the European Union and the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Animal experiments performed at London School of Hygiene and Tropical Medicine were conducted under licence from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986. All protocols were approved by the ethics committee of the Max Planck Institute for Infection Biology and the Animal Welfare and Ethics Review Board of the London School of Hygiene and Tropical Medicine. NMRI, CD-1 and C57BL/6 laboratory mouse strains were bred in house at LSHTM or purchased from Charles River Laboratories (Margate, UK or Sulzfeld, Germany). NMRI and CD-1 were used for cycling of parasites between vertebrate and mosquito hosts. Female C57BL/6 mice were used for immunology experiments at age 6-8 weeks.

Plasmodium berghei ANKA immunisation

P. berghei CSP^{SIINFEKL} and UIS4^{SIINFEKL} (strain ANKA clone c15cy1) parasites (Chapter 2: Müller and Gibbins, paper in preparation) were maintained by continuous cycling between murine hosts (NMRI or CD-1) and *Anopheles stephensi* mosquitoes. Infected mosquitoes were kept in incubators (Panasonic and Myrton) at 70-80% humidity and 20°C. Sporozoites were isolated from salivary glands no earlier than 18 days after infection. Mice were immunised with 10,000 sporozoites intravenously in the lateral tail vein. Sporozoites were either γ -irradiated at 1.2 x 10⁴ cGy or administered under prophylactic azithromycin drug cover. Azithromycin (Pfizer) was administered at a dose of 240 mg/kg intraperitoneally on the same day as immunisation and one day after¹⁶.

Quantification of SIINFEKL-specific CD8+ T cell responses

Spleens and livers perfused with 5ml PBS were harvested from immunised and naive mice. Lymphocytes were filtered by passing the organs through 70μ m cell strainers (Corning). Red blood cells were lysed with PharmLyse (BD) and lymphocytes were resuspended in complete RPMI (cRPMI- RPMI + 10% FCS + 2% Penicillin-Streptomycin + 1% L-glutamine (Gibco)).

Cells were diluted 40x in Trypan Blue (ThermoFisher Scientific) and counted by microscopy using a Neubauer 'Improved' haemocytometer (Biochrom) or cells were counted using a MACSQuant flow cytometer (Miltenyi Biotec), using propidium iodide (PI) (Sigma Aldrich) and CD45.2-Alexa647 (Biolegend) to distinguish between hepatocytes and lymphocytes. 2-3x10⁶ splenocytes or 0.5-1x10⁶ liver cells were plated in flat bottom 96 well plates and incubated with peptides at final concentration 10μ g/ml in the presence of Brefeldin A (eBioScience). Peptides SIINFEKL, SALLNVDNL²⁴ and VNYSFLYLF²⁴ were synthesised and purchased from Peptides and Elephants. Cells were incubated at 37°C, 5% CO₂ for 5-6 hours, before incubation at 4°C overnight. Cells were stained the following day for cell surface markers and intracellular IFN- γ . Cells were incubated for 1 hour at 4°C for cell surface marker staining first then intracellular staining. Between stainings cells were fixed with 4% paraformaldehyde and permeabilised using PermWash (BD). Data was acquired by flow cytometry using an LSRII or LSRFortessa (BD). Antibodies used for stainings were obtained from BD: CD3 (500A2) or eBioScience: CD8 (53-6.7), CD11a (M17/4), IFN- γ (XMG1.2).

Statistics

Data was analysed using FlowJo version 10.0.8 (Tree Star Inc., Oregon, USA), Microsoft Excel and GraphPad Prism v7 (GraphPad Software Inc., CA, USA). Statistics were calculated using one-way ANOVA with Tukey's multiple comparison test.

RESULTS

We first investigated the effect of different methods of sporozoite attenuation on the expansion of antigen-experienced CD8+ T cells, in the spleen and liver following immunisation, by flow cytometry. Previous work has shown that upregulation of CD11a and downregulation of CD8 α is a durable and accurate phenotype for identifying infection or vaccine induced parasite-specific CD8 T cells²⁵⁻²⁷. We found that immunisation with RAS or those attenuated by azithromycin produced a similar proportion of CD11a^{hi} CD8+ T cells, around 8% in the spleen and 30% in the liver, 2 weeks after immunisation, determined post *ex vivo* stimulation with SIINFEKL peptide (Figure 1 and 2). This corroborates with previous work that shows both of these methods of attenuation induce comparable high levels of antigen-experienced cells in peripheral blood following immunisation¹³.

Figure 1 – Flow cytometry gating strategies

The flow cytometry gating strategy used to assess the proportion of antigenexperienced CD8+ T cells (CD11a^{hi} CD8^{lo}) and IFN- γ producing antigen-specific CD8+ T cells (IFN- γ + CD11a+) in the (A) spleen and (B) liver.

Figure 2 – Similar levels of antigen-experienced CD8+ T cells are induced in mice immunised with irradiated and drug attenuated sporozoites

Mice (n=3-5 per group) were immunised with CSP^{SIINFEKL} or UIS4^{SIINFEKL} RAS or sporozoites with azithromycin cover (AZ). Spleens and livers from immunised and naïve mice were harvested 14 days later. Lymphocytes were restimulated with SIINFEKL and stained for flow cytometry. The graphs show the (A) percentage and (B) absolute cell counts of CD11a^{hi} CD8^{lo} cells from the CD8+ T cell compartment in the spleen (left panel) and liver (right panel). Bar charts depict data pooled from three independently conducted experiments with mean values ± SEM shown.

We then compared antigen-specific CD8+ T cell responses by peptide ex vivo stimulation and found that the magnitude of responses to SIINFEKL in the context of UIS4 also did not change regardless of the attenuation method (Figure 3). The extension of UIS4 expression permitted by azithromycin administration did not alter the frequency and number of IFN-y producing SIINFEKL-specific CD8+ T cells induced compared to when RAS were given. We also assessed the SIINFEKL-specific responses in the context of CSP expression and found the number of IFN-y producing SIINFEKL-specific CD8+ T cell responses were significantly higher than those elicited against UIS4 as reported before (Chapter 2: Müller & Gibbins, prepared for publication). However, interestingly, SIINFEKL-specific CD8+ T cell responses in the spleen in the context of CSP are significantly lower when mice are immunised with sporozoites attenuated by azithromycin cover compared to RAS although this significance disappears when assaying liver infiltrating lymphocytes. Thus, we show that extending EEF development, and presumably vacuolar membrane antigen expression, does not amplify IFN-γ producing CD8+ T cell responses to EEF vacuolar membrane proteins constitutively expressed in the EEF.

Figure 3 – Extending the duration of EEF development during immunisation does not enhance CD8+ T cell responses to EEF vacuolar membrane proteins

Mice (n=3-5) were immunised with CSP^{SIINFEKL} or UIS4^{SIINFEKL} RAS or sporozoites with azithromycin cover (AZ). Spleens and livers from immunised and naïve mice were harvested 14 days later. Lymphocytes were restimulated with SIINFEKL and stained for flow cytometry. The graphs show the (A) percentage and (B) absolute cell counts of CD8+ T cells co-expressing IFN- γ and CD11a in the spleen (left panel) and liver (right panel). Bar charts depict data pooled from three independently conducted experiments with mean values ± SEM shown (*, p<0.05; **, p<0.01; ***, p<0.001; one-way ANOVA with Tukey's multiple comparison test).

To determine if the lack of effect of azithromycin on antigen-specific CD8+ T cell responses was specific to EEF antigens, we assessed endogenous CD8+ T cell responses to two sporozoites antigens, thrombospondin related anonymous protein (TRAP) and sporozoite-specific gene 20 (S20), that are not expressed during the liver stage. Following *ex vivo* restimulation with peptides corresponding to their CD8+ T cell epitopes²⁴ we found that similar levels of CD8+ T cell responses were induced irrespective of attenuation method (Figure 4) with the only exceptions being a difference in absolute cell numbers of TRAP- and S20-specifc CD8+ T cell responses observed in the livers of mice receiving UIS4^{SIINFEKL} parasites

VNYSFLYLF

Figure 4 – CD8+ T cell responses to sporozoite antigens are not affected by an extended EEF development

Mice (n=3-5) were immunised with CSP^{SIINFEKL} or UIS4^{SIINFEKL} RAS or sporozoites with azithromycin cover (AZ). Spleens and livers from immunised and naïve mice were harvested 14 days later. Lymphocytes were restimulated with peptides corresponding to the immunogenic CD8+ T cell epitopes of TRAP protein (SALLNVDNL)²⁴ (A,B) and S20 protein (VNYSFLYLF)²⁴ (C,D) and stained for flow cytometry. The graphs show the (A,C) percentage and (B,D) absolute cell counts of CD8+ T cells co-expressing IFN- γ and CD11a in the spleen (left panel) and liver (right panel). Bar charts depict pooled data from three independently conducted experiments with mean values ± SEM (**, p<0.01; ***, p<0.001; one-way ANOVA with Tukey's multiple comparison test).

DISCUSSION

Azithromycin prophylaxis allows full EEF development of Plasmodium but inhibits apicoplast maturation and inheritance leading to non-infectious merozoites that fail to initiate erythrocytic infections¹⁶. Using azithromycin, we can immunise against antigens expressed throughout the pre-erythrocytic stages spanning from those antigens expressed by the sporozoite to those expressed very late on in the EEF prior to merozoite release into the blood. This would seem beneficial for increasing the pool of immunisation-induced CD8+ T cells that are specifically targeted against EEF antigens. Specifically looking at *P. berghei* UIS4, a PVM protein expressed constitutively in the liver following proper sporozoite invasion of a hepatocyte; azithromycin prophylaxis would allow UIS4 to continue to be expressed for the full 48-52 hours of EEF development in contrast to ~24 hours if RAS were used. Nonetheless, we show here that increasing the duration of UIS4 expression, facilitated by azithromycin, does not improve the magnitude of cognate CD8+ T cell responses against this vacuolar membrane protein. This is in concert with our previous finding that responses to UIS4 could also not be improved by increasing the dose of sporozoites used for immunisation (Chapter 2: Müller & Gibbins, prepared for publication). In addition, similar levels of antigen-experienced CD8+ T cells are induced following immunisation with RAS or sporozoites under azithromycin prophylaxis as previously shown¹³. Similar levels of memory CD8+ T cells following sporozoite immunisation under chloroquine cover compared to RAS have also been identified²⁸. This is surprising considering that immunisation with late-arresting GAPs induce the greatest protection from sporozoite challenge^{11, 12}, thus a larger antigen-specific CD8+ T cell compartment would have been expected¹¹ if EEF development was extended. Alas, while CD8+ T cells have been shown to be crucial for pre-erythrocytic protection, the acquisition of protection following immunisation with diversely attenuated parasites (RAS, GAPs or drug prophylaxis) are likely different, which means the correlates of protection following each immunisation are also probably distinct. Further research is required to deduce the

differences in responses induced by different parasite immunisation strategies and how they mediate protection.

C57BL/6 mice immunised twice with P. berghei sporozoites under azithromycin cover have been shown to be better protected from sporozoite challenge than when they are immunised with RAS¹³. The authors also remark a non-significant but trending observation for better protection when assaying relative parasite load in the liver at 50 hours post challenge compared to 42 hours. At 42 hours there is no difference in parasite load in the liver, whereas 8 hours later, a trend appears for a lower parasite load in liver when mice receive sporozoite immunisation under azithromycin cover rather than RAS immunisation. This suggests, in concert with sterile protection data that azithromycin induces protective CD8+ T cells that are specific for late-expressed EEF antigens, which act in the later stages of EEF development¹³. However, under 10 days of chloroquine cover after both immunisations, parasite load in the liver was significantly higher than mice under azithromycin cover and sterile protection was comparable to RAS immunisation. This superior protection may be achieved because of increased immune responses to late expressed antigens on the non-invasive merozoite, which would never be presented using RAS or unlikely to be presented on the hepatocyte under chloroquine cover as merozoites do not arrest in the host hepatocyte but enter the bloodstream normally. We report similar results when assessing specific CD8+ T cell responses to mid-late expressed antigens LISP1 and LISP2 using the reporter epitope SIINFEKL as a proxy (Chapter 4: Gibbins et al., paper in preparation). Mice, vaccinated with adenovirus expressing ovalbumin, have high parasite loads in the liver compared to non-vaccinated controls at 40 hours post sporozoite challenge with parasites expressing SIINFEKL in the context of LISP1 or LISP2. However, when mice were followed for the onset of parasitaemia, 50% of mice exhibit sterile protection. This suggests that LISP1 and LISP2 induce CD8+ T cells that have some protective capability and may act very late following challenge, leading to the discrepancy between the parasite load in the liver data and sterile protection data

(Chapter 4: Gibbins et al, paper in preparation). Together, these data suggest that increasing the breadth of CD8+ T cell responses to include later expressed EEF antigens could lead to greater protection. Here we extended expression of UIS4 protein hypothesising that late expression of EEF antigens may still be important. However, extending EEF antigen expression via drug cover does not increase the number of cognate CD8+ T cell responses. More research is required to determine the kinetics of antigen-specific CD8+ T cell responses and other immune responses in the liver stage of malaria. Investigation into how to enhance liver stage responses to achieve protection and identification of antigens that are presented at this stage will be crucial in designing and developing new generation malaria vaccines.

ACKNOWLEDGEMENTS

We would like to thank Jason Mooney for his critical reading of the manuscript.

Kai Matuschewski was supported by the Max Planck Society and grants from the European Commission (EviMalaR Network of Excellence #34) and the Chica and Heinz Schaller Foundation. Olivier Silvie was funded in part by the Laboratoire d'Excellence ParaFrap (ANR-11-LABX-0024). Julius Hafalla was funded by grants from The Royal Society (University Research Fellowship UF0762736/UF120026 and Project Grant RG130034) and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (Project Grant NC/L000601/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

- 1. Dups, J.N., M. Pepper, and I.A. Cockburn, *Antibody and B cell responses to Plasmodium sporozoites*. Front Microbiol, 2014. **5**: p. 625.
- 2. Kappe, S.H. and P.E. Duffy, *Malaria liver stage culture: in vitro veritas?* Am J Trop Med Hyg, 2006. **74**(5): p. 706-7.
- 3. Nussenzweig, R.S., et al., *Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei.* Nature, 1967. **216**(5111): p. 160-2.
- 4. Gwadz, R.W., et al., *Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites.* Bull World Health Organ, 1979. **57 Suppl 1**: p. 165-73.
- 5. Clyde, D.F., et al., *Immunization of man against sporozite-induced falciparum malaria*. Am J Med Sci, 1973. **266**(3): p. 169-77.
- 6. Schofield, L., et al., *Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.* Nature, 1987. **330**(6149): p. 664-6.
- 7. Doolan, D.L. and S.L. Hoffman, *The complexity of protective immunity against liverstage malaria.* J Immunol, 2000. **165**(3): p. 1453-62.
- 8. Landau, I. and Y. Boulard, *Life cycles and Morphology*, in *Rodent Malaria*, R. Killick-Kendrick and W. Peters, Editors. 1978, Academic Press: London. p. 53-84.
- 9. Suhrbier, A., et al., *Survival and antigenic profile of irradiated malarial sporozoites in infected liver cells.* Infect Immun, 1990. **58**(9): p. 2834-9.
- 10. Silvie, O., et al., *Effects of irradiation on Plasmodium falciparum sporozoite hepatic development: implications for the design of pre-erythrocytic malaria vaccines.* Parasite Immunol, 2002. **24**(4): p. 221-3.
- 11. Butler, N.S., et al., *Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites.* Cell Host Microbe, 2011. **9**(6): p. 451-62.
- 12. Vaughan, A.M., et al., A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun, 2018. **86**(5).
- 13. Friesen, J. and K. Matuschewski, *Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.* Vaccine, 2011. **29**(40): p. 7002-8.
- 14. Dahl, E.L. and P.J. Rosenthal, *Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast.* Antimicrob Agents Chemother, 2007. **51**(10): p. 3485-90.
- 15. Stanway, R.R., et al., *GFP-targeting allows visualization of the apicoplast throughout the life cycle of live malaria parasites*. Biol Cell, 2009. **101**(7): p. 415-30, 5 p following 430.
- 16. Friesen, J., et al., *Natural immunization against malaria: causal prophylaxis with antibiotics.* Sci Transl Med, 2010. **2**(40): p. 40ra49.
- 17. Andersen, S.L., et al., *Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya.* Clin Infect Dis, 1998. **26**(1): p. 146-50.
- 18. Taylor, W.R., et al., *Malaria prophylaxis using azithromycin: a double-blind, placebocontrolled trial in Irian Jaya, Indonesia.* Clin Infect Dis, 1999. **28**(1): p. 74-81.
- 19. Rosenthal, P.J., Azithromycin for Malaria? Am J Trop Med Hyg, 2016. **95**(1): p. 2-4.
- 20. Sidhu, A.B., et al., *In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin.* J Biol Chem, 2007. **282**(4): p. 2494-504.
- Gupta, A., et al., Reduced ribosomes of the apicoplast and mitochondrion of Plasmodium spp. and predicted interactions with antibiotics. Open Biol, 2014. 4(5): p. 140045.

- 22. Mueller, A.K., et al., *Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface*. Proc Natl Acad Sci U S A, 2005. **102**(8): p. 3022-7.
- 23. Silvie, O., et al., *Post-transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is important for host switch.* Mol Microbiol, 2014. **91**(6): p. 1200-13.
- 24. Hafalla, J.C., et al., *Identification of targets of CD8(+) T cell responses to malaria liver stages by genome-wide epitope profiling*. PLoS Pathog, 2013. **9**(5): p. e1003303.
- 25. Rai, D., et al., *Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts.* J Immunol, 2009. **183**(12): p. 7672-81.
- 26. Schmidt, N.W., et al., *Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites.* PLoS Pathog, 2010. **6**(7): p. e1000998.
- 27. Guthmiller, J.J., R.A. Zander, and N.S. Butler, *Measurement of the T Cell Response to Preerythrocytic Vaccination in Mice.* Methods Mol Biol, 2015. **1325**: p. 19-37.
- 28. Nganou-Makamdop, K., et al., *Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNgamma responses of hepatic CD8+ memory T cells.* PLoS One, 2012. **7**(5): p. e36508.

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT www.lshtm.ac.uk

Registry

T: +44(0)20 7299 4646 F: +44(0)20 7299 4656 E: registry@lshtm.ac.uk

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED <u>FOR EACH</u> RESEARCH PAPER INCLUDED IN A THESIS.

SECTION A – Student Details

Student	Matthew Paul Gibbins	
Principal Supervisor Julius Clemence R. Hafalla		
Thesis Title	Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens	

<u>If the Research Paper has previously been published please complete Section B, if not please move to</u> <u>Section C</u>

SECTION B - Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	Matthew P. Gibbins, Sylvie Briquet, Niculò Barandun, Liya Mathew, Arturo Reyes-Sandoval, Adrian V. S. Hill, Simon J. Draper, Olivier Silvie & Julius Clemence R. Hafalla
Stage of publication	Not yet submitted

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in the research included in the paper and in the preparation of the paper. (Attach a further sheet if necessary)	I generated and characterised the transgenic parasites, performed immunological and vaccination experiments, analysed data and performed the statistical analyses. I wrote the paper.
--	---

Improving health worldwide

www.lshtm.ac.uk

 Student Signature:
 $M \cdot h$ Date:
 $17/0 \cdot 9/18$

 Supervisor Signature:
 444 Date:
 $17/0 \cdot 9/18$

Improving health worldwide

Page 2 of 2

www.lshtm.ac.uk

CHAPTER 4

Late liver stage antigens confer partial protection against the preerythrocytic stages of malaria Late liver stage antigens confer partial protection against the preerythrocytic stages of malaria

Matthew P. Gibbins¹, Sylvie Briquet², Niculò Barandun¹, Liya Mathew¹, Arturo Reyes-Sandoval³, Adrian V. S. Hill³, Simon J. Draper³, Olivier Silvie² & Julius Clemence R. Hafalla^{1,†}

¹ Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom

² Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France

³ The Jenner Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom

+Corresponding author: <u>Julius.Hafalla@lshtm.ac.uk</u>
ABSTRACT

Understanding the liver stage of *Plasmodium* infection is important for the development of future vaccines, however research on effective immune responses in the liver is lacking. Only recently have the intricacies of parasite development in the liver and the interactions with the host begun to be fully determined. CD8+ T cells are known to be critical immune cells in targeting the parasite hidden inside hepatocytes, however the antigen specificity of these cells is only just starting to come to light. Using genetically attenuated parasites it has been found that vaccination with parasites that arrest in the late stages of parasite development in the hepatocyte induce a greater level of anti-*Plasmodium* immunity and protection from sporozoite challenge. Using *Plasmodium berghei* parasites expressing a reporter epitope, we show that antigens expressed during mid-late liver stage development induce antigen-specific CD8+ T cell responses and offer partial protection against sporozoite challenge. With delayed antigen expression and presentation, but the ability to induce effective CD8+ T cell responses, this result emphasises the potential for including late liver stage antigens in new malaria vaccines.

INTRODUCTION

Malaria is a global health burden affecting more than around 216 million cases per year, resulting in around 445,000 deaths, with 80% of global cases occurring in 14 countries in sub-Saharan Africa and India¹. However, with the rise and spread of drug resistant parasites², the road to elimination will be slow without the advent of efficacious vaccines.

A vaccine that targets the pre-erythrocytic stages of malaria is favourable because it would target a natural bottleneck in the life cycle of *Plasmodium*. Only a few hundred sporozoites are injected into the skin by an infected female *Anopheles* mosquito³, gliding in the dermis⁴ in a random pattern until they reach a blood vessel⁵ where they travel to the liver, invade⁶ and undergo replication within an hepatocyte. Only 25% of this small inoculum of sporozoites successfully make it out of the skin into the bloodstream⁷. So, if the few sporozoites that find the liver could be killed en route or whilst developing in the liver, then subsequent blood stages, which lead to both symptoms and transmission, would be prevented.

Vaccine research against the pre-erythrocytic stages of malaria to date, has broadly focused on sporozoite antigens. Two antigens in particular, circumsporozoite antigen (CSP) and thrombospondin-related anonymous protein (TRAP), were originally shown to induce strong immunological responses, in the form of anti-CSP antibody production⁸ and anti-CSP CD4+ T cells⁹⁻¹¹ or anti-TRAP CD8+ T cells¹² following immunisation of humans with radiation attenuated sporozoites. This led to subunit vaccine development and thus CSP and TRAP remain the most described malaria vaccine candidates to date.

RTS,S/AS01 is the most advanced malaria vaccine to date. RTS,S/AS01 is a subunit vaccine based on the major surface antigen of sporozoites, CSP, which offered modest protection against clinical episodes of *Plasmodium falciparum* malaria in a multi-site Phase III study in Africa, however efficacy waned over time¹³. Vaccine-induced

protection was correlated with the induction of high-titres of anti-CSP antibodies and CSP-specific CD4+ T cells¹⁴. A Phase IIb trial in Kenya showed promising 67% efficacy against *P. falciparum* malaria infection for a viral vectored prime-boost ME-TRAP vaccine (multiple epitope (ME) string containing T cell epitopes of other pre-erythrocytic antigens in addition to TRAP), however longevity of efficacy over time could not be determined due to the short follow-up period¹⁵. Furthermore, combining 3 doses of RTS,S/AS01B and the viral vectored ME-TRAP prime-boost regimen gave promising sterile efficacy against malaria infection following CHMI (Controlled Human Malaria Infection) 12 weeks after first vaccination and repeat CHMI 6 months later in a UK based Phase I/IIa study¹⁶. Therefore, vaccines based on sporozoite antigens are successful at protecting individuals from malaria in endemic regions.

This focus on sporozoite surface antigens may be due to the perception that they are more accessible to the immune system than antigens expressed by liver stages or exoerythrocytic forms (EEFs) of the parasite hidden away within a hepatocyte. However recently we have demonstrated that by expressing the model epitope of ovalbumin, SIINFEKL, in the context of different *P. berghei* proteins, the temporal and spatial effects of pre-erythrocytic antigen expression on CD8+ T cell responses could be determined by proxy (Chapter 2: Müller and Gibbins, paper in preparation). Previously, we generated two transgenic parasites which express the reporter epitope in the context of sporozoite surface protein CSP or EEF parasitophorous vacuole membrane (PVM)-associated upregulated in infectious sporozoites gene 4 (UIS4)¹⁷. We showed that despite the greater immunogenic gualities (CD8+ T cell cytokine production and proliferative capacity) of sporozoite antigens compared to EEF vacuolar membrane antigens, both antigens were equally protective when mice were vaccinated prior to sporozoite challenge. This finding highlighted two concepts- poor natural antigen-specific CD8+ T cell responses don't necessarily negate an antigen's suitability as a vaccine candidate and that EEF antigens can be protective. Following on from this discovery, we wanted to know at what stage of EEF development can the parasite still be detected, and the

infected hepatocyte destroyed. We hypothesised that later expressed EEF antigens would not provide the same level of protection as those expressed constitutively.

Here, our aim was to investigate CD8+ T cell responses and protection offered by proteins expressed later during EEF development. Given that development of Plasmodium berghei EEFs in mice only lasts for around 48-52 hours¹⁸ before the first merozoites are released into the bloodstream, we chose two mid-late expressed PVM associated proteins to compare against constitutively expressed UIS4. UIS4 protein is constitutively expressed upon development of parasite within a hepatocyte and localises to the PVM^{17, 19}. In contrast, Liver Specific Protein 1 (LISP1)²⁰ and Liver Specific Protein 2 (LISP2)²¹ have similar mid-late EEF specific expression profiles, with mRNA and protein expression being absent during early EEF development and expression peaking at 48 hours in vitro and in vivo. LISP1 has been shown to be crucial for egress of merozoites from the PVM²⁰, while LISP2 is carried to the PVM by secretory vesicles and subsequently transported to the cytoplasm and nucleus of hepatocyte where it is suggested that it plays a role in modifying the running of the cell for its own devices²¹. We generated transgenic parasites expressing SIINFEKL in the context of LISP1 or LISP2 and here we show the CD8+ T cell responses launched against these mid-late expressed EEF antigens and the partial protection against the pre-erythrocytic stages that they induce.

MATERIALS AND METHODS

Ethics and animal experimentation

Animal procedures were performed in accordance with the Directive 2010/63/EU from the European Parliament and Council 'On the protection of animals used for scientific purposes'. Animal experiments performed at London School of Hygiene and Tropical Medicine were conducted under license from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986. Protocols were approved by the Charles Darwin Ethics Committee of the University Pierre et Marie Curie, Paris, France and the Animal Welfare and Ethics Review Board of the London School of Hygiene and Tropical Medicine. Swiss Webster mice were purchased from Janvier (Saint Berthevin, France) and used to generate the transgenic parasites. CD-1 mice were bred in house at LSHTM and used for cloning by limiting dilution and for cycling parasites between murine and mosquito hosts. C57BL/6 mice were purchased from Charles River Laboratories (Margate, UK). OT-I mice were purchased from Charles River Laboratories (L'Arbresles, France) or spleens were kindly donated by James Cruickshank at the Babraham Institute, Cambridge. Female mice were used for experiments at age 6-8 weeks.

Parasites and mosquitoes

Transgenic parasites pLISP1-UIS4^{SIINFEKL}, pLISP2-UIS4^{SIINFEKL}, LISP1^{SIINFEKL} and LISP2^{SIINFEKL} were generated in a *Plasmodium berghei* ANKA strain which expresses GFP at the dispensable *p230p* locus²². Wild type *P. berghei* (clone 507) was used in comparison which expresses GFP at the elongation factor 1 alpha (*eef1a*) locus. Additional *P. berghei* CSP^{SIINFEKL} and UIS4^{SIINFEKL} parasites that do not express GFP (Chapter 2: Müller and Gibbins, paper in preparation) were used for immunological comparisons. *Anopheles stephensi* mosquitoes were reared and infected with these *P. berghei* parasites. Infected mosquitoes were kept incubators (Panasonic) at 22°C and 70% humidity. Infected mosquitoes were given a second naïve blood feed from

anaesthetised mice 7 days post infection²³. Salivary gland sporozoites were dissected at least 21 days post infection.

For immunological experiments, mice were immunised intravenously or intradermally once with 10,000 sporozoites concomitantly with azithromycin (Pfizer) given at a dose of 240 mg/kg intraperitoneally on the same day as immunisation and one day after²⁴. Viral vaccinated mice were challenged with 1,000 or 10,000 sporozoites intravenously for sterile protection and parasite load in the liver experiments respectively.

Transgenic parasite generation

pLISP1-UIS4^{SIINFEKL}, pLISP2-UIS4^{SIINFEKL}, LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites were generated using In-Fusion (Clontech) technology to generate plasmids for transfection based on generation of a common plasmid²⁵ (MG1 - Figure 1). The similarities between the parasites include the addition of mCherry, SIINFEKL epitope and 3' UTR from UIS4 appended to the end of a designated protein. In the case of pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} (plasmids MG2b and MG2c respectively), the mCherry-SIINFEKL modification occurs at the C-terminus of an additional copy of the UIS4 protein. This modified ORF is under the promoter of LISP1 or LISP2, appearing downstream of the endogenous ORF at the UIS4 locus. In the case of LISP1^{SIINFEKL} (plasmid MG2e), the mCherry-SIINFEKL modification occurs at the C-terminus of the endogenous LISP1 protein. In the case of LISP2^{SIINFEKL}, the mCherry-SIINFEKL modification occurs at the C-terminus of the endogenous LISP2 protein. Plasmids were transfected into *Plasmodium berghei* ANKA expressing GFP at the dispensable p230p²² by electroporation of merozoites using Nucleofector buffer and an AMAXA Nucleofector²⁶. Swiss Webster mice were immediately injected with electroporated merozoites intravenously. Transgenic clones were isolated after limiting dilution and injection into CD-1 mice. Details of plasmid design, primers, cloning and genotyping of parasites can be found in Supplementary Experimental Procedures and Supplementary Table 1.

In vitro infection of hepatoma cells and fluorescent staining

In vitro liver EEF development was analysed in infected Huh7 hepatoma cells at 12, 24 and 48 hours. Duplicate Labtek (Nunc) wells were infected with 10,000 *P. berghei* WT, pLISP1-UIS4^{SIINFEKL}, pLISP2-UIS4^{SIINFEKL}, LISP1^{SIINFEKL} or LISP2^{SIINFEKL} sporozoites. Cells were fixed with 4% paraformaldehyde and stained for analysis by fluorescence microscopy using polyclonal anti-*Pb*UIS4 (SICGEN) or anti-DsRed/mCherry (Takara Bio) primary antibodies. Corresponding secondary antibodies conjugated to Alexa546 were used and nuclear staining was visualised using DAPI before mounting with Vectashield (Vector Labs). The stainings were analysed using an Eclipse Ti-E inverted microscope (Nikon).

Restimulation of splenic, liver infiltrating and peripheral blood lymphocytes

Spleens and livers perfused with PBS were harvested from immunised and naïve mice. Peripheral blood was acquired by tail vein puncture collected in Na⁺ heparin capillary tubes (Brand) and assayed in 96-well flat bottom plates (Corning). Organs were homogenised using 70µm cell strainers (Corning), hepatocytes removed using a Percoll (GE Healthcare) gradient, and red blood cells lysed using PharmLyse (BD). Lymphocytes were resuspended in complete RPMI (cRPMI- RPMI + 10% FCS + 2% Penicillin-Streptomycin + 1% L-glutamine (Gibco)). Cells were counted by microscopy following 40x dilution with Trypan Blue (ThermoFisher Scientific) on a Neubauer 'Improved' haemocytometer (Biochrom). 2-3x10⁶ splenocytes or 0.5-1x10⁶ liver cells were incubated with SIINFEKL peptide (Peptides and Elephants) at final concentration of 10µg/ml in the presence of Brefeldin A (eBioScience) and incubated for 5-6 hours at 37°C and 5% CO₂ before incubation at 4°C overnight. CD8+ T cells were stained for flow cytometry using CD3 (500A2), CD8 (53-6.7) and CD11a (M17/4) and intracellular cytokine markers IFN- γ (XMG1.2). Antibodies were obtained from BD (CD3 only) or eBioscience. Spleen or liver cells were fixed using 4% paraformaldehyde and peripheral blood cells were fixed with 1% paraformaldehyde. Cells were permeabilised using

PermWash (BD). Data was acquired on an LSRII (BD).

Vaccination with OVA expressing recombinant adenovirus for assessment of parasite load in the liver and sterile protection

To assess parasite load in the liver and sterile protection, mice were vaccinated recombinant human adenovirus serotype 5 (AdHu5) expressing full-length chicken ovalbumin $(AdOVA)^{27}$. Mice received 1×10^8 infective units (ifu) diluted in ice cold PBS with 100µl of the virus administered subcutaneously (50µl into each thigh). Vaccinated and control mice also received 2×10^6 OT-l splenocytes intravenously.

Quantitative real time PCR to determine parasite load in the liver

14 days after vaccination, vaccinated and control mice were challenged with 10,000 *P. berghei* ANKA sporozoites intravenously. 40hrs after the challenge, livers were harvested and homogenised in TRIzol (ThermoFisher Scientific) for total RNA isolation. Quantitative real-time PCR was performed using the 7500 Fast Real-Time PCR System and FastSYBR Green PCR Master Mix (Applied Biosystems). Relative liver parasite levels were quantified using the $\Delta\Delta$ Ct method comparing levels of *P. berghei* 18S rRNA and normalised to levels of mouse *GAPDH* mRNA. Primers used can be found in Supplementary Table 1.

Sterile protection

14 days after vaccination, vaccinated and control mice were challenged with 1,000 *P. berghei* ANKA sporozoites intravenously. Parasitaemia in challenged mice was monitored by daily blood smears taken from day 3-14 after challenge, stained with Giemsa solution (VWR).

Statistics

Data was analysed using FlowJo version 10.0.8. (Tree Star Inc., Oregon, USA), Microsoft Excel and GraphPad Prism v7 (GraphPad Software Inc., CA, USA). We calculated statistics between two groups using Mann-Whitney U test or Welch's t-test for non-normally or normally distributed data, respectively, and one-way ANOVA with Tukey's multiple comparison test for comparing more than two groups.

RESULTS

Generation of LISP1^{SIINFEKL} and LISP2^{SIINFEKL} transgenic parasites

We developed P. berghei parasites that express the reporter CD8+ T cell epitope of ovalbumin, SIINFEKL, in the context of LISP1 and LISP2 which are expressed at similar times in during EEF development, with mRNA transcripts and protein only detectable after 24 hours^{20, 21}. Using the common plasmid MG1 (Figure 1) a similar strategy to that used to generate UIS4^{SIINFEKL} (Chapter 2: Müller and Gibbins, paper in preparation) was employed. We modified the loci of LISP1 or LISP2 by appending the SIINFEKL epitope to the C-terminus of the LISP1 or LISP2 protein, as well as incorporating an mCherry tag prior to SIINFEKL. LISP1^{SINFEKL} (Figure 2A) and LISP2 ^{SIINFEKL} (Figure 2B) thus expressed one copy of LISP1 or LISP2 which was mCherry-SIINFEKL tagged, regulated by the endogenous promoter region although the 3' UTR was from UIS4, not the gene specific 3' UTR. This was because we generated two sets of parasites but used the common plasmid MG1 (Figure 1) to generate both. We generated in parallel, pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} parasites that were modified at the UIS4 locus, so that an extra copy of UIS4, under the promoter of LISP1 or LISP2, was incorporated which would contain the mCherry-SIINFEKL tag (Figure 3A, B). These parasites were generated so that if the parasites LISP1^{SIINFEKL} and LISP2^{SIINFEKL} failed to express functional modified LISP1 or LISP2 tagged protein that did not associate with the PVM, a later expressed tagged UIS4 protein could be used to probe responses to a PVM protein that is expressed later than endogenous UIS4. The tagged UIS4 was placed under a separate 3' UTR of UIS4. It was necessary to engineer the tagged version of UIS4 as regulatorily separate from the endogenous copy, because a single copy of UIS4 strictly under the LISP1 or LISP2 promoter would prevent early EEF development. All four transgenic parasites were generated using the MG1 plasmid which contained a mCherry-SIINFEKL-UIS4 3' UTR cassette (Figure 1), hence why LISP1^{SIINFEKL} and LISP2^{SIINFEKL} contain this unconventional 3' UTR.

Figure 1

Generation of mCherry-SIINFEKL-UIS4 3' UTR containing plasmid

All parasites were based on MG1 starting plasmid. Full details of plasmid construction are described in the Supplementary Experimental Procedures. The hDHFR cassette (blue) provided the drug selectable resistance gene against pyrimethamine allowing determination of parasites incorporating the plasmid. MG1 was linearised by *EcoRI* (grey), with gene fragments for the other plasmids inserted here using In-Fusion (Clontech) technology. Ultimately, following insertion of gene fragments, genes would be appended 3' by the mCherry-SIINFEKL-UIS4 3' UTR sequences. Thus, following translation, proteins would be mCherry tagged (red) at the C-terminus followed by the SIINEKL CD8+ T cell target epitope (green). The 3' UTR of UIS4 (purple) would be the 3' regulatory region functioning to signal the end of transcription, though transcription may not be under the promoter region of UIS4, depending on the parasite in question. The sequence of the T7 promoter (pink) present in the plasmid was used in conjunction with a sequence from hDHFR to genotype parasites and identify episome formation. **Transgenic parasites develop normally into sporozoites and EEFs with localisation of UIS4, LISP1 and LISP2 with the parasitophorous vacuole membrane** Recombinant parasites that had integrated the plasmid, containing the human dihydrofolate reductase drug selectable marker gene (*hDHFR*), were selected for by treatment with pyrimethamine, followed by limiting dilution to isolate clones. Genotyping PCRs were performed using primers designed to determine the presence of WT parasites, 5' and 3' integration and the presence of episomes (LISP1^{SIINFEKL} Figure 2C; LISP2^{SIINFEKL} Figure 2D; pLISP1/2-UIS4^{SIINFEKL} Figure 3C). Primers were also required to determine the difference between pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} by amplifying the LISP1 or LISP2 promoters ahead of the UIS4-mCherry-SIINFEKL gene (Figure 3C). Clones for all four parasites were successfully acquired.

Transmission to mosquitoes is an important attribute with genetically modified *Plasmodium* parasites. All parasites were successfully transmitted to *Anopheles stephensi* mosquitoes, with comparable numbers of salivary gland sporozoites to WT (LISP1/2^{SIINFEKL} - Figure 2E; pLISP1/2-UIS4^{SIINFEKL} - Figure 3D) except pLISP1-UIS4^{SIINFEKL} where the average load of sporozoites dissected from salivary glands was consistently and drastically lower than the other parasites.

We infected Huh7 hepatoma cells with sporozoites to determine development of the transgenic parasites and also the subcellular localisation of LISP1 or LISP2 (LISP1/2^{SIINFEKL}- Figure 2F, G); pLISP1/2-UIS4^{SIINFEKL}- Figure 3E, F). All parasites developed with sizes comparable to WT parasites. We used anti-mCherry antibodies as a proxy to stain for our tagged proteins. UIS4 but not LISP1 nor LISP2 showed localisation to the PVM at 12 hours. All three proteins could be visualised at the PVM after 24 hours with a similar localisation pattern to UIS4 in our WT parasites, which we stained with anti-UIS4 because these parasites do not express mCherry. This confirmed that expression of LISP1 and LISP2 protein does not occur in the first 12 hours after hepatocyte invasion whereas UIS4 protein is expressed very soon after invasion¹⁹.

Previously, weak LISP2 expression at 24 hours was described in parasites that express mCherry tagged LISP2 and visualised using mCherry antibodies as we have here²⁰. Visualisation of LISP1 and LISP2 expression using LISP1 or LISP2 primary antibodies suggested that the protein was not visible until 36 or 24 hours respectively after invasion^{20, 21}. These differences may be due to the increased sensitivity of the mCherry primary antibody. Nonetheless the proteins localise as reported previously^{20, 21} both at 24 and 48 hours. In the same way we visualised expression of UIS4 under the promoters of LISP1 or LISP2 in pLISP1-UIS4^{SIINFEKL} and pLISP1-UIS4^{SIINFEKL} respectively with UIS4 localised as seen for WT with similar levels of expression at 24 hours and 48 hours.

D

С

Figure 2

Generation and characterisation of LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites

(A-B) The plasmids used to generate LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites were based on MG1 starting plasmid (Figure 1) before In-Fusion (Clontech) technology was used to append short C-terminal regions of (A) LISP1 or (B) LISP2 ORFs before the mCherry-SIINFEKL sequences. Consequently, following correct integration at (C) LISP1 or (D) LISP2 locus, endogenous (A) LISP1 and (B) LISP2 would now have mCherry-SIINEFKL appended to the C-terminus. (C) LISP1^{SIINFEKL} and (D) LISP2^{SIINFEKL} Parasites were genotyped using PCR with specific primers to amplify regions to assess for the presence of WT parasites, 5' and 3' integration of the plasmid and episome formation. (E) The number of sporozoites dissected from salivary glands from mosquitos infected with WT, LISP1^{SIINFEKL} or LISP2^{SIINFEKL} transgenic parasites 18-27 days post infection from at least nine different infections per parasite. (F-G) EEF development of WT. LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites in Huh7 hepatocytes in vitro at 12, 24 hours and 48 hours. (F) EEFs were counted from a minimum of 2 wells with experiments performed 2-3 times (G) Parasites expressing GFP (green) were also stained with anti-UIS4 or antimCherry (red) and DAPI for nuclear staining (blue). Images show representative EEF development. Scale bars: 10 µm. (E, F) Bar charts show mean values (±SEM) with statistics calculated by Welch's t-test (*, p<0.05).

D Ε 24h 48h gland sporozoites (x10³) 800 number of salivary 15 Number of EEFs 600 10 400 5 200 0 0 WT pLISP1-UIS4^{SIINFEKL} pLISP2-UIS4^{SIINFEKL} Ň МТ pLISP1-UIS4^{SIINFEKL} pLISP1-UIS4^{SIINFEKL} pLISP2-UIS4^{SIINFEKL}

pLISP2-UIS4^{SIINFEKL}

FWTpLISP1-UIS4SINFEKLpLISP2UIS4SINFEKL24hImage: Second sec

Figure 3

Generation and characterisation of pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} parasites

(A-B) Plasmids used to generate pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} parasites were based on MG1 starting plasmid (Figure 1) before In-Fusion (Clontech) technology was used to add fragments containing UIS4 ORF and (A) LISP1 or (B) LISP2 promoter regions before the mCherry-SIINFEKL sequences. (C) Parasites were genotyped using PCR with specific primers to amplify regions to assess for the presence of WT parasites, 5' integration and episome formation, 3' integration and to distinguish between the modified LISP1 and LISP2 promoters. (D) The number of sporozoites dissected from salivary glands from mosquitos infected with WT, pLISP1-UIS4^{SIINFEKL} or pLISP2-UIS4^{SIINFEKL} parasites 18-27 days post infection from at least seven different infections per parasite. (E-F) EEF development of WT, LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites in Huh7 hepatocytes *in vitro* at 24 hours and 48 hours. (E) EEFs were counted from a minimum of 2 wells with experiments performed 2-3 times. (F) Parasites expressing GFP (green) were also stained with anti-UIS4 or anti-mCherry (red) and DAPI for nuclear staining (blue). Images show representative EEF development. Scale bars: 10 μm. (D-E) Bar charts show mean values ± SEM.

Early and mid-late EEF antigens induce similar CD8+ T cell responses

We immunised mice once with parasites intravenously (Figure 4A-C) or intradermally (Figure 4D-F) under azithromycin prophylaxis. Azithromycin prophylaxis was used to ensure that parasites developed fully inside hepatocytes and that arrest did not affect the normal expression patterns of the LISP1 and LISP2 promoters prior to merozoite release. We restimulated splenocytes and liver infiltrating lymphocytes with SIINFEKL ex vivo to determine proportions and numbers of SIINFEKL-specific effector cell CD8+ T cells with the capacity to produce IFN- γ . We co-stained with CD11a, which has been shown to be a robust and reliable marker of antigen experienced CD8+ T cells^{28, 29}. More akin to responses to UIS4^{SIINFEKL} than CSP^{SIINFEKL}, LISP1^{SIINFEKL} and LISP2^{SIINFEKL} induced a similar proportion and number of IFN-y producing SIINFEKL-specific CD8+ T cells. pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} (Figure 4A-C) also have a similar immunogenic profile to UIS4^{SIINFEKL}, LISP1^{SIINFEKL} and LISP2^{SIINFEKL} for inducing CD8+ T cells. pLISP1-UIS4^{SIINFEKL} and pLISP2-UIS4^{SIINFEKL} parasites were only used for assessing CD8+ T cell responses following intravenous immunisation and were not further investigated as LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites express SIINFEKL in a more physiological context, with the native protein localising to the PVM as seen previously^{20, 21} despite our previous concern. Together these results suggest that early and mid-late EEF antigens are equally poor immunogens.

SPLEEN

ALUSA THE ALUSA LISA MERCE

. USP INTER

planus and

UISA INFER

0-

CSP INFER

В

С

naive

SPLEEN

Figure 4

Early and mid-late expressed EEF proteins induce low frequencies of antigen specific CD8+ T cell responses when sporozoites are administrated intravenously or intradermally

(A-C) Mice (n=4-7 per group) were immunised intravenously once with 10,000 CSP^{SIINFEKL}, UIS4^{SIINFEKL}, pLISP1-UIS4^{SIINFEKL}, pLISP2-UIS4^{SIINFEKL}, LISP1^{SIINFEKL} or LISP2^{SIINFEKL} sporozoites under azithromycin prophylaxis. Splenocytes and liver infiltrating lymphocytes from immunised or naïve mice (n=4) were restimulated with SIINFEKL 14 days post immunisation and co-stained with CD11a and IFN-y and CD8+ T cell populations were enumerated by flow cytometry. (A) Flow cytometry gating strategy used. (B) The percentage of all CD8+ T cells co-expressing IFN- γ and CD11a. (C) The absolute cell counts of all CD8+ T cells co-expressing IFN- γ and CD11a. Data shown is from one representative experiment of two experiments performed. (D-F) Mice (n=6-7 per group) were immunised intradermally once with 10,000 CSP^{SIINFEKL}. UIS4^{SIINFEKL}, LISP1^{SIINFEKL} or LISP2^{SIINFEKL} sporozoites under azithromycin prophylaxis. Splenocytes and liver infiltrating lymphocytes from immunised or naïve mice (n=2) were restimulated with SIINFEKL 14 days post immunisation and co-stained with CD11a and IFN- γ and CD8+ T cell populations were enumerated by flow cytometry. (D) Flow cytometry gating strategy used. (E) The percentage of all CD8+ T cells co-expressing IFN- γ and CD11a. (F) The absolute cell counts of all CD8+ T cells co-expressing IFN- γ and CD11a. Data shown is from one experiment performed. (B.C.E.F) Bar charts show mean values (±SEM) with statistics calculated using one-way ANOVA with Tukey multiple comparisons post-test (*, p<0.05; **, p<0.01, ***, p<0.001).

Mid-late EEF antigens offer partial protection

UIS4 was as poorly immunogenic as LISP1 and LISP2 at inducing CD8+ T cells responses which suggested that the CD8+ T cell response to an EEV PVM antigen is not improved by the duration for which the antigen is expressed. To assess the time scale within which an EEF antigen can be protective, we decided to determine if vaccination could show a protective role for LISP1 and LISP2, compared to that rendered by UIS4. Mice were vaccinated with adenovirus expressing full length ovalbumin and OT-I splenocytes which induced high levels of SIINFEKL-specific CD8+ T cells (Supplementary Figure 1) before mice were challenged 14 days later with our transgenic parasites. Vaccine efficacy was assessed by reduction in parasite load in the liver and sterile protection.

Challenge with LISP1^{SIINFEKL} and LISP2^{SIINFEKL} resulted in around ~70% reduction in parasite load in the liver, however vaccinated mice had a reduction of >99% when challenged with CSP^{SIINFEKL} and UIS4^{SIINFEKL} (Figure 5A, B). These data would suggest that the mice challenged with LISP1^{SIINFEKL} and LISP2^{SIINFEKL} would not be sterilely protected. However, LISP1 and LISP2 induced around 50% sterile protection (Figure 5C). Compared to the nearly 90% protection offered by CSP^{SIINFEKL} and UIS4^{SIINFEKL}, it contradicts the parasite load in the liver data as a two log difference in liver load would not normally lead to any mice being sterilely protected. Also, the onset of parasitaemia in challenged vaccinated mice that were not sterilely protected was delayed with some mice becoming visibly parasitaemic by blood smear, occurring up to four days later than those mice challenged with CSP^{SIINFEKL} or UIS4^{SIINFEKL} (Figure 5D).

Figure 5

Despite the poor immunogenicity of mid-late EEF antigens, following vaccination they induce a reduction in parasite load in the liver and unlikely levels of sterile protection

(A-D) Vaccinated mice received AdOVA and OT-I cells (n=5) and control mice received just OT-I cells (n=4). (A-B) Mice were challenged with 10,000 sporozoites two weeks after vaccination. (A) The relative parasite load in the liver for individual mice comparing the difference between the concentration of mouse *GAPDH* mRNA and *P. berghei* 18S rRNA. Data is from one representative experiment of two independent qPCR experiments performed. The mean + interquartile range is shown with statistics calculated by Mann Whitney U-test (*, p<0.05). (B) The average percentage reduction in parasite load in the liver of mice in the vaccinated group, compared with a normalised 0 value for mice in the non-vaccinated group. Each data point is the average from each experiment. (C-D) Vaccinated (n=3-11) and control mice (n=2-7) were challenged with 1,000 sporozoites. (C) The percentage of mice which did not become parasitaemic following challenge with sporozoites. (D) Kaplan-Meier curve showing the onset of parasitaemia in vaccinated (V) and control mice (NV) following challenge with WT (black), CSP^{SIINFEKL} (red), UIS4^{SIINFEKL} (blue), LISP1^{SIINFEKL} (pink) or LISP2^{SIINFEKL} (green). (C-D) Data are pooled from two experiments performed.

DISCUSSION

Much research has emerged with a focus on improving the efficacy of current malaria vaccines in trials with further antigens. Many have come to the conclusion that, unlike a single protein subunit vaccine against a virus or bacteria, many antigens from different life stages of the parasite will be required to evoke long-lasting vaccine efficacy against *Plasmodium*^{30, 31}. Here we have presented evidence that antigen specific CD8+ T cell responses induced by the mid-late EEF antigens LISP1 and LISP2 are as poor as those induced by constitutively expressed EEF antigens UIS4. However, following viral vaccination, LISP1 and LISP2 induce a small reduction in parasite load in the liver but around 50% sterile protection, highlighting their potential for use in next-generation malaria vaccines.

Our previous work (Chapter 2: Müller and Gibbins, paper in preparation) had shown that UIS4, a PVM protein, can be as protective as CSP. Using a reporter epitope marker, CSP induced a larger frequency of antigen-specific CD8+ T cells than UIS4, however both proteins were successful in their ability to reduce parasite load in the liver following vaccination and challenge. This suggests that both proteins were presented on infected hepatocytes, inducing recognition by effector memory CD8+ T cells and the killing of the developing parasite inside the hepatocyte. CSP has been shown previously to be presented on infected hepatocytes to antigen-specific CD8+ T cells and be protective^{32, 33}, but the protective capability of EEF antigens has not been investigated.

The liver stage infection in mice infected with *Plasmodium berghei* is relatively short with merozoite release starting 48-52 hours post infection¹⁸. CD8+ T cells have been shown to peak in cytolytic activity against peptide coated cells in culture between 20-24 hours^{34, 35} and CD8+ T cells from *Toxoplasma gondii* immunised mice have been shown to lyse peptide labelled cells within 4 hours with a peak at 16 hours *in vivo*³⁶. UIS4 protein translation in the liver is constant, starting soon after sporozoite invasion of the

hepatocyte up until merozoite release^{17, 19}. Thus, the potential for recognition of UIS4 protein presented on the hepatocyte surface can occur very soon after sporozoite invasion, with MHC being present on the cell surface of infected and uninfected hepatocytes from 3 hours with a large upregulation between 12 and 15 hours³⁷. When vaccinated mice were challenged, which possessed a large proportion of antigen-specific CD8+ T cells in the blood, UIS4-targeted responses reduced the parasite load in the liver by more than 99% despite UIS4 inducing a weak endogenous CD8+ T cell response following sporozoite immunisation. Thus, if a liver-PVM associated antigen expressed constitutively during EEF development can protect in a 48-hour window, what would happen if this period was shortened? Essentially at what point is the parasite still vulnerable to attack in the liver?

LISP1 and LISP2 are highly expressed proteins that associate with the PVM but their expression profiles peak later than UIS4; nonetheless they are all required for effective EEF development. UIS4 is required for absolute development in the liver; without it, EEF development does not occur. LISP1 is associated with rupturing of the PVM; LISP1-KO merozoites inside the merosome are infective, but ten-fold less merozoites are released by the merosome due to an impairment with PVM lysis²⁰. LISP2-KO parasites arrest as late merozoites which is proposed to be because LISP2 modulates a change in host hepatocyte environment, which is critical for merogony²¹. We show that expression of LISP1 and LISP2 is absent 12 hours after infection but appears at 24 hours and induce weak CD8+ T cell responses following sporozoite immunisation. However, the degree of partial sterile protection induced by LISP1 and LISP2, despite the poor CD8+ T cell responses they induce following sporozoite immunisation and the delay in their protein expression, highlights the importance and rapidity of CD8+ T cell mediated attack in the liver. Yet the discrepancy between the lack of reduction of parasite load in the liver, as determined by relative expression of P. berghei 18S rRNA, in vaccinated mice following sporozoite challenge and the apparent partial protection from blood stage parasitaemia remains to be explained.

18S rRNA is a very stable nucleic acid structure with a half-life of 3-7 days in cells grown in vitro³⁸⁻⁴⁰ and 5 days in vivo⁴¹ and there is >1000x greater concentration of 18S rRNA in sporozoites compared to their genomic coding rDNA⁴². It is the structural nucleic acid of the 40S small ribosomal subunit in eukaryotes and is often used as an internal control for reverse transcription PCR. Killing of the EEF leads to destruction of the parasite and hepatocyte proteins and nucleic acids. It has been shown that DNA from the genome of non-viable (freeze-thawed) Plasmodium chaubaudi AS merozoites is detectable in the host blood 24 hours after injection but not after 48 hours, suggesting non-viable parasite DNA in the blood is turned over between 24 and 48 hours⁴³. Focusing on the liver; in mice receiving late arresting genetically attenuated P. yoelii parasites, arrested EEFs observed by microscopy start to lose their viability (as determined by PVM integrity) from 36 hours, with the majority being compromised at 48 hours (when WT parasites are starting the process of merozoites egress)⁴⁴. While EEF abundance in the liver was no different to WT at 44 hours prior to merozoite egress, no genetically attenuated EEFs could be observed after 60 hours, suggesting that the parasites had been removed from the system over this time⁴⁴. These data suggest that dead or arrested parasites are quickly turned over in the host. With regard to 18S rRNA; following intravenous injection of P. yoelii sporozoites into the tail vein of mouse, subsequent blood spot samples from the tail were taken to show that parasite 18S rRNA from sporozoites does not persist in the blood following hepatocyte invasion⁴². It was shown that genomic 18S rDNA is constantly detectable at the site of inoculation^{42, 45} (but not a spatially different site)⁴², suggesting the qPCR was detecting locally deposited, residual parasite contamination⁴². However, 18S rRNA could not be detected in blood after 30 mins, indicating a more rapid turnover of rRNA compared to rDNA in the absence of the parasite⁴². In a plant system, victorin toxin, produced by the plant fungus Cochliobolus victoriae, induces programmable cell death of Avena sativa (oats) which has characteristics of animal apoptosis⁴⁶. Leaves incubated with victorin toxin suffered severe and then complete loss of leaf viability following four and then six hours incubation with the toxin⁴⁶. A time-course of incubation with the toxin showed that specific cleavage and degradation of 18S rRNA

was observable from 2 hours and a reduction in intact 18S rRNA observable from 6 hours⁴⁶. This further shows that 18S rRNA is broken down following death of cells. While it is not fully understood how CD8+ T cells kill the parasite inside hepatocytes, these data do suggest that 18S rRNA is rapidly broken down following death or arrest of EEF parasites with turn over quicker than that of genomic DNA in non-viable parasites⁴³.

In our experiments, in vaccinated mice challenged with CSP^{SIINFEKL} or UIS4^{SIINFEKL}, antigen-specific responses are assumed to have removed the majority of EEFs over a period of 40 hours, as a significant reduction in parasite liver load was observed and that in a parallel experiment, most mice were sterilely protected. With complete removal of arrested EEFs from the liver observed over a 26 hour period⁴⁴, it is possible that the 18S rRNA observed in those mice receiving LISP1^{SIINFEKL} or LISP2^{SIINFEKL} challenge did not reflect the level of EEF killing that was starting or about to start at 40 hours post-infection. the point at which livers were harvested. LISP1 and LISP2 protein expression peaks in the final stages of EEF development, which may ensure the final stages of merozoite development and release occur correctly^{20, 21} but we do not observe protein expression in the first 12 hours. With a 12-hour delay in protein expression compared to CSP and UIS4, the critical period of killing of infected hepatocytes induced by LISP1 and LISP2 may not have yet happened by 40 hours. The minimal reduction in parasite load in the liver we report would not normally have yielded sterilely protected mice. By performing gPCR at 40 hours, we cannot determine parasite prevalence of LISP1^{SIINFEKL} and LISP2^{SIINFEKL} parasites in the last 8-12 hours of the liver stage before merozoite release, with killing possibly affected by the minimum 12-hour delay in antigen presentation and recognition. We suggest there is a level of killing occurring in this timeframe which is sufficient to provide some mice with sterile protection. The delay in patency, as shown here in the Kaplan-Meier curves, also suggests that LISP1^{SIINFEKL} and LISP2^{SIINFEKL} merozoites are reduced in number as a result of induced immune responses. To investigate this stage, it would be pertinent to take liver sections from vaccinated and non-vaccinated mice that have been challenged to look for parasite viability and

morphology at various time points to determine when different parasites are being killed and determine the cause of delayed patency in non-protected vaccinated mice.

Additionally, while the percentage of antigen experienced, IFN- γ producing SIINFEKLspecific CD8+ T cells in the blood following vaccination averaged around 8% of all CD8+ T cells, within the liver this may be a different story. Tissue-resident memory CD8+ T cells have been described in the sinusoid of the liver in RAS-immunised and vaccinated mice exhibiting a patrolling phenotype which function in parasite surveillance⁴⁷. The authors show that with a vaccination method using PbT-I cells, from a T cell receptor transgenic mouse which produce CD8+ T cells specific for a malaria antigen expressed in the sporozoite and the blood stages⁴⁸, a large T_{RM} population in the liver can be induced and mice are protected from challenge with sporozoites one month later. They also show that inducing T_{RM} CD8+ T cells through a liver centric vaccination strategy using hepatocyte targeting viruses can achieve better protection from challenge than using radiation-attenuated sporozoites. It would be interesting to investigate the differences in T_{RM} expression molecules on our SIINFEKL-specific CD8+ T cells induced by different liver antigens to determine if antigen expression timing affected the liver residence of CD8+ T cells and if this correlated with protection. The expression of MHC class I molecules has also been shown to be reduced following very late EEF development³⁷, so it would be interesting to know if merozoite proteins would still be protective, given their late expression and down-regulation of MHC class I molecules.

Historically, the liver stage has not been investigated as much as the blood stage for instance, possibly because of the complexity of the models used and the curious tolerogenic nature of the liver environment. However, antigens and epitopes are starting to be identified against this stage of the parasite life cycle. Recently Speake et al. identified six novel antigens that, when given as DNA vaccines prior to challenge with sporozoites, induced a reduction in parasite load in the liver⁴⁹. One of these genes included LISP1, which when combined with a CSP DNA vaccine further reduced parasite

load in the liver. This corroborates our data to highlight the importance of LISP1. Later, Pichugin et al. went on to identify a novel CD8+ T cell epitope in a *Plasmodium berghei* "Middle domain of eukaryotic initiation factor 4G(MIF4G)-like-protein" EEF protein⁵⁰, which had previously been identified in the DNA vaccine study⁴⁹. Murphy et al. also identified that an epitope presented by BALB/c mice from L3 60S ribosomal protein from Plasmodium yoelii (PY05881/PY17X 0513000) expressed throughout the liver stage and blood stages, which induced strong CD8+ T cell responses but did not ultimately protect mice on its own⁵¹. Speake et al. suggest that those antigens expressed throughout and with increasing magnitude in the EEF are those that show greater protection⁴⁹. This has been echoed in genetically attenuated parasite studies, where parasites that arrest later during EEF development induce the most protection following challenge^{44, 52}. It has also been suggested that fewer doses of sporozoites are required to protect mice when immunised with chloroguine prophylaxis because of the extended potential repertoire of antigen expressed⁵³. We concur with our data here and previously (Chapter 3: Gibbins et al., paper in preparation) showing that longer antigen expression in EEF does not increase the number of antigen-specific CD8+ T cells and that greater protection is likely achieved through generation of a wide repertoire of CD8+ T cells. We also propose that while viral vaccination can induce large numbers of antigen-specific CD8+ T cells, there must be sufficient time for the antigen to be presented and recognised by its cognate CD8+ T cell for parasite destruction to occur. This would explain why LISP1 and LISP2 are not as protective as UIS4, as LISP1 and LISP2 have at least a 12-hour delay in protein expression in the EEF and thus their potentiality for presentation is delayed.

Nonetheless. we have shown that mid-late expressed EEF antigens are presented to the immune system and can induce killing of infected hepatocytes in a CD8+ T cell dependent manner. This further enhances the argument that more research should be conducted on determining the role of EEF antigens in the induction of pre-eyrthrocytic

stage immunity and be considered for development in next generation malaria vaccines, most likely in combination with other pre-erythrocytic antigens.

AUTHOR CONTRIBUTIONS

O.S. and J.C.R.H. designed the experiments; M.P.G., S.B. and O.S. generated the transgenic parasites; M.P.G. characterised the transgenic parasites; M.P.G., N.B. and L.M. performed immunology and vaccination experiments, analysed data and performed statistics; A.R.-S., A.V.S.H. and S.J.D. provided the adenovirus AdOVA; M.P.G. wrote the paper.

ACKNOWLEDGEMENTS

We would like to acknowledge James Cruickshank from the Babraham Institute for providing spleens from OT-I mice for vaccination experiments and to thank Jason Mooney for his critical reading of the manuscript.

S.J.D. is a Jenner Investigator, Lister Institute Research Prize Fellow and Wellcome Trust Senior Fellow (106917/Z/15/Z). O.S. was funded in part by the Laboratoire d'Excellence ParaFrap (ANR-11-LABX-0024). J.C.R.H. was funded by grants from The Royal Society (University Research Fellowship UF0762736/UF120026 and Project Grant RG130034) and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (Project Grant NC/L000601/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

COMPETING INTERESTS

S.J.D. is a named inventor on patent applications relating to malaria vaccines, adenovirus vaccines and immunisation regimens.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY EXPERIMENTAL PROCEDURES

Transgenic parasite generation

The common plasmid MG1 was generated from a starting plasmid (OS-DHFR-mCherry) containing a T7 promoter, Toxoplasma gondii dihydrofolate reductase/thymidylate synthase (TqDHFR/TS) pyrimethamine resistance cassette and mCherry cassette. The mCherry cassette was released by excision using restriction enzymes EcoRI and SacII and the vector backbone was purified. MG1 was generated from this backbone by adjoining two fragments called mChOVA and OVAutr using In-Fusion technology. mChOVA was generated by amplifying the mCherry region of the OS-DHFR-mCherry plasmid and incorporating SIINFEKL coding sequence at the 3' end. OVAutr was generating by amplifying the 3' UTR of UIS4 from Plasmodium berghei WT genomic DNA and appending the SIINFEKL encoding region to the 5' end of the fragment. In-Fusion (Clontech) technology works such that fragments are designed to have 15 base overhangs so that in the presence of In-Fusion Enzyme, DNA fragments with complementary 15mer overhangs are fused together and fused into the linearised vector backbone. To generate MG1, the two fragments would then have complementary regions in the SIINFEKL coding region and with the 5' and 3' region of the restricted plasmid. MG1 was then ready to be modified further by incorporated more fragments 5' to the mCherry coding sequence which following transfection of parasites would lead to the mCherry-SIINFEKL-UIS4 3' UTR being incorporated to the 3' end of the ORF of the gene of interest. XL10 competent E. coli were transformed with MG1 and plasmid amplified and retrieved by miniprep and plasmid verified by sequencing.

Additional fragments were generated by designing primers to amplify LISP1 and LISP2 promoters and ORFs for UIS4, LISP1 and LISP2 following PCR of *Plasmodium berghei* WT genomic DNA.
Generation of MG2b-pLISP1-UIS4^{SIINFEKL}, MG2c-pLISP2-UIS4^{SIINFEKL}, MG2e-LISP1^{SIINFEKL} and MG2f-LISP2^{SIINFEKL} plasmids was achieved by digestion of MG1 with *EcoRI* and In-Fusion with gene specific promoter and ORF DNA fragments.

For MG2b-pLISP1-UIS4^{SIINFEKL}, fragments consisting of the promoter of LISP1 (L1prom) and UIS4 ORF (U4orf) were fused into MG1. For MG2c-pLISP2-UIS4^{SIINFEKL}, fragments consisting of the promoter of LISP2 (L2prom) and UIS4 ORF (U4orf) were fused into MG1. For MG2e-LISP1^{SIINFEKL}, two overlapping fragments corresponding to a 3' region and end of the LISP1 ORF (L1Aorf and L1Borf) were fused into MG1. For MG2f-LISP2^{SIINFEKL}, two fragments corresponding to a 3' region and end of the LISP1 ORF (L1Aorf and L1Borf) were fused into MG1. For MG2f-LISP2^{SIINFEKL}, two fragments corresponding to a 3' region and end of the LISP2 ORF (L2Aorf and L2Borf) were fused into MG1. In this way, when the corresponding plasmid is incorporated into the genome at the UIS4 locus by single cross-over homologous recombination, MG2b-pLISP1-UIS4^{SIINFEKL} and MG2c-pLISP2-UIS4^{SIINFEKL} will result in an extra UIS4 gene being inserted which was appended by the mCherry-SIINFEKL-UIS4 3' UTR cassette. For MG2e-LISP1^{SIINFEKL} and MG2f-LISP2^{SIINFEKL}, following single cross-over homologous recombination at the LISP1 or LISP2 locus respectively, the endogenous gene would now be appended by the mCherry-SIINFEKL-UIS4 3' UTR cassette.

Following miniprep and verification by sequencing, plasmids were transfected into *Plasmodium berghei* ANKA expressing GFP at the dispensable *p230p*²² by electroporation of merozoites using Nucleofector buffer and an AMAXA Nucleofector²⁶. Briefly, *Plasmodium berghei* blood stage parasites were generated in Swiss Webster mice and blood taken late in the day by cardiac puncture when parasitaemia was around 5%. Red blood cells were incubated in RPMI with 20% FCS overnight at 36.5°C with shaking at 70 rpm to slow the asexual cycle and allow for isolation of viable, mature, synchronised schizonts the following morning. Nycodenz was used to isolate the schizonts by density gradient centrifugation. Isolated schizonts were resuspended in Nucleofector buffer and DNA plasmid to rupture the RBCs and release merozoites. Merozoites were electroporated with the plasmid using AMAXA Nucleofector (program U33) and Swiss Webster mice were injected with electroporated merozoites

intravenously. Mice were provided with pyrimethamine (7μ g/ml) in drinking water the day after injection. Mice were monitored and were bled by cardiac puncture when their parasitaemia was at 1.5%. Genomic DNA was extracted using PureLink Genomic DNA Kits (Invitrogen) and primers were designed to genotype the parasites, assessing for the presence of WT and recombinant parasites, 5' and 3' integration of the plasmid and presence of episomes. Upon appearance of recombinant populations with the correct integration of the plasmid, transgenic clones were generated by limiting dilution into CD-1 mice. Clones were verified by genotyping PCR (FastStart Taq, Roche). PCR products were run on 1.2% agarose gels with SybrSafe (ThermoFisher Scientific) intercalatant.

SUPPLEMENTARY FIGURES

Supplementary Figure 1

Vaccination with AdOVA and OT-I cells

(A) Flow cytometry panel used to assess (B) the magnitude of SIINFEKL-specific CD8+T cells in the blood of non-vaccinated and vaccinated mice following restimulation withSIINFEKL peptide. Scatter plot shows mean ±SEM.

	Olinonucle of ide	Sectionce 6'> 3'
	mChOVAfor	taccgagctcGAATTCGTGAGCAAGGGCGAGGAGGATAACATGG
Constant of a sector of the se	mChOVArev	TTTTT CAAAGTTGATtatactCTT GTACAGCTCGTCCATGCC
Deneration of plasmid hour	OVAutrFor	ATCAACTTT GAAAAActgtaataattcattatgagtagtagtagtaattcagaaagag
	OVAutrRev	AATTGGAGCTCCACCGCGGacaacatatgtaaaaaagtttgcatatacgg
	L1promFor	taccgagctcGAATTCattattattggcttattgtcctttttgcc
Generation of plasmid MG3h	L1promRev	TGTGGTTTTCATtttcaaattaaaataaaataaaataaaaacaataatagtaagatgg
	U4orfFor	aaaATGAAAACCACATACGTTTCTCTATTTTTATCATATTACTAATTTTCGG
	UdorfRev	ccttgctcacgaattcTATGTATGGGCCGAATGATTTATTTTCC
	L2promFor	taccgagctcGAATTCtttcatagagttgcattatcgtcaaaagtg
Generation of plasmid MG2c	L2promRev	TGTGGTTTTCATtttatagaagtgaaaaatgaaagaagaagaagaatattactcc
	U4orfFor	aaaATGAAAACCACATACGTTTCTCTATTTTTTATCATATTACTAATTTTCGG
	U4orfRev	ccttgctcacgaattcTATGTAT GGGCCGAATGATTTATTTTCC
	L1AorfFor	taccgagctcGAATTCAAAGTGATAAAACTGAACAACTAATCGCCAC
Generation of plasmid MG2e	L1AorfRev	atagagctagcatttAAAGAAGATATAATATCATTACATTCTTCC
	L1BorfFor	aaatgctagctctatATTTTGGAGAAATAGTATATTAGGATTTATAGC
	L1BorfRev	ccttgctcacgaattcGAATATGGAAATAGAAAAATCAATAACAGCC
	L2AorfFor	taccgagctcGAATTCTCTTGCCATATTCTAATCCATATCTCATGC
Constraint of a location of AlC36	L2AorfRev	ttattgctagcattaTAATTTTCTTTTTCTTCTATAAATATATATATGC
	L2BorfFor	taatgctagcaataaAAT AAAAGTATATTT GATATTCAAGAAAAATC
	L2BorfRev	ccttgctcacgaattcTTGTTTTCTTCTTGGAATAATACCTTCTTTCTC
	LISP1 SIINFEKL A: WT FOr	TCATTTCCCAGCTACTATTAGAACAATTCG
	LISP1 ^{SIINFEKL} A: WT Rev	CATTGTTTAGCAGAGAAATCTTTGAA
	LISP1 ^{SIINFERL} B: 5' int For	TCATTTCCCAGCTACTATTAGAACAATTCG
INTEGRA	LISP1 SINFERT B: 5' int Rev	TCGTGGCCGTTCACGGAGCCCTCC
Genotyping of LISP1	LISD1 SINFEKL C. 3' int For	AAACTGCATCGCTGTGTCC
	LISP1 SINFEAL D: Episomes For	AAACTGCATCGCTGTGTCCC
	LISP1 ^{SIINFEKL} D: Episomes Rev	GTAATACGACTCACTATAGGGC
	LISP2 ^{SIINFEKL} A: WT For	TTAATAAAACAAGCGATAATGCAAAAGG
	LISP2 ^{SIINFEKL} A: WT Rev	ATATCACAATAGTCTAAGCAACCA
	LISP2 ^{SIINFEKL} B: 5' int For	TTAATAAAACAAGCGATAATGCAAAAGG
	LISP2 ^{SIINFEKL} B: 5' int Rev	TCACCTTCAGCTTGGCGGTCTGG
Genotyping of LISP 2	LISP2 ^{SIINFEKL} C: 3' int For	TGTTCTCTCTGATGTCCAGGAG
	LISP2 ^{SIINFEKL} C: 3' int Rev	ATATCACAATAGTCTAAGCAACCA
	LISP2 ^{SIINFEKI} D: Episomes For	TGTTCTCTCAGGAG
	LISP2 ^{SIINFEKL} D: Episomes Rev	GTAATACGACTCACTATAGGGC
	pLISP1/2-UIS4 ^{SIINFEKL} A: WT For	ACCCATTGATGAGGACAAACGATTCAAAACC
	pLISP1/2-UIS4 ^{SIINFEKL} A: WT Rev	TTCGTAAAAAATAAAAACGCATGTTATGC
	pLISP1/2-UIS4 ^{SIINFEKL} B: 5' int and Episomes For	ACCCATTGATGAGGACAAACGATTCAAAACC
	pLISP1/2-UIS4 ^{SIINFEKL} B: 5' intand Episomes Rev	GTAATACGACTCACTATAGGGC
Genotvoing of pLISP1-UIS4 ^{SIINFEKL} and	pLISP1/2-UIS4 ^{SIINFEKL} C: 3' int For	CTGCAGGACGGCGAGTTCATCTACAAGG
DI ISP2-LIJI S4 ^{SIINFEKL}	pLISP1/2-UIS4 ^{SIINFEKL} C: 3' int Rev	ACCAACAATTTTTATGAAAAAGTCTTTAGG
	pLISP1/2-UIS4 ^{SIINFEKL} D ₂ : LISP1 promoter differentiation For	TGTITGTITATTITGGCGCAGAACC
	pLISP1/2-UIS4 ^{SIINEEKL} D2: LISP1 promoter differentiation Rev	ACCAACAATTTTTATGAAAAAGTCTTTAGG
	pLISP1/2-UIS4 ^{SIINFEKL} D4: LISP2 promoter differentiation For	TATACATGCATGTATATTCCCCTGC
	pLISP1/2-UIS4 ^{SIINFEKL} D ₄ : LISP2 promoter differentiation Rev	ACCAACAATTITTATGAAAAAGTCTTTAGG
qpCR - Mus musculus GAPDH	mGAPDH Rev	CCACAGTCTTCTGGGTGGCAGTG
	Pb18S For	AGCATTAAATAAAGCGAATACATCCTTAC
qpCR - Plasmodium berghei 185 rKNA	Pb18S Rev	GGAGATTGGTTTTGACGTTTATGTG

Supplementary Table 1

Table of primers for plasmid generation, parasite genotyping and parasite load in the liver qPCR

REFERENCES

- 1. WHO, *World Malaria Report 2017* 2017, World Health Organisation: Geneva, Switzerland.
- 2. Imwong, M., et al., *The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study.* Lancet Infect Dis, 2017. **17**(5): p. 491-497.
- 3. Jin, Y., C. Kebaier, and J. Vanderberg, *Direct microscopic quantification of dynamics of Plasmodium berghei sporozoite transmission from mosquitoes to mice.* Infect Immun, 2007. **75**(11): p. 5532-9.
- 4. Yamauchi, L.M., et al., *Plasmodium sporozoites trickle out of the injection site*. Cell Microbiol, 2007. **9**(5): p. 1215-22.
- 5. Amino, R., et al., *Imaging malaria sporozoites in the dermis of the mammalian host.* Nat Protoc, 2007. **2**(7): p. 1705-12.
- 6. Frevert, U., et al., *Intravital observation of Plasmodium berghei sporozoite infection of the liver*. PLoS Biol, 2005. **3**(6): p. e192.
- 7. Amino, R., et al., *Quantitative imaging of Plasmodium transmission from mosquito to mammal.* Nat Med, 2006. **12**(2): p. 220-4.
- Zavala, F., et al., Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes. J Exp Med, 1983. 157(6): p. 1947-57.
- 9. Nardin, E.H., et al., *Conserved repetitive epitope recognized by CD4+ clones from a malaria-immunized volunteer*. Science, 1989. **246**(4937): p. 1603-6.
- 10. Moreno, A., et al., *Cytotoxic CD4+ T cells from a sporozoite-immunized volunteer recognize the Plasmodium falciparum CS protein.* Int Immunol, 1991. **3**(10): p. 997-1003.
- 11. Moreno, A., et al., *CD4+ T cell clones obtained from Plasmodium falciparum sporozoiteimmunized volunteers recognize polymorphic sequences of the circumsporozoite protein.* J Immunol, 1993. **151**(1): p. 489-99.
- 12. Wizel, B., et al., Irradiated sporozoite vaccine induces HLA-B8-restricted cytotoxic T lymphocyte responses against two overlapping epitopes of the Plasmodium falciparum sporozoite surface protein 2. J Exp Med, 1995. **182**(5): p. 1435-45.
- 13. Rts, S.C.T.P., *Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.* Lancet, 2015. **386**(9988): p. 31-45.
- White, M.T., et al., The relationship between RTS, S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection. PLoS One, 2013. 8(4): p. e61395.
- 15. Ogwang, C., et al., *Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults.* Sci Transl Med, 2015. **7**(286): p. 286re5.
- 16. Rampling, T., et al., Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP. J Infect Dis, 2016. **214**(5): p. 772-81.
- 17. Mueller, A.K., et al., *Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface.* Proc Natl Acad Sci U S A, 2005. **102**(8): p. 3022-7.
- 18. Landau, I. and Y. Boulard, *Life cycles and Morphology*, in *Rodent Malaria*, R. Killick-Kendrick and W. Peters, Editors. 1978, Academic Press: London. p. 53-84.
- 19. Silvie, O., et al., *Post-transcriptional silencing of UIS4 in Plasmodium berghei sporozoites is important for host switch.* Mol Microbiol, 2014. **91**(6): p. 1200-13.
- 20. Ishino, T., et al., *LISP1 is important for the egress of Plasmodium berghei parasites from liver cells.* Cell Microbiol, 2009. **11**(9): p. 1329-39.

- Orito, Y., et al., *Liver-specific protein 2: a Plasmodium protein exported to the hepatocyte cytoplasm and required for merozoite formation*. Mol Microbiol, 2013.
 87(1): p. 66-79.
- 22. Manzoni, G., et al., *A rapid and robust selection procedure for generating drugselectable marker-free recombinant malaria parasites.* Sci Rep, 2014. **4**: p. 4760.
- 23. Sinden, R.E., G.A. Butcher, and A.L. Beetsma, *Maintenance of the Plasmodium berghei life cycle*. Methods Mol Med, 2002. **72**: p. 25-40.
- 24. Friesen, J., et al., *Natural immunization against malaria: causal prophylaxis with antibiotics.* Sci Transl Med, 2010. **2**(40): p. 40ra49.
- 25. Zhu, B., et al., *In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations.* Biotechniques, 2007. **43**(3): p. 354-9.
- 26. Janse, C.J., J. Ramesar, and A.P. Waters, *High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei.* Nat Protoc, 2006. **1**(1): p. 346-56.
- 27. de Cassan, S.C., et al., *The requirement for potent adjuvants to enhance the immunogenicity and protective efficacy of protein vaccines can be overcome by prior immunization with a recombinant adenovirus.* J Immunol, 2011. **187**(5): p. 2602-16.
- 28. Rai, D., et al., *Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts.* J Immunol, 2009. **183**(12): p. 7672-81.
- 29. Schmidt, N.W., et al., *Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites.* PLoS Pathog, 2010. **6**(7): p. e1000998.
- 30. Ewer, K.J., et al., *Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity".* Vaccine, 2015. **33**(52): p. 7444-51.
- 31. Boes, A., et al., *Analysis of a Multi-component Multi-stage Malaria Vaccine Candidate--Tackling the Cocktail Challenge.* PLoS One, 2015. **10**(7): p. e0131456.
- 32. Cockburn, I.A., et al., *Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo.* PLoS Pathog, 2011. **7**(3): p. e1001318.
- 33. Balam, S., et al., *CSP--a model for in vivo presentation of Plasmodium berghei sporozoite antigens by hepatocytes*. PLoS One, 2012. **7**(12): p. e51875.
- 34. Bhat, P., et al., *The kinematics of cytotoxic lymphocytes influence their ability to kill target cells.* PLoS One, 2014. **9**(5): p. e95248.
- 35. Vasconcelos, Z., et al., *Individual Human Cytotoxic T Lymphocytes Exhibit Intraclonal Heterogeneity during Sustained Killing*. Cell Rep, 2015. **11**(9): p. 1474-85.
- 36. Jordan, K.A., et al., *Kinetics and phenotype of vaccine-induced CD8+ T-cell responses to Toxoplasma gondii.* Infect Immun, 2009. **77**(9): p. 3894-901.
- 37. Ma, J., et al., Dynamics of the major histocompatibility complex class I processing and presentation pathway in the course of malaria parasite development in human hepatocytes: implications for vaccine development. PLoS One, 2013. **8**(9): p. e75321.
- 38. Gillery, P., et al., *Protein synthesis in collagen lattice-cultured fibroblasts is controlled at the ribosomal level.* FEBS Lett, 1995. **357**(3): p. 287-9.
- 39. Halle, J.P., et al., *Copy number, epigenetic state and expression of the rRNA genes in young and senescent rat embryo fibroblasts.* Eur J Cell Biol, 1997. **74**(3): p. 281-8.
- 40. Yi, X., et al., *Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels.* Mol Cell Biol, 1999. **19**(6): p. 3989-97.
- 41. Defoiche, J., et al., *Measurement of ribosomal RNA turnover in vivo by use of deuterium-labeled glucose*. Clin Chem, 2009. **55**(10): p. 1824-33.
- 42. Murphy, S.C., et al., *Plasmodium 18S rRNA of intravenously administered sporozoites does not persist in peripheral blood.* Malar J, 2018. **17**(1): p. 275.
- 43. Jarra, W. and G. Snounou, *Only viable parasites are detected by PCR following clearance of rodent malarial infections by drug treatment or immune responses.* Infect Immun, 1998. **66**(8): p. 3783-7.

- 44. Vaughan, A.M., et al., *A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice.* Infect Immun, 2018. **86**(5).
- 45. Abkallo, H.M., et al., DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the faeces and blood of hosts. Int J Parasitol, 2014. **44**(7): p. 467-73.
- 46. Hoat, T.X., et al., *Specific cleavage of ribosomal RNA and mRNA during victorin-induced apoptotic cell death in oat.* Plant J, 2006. **46**(6): p. 922-33.
- 47. Fernandez-Ruiz, D., et al., *Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection.* Immunity, 2016. **45**(4): p. 889-902.
- 48. Lau, L.S., et al., *CD8+ T cells from a novel T cell receptor transgenic mouse induce liverstage immunity that can be boosted by blood-stage infection in rodent malaria*. PLoS Pathog, 2014. **10**(5): p. e1004135.
- 49. Speake, C., et al., *Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein.* PLoS One, 2016. **11**(7): p. e0159449.
- 50. Pichugin, A., et al., *Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen.* Front Immunol, 2018. **9**: p. 91.
- 51. Murphy, S.C., et al., A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations. Proc Natl Acad Sci U S A, 2013.
 110(15): p. 6055-60.
- 52. Butler, N.S., et al., *Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites.* Cell Host Microbe, 2011. **9**(6): p. 451-62.
- 53. Doll, K.L. and J.T. Harty, *Correlates of protective immunity following whole sporozoite vaccination against malaria.* Immunol Res, 2014. **59**(1-3): p. 166-76.

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT www.lshtm.ac.uk

Registry

T: +44(0)20 7299 4646 F: +44(0)20 7299 4656 E: registry@lshtm.ac.uk

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED <u>FOR EACH</u> RESEARCH PAPER INCLUDED IN A THESIS.

SECTION A – Student Details

Student	Matthew Paul Gibbins	
Principal Supervisor	Julius Clemence R. Hafalla	
Thesis Title	Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens	

<u>If the Research Paper has previously been published please complete Section B, if not please move to</u> <u>Section C</u>

SECTION B – Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	Infection and Immunity
Please list the paper's authors in the intended authorship order:	Matthew P. Gibbins, Maya Glover, Jasmine Liu, Karolis Bauza, Arturo Reyes-Sandoval, Katja Müller, Kai Matuschewski, Olivier Silvie, Julius Clemence R. Hafalla
Stage of publication	Not yet submitted

SECTION D - Multi-authored work

For multi-authored work, give full details of your role in	I performed immunological experiments,
the research included in the paper and in the preparation	analysed data and performed the statistical
of the paper. (Attach a further sheet if necessary)	analyses. I wrote the first draft of the paper.

Improving health worldwide

www.lshtm.ac.uk

<u>M. P. Glub</u> <u>Angulue</u> <u>Date:</u> 17/09/18 <u>Date:</u> 17/09/18 Student Signature: Supervisor Signature:

aw.<u>v</u>iii

Improving health worldwide

Page 2 of 2

www.lshtm.ac.uk

CHAPTER 5

The importance of the immunodominant CD8+ T cell epitope of *Plasmodium* circumsporozoite protein in parasite- and vaccine-induced protection

The importance of the immunodominant CD8+ T cell epitope of *Plasmodium* circumsporozoite protein in parasite- and vaccine-induced protection

Matthew P. Gibbins,^a Katja Müller,^{b,c} Maya Glover,^a Jasmine Liu,^a Karolis Bauza,^d Arturo Reyes-Sandoval,^d Kai Matuschewski,^{b,c} Olivier Silvie,^e Julius Clemence R. Hafalla ^a#

^aDepartment of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom ^bParasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany ^cMolecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany ^dThe Jenner Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom

^eSorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France

Running Head: Immunodominant malaria CS Protein CD8+ T cell epitope

#Address correspondence to Julius Clemence R. Hafalla, Julius.Hafalla@lshtm.ac.uk

ABSTRACT

The circumsporozoite protein (CSP), the surface coat of sporozoites, has been at the forefront in malaria pre-erythrocytic stage vaccine development for the last 30 years. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating the developing parasites in hepatocytes resulting in protective immunity. In this study, we characterised the importance of SYIPSAEKI, the immunodominant CSPderived epitope of *Plasmodium berghei* in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-K^d, we establish that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunisation. Yet, sterile protection is achieved in the absence of this epitope confirming that other antigens are crucial for parasite-induced protective immunity. Moreover, we demonstrate that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively target parasites in hepatocytes and the resulting sterile protection strictly relies on the expression of SYIPSAEKI. We further show that in C57BL/6 mice, which expresses an irrelevant MHC-I and therefore unable to express the immunodominant epitope. CSP-based vaccines do not confer protection. These findings further demonstrate the importance of CSP in protection against malaria pre-erythrocytic stages and that a significant proportion of the protection against the parasite is mediated by CD8+ T cells that are specific for the immunodominant epitope of this sporozoite surface protein.

INTRODUCTION

Malaria is caused by a protozoan parasite of the genus *Plasmodium* and remains a major global health challenge in tropical and subtropical countries(1). A vaccine that reduces the burden of disease and prevents malaria transmission remains an ultimate goal for malaria elimination programmes. As a gold standard in malaria vaccination, multiple immunisations of γ -radiation-attenuated *Plasmodium* sporozoites (RAS) can completely protect against sporozoite challenge(2-4). This parasite-induced protection targets the developing exo-erythrocytic forms in the liver and completely abrogates blood stage infection. Antibodies and T cells have been implicated as important mechanisms of protection(5). In murine infection models, CD8+ T cells are the prime mediators of protective immunity(6, 7).

The circumsporozoite protein (CSP), the major surface coat protein of the malaria sporozoite, has been at the head of vaccination studies for more than 30 years – being the basis of RTS,S/AS01, the most progressed malaria vaccine candidate to date(8). Immunisation of BALB/c mice with *Plasmodium berghei* (*Pb*) or *P. yoelii* (*Py*) RAS evokes immunodominant major histocompatibility complex class I (MHC-I) H-2-K^d-restricted CD8⁺ T cell responses against distinct CSP epitopes: SYIPSAEKI for *Pb*(9) and SYVPSAEQI for *Py*(10). Indeed, the measurement of responses to these epitopes have become the standard in fundamental immunological studies in BALB/c mice. Furthermore, numerous vaccination studies involving different viral-vectored CSP- or CSP epitope-expressing vaccines – used alone or in combination as part of prime-boost regimens – have corroborated that CSP is a highly protective antigen in the BALB/c infection model(11-17). In these studies, elevated levels of either SYIPSAEKI- or SYVPSAEQI-specific CD8+ T cell responses correlated with protection.

Several studies have interrogated the immunological relevance of whole CSP in parasiteinduced protection. These studies emanated from observations that in naturally exposed humans, T cell responses to CSP are scarce(18). Moreover, multiple immunisations are 192 required to elicit CD8+ T cell-dependent protective immunity in various mouse strains, particularly where no other CSP-derived CD8+ T cell epitopes have been identified(19). In *Py*CSP-transgenic BALB/c mice which are tolerant to *Py*CSP, complete protection can be achieved by *Py* RAS immunisation(20). In good agreement, BALB/c mice immunised with *Pb* WT parasites were completely protected when challenged with transgenic parasites where the endogenous CSP has been swapped with the *P. falciparum* CSP(21). Taken together, these studies indicate that immune responses to CSP are dispensable for protection, and that other antigens are important to elicit protective immunity.

In this study, we extend previous work by dissecting the relevance of a single CSPderived immunodominant epitope in parasite- and vaccine-induced protection in BALB/c mice, by utilising transgenic *Pb* parasites lacking SYIPSAEKI for immunisation and challenge experiments. In addition, we highlight the level of protection achieved by CSPbased vaccines, in mice expressing the relevant (BALB/c) [or irrelevant (C57BL/6)] MHC-I that is needed to present a single CSP-derived immunodominant epitope.

RESULTS AND DISCUSSION

Sporozoite-induced SYIPSAEKI-specific CD8+ T cell responses contribute to parasite killing but are dispensable for the development of sterile immunity. First, we interrogated the role that SYIPSAEKI, the H-2-K^d-restricted immunodominant epitope of *Pb*CSP, plays in protective immunity induced after sporozoite immunisation. For this purpose, *Pb*CSP^{SIINFEKL} RAS, where the SYPSAEKI sequence has been replaced with SIINFEKL (the H-2-K^b-restricted epitope of ovalbumin), were used to immunise H-2-K^d-expressing BALB/c mice. There are no other reported H-2-K^d-restricted *Pb*CSP epitopes. As shown in Figure 1A, *Pb*CSP^{SIINFEKL} RAS parasites elicited no SYIPSAEKI-specific CD8+ T cell responses in BALB/c mice, whilst these parasites evoke robust SIINFEKL-specific responses in H-2-K^b-expressing C57BL/6 mice (Chapter 2: Müller and Gibbins et al., paper in preparation).

To ascertain whether SYIPSAEKI contributes to parasite-induced protection, BALB/c mice were immunised once with either *Pb*WT or *Pb*CSP^{SIINFEKL} RAS. 14 days later, immunised mice were challenged with *Pb*WT sporozoites and protection was determined by measuring the parasite loads in the liver 40 hours later. As shown in Figure 1B, a significant reduction in parasite load – up to 4-log difference as compared to naïve challenge mice – was observed in mice immunised with *Pb*WT RAS and challenged with *Pb*WT parasites. In contrast, protection was reduced in mice immunised with *Pb*CSP^{SIINFEKL} RAS (Figure 1B). We observed similar results following two immunisations (data not shown) indicating that a substantial degree of protection in *Pb*WT RAS-immunised mice, measured by reduction in parasite load in the liver over two orders of magnitude, can be attributed to SYIPSAEKI-specific CD8+ T cell responses. These results highlight the notion that within *Pb*CSP, the SYIPSAEKI epitope has a critical and immunodominant contribution to protecting BALB/c mice after one or two immunisations with RAS.

However, at least three immunisations with RAS are required to induce sterile protection. To establish whether the development of sterile immunity is dependent on SYIPSAEKIspecific CD8+ T cell responses, BALB/c mice were immunised thrice with *Pb*CSP^{SIINFEKL} RAS one week apart; 14 days after the last immunisation, mice were challenged with *Pb*WT sporozoites. As shown in Figure 1C, all mice were protected from blood stage infection compared to the naïve controls.

FIGURE 1

SYIPSAEKI is dispensable for RAS immunisation but predominates protection with fewer immunisations. (A) BALB/c mice (n=2-3) were immunised once with 10^4 *Pb*WT or *Pb*CSP^{SIINFEKL} RAS. Spleens were removed after two weeks. Splenocytes from the mice were pooled and restimulated with SYIPSAEKI peptide. IFN- γ production was assessed by ICS and flow cytometry. Each point represents the result from one well, with data pooled from two independent experiments. The results of this experiment were additionally confirmed using another transgenic parasite also lacking the SYIPSAEKI epitope of CSP (unpublished and data not shown).

(B) Groups of BALB/c mice were immunised once with $1.5 \times 10^4 PbWT$ RAS (n=9) or $PbCSP^{SIINFEKL}$ RAS (n=3). Immunised mice and BALB/c naïve controls (n=10) were challenged with $10^4 PbWT$ parasites two weeks after the last immunisation. Livers were harvested 40 hours post-challenge and relative liver parasite levels were quantified using the $\Delta\Delta$ Ct method comparing levels of *P. berghei* 18S rRNA and levels of mouse *GAPDH* mRNA. Median values + interquartile ranges are shown with statistics calculated using the Mann-Whitney U-test (*, p<0.05; **, p<0.01; ***, p<0.001).

(C) BALB/c mice (n=12) were thrice immunised with 10⁴ *Pb*CSP^{SIINFEKL} RAS with immunisations one week apart. Immunised mice and BALB/c naïve controls (n=11) were challenged with 5x10³ *Pb*WT parasites 16 days after the last immunisation. Blood smears were taken on day 3-14 days after challenge. Smears were stained with Giemsa and parasitaemia was assessed by microscopy. Data shown is pooled from two independent experiments.

Prime-boost vaccination with CSP-expressing viruses induces strong anti-CSP antibody and CD8+ T cell responses but SYIPSAEKI is the key mediator of protection. Next, we probed the requirement for SYIPSAEKI presentation in protection elicited by viral-vectored CSP-expressing vaccines administered in a prime-boost regimen. Priming with adenovirus (Ad) carrying a foreign antigen and boosting with orthopoxvirus modified vaccinia Ankara (MVA) expressing the same antigen has consistently been shown to induce strong CD8+ T cell responses capable of inducing high levels of efficacy against intracellular pathogens including malaria pre-erythrocytic stages(14, 17).

Chimpanzee adenovirus serotype 63 (AdCh63) and MVA vaccines expressing *Pb*CSP were used to vaccinate BALB/c mice with a two-week resting period between priming and boosting (Figure 2A). Two weeks after boosting, whole blood was collected and was restimulated *ex vivo* with SYIPSAEKI peptide. The frequencies of IFN- γ secreting CD8+ T cells were enumerated by flow cytometry (Figure 2B) and as shown in Figure 2C, Ad-MVA *Pb*CSP-vaccinated mice elicited ~12% SYIPSAEKI-specific circulating CD8+ T cells. Serum samples were also collected from the vaccinated animals and were used in an immunofluorescence assay against air-dried *Pb* sporozoites. As shown in Figure 2D, Ad-MVA *Pb*CSP-vaccinated BALB/c mice induced strong anti-CSP antibody tires (1:10⁴). These data indicate that Ad-MVA *Pb*CSP vaccination elicit both high frequencies of SYPSAEKI-specific CD8+ T cells and high titres of CSP-specific antibodies. It is probable that the vaccination regimen induced CD8+ T cell and antibody responses to other unidentified CD8+ T cell epitopes of CSP.

Two weeks after boosting, Ad-MVA *Pb*CSP-vaccinated mice were challenged with *Pb*WT or *Pb*CSP^{SIINFEKL} parasites. Protection was assessed by two complementary assays; (i) determination of the reduction of parasite load in the liver and (ii) induction of sterile protection. As shown in Figure 2E, parasite load in the liver of Ad-MVA *Pb*CSP-vaccinated mice was not significantly different to non-vaccinated mice when challenged

with *Pb*CSP^{SIINFEKL} sporozoites in contrast to challenge with *Pb*WT sporozoites. As shown in Figure 2F, vaccinated mice challenged with *Pb*CSP^{SIINFEKL} sporozoites were patent for parasitaemia by day 5, whereas vaccinated mice challenged with *Pb*WT sporozoites remained completely protected. These results denote that vaccine-induced effector SYIPSEAKI-specific CD8+ T responses efficiently target parasites expressing the cognate epitope. Parasites lacking the SYIPSAEKI epitope are not eliminated despite high levels of CSP-specific antibodies evoked by vaccination.

FIGURE 2

Prime-boost vaccination with CSP expressing viruses induces strong anti-CSP antibody and CD8+ T cell responses but SYIPSAEKI-specific CD8+ T cell responses are absolutely required for protection. (A) BALB/c mice were vaccinated with AdCh63 and MVA vaccines expressing the mammalian codon-optimised fragment of PbCSP and challenged with 10⁴ PbWT or PbCSP^{SIINFEKL} sporozoites as shown. (B) The flow cytometry gating strategy used to determine proportions of IFN- γ + CD11a+ CD8+ T cells. (C) Blood drawn from the tail from naïve (n=9) and vaccinated mice (n=10) two weeks after boost and restimulated with SYIPSAEKI and stained for CD8, CD11a surface markers, and IFN- γ by ICS. (D) Serum from naïve (n=11) and vaccinated mice (n=12) was isolated two weeks after boost and CSP specific antibody titres were measured by immunofluorescent antibody assay. (E) Livers from vaccinated mice challenged with PbWT (n=6) or PbCSP^{SIINFEKL} sporozoites (n=5) and non-vaccinated mice challenged with PbWT (n=5) or PbCSP^{SIINFEKL} sporozoites (n=5) were harvested 42 hours postchallenge and relative liver parasite levels were quantified using the ΔΔCt method comparing levels of *P. berghei* 18S rRNA and levels of mouse GAPDH mRNA. (F) Groups of vaccinated and non-vaccinated mice (n=6) were challenged with 5x10³ PbWT or PbCSP^{SIINFEKL} sporozoites. Vaccinated mice challenged with PbWT (triangles) or PbCSP^{SIINFEKL} (squares) and non-vaccinated mice challenged with PbWT (inverted triangles) or PbCSP^{SIINFEKL} (diamonds) had daily tail smears taken from day 3-14 post challenge. Slides were stained with Giemsa and parasitaemia was assessed by microscopy. (C-E) Each data point represents one mouse with median values + interquartile ranges with statistics calculated using the Mann-Whitney test (*, p<0.05; ***, p<0.001).

CSP-based vaccines do not elicit sterile immunity in C57BL/6 mice. To further investigate the requirement of SYIPSAEKI as the necessary protective epitope of CSP, mice unable to present this epitope were vaccinated with Ad and MVA expressing *Pb*CSP with an interval of 2 weeks between vaccines, followed by challenge with either *Pb*WT or *Pb*CSP^{SIINFEKL} parasites (Figure 3A). C57BL/6 mice were used because SYIPSAEKI is an H-2-K^d restricted epitope, an MHC-I allele which they do not express. Thus, SYIPSAEKI would fail to be presented by infected hepatocytes. As before, blood and serum were derived 2 weeks after boost (Figure 3C,D). As expected, no SYIPSAEKI-specific CD8+ T cells were observed in Ad-MVA *Pb*CSP-vaccinated (Figure 3D). As shown in Figure 3E, Ad-MVA CSP-vaccinated C57BL/6 mice challenged with either *Pb*WT or *Pb*CSP^{SIINFEKL} parasites had comparable parasite load in the liver (Figure 3E) and no mice from any groups were sterilely protected (data not shown).

FIGURE 3

Prime-boost vaccination with CSP expressing viruses does not protect C57BL/6 mice, irrespective of induced antibody titres. (A) C57BL/6 mice were vaccinated with AdCh63 and MVA vaccines expressing the mammalian codon-optimised fragment of *Pb*CSP and challenged with $10^4 Pb$ WT or *Pb*CSP^{SIINFEKL} sporozoites as shown. (B) The flow cytometry gating strategy used to determine proportions of IFN- γ + CD11a+ CD8+ T cells. (C) Blood drawn from the tail from naïve (n=10) and vaccinated mice (n=10) two weeks after boost was restimulated with SYIPSAEKI and stained for CD8, CD11a surface markers, and IFN- γ by ICS. (D) Serum from naïve (n=6) and vaccinated mice (n=9) was isolated two weeks after boost and CSP specific antibody titres were measured by immunofluorescent antibody assay. (E) Livers from groups of 5 mice per condition were harvested 42 hours post-challenge and relative liver parasite levels were quantified using the $\Delta\Delta$ Ct method comparing levels of *P. berghei* 18S rRNA and levels of mouse *GAPDH* mRNA. (C-E). Each data point represents one mouse with median values + interquartile ranges shown with statistics calculated using the Mann-Whiney test (***p<0.001).

Our data further support the notion that CSP is an immunodominant antigen following RAS immunisations in BALB/c mice(20). In addition, a single epitope, SYIPSAEKI is the immunodominant CD8+ T cell epitope of CSP and is responsible for the antigen's protective capacity against parasites in the liver. Following RAS immunisation, CD8+ T cell responses to SYIPSAEKI contribute to the reduction in parasite load in the liver following sporozoite challenge because when RAS-immunised mice are challenged with *Pb*CSP^{SIINFEKL}, transgenic parasites lacking SYIPSAEKI, reduced anti-*Plasmodium* activity in the liver is observed. Nonetheless, complete protection is achievable in the absence of SYIPSAEKI-specific CD8+ T cell responses, demonstrating that responses to other epitopes contribute to parasite-killing. It is conceivable that these epitopes are encoded by the hundreds of other *Plasmodium* genes expressed in malaria pre-erythrocytic stages.

Our findings also emphasise the importance of SYIPSAEKI-specific CD8+ T cell responses for promoting protective immunity when using CSP-based vaccines in BALB/c mice. These vaccines are aimed at generating high levels of epitope-specific CD8+ T cells but rely on the expression of relevant MHC-I in the vaccinated host and the presence of the cognate epitope in the parasite used for challenge. Notably, despite high levels of antibodies elicited following Ad-MVA *PbCSP* vaccination, sterile protection was not achieved following challenge of C57BL/6 mice, which cannot present SYIPSAEKI, nor when challenging BALB/c or C57BL/6 mice with a parasite lacking SYIPSAEKI.

These results have significance for the development of next generation malaria vaccines. We have demonstrated the significance of a single epitope of CSP in mediating protective CD8+ T cell responses while also recapitulating that protection can be achieved in the absence of responses to CSP(20, 21). In BALB/c mice, SYIPSAEKI-specific CD8+ T cell responses offered protection, however, to achieve complete sterile protection: either multiple sporozoite immunisations or viral vaccines, which induced large populations of SYIPSAEKI-specific CD8+ T cells, were required. Multiple

immunisations likely induced a wide range of immune responses and multiple high-dose immunisations with RAS in humans has been shown to induce dose-dependent antisporozoite CD8+ T cell responses in addition to dose dependent anti-sporozoite antibody and CD4+ T cell responses(4). In line with this, our findings lead us to suggest that future pre-erythrocytic malaria vaccine research should not only focus on inducing strong CD8+ T cell responses against one or a few antigens but should try to target a broad array of antigens to offer the best protection possible. The identification of novel antigens and epitopes that contribute to protection will aid this development. While RTS, S, the leading subunit malaria vaccine based on CSP, seems to offer some protection against P. falciparum re-infection(8) probably by the action of anti-sporozoite antibodies(22-24), peripheral blood CD8+ T cell responses were not identified to provide a role following sporozoite challenge. Similar findings from whole sporozoite vaccination challenge studies(4, 25, 26) show protected individuals exhibit variable peripheral blood CD8+ T cell responses, which may indicate that the protective CD8+ T cells are restricted to the liver. With evidence from mouse(27, 28) and non-human primates(29) studies indicating an association between liver-resident CD8+ T cells and protection, the generation of vaccines that can induce efficacious liver resident CD8+T cell populations that target the parasite in the liver would likely also be advantageous. Whilst it will probably be difficult to directly assess these responses in humans, a population of liver-resident CD8+ T cells with broad antigen specificities will surely be pivotal in contributing to protection against malaria.

MATERIALS AND METHODS

Ethics and animal experimentation. Animal procedures were performed in accordance with the German 'Tierschutzgesetz in der Fassung vom 18. Mai 2006 (BGBI. I S. 1207)' which implements the directive 2010/6 3/EU from the European Union. Animal experiments at London School of Hygiene and Tropical Medicine were conducted under license from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986. CD-1 mice were bred in-house at LSHTM while NMRI, C57BL/6 and BALB/c laboratory mouse strains were purchased from either Charles River Laboratories (Margate, UK or Sulzfeld, Germany) or Janvier (Saint Berthevin, France). Female mice of 6-8 weeks of age were used in the experiments.

Plasmodium parasites and immunisation. The transgenic *P. berghei* ANKA CSP^{SIINFEKL} (*Pb*CSP^{SIINFEKL}) parasite was generated with the immunodominant CSP CD8+ T cell epitope SYIPSAEKI (252-260aa) being replaced with the H-2-^b restricted *Gallus gallus* ovalbumin CD8+ T cell epitope SIINFEKL (258-265aa) via double homologous recombination (Chapter 2: Müller and Gibbins et al., paper in preparation). Wild-type *Plasmodium berghei* ANKA (clone c115cy1) (*Pb*WT) and *Pb*CSP^{SIINFEKL} were maintained by continuous cycling between murine hosts (NMRI or CD-1) and *Anopheles stephensi* mosquitos. Infected mosquitos were kept in incubators (Panasonic and Mytron) at 80% humidity and 20°C temperature. Sporozoites were isolated from the salivary glands and attenuated by γ-irradiation at 1.2×10^4 cGy. Mice were immunised with 10^4 sporozoites administered intravenously with multiple doses given 1 week apart unless otherwise stated. For challenge infections, 5×10^3 or 10^4 live sporozoites were administered intravenously to assess sterile protection and parasite load in the liver respectively.

Viral-vectored CSP-expressing vaccines. AdCh63 and MVA vaccines expressing the mammalian codon-optimised fragment of *Pb*CSP were constructed and propagated based on previously published viral vectors(30, 31). The viral vectors were administered 207

intramuscularly in endotoxin-free PBS at a concentration of 10⁵ viral particles for Ad*Pb*CSP to prime and 10⁶ viral particles MVA*Pb*CSP to boost.

Immunofluorescent antibody assay. 10⁴ sporozoites were spotted onto glass slides with marked rings (Medco), dried at room temperature and stored at -20°C. Thawed slides were fixed in acetone, dried and rehydrated with PBS before incubation in 10% FCS supplemented DMEM (Gibco) for 1 hour at 37°C in a humid chamber. Serum at concentrations 1:10³, 1:3.3x10³, 1:10⁴, 1:3.3x10⁴, 1:10⁵ (and additionally 1:3.3x10⁵ and 1:10⁶ for C57BL/6 serum) were added to the ring wells and incubated for 1 hour at 37°C in a humid chamber. Slides were washed and stained with a mouse anti-CSP(32) primary antibody and a respective fluorescently labelled secondary antibody. Nuclei were stained with DAPI or DRAQ5 before a further 1-hour humid incubation. Slides were washed and mounted with 'Fluoromount-G' (Southern Biotech) and analysed by fluorescent microscopy (Zeiss Axio Observer).

Quantification of SYIPSAEKI-specific CD8+ T cell responses. Spleens were harvested and lymphocytes were derived by passing spleens through 40μ m cell strainers (Corning). Peripheral blood was drawn from the tail vein and collected in Na⁺ heparin capillary tubes (Brand) and assayed in 96-well flat bottom plates (Corning). Red blood cells were lysed using PharmLyse (BD) and lymphocytes were resuspended in 10% FCS, 2% Penicillin-Streptomycin and 1% L-glutamine supplemented RPMI 1640 (Gibco). Splenocytes were counted using a 40x dilution with Trypan Blue (ThermoFisher Scientific) and a Neubauer 'Improved' haemocytometer (Biochrom). 2x10⁶ splenocytes and the lysed blood samples were prepared in 96 well plates and incubated with a final concentration of 10μ g/ml of SYIPSAEKI peptide in in the presence of Brefeldin A (eBioScience) for 5-6 hours at 37°C and 5% CO₂. For staining of cell surface markers and intracellular cytokines, cells were incubated for 1 hour at 4°C for each staining. Cells were stained for CD8 (53-6.7) and CD11a (M17/4) (eBioscience). Splenic cells were

fixed with 4% paraformaldehyde and peripheral blood cells were fixed with 1% paraformaldehyde before staining for IFN- γ (XMG1.2) (eBioscience). Data was acquired by flow cytometry using an LSRFortessa or LSRII (BD) and analysed using Flowjo9.5.2 (Tree Star, Inc.).

Quantification of parasite load in the liver. Livers were harvested 40-42 hours after sporozoite challenge and total RNA was extracted following homogenisation using TRIzol (ThermoFisher Scientific). cDNA was generated using the RETROScript Kit (Ambion). Quantitative real-time PCR was performed using the StepOnePlus Real-Time PCR System and Power SYBR Green PCR Master Mix (Applied Biosystems). Relative liver parasite levels were quantified using the $\Delta\Delta$ Ct method comparing levels of *P. berghei 18S* rRNA using specific primers and normalised to levels of mouse *GAPDH* mRNA(33).

Assessment of parasitaemia. Sterile protection was assessed by daily blood smears, taken from mice 3-14 days post sporozoite challenge, stained with Giemsa's stain improved solution (VWR) to determine the presence of blood stage parasites.

Statistical analysis. Statistical analysis was performed using GraphPad Prism v7 (GraphPad Software, Inc.). Statistics were calculated using the Mann-Whiney U test.

AUTHOR CONTRIBUTIONS

O.S. and J.C.R.H. designed the experiments in the laboratory of K.Matuschewski; O.S. generated the transgenic parasite CSP^{SIINFEKL}; M.P.G., K.Müller, M.G. and J.L. performed experiments and analysed data; K.B. and A.R.-S. generated the CSP-expressing viruses Ad*Pb*CSP and MVA*Pb*CSP; M.P.G. and J.C.R.H. wrote the paper.

ACKNOWLEDGEMENTS

K.Matuschewski was supported by the Max Planck Society and grants from the European Commission (EviMalaR Network of Excellence #34) and the Chica and Heinz Schaller Foundation. O.S. was funded in part by the Laboratoire d'Excellence ParaFrap (ANR-11-LABX-0024). J.C.R.H. was funded by grants from The Royal Society (University Research Fellowship UF0762736/UF120026 and Project Grant RG130034) and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (Project Grant NC/L000601/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

- 1. WHO. 2017. World Malaria Report 2017 World Health Organisation, Geneva, Switzerland.
- 2. Nussenzweig RS, Vanderberg J, Most H, Orton C. 1967. Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. Nature 216:160-2.
- Hoffman SL, Goh LM, Luke TC, Schneider I, Le TP, Doolan DL, Sacci J, de la Vega P, Dowler M, Paul C, Gordon DM, Stoute JA, Church LW, Sedegah M, Heppner DG, Ballou WR, Richie TL. 2002. Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. J Infect Dis 185:1155-64.
- 4. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, Holman LA, James ER, Billingsley PF, Gunasekera A, Richman A, Chakravarty S, Manoj A, Velmurugan S, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, Plummer SH, Hendel CS, Novik L, Costner PJ, Mendoza FH, Saunders JG, Nason MC, Richardson JH, Murphy J, Davidson SA, Richie TL, Sedegah M, Sutamihardja A, Fahle GA, Lyke KE, Laurens MB, Roederer M, Tewari K, Epstein JE, Sim BK, Ledgerwood JE, Graham BS, Hoffman SL, Team VRCS. 2013. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341:1359-65.
- Schofield L, Villaquiran J, Ferreira A, Schellekens H, Nussenzweig R, Nussenzweig V. 1987. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330:664-6.
- 6. Doolan DL, Hoffman SL. 2000. The complexity of protective immunity against liverstage malaria. J Immunol 165:1453-62.
- Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ, Bahjat KS, Lauer P, Reyes-Sandoval A, Hutchings CL, Moore AC, Gilbert SC, Hill AV, Bartholomay LC, Harty JT. 2008. Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A 105:14017-22.
- 8. Rts SCTP. 2015. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386:31-45.
- Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V, Zavala F. 1989. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. Nature 341:323-6.
- 10. Weiss WR, Mellouk S, Houghten RA, Sedegah M, Kumar S, Good MF, Berzofsky JA, Miller LH, Hoffman SL. 1990. Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes. J Exp Med 171:763-73.
- 11. Li S, Rodrigues M, Rodriguez D, Rodriguez JR, Esteban M, Palese P, Nussenzweig RS, Zavala F. 1993. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc Natl Acad Sci U S A 90:5214-8.
- 12. Rodrigues EG, Zavala F, Eichinger D, Wilson JM, Tsuji M. 1997. Single immunizing dose of recombinant adenovirus efficiently induces CD8+ T cell-mediated protective immunity against malaria. J Immunol 158:1268-74.
- 13. Bruna-Romero O, Gonzalez-Aseguinolaza G, Hafalla JC, Tsuji M, Nussenzweig RS. 2001. Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc Natl Acad Sci U S A 98:11491-6.
- Gilbert SC, Schneider J, Hannan CM, Hu JT, Plebanski M, Sinden R, Hill AV. 2002. Enhanced CD8 T cell immunogenicity and protective efficacy in a mouse malaria model using a recombinant adenoviral vaccine in heterologous prime-boost immunisation regimes. Vaccine 20:1039-45.
- 15. Gonzalez-Aseguinolaza G, Nakaya Y, Molano A, Dy E, Esteban M, Rodriguez D, Rodriguez JR, Palese P, Garcia-Sastre A, Nussenzweig RS. 2003. Induction of protective

immunity against malaria by priming-boosting immunization with recombinant coldadapted influenza and modified vaccinia Ankara viruses expressing a CD8+-T-cell epitope derived from the circumsporozoite protein of Plasmodium yoelii. J Virol 77:11859-66.

- 16. Reyes-Sandoval A, Sridhar S, Berthoud T, Moore AC, Harty JT, Gilbert SC, Gao G, Ertl HC, Wilson JC, Hill AV. 2008. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. Eur J Immunol 38:732-41.
- Reyes-Sandoval A, Berthoud T, Alder N, Siani L, Gilbert SC, Nicosia A, Colloca S, Cortese R, Hill AV. 2010. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect Immun 78:145-53.
- 18. Dodoo D, Hollingdale MR, Anum D, Koram KA, Gyan B, Akanmori BD, Ocran J, Adu-Amankwah S, Geneshan H, Abot E, Legano J, Banania G, Sayo R, Brambilla D, Kumar S, Doolan DL, Rogers WO, Epstein J, Richie TL, Sedegah M. 2011. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 10:168.
- 19. Schmidt NW, Butler NS, Badovinac VP, Harty JT. 2010. Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites. PLoS Pathog 6:e1000998.
- 20. Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC, Zavala F, Nussenzweig V. 2006. The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature 444:937-40.
- 21. Gruner AC, Mauduit M, Tewari R, Romero JF, Depinay N, Kayibanda M, Lallemand E, Chavatte JM, Crisanti A, Sinnis P, Mazier D, Corradin G, Snounou G, Renia L. 2007. Sterile protection against malaria is independent of immune responses to the circumsporozoite protein. PLoS One 2:e1371.
- 22. Olotu A, Lusingu J, Leach A, Lievens M, Vekemans J, Msham S, Lang T, Gould J, Dubois MC, Jongert E, Vansadia P, Carter T, Njuguna P, Awuondo KO, Malabeja A, Abdul O, Gesase S, Mturi N, Drakeley CJ, Savarese B, Villafana T, Lapierre D, Ballou WR, Cohen J, Lemnge MM, Peshu N, Marsh K, Riley EM, von Seidlein L, Bejon P. 2011. Efficacy of RTS,S/AS01E malaria vaccine and exploratory analysis on anti-circumsporozoite antibody titres and protection in children aged 5-17 months in Kenya and Tanzania: a randomised controlled trial. Lancet Infect Dis 11:102-9.
- 23. White MT, Verity R, Griffin JT, Asante KP, Owusu-Agyei S, Greenwood B, Drakeley C, Gesase S, Lusingu J, Ansong D, Adjei S, Agbenyega T, Ogutu B, Otieno L, Otieno W, Agnandji ST, Lell B, Kremsner P, Hoffman I, Martinson F, Kamthunzu P, Tinto H, Valea I, Sorgho H, Oneko M, Otieno K, Hamel MJ, Salim N, Mtoro A, Abdulla S, Aide P, Sacarlal J, Aponte JJ, Njuguna P, Marsh K, Bejon P, Riley EM, Ghani AC. 2015. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect Dis 15:1450-8.
- 24. Kester KE, Cummings JF, Ofori-Anyinam O, Ockenhouse CF, Krzych U, Moris P, Schwenk R, Nielsen RA, Debebe Z, Pinelis E, Juompan L, Williams J, Dowler M, Stewart VA, Wirtz RA, Dubois MC, Lievens M, Cohen J, Ballou WR, Heppner DG, Jr., Rts SVEG. 2009. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J Infect Dis 200:337-46.
- 25. Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW, Zarling S, Williams J, de la Vega P, Ware L, Komisar J, Polhemus M, Richie TL, Epstein J, Tamminga C, Chuang I, Richie N, O'Neil M, Heppner DG, Healer J, O'Neill M, Smithers H, Finney OC, Mikolajczak SA, Wang R, Cowman A, Ockenhouse C, Krzych U, Kappe SH. 2013. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 31:4975-83.

- 26. Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, Gmeiner M, Campo JJ, Esen M, Ruben AJ, Held J, Calle CL, Mengue JB, Gebru T, Ibanez J, Sulyok M, James ER, Billingsley PF, Natasha KC, Manoj A, Murshedkar T, Gunasekera A, Eappen AG, Li T, Stafford RE, Li M, Felgner PL, Seder RA, Richie TL, Sim BK, Hoffman SL, Kremsner PG. 2017. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542:445-449.
- 27. Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, Wong YC, Lau LS, Mollard V, Cozijnsen A, Collins N, Li J, Davey GM, Kato Y, Devi S, Skandari R, Pauley M, Manton JH, Godfrey DI, Braun A, Tay SS, Tan PS, Bowen DG, Koch-Nolte F, Rissiek B, Carbone FR, Crabb BS, Lahoud M, Cockburn IA, Mueller SN, Bertolino P, McFadden GI, Caminschi I, Heath WR. 2016. Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity 45:889-902.
- Vaughan AM, Sack BK, Dankwa D, Minkah N, Nguyen T, Cardamone H, Kappe SHI.
 2018. A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 86.
- 29. Ishizuka AS, Lyke KE, DeZure A, Berry AA, Richie TL, Mendoza FH, Enama ME, Gordon IJ, Chang LJ, Sarwar UN, Zephir KL, Holman LA, James ER, Billingsley PF, Gunasekera A, Chakravarty S, Manoj A, Li M, Ruben AJ, Li T, Eappen AG, Stafford RE, K CN, Murshedkar T, DeCederfelt H, Plummer SH, Hendel CS, Novik L, Costner PJ, Saunders JG, Laurens MB, Plowe CV, Flynn B, Whalen WR, Todd JP, Noor J, Rao S, Sierra-Davidson K, Lynn GM, Epstein JE, Kemp MA, Fahle GA, Mikolajczak SA, Fishbaugher M, Sack BK, Kappe SH, Davidson SA, Garver LS, Bjorkstrom NK, Nason MC, et al. 2016. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med 22:614-23.
- O'Hara GA, Duncan CJ, Ewer KJ, Collins KA, Elias SC, Halstead FD, Goodman AL, Edwards NJ, Reyes-Sandoval A, Bird P, Rowland R, Sheehy SH, Poulton ID, Hutchings C, Todryk S, Andrews L, Folgori A, Berrie E, Moyle S, Nicosia A, Colloca S, Cortese R, Siani L, Lawrie AM, Gilbert SC, Hill AV. 2012. Clinical assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vector. J Infect Dis 205:772-81.
- Reyes-Sandoval A, Wyllie DH, Bauza K, Milicic A, Forbes EK, Rollier CS, Hill AV. 2011.
 CD8+ T effector memory cells protect against liver-stage malaria. J Immunol 187:1347-57.
- Potocnjak P, Yoshida N, Nussenzweig RS, Nussenzweig V. 1980. Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. J Exp Med 151:1504-13.
- Muller K, Matuschewski K, Silvie O. 2011. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS One 6:e19860.

London School of Hygiene & Tropical Medicine Keppel Street, London WC1E 7HT www.lshtm.ac.uk

Registry

T: +44(0)20 7299 4646 F: +44(0)20 7299 4656 E: registry@lshtm.ac.uk

RESEARCH PAPER COVER SHEET

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED <u>FOR EACH</u> RESEARCH PAPER INCLUDED IN A THESIS.

SECTION A – Student Details

Student	Matthew Paul Gibbins	
Principal Supervisor	Julius Clemence R. Hafalla	
Thesis Title	Dissecting the CD8+ T cell responses to pre-erythrocytic malaria antigens	

<u>If the Research Paper has previously been published please complete Section B, if not please move to</u> <u>Section C</u>

SECTION B – Paper already published

Where was the work published?			
When was the work published?			
If the work was published prior to registration for your research degree, give a brief rationale for its inclusion			
Have you retained the copyright for the work?*	Choose an item.	Was the work subject to academic peer review?	Choose an item.

*If yes, please attach evidence of retention. If no, or if the work is being included in its published format, please attach evidence of permission from the copyright holder (publisher or other author) to include this work.

SECTION C - Prepared for publication, but not yet published

Where is the work intended to be published?	
Please list the paper's authors in the intended authorship order:	Matthew P. Gibbins, Emilio Fenoy, Massimo Andreatta, Morten Nielsen, Julius Clemence R Hafalla
Stage of publication	Not yet submitted

SECTION D - Multi-authored work

Improving health worldwide

www.lshtm.ac.uk

Student Signature:	M. f. Clb	Date:	17/09/18
Supervisor Signature: _	farfallie.	Date:	17/09/18

Improving health worldwide

Page 2 of 2

www.lshtm.ac.uk
CHAPTER 6

Identification of novel CD8+ T cell epitopes from the pre-erythrocytic stages of malaria

Identification of novel CD8+ T cell epitopes from the pre-erythrocytic stages of malaria

Matthew P. Gibbins¹, Emilio Fenoy², Massimo Andreatta², Morten Nielsen^{2,3}, Julius Clemence R. Hafalla^{1†}

¹ Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.

² Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, 1650 San Martín, Buenos Aires, Argentina.

³ Department of Bio and Health Informatics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark

[†] Corresponding author: <u>Julius.Hafalla@lshtm.ac.uk</u>

ABSTRACT

CD8+ T cells are known to be important immune cells in providing protection against the liver stage of malaria. However, the identity of the parasite proteins which induce protective CD8+ T cells remain largely unknown. Using bioinformatics neural networks, which predict peptides that bind strongly to MHC class I molecules, we have identified novel CD8+ T cell epitopes that induce strong IFN- γ responses against proteins expressed in the sporozoite and liver stages following sporozoite immunisation of mice under azithromycin prophylaxis. Feature analysis of these derivative proteins also highlights a link between secreted or cell surface proteins and immunogenicity of antigens expressed in the pre-erythrocytic stages of malaria. A quarter of the induced CD8+ T cell response were found to express an antigen-experienced phenotype following immunisation and up to 20% of these cells produced IFN- γ following restimulation with pools of peptides. We propose that the majority of antigens that induce CD8+ T cell responses against the pre-erythrocytic stages of malaria still remain unknown.

INTRODUCTION

Malaria is a formidable, yet ancient, disease which continues to burden the human population¹. Today it still causes significant morbidity and mortality, with around 216 million cases per year, resulting in around 445,000 fatalities, with the vast majority of death occurring in sub-Saharan Africa².

Efforts to identify efficacious vaccine targets against malaria have been ongoing for many years. First isolated from murine infective *Plasmodium berghei* in the early 1980s, circumsporozoite protein (CSP)³⁻⁵, became the basis of the most advanced malaria vaccine candidate to date, RTS,S/AS01, inspired by the discovery that anti-CSP monoclonal antibodies could protect mice from sporozoite challenge^{4, 6}. RTS,S/AS01 is a sub-unit vaccine based on the central repeat and C-terminal regions of CSP conjugated with hepatitis B virus surface antigen. In a multisite Phase III trial in Africa, RTS,S/AS01 showed an efficacy of preventing clinical malaria episodes of 28.3% in children and 18.3% in infants following a 3 dose immunisation, which increases to 36.3% and 25.9% respectively following a booster dose, 18 months after the last dose⁷. However, vaccine efficacy of RTS,S/AS01 wanes over time and does not realise a long lasting and robust effect. Thus, the hunt continues to find better vaccine targets and develop a more efficacious vaccine; a key requirement for malaria eradication.

An alternative vaccination approach showed that rodents⁸, primates⁹ and humans^{10, 11} can be protected from infectious sporozoite following multiple immunisation with irradiated sporozoites. This protection was shown to be mediated by CD8+ T cells, which have been shown to have an essential role in combating liver stage infection in mice¹²⁻¹⁴ and primates¹⁵. However, only a handful of targets of these CD8+ T cells have been identified.

A vaccine that targets the pre-erythrocytic stages of malaria is an attractive prospect because only around 100 sporozoites are injected into the skin by an infected mosquito¹⁶

and not all of these reach the liver^{17, 18} and develop into liver stage exo-erythrocytic forms (EEFs). Blocking this narrow bottleneck in the parasite life cycle has the potential to prevent the subsequent blood stages which cause all the symptoms associated with malarial disease.

Using reverse immunological approaches, we set out to identify novel immunogenic CD8+ T cell epitopes against the pre-erythrocytic stages of malaria using MHC class I-peptide binding prediction algorithms. These algorithms seek to predict the affinity with which peptides bind strongly to MHC binding grooves using experimental binding data. It has been shown that peptides predicted to bind strongly to MHC class I (MHC-I) molecules induce strong T cell responses following interaction with the cognate T cell receptor¹⁹. Using this general idea, 178 novel immunogenic *Yersinia pestis* CD8+ T cell epitopes²⁰ and 10 immunogenic *Trypanosoma cruzi* CD8+ T cell epitopes²¹ have been identified recently. In this work, we attempted to achieve a similar feat with *Plasmodium*. Previously in our group, Hafalla et al. were able to identify two highly immunogenic CD8+ T cell epitopes by predicting CD8+ T cell epitopes from salivary gland sporozoite and liver stage datasets, genome wide surveying and previously described antigenic *P*. *falciparum* proteins²². Here, we used a similar approach focusing on more recent and extensive proteomic and transcriptomic sporozoite and liver stage expression studies²³⁻

Additionally, the "rules" on what makes an epitope/ antigen immunogenic and potentially protective in a disease setting are not well defined, hindering the rapid discovery of new vaccines. Here we sought to address this and provide supplementary information that could further improve bioinformatics prediction algorithms while further informing immunological fields to immunogenic antigens, vital for vaccine developments. Looking at different pathogens, some protein features have been proposed to induce strong CD8+ T cell responses. Characteristics such as antigen secretion²⁸ and position within a protein²⁹ have been suggested to be responsible for enhanced CD8+ T cell responses.

We performed a feature analysis on the proteins in our dataset, determining a wide range of predicted features and characteristics, to look for the enrichment of features that correlated with immunogenicity. Given the paucity of CD8+ T cell epitopes from preerythrocytic antigens we also assessed how much of the antigen repertoire of the effector CD8+ T cell population we could account for using peptide pools from our screens.

Using the notoriously hard to protect *Plasmodium* berghei-C57BL/6 model, we report herein novel CD8+ T cell epitopes against the pre-erythrocytic stages of malaria and discuss the idea of features affecting the immunogenicity of antigens.

MATERIALS AND METHODS

Ethics and animal experimentation

Animal procedures were performed either at the Max Planck Institute of Infection Biology, Berlin or the London School of Hygiene and Tropical Medicine. Procedures were carried out following the approval by the institutional ethics review boards. Procedures were carried out in accordance with the German 'Tierschutzgesetz in der Fassung vom 18. Mai 2006 (BGBI. I S. 1207)', or under license from the United Kingdom Home Office under the Animals (Scientific Procedures) Act 1986 both which implement the directive 86/609/EEC from the European Union and the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes. Female C57BL/6 mice and NMRI were purchased from Charles River (Sulzfeld, Germany or Margate, UK) and CD-1 mice were bred in-house at LSHTM.

Parasites

Plasmodium berghei ANKA (clone 507) parasites were continuously cycled between CD-1 or NMRI mice and *Anopheles stephensi* mosquitoes. Adult mosquitos were kept in incubators (Panasonic) at 20°C and 70-80% humidity. Sporozoites were dissected from salivary glands no earlier than 18 days after infection. Mice were immunised intravenously with 10,000 sporozoites concomitantly with azithromycin (Pfizer) given at a dose of 240 mg/kg intraperitoneally on the same day as immunisation and one day after³⁰. Mice were immunised with sporozoites twice with immunisations one week apart unless stated otherwise.

CD8+ T cell epitope prediction and feature analysis

The dataset of genes expressed in the sporozoite and liver stages was culminated from published suppression subtractive hybridisation experiments^{23, 24}, mass spectrometric data²⁵⁻²⁷, published²⁷ and unpublished microarray data (Olivier Silvie, personal communication). Genes derived from experiments using *P. yoelii* and *P. falciparum* were converted to *P. berghei* orthologous genes and protein sequences were downloaded

using PlasmoDB³¹. Sequences were ran through NetMHCpan^{32, 33} and NetMHCcons³⁴ prediction software to predict peptides with strong binding affinity to MHC class I (MHC-I) molecules H-2-D^b and H-2-K^b, the alleles expressed by C57BL/6 mice, using IC50 values and %Rank scores as guides³⁵. 586 peptides were chosen and synthesised by Mimotopes (Melbourne, Australia) at batch 'as synthesised' purity for first-pass screening (purity range 4.89-98.6%, mean 62.95%, median 66.62%) and 95 peptides were resynthesised at greater purity (range 69-99%, mean 90.7%, median 94%). When performing NetMHCcons predictions, amino acids N at position P1 of the peptide and C at position P2 were mutated to V and S, respectively. This correction was required to address the lack of experimental data with the NC configuration, which we proposed may overly penalise candidate epitopes starting with the dipeptide NC. The models, servers and algorithms employed for feature analysis are listed in Table 1.

Splenocyte isolation and peptide restimulation

Spleens were harvested 14 days after the last immunisation. Splenocytes were isolated using a 70µm cell strainer (Falcon) and red blood cells lysed using PharmLyse (BD). 2x10⁶ splenocytes in complete RPMI (10% FCS, 2% Penicillin-Streptomycin, 1% L-glutamine (Gibco)) were restimulated with a final peptide concentration of 10µg/ml unless otherwise stated. We assessed the immunogenicity of novel predicted peptides against a panel of 10 published peptides³⁶ (TRAP₁₃₀₋₁₃₈ – SALLNVDNL²²; S20₃₁₈₋₃₂₆ – VNYSFLYLF²², GAP50₄₀₋₄₈ – SQLLNAKYL³⁷; RPA1₂₂₇₋₂₃₄ – EIYIFTNI³⁸; RFC1₆₅₁₋₆₅₈ – LLPHFSIL³⁸; *LSG₁₁₉₋₁₂₆ – LSGRYNDL³⁸; RNR₄₀₂₋₄₀₉ – WGDEFEKL³⁸; ApiAP2₁₈₉₈₋₁₉₀₅ – YYYDYDKI³⁸; BLN₅₉₂₋₅₉₉ – IITDFENL³⁹; *NCY₃₉₇₋₄₀₄ – NCYDFNNI⁴⁰). Cells were incubated in the presence of 0.6µg Brefeldin A for 5-6 hours at 37°C, 5% CO₂. Cells were stained the following day with extracellular stains for CD3 (clone 500A2) (BD); CD8 (clone 53-6.7) and CD11a (M17/4) (eBioscience), and intracellular stain for IFN-γ (clone XMG1.2) (eBioscience). Cells were fixed using 4% paraformaldehyde. Flow cytometric analysis of samples was acquired using an LSRII or LSRFortessa (BD).

Data and statistical analysis

Flow cytometric data was analysed using FlowJo version 9.5.3 (Tree Star Inc., Oregon, USA). Finite mixture model calculations were performed using Stata 15 (StataCorp). Graphs were produced in GraphPad Prism version 7 (GraphPad Software Inc., CA, USA). Statistical analysis for the feature analysis and boosting was performed using R (Foundation for Statistical Computing, Vienna, Austria). Statistics in the feature analysis were calculated assessed by a 10,000 resample comparison with significance considered as a p-value of <0.05. Statistics for boosted responses was determined by empirical Bayes t-test⁴¹ with Benjamini-Hochberg adjustment to control for false discovery rate below 5%⁴².

RESULTS

Novel CD8+ T cell epitopes to *P. berghei* pre-erythrocytic antigens can be identified purely through their MHC-peptide binding affinity

Our study focused on the sporozoite and liver stage forms of *Plasmodium* and we used several published and unpublished proteomic and transcriptomic expression datasets of these life stages to identify new CD8+ T cell epitopes. These included mass spectrometric datasets of *P. yoelii*²⁶ and *P. falciparum*^{25, 26} salivary gland sporozoite proteomes and *P. yoelii* liver stage proteomes²⁷. Genes were also chosen from a comprehensive microarray experiment assessing multiple stages of pre-erythrocytic infection in *P. yoelii*²⁷, an unpublished microarray experiment comparing WT and *slarp* KO transgenic *P. berghei* sporozoites (Olivier Silvie, personal communication), as well as suppression subtractive hybridisation experiments comparing *P. yoelii* salivary gland sporozoites ²³ and *P. berghei* oocyst sporozoites versus salivary gland sporozoites²⁴. Our experimental model used *P. berghei*, a rodent infective species of *Plasmodium*, thus all the genes were transformed using PlasmoDB³¹ to generate a degenerate list of *P. berghei* sporozoite and liver stage specific genes.

Our approach involved immunisation of C57BL/6 mice, the most difficult mouse strain to protect from *P. berghei* infection⁴³, which present antigen to CD8+ T cells in the context of H-2-^b MHC-I molecules. Thus the subsequent set of 2976 *P. berghei* antigens were run through MHC-I epitope prediction servers NetMHCpan^{32, 33} and NetMHCcons³⁴, returning peptides with predicted binding affinities to H-2-D^b and H-2-K^b molecules (Figure 1). We chose peptides that were predicted to bind strongly to H-2-D^b and H-2-K^b molecules as well as peptides with a lower predicted affinity to test the doctrine that peptides that bind strongly to MHC-I molecules are more likely to be immunogenic than those that do not¹⁹. We chose predicted strong binders according to their IC50 values and %Rank scores³⁵. IC50 values are a measure of predicted affinity of the peptide to the MHC-I molecule in the form of a dissociation concentration at which half of a reference peptide would be displaced by the predicted peptide. %Rank score returns a

% rank of the predicted peptide to a set of 200,000 random natural peptides³⁵, indicating the relative binding strength of the predicted peptide compared to many others associating with the same MHC-I molecule. Thus, we chose strong binders with IC50 values of less than 50nM and a %Rank score of 0.05 or lower. This corroborates with published CD8+ T cell epitopes against malaria, for example the epitopes from sporozoite antigens thrombospondin related anonymous protein (TRAP₁₃₀₋₁₃₈) and sporozoite-specific gene 20 (S20₃₁₈₋₃₂₆) induce strong CD8+ T cell responses in sporozoite immunised mice²² with low IC50 values of 3.58nM and 4.88nM respectively, and a %Rank scores of 0.01. In contrast, the *NCY₃₉₇₋₄₀₄ peptide also induces strong CD8+ T cell responses in sporozoite immunised mice^{36, 40}; however, the IC50 value and %Rank score are much poorer than one would expect (IC50: 3786.74nM, %Rank score:9). We hypothesize this discrepancy may be due to the paucity of peptides containing cysteine at position 2 in the training sets of NetMHCcons, thus preventing the algorithm to incorporate this preference. Given this, predictions for candidate epitopes starting with the dipeptide NC were repeated by replacing these residues with the more favoured V at P1 and S at P2. When our protein dataset was re-assessed, the top predicted strong binders with an original NC in position 1 and 2 (n=20) or C in position 2 (n=34) were also chosen for synthesis.

Figure 1 – Flow chart for CD8+ T cell epitope discovery

Genes upregulated in the sporozoite and liver stages of P. berghei, P. voelii and P. falciparum were retrieved and converted into P. berghei through PlasmoDB. From the 2976 genes, 586 novel peptides were selected for batch synthesis based on a number of parameters. Using NetMHCpan in the first instance we chose peptides that were predicted to bind strongly to H-2-D^b and H-2-K^b molecules with an IC50 affinity of under 22nM and a %Rank score of 0.05 or below (n=349) and additionally, 54 weaker binding peptides with affinity IC50 values ranging from 22.381-388.44, but always a %Rank score of 0.5 or below. We later used NetMHCcons for prediction of MHC-I epitopes, choosing peptides with an affinity of under 22nM and a %Rank score of 0.05 or below (n=98) and additionally, 30 weaker binding peptides with predicted IC50 values ranging from 23.05-531.38, also with a %Rank score of 0.5 or below. Additionally, with reference to the previously shown immunogenic *NCY₃₉₇₋₄₀₄ peptide^{36, 40}, which during the project returned a very high IC50 value and %Rank score, NetMHCcons predictions were repeated to consider NC in positions 1 and 2 as not so deleterious for binding by mutating for a more favourable amino acid binding motif, VS. When our dataset was re-assessed by the modified algorithm, the top predicted strong binders with NC in position 1 and 2 (n=20) or C in position 2 (n=34) were also chosen for synthesis. From 586 synthesised peptides, 43 peptides induced IFN- γ responses above a cut-off calculated by finite mixture model based on mean + 3 S.D. of the negative population. These 43 peptides and an extra 52 peptides from throughout the remaining responding peptides were chosen for synthesis at higher purity. 9 peptides induced IFN- γ responses above a cutoff calculated by assessing responses to the irrelevant peptide SIINFEKL, derived from Gallus gallus ovalbumin.

Thus, 586 novel peptides from 403 P. berghei proteins, were synthesised and tested. Peptides were synthesised for first pass screening and used for ex vivo restimulation of splenocytes from mice twice immunised with P. berghei sporozoites under azithromycin cover. Azithromycin was used to achieve the greatest repertoire of antigen expression by liver stage parasite in the liver³⁰, without induction of a blood stage infection, to aid identification of novel liver stage epitopes. Antigen experienced CD8+ T cells, expressing the surrogate marker CD11a⁴⁴, were assessed for IFN- γ production by intracellular cytokine staining and flow cytometry (Figure 2A,B). A finite mixture model (FMM) was used to determine which peptides induced positive responses and should be resynthesised at a higher purity. We used an FMM to separate all the 586 peptides into a positive and a negative population based on the IFN- γ responses they induced. Following this, a cut-off was derived, consisting of the mean + 3 S.D. of the negative population. This led to 43 novel peptides rising above this cut-off (Figure 2C and Appendix 1). These peptides we were sure were true positives based on the initial peptide screens. Given that the difference in response of the lowest positive peptides (of the 43 above the cut-off) and those in the negative population was guite small (Figure 2B), we wanted to ensure against false negative assignment. An additional 52 novel peptides were carried forward, drawing peptides at random from throughout the list of negative hits below the cut off, to be re-synthesised and re-tested. Choosing at least the same number of peptides from below the cut-off as positive peptides would also allow us to demonstrate that our experimental strategy of peptide restimulation was reliable and could identify responsive CD8+ T cell epitopes effectively.

During re-screening, the capacity of these 95 novel peptides to stimulate their cognate CD8+ T cells to produce IFN- γ was assessed by comparison with a series of positive controls: CD8+ T cell epitopes from published papers. Previously, only 5 papers had been published which identified 10 novel CD8+ T cell epitopes from *P. berghei* with a H-2-^b MHC-I allele restriction^{22, 37-40}. Only 2 of these epitopes were identified in the pre-

ervthrocvtic stage (from sporozoites²²), while the remainder were discovered in the blood stages^{37-40, 45}. However, we show in a recent paper that 4 of the epitopes identified from blood stage studies, also have cross-stage reactivity with pre-erythrocytic stages³⁶, in corroboration with evidence of cross-stage reactivity against the *NCY₃₉₇₋₄₀₄ epitope⁴⁰. From 95 novel peptides, we identified nine peptides that report consistent production of IFN-γ from antigen specific CD8+ T cells, above background responses using a cut-off based on the response to an irrelevant H-2-K^b restricted peptide, SIINFEKL (Figure 2D and Appendix 1). Interestingly the highest responding epitope is a refinement of the S20₃₁₈₋₃₂₆ epitope²². Originally published as a 9mer, the 8mer epitope we describe here lacks a phenylalanine at the C-terminus but induces a higher response than the 9mer. 3 further completely novel epitopes also give convincing comparable responses to those induced by the published GAP5040-48³⁷, RPA1227-234³⁸ and S20318-326²² peptides (Figure 2E). Our data suggests that azithromycin may have aided our identification of novel epitopes from proteins expressed in the liver stage, as six out of the nine highest responders are from proteins expressed during the liver stages²⁷. Additionally, we reiterate that trained algorithms, which predict peptides that will bind strongly to MHC-I molecules, are a successful and useful tool in identifying novel CD8+ T cell epitopes.

We also assessed the responses to our novel epitopes, following a single sporozoite immunisation to see if responses were boostable. At an individual level, seven novel epitopes and three published peptides induced higher IFN γ production from CD8+ T cells following a second immunisation, though none survived Benjamini-Hochberg adjustment for false discovery (Figure 3).

Figure 2 – Novel peptide restimulation of splenocytes from mice immunised with sporozoites under azithromycin prophylaxis

Mice (n=3-6) were immunised twice with P. berghei ANKA sporozoites under azithromycin prophylaxis. Splenocytes were harvested 14 days after the last immunisation and pooled. 2x10⁶ pooled splenocytes were restimulated with peptides at a final concentration of 10µg/ml in the presence of Brefeldin A for 5-6 hours. Splenocytes were stained for assessment by flow cytometry to identify CD8+ T cells expressing IFN- γ and CD11a as a marker of antigen experience. (A) Flow cytometry gating strategy used to gate CD8+ T cells. (B) The magnitude of responses induced by 586 novel peptides synthesised at batch (as synthesised) purity level in terms of percentage of IFN-y+ CD11a+ CD8+ T cells. The dashed line shows the cut-off derived by finite mixture model calculation (mean + 3 S.D. of negative population). Each peptide was assayed in at least two separate experiments. (C) The 42 peptides that induced responses above the cutoff. (D) The magnitude of responses induced by 95 novel peptides (black bars) and published peptides (red bars) synthesised at a purity of >70% batch. The dashed line shows a cut-off defined by using an irrelevant peptide (mean + 3 S.D. of responses induced by SIINFEKL). Results shown are mean results ± SEM for each peptide with each peptide assayed in at least two separate experiments. (E) The top nine novel peptides (black bars) and top six published peptides (red bars) that induced responses above the cut-off (as shown in D).

Figure 3 – CD8+ T cell responses to novel epitopes are not significantly boosted by a secondary homologous immunisation

Mice (n=3-6) were immunised once (light grey bars) or twice (dark grey bars) with *P*. *berghei* ANKA sporozoites under azithromycin prophylaxis. $2x10^6$ pooled splenocytes harvested 14 days after the last immunisation and restimulated with 18 high responding novel peptides and 5 high responding published peptides at a final concentration of 10μ g/ml in the presence of Brefeldin A for 5-6 hours. Splenocytes were stained for assessment by flow cytometry to identify the magnitude of CD8+ T cell responses through expression of IFN- γ and CD11a as a marker of antigen experience as before. Results shown are mean results ± SEM for each peptide pooled from at least two experiments. P-values are from unadjusted empirical Bayes t-test⁴¹; with Benjamini-Hochberg⁴² false discovery (5%) no q-values were statistically significant (*, <0.05).

What makes a peptide immunogenic?

To help define the hallmarks of immunogenic CD8+ T cell epitopes, we performed a feature analysis comparing the proteins containing immunogenic epitopes with the remainder of the dataset. 14 different derivative proteins, within which our 15 highest responding epitopes (nine novel and six published) can be found, made up the immunogenic dataset. The features of these 14 proteins were compared to 10,000 groups of 14 proteins selected at random from the remaining 2,857 proteins in the data set. The 105 largest proteins (sizes above 4500aa) were excluded from analysis as some of the prediction software programs introduce errors when sizes exceed this threshold. We assessed for a variety of structural features, functions, subcellular locations and biophysical properties (Table 1).

From this analysis, some features were enriched in our positive cohort (Table 2) and some were depleted (Table 3). Most strikingly, both secretory pathway and signal peptide, and cell envelope and transmembrane helix features appeared enriched, identified by independent prediction methods. This gives power and confidence to the prediction software results and corroborates previous suggestions for associations between secreted proteins, from intracellular non-viral pathogens²⁸, and enhanced CD8+ T cell responses. However, other theories that had been proposed to improve immunogenicity of CD8+ T cell epitopes were not reflected in this study. In the context of *P. berghei*, we did not find a correlation to the position of immunogenic peptides within a protein and the magnitude of their response as previously described in *Toxoplasma gondii*²⁹.

We were also unable to find a correlation between antigen expression, using data from PlasmoDB³¹, and immunogenicity.

Prediction tool	Classification	Feature
	Functional category	Amino acid biosynthesis
		Biosynthesis of cofactors
		Cell envelope
		Cellular processes
		Central intermediary metabolism
		Energy metabolism
		Fatty acid metabolism
		Purines and pyrimidines
		Regulatory functions
		Replication and
		transcription
ProtFun-2.2 ^{46, 47}		Translation
		Transport and binding
	Enzyme/non-enzyme	Enzyme
		Non-enzyme
		Oxidoreductase (EC 1)
		Transferase (EC 2)
	Enzyme class	Hydrolase (EC 3)
		Isomerase (EC 4)
		Ligase (EC 5)
		Lyase (EC 6)
		Signal transducer
		Receptor
	Gene Ontology category	Hormone
		Structural protein

		Transporter
		lon channel
	Gene Ontology category	Voltage-gated ion channel
		Cation channel
		Transcription
ProtFun-2.2 ^{46, 47}		Transcription regulation
		Stress response
		Immune response
		Growth factor
		Metal ion transport
	Sub-cellular location	Secretory pathway
TargetP-1.1 ^{48, 49}		Mitochondrial location
		Other location
TMHMM-2.0 ⁵⁰	Transmembrane helices in proteins	Transmembrane helix
IUPred ⁵¹	Disorder	Long disorder
		Short disorder
PlasmoDB ³¹	Expression data	Expression
In-house script	Hydrophobicity	Hydrophobicity
SignalP-4.1 ⁵²	Signal peptide and cleavage sites	Signal peptide
In-house script	Molecular weight	Molecular weight
In-house script	Isoelectric point	Isoelectric point
NetMHCpan-2.8 ³²	MHC binders density	SIR score

Table 1 – Prediction of protein features

The prediction methods used to determine the enrichment and depletion of features in proteins that contain immunogenic CD8+ T cell epitopes.

Enriched features		
Classification	Feature	
Functional category	Cell envelope	0.0042
	Transport and binding	0.0082
Sub-cellular location	Secretory pathway	0.0193
Signal peptide and cleavage sites	Signal peptide	0.0160
Transmembrane helices in proteins	Transmembrane helix	0.0474

Table 2 – The enrichment of features in immunogenic proteins

Features enriched in those 14 proteins harbouring the highest immunogenic epitopes from Figure 2E (9 novel peptides and 6 published peptides) compared to 10,000 random sets of 14 proteins from the remaining 2857 proteins in the dataset, including those containing peptides below the cut-off in Figure 2E.

Depleted features		
Classification	Feature	
Functional category	Cellular processes	0.0369
	Replication and transcription	0.0424
Gene Ontology category	Voltage-gated ion channel	0.0241
	Immune response	0.0306
Disorder	Short disorder	0.0398

Table 3 - The depletion of features in immunogenic proteins

(A) Features depleted in those 14 proteins harbouring the highest immunogenic epitopes from Figure 2E (9 novel peptides and 6 published peptides) compared to 10,000 random sets of 14 proteins from the remaining 2857 proteins in the dataset, including those containing peptides below the cut-off in Figure 2E.

Accounting for more of the functional CD8+ T cell response

It has been noted that the majority of epitopes that make up the CD8+ T cell repertoire specific to *Plasmodium*, as well as other arms of the adaptive immune system, have yet to be discovered. Doll et al showed that 15% of the antigen-experienced (CD11a^{hi}) CD8+ T cell population induced after a single immunisation with radiation attenuated sporozoites produce IFN- γ with specificity for just four epitopes, determined by summing the four individual peptide restimulation responses together⁵³. We asked, is it possible to account for more IFN- γ producing effector CD8+ T cells by restimulating with pooled peptides? Using this approach, we investigated whether we could account for antigen-specificity in a greater proportion of antigen-experienced CD8+ T cells induced following immunisation by restimulating with pools of peptides from our screens.,

We restimulated with a pool of 17 novel epitopes, 7 published peptides and a combined pool of 24 peptides. The 17 novel epitopes were chosen for pooling based on their high immunogenicity across several experiments in comparison to the irrelevant H-2-K^b restricted peptide, SIINFEKL. The 7 published peptides included the 6 highest responding published peptides used as controls in this study: TRAP₁₃₀₋₁₃₈, S20₃₁₈₋₃₂₆, GAP50₄₀₋₄₈, RPA1₂₂₇₋₂₃₄, BLN₅₉₂₋₅₉₉, *NCY₃₉₇₋₄₀₄ as well as the novel S20 8mer peptide identified in this study. A pool of 24 peptides combined these two groups. Splenocytes were restimulated with pools of a final concentration of 2µg/ml/peptide, in addition to restimulation with individual peptides at the same final concentration of 2µg/ml.

Compared to around 4% in naïve mice, around 25% of the total splenic CD8+ T cell population from mice immunised twice with sporozoites with azithromycin prophylaxis, exhibited a CD11a^{hi} phenotype (Figure 4A-C). Comparing the responses to individual peptides, pooling the 7 published peptides restimulated around 20% of this compartment to produce IFN- γ , up from a maximum of nearly 4% IFN- γ production following restimulation with just VNYSFLYL (Figure 4B and 4D). Simply added, the combined

response to these 7 peptides should have been 30%. Pooling the 17 novel epitopes did not massively increase the proportion of IFN- γ + producing cells accountable compared to individual peptide restimulation. When splenocytes were restimulated with the 24 peptide pool, the proportion of cells producing IFN- γ was reduced (~16%) compared to that seen when restimulating with the 7 published peptide pool. Simply added, the combined response to these 24 peptides should have been 35%. The same trend can be seen when the proportion of IFN- γ + CD11a+ cells from the total CD8+ T cell population is gated for (Figure 4E and 4F) While, we have assigned antigen-specificity to a greater proportion of the sporozoite immunisation induced CD8+ T cell response than previously noted⁵³, our methodology suggests there may be a ceiling to the maximum proportion of IFN- γ producing cells that can be visualised using this approach. By pooling peptides in this system, we may be underestimating the proportion of antigen-specific CD8+ T cells that can be determined compared to simplistically summing individual responses.

Figure 4 – Restimulating splenocytes with a pool of peptides can increase the production of IFN- γ by CD8+ T cells and allow more of the total CD11a^{hi} CD8+ T cell response to be accounted for

Mice were immunised twice with P. berghei ANKA sporozoites under azithromycin prophylaxis (n=3-4). 2x10⁶ splenocytes harvested 14 days after the last immunisation were restimulated with a pool of 7 high responding published peptides (hi pub 7), 17 high responding novel peptides (novel 17) or a combined pool of 24 peptides (novel + hi pub 7) from both novel and published groups. Each peptide within the pool was at a final concentration of 2µg/ml. Restimulation with individual peptides was also at a concentration of 2µg/ml. (A) Flow cytometric example of the proportion of CD11a^{hi} CD8 T cells from naive mice splenocytes compared with (B) splenocytes from immunised mice and the proportion of IFN-y producing CD8+ T cells from this population when restimulated with VNYSFLYL. (C, D) The left hand panel of the graphs show the proportion of (C) CD11a^{hi} CD8+ T cells and (D) IFN-y producing CD11a^{hi} CD8+ T cells induced by individual peptide restimulation, with the right hand panel of the graphs showing the proportions of the same groups of cells following pooled peptide restimulation. (E) Flow cytometric example of the proportion of IFN- γ + CD11a+ cells gated from total CD8+ T cells. (F) The left hand panel of the graph show the proportion of IFN- γ + CD11a+ cells gated from CD8+ T cells induced by individual peptide restimulation and the right hand panel of the graphs shows the proportions of the same groups of cells following peptide pool restimulation. (C, D, F) Individual wells stimulated with individual peptides (left panel) or pooled peptides (right panel) are shown as single points as well as mean result. This figure shows results from one representative experiment from three independent experiments.

DISCUSSION

In our study, we have identified nine novel immunogenic CD8+ T cell epitopes, against pre-erythrocytic P. berghei proteins, using MHC-I epitope prediction methods. Using rodent models only epitopes from three sporozoite stage antigens (in *P. berghei*^{22, 54} and P. yoelii⁵⁵) and two liver stage antigens (in P. yoelii⁵⁶ and very recently in P. berghei⁵⁷) have previously been published. Additionally several other CD8+ T cell epitopes had been discovered in the blood stage³⁷⁻⁴⁰, with some being found to have cross-stage reactivity in the pre-erythrocytic stages^{36, 40}. Four of the novel epitopes give responses stronger than the recently published S20₃₁₈₋₃₂₆ epitope²² and GAP50₄₀₋₄₈ epitope³⁷. The epitope with the highest IFN-y response, even greater than our controls, was a refinement of that same S20₃₁₈₋₃₂₆ epitope²², with a loss of a phenylalanine from the Cterminus likely allowing more favourable binding to the H-2-K^b MHC-I molecule^{58, 59} which may have improved responses. All nine epitopes had an IC50 binding affinity of less than 50nM and a %Rank score of 0.15 or lower, which strengthens the notion that strong binding peptide-MHC interactions produce strong immunogenic responses¹⁹⁻²¹. This further highlights the value of the epitope prediction software used^{33, 34} as effective methods of identifying novel CD8+ T cell epitopes. Most pertinently, all nine antigens, which harbour the novel epitopes discovered here, have orthologous genes in nearly all the five human infective species of *Plasmodium* highlighting their relevance in human malaria vaccine research.

In parallel, within our workflow, we also looked into the anomalous immunogenic *NCY₃₉₇₋₄₀₄ peptide. In our initial screenings, we found that this peptide gave a very high IC50 value and %Rank score, suggesting it binds much more weakly than other epitopes we had predicted. However, in the initial paper it was discovered in, this peptide gave strong immunogenic responses against the blood stages of *P. berghei* infection⁴⁰ and exhibits cross-stage reactivity with sporozoites^{36, 40}. Given the lack of experimental data containing asparagine in position 1 and cysteine in position 2 for MHC-I restricted peptides, NetMHCcons may be biased towards considering these configurations as

deleterious. To address this bias, modified versions of the NC peptides were introduced to predict binding affinity, mutating asparagine to valine and cysteine to serine in positions 1 and 2 respectively. High scoring mutants were selected and their original versions synthesised and assayed for immunogenicity as before. Nonetheless, we were unable to enrich our panel of high responding peptides with NC or C2 peptides. It may not be a true anomaly as six of the other nine published epitopes also exhibit high affinity scores^{38, 39}, which would have excluded them from our selection criteria of an IC50 of below 50nM and/or %Rank of below 0.5. However, as we progressed in this project the predicted scores for these peptides decreased as the algorithms were retrained with more data from more diverse datasets. Nonetheless, the predicted scores for these peptides that this may be a *Plasmodium* specific phenomenon, particularly for cross-stage reactive peptides.

With this in mind, could there be a defining feature of the derivative proteins from which these epitopes arise, which induce such strong CD8+ T cell responses? It became apparent that signal peptides and transmembrane regions were enriched in the positive cohort, further suggesting that secreted proteins are associated with increased antigen presentation and CD8+ T cell responses as previously proposed²⁸ and corroborating with results from tumour vaccination studies^{60, 61} for an association between transmembrane domains and heightened CD8+ T cell responses. For peptides to be loaded onto MHC-I molecules, it is generally considered that antigens must be exposed to the cytosol to be processed by the proteasome. Thus, in the context of malaria liver stages, it is feasible that a parasite protein could be directed away by a signal peptide, transported across the parasitophorous vacuole membrane (PVM) and into the cytosol of the hepatocyte to be presented on an infected hepatocyte. Equally, if the protein were associated with the PVM, a portion of the transmembrane region would be exposed to the hepatocyte cytoplasm, providing an avenue for degradation by the proteasome. However, as can be seen by the large number of negative results compared to our comparatively small

immunogenic cohort, the strength of the suggestions we can make is limited by the size of the dataset.

Nonetheless, processing of pre-erythrocytic proteins is likely very complicated and the role of signal peptides, transmembrane domains and cell envelope association in relation to immunogenicity has not fully been realised, with their presence unlikely to be an absolute property that will result in immunogenic peptides. The mechanism for presentation of *Plasmodium* pre-erythrocytic antigens on infected hepatocytes has still yet to be fully characterised. Equally, we have not determined here whether nonresponding peptides are not being presented on the surface of infected hepatocytes following MHC loading or if the derivative proteins fail to reach the cytosol and MHC loading machinery in the first instance. Cockburn et al. elegantly showed that CSP must arrive to the hepatocyte cytosol, and like dendritic cells, TAP1 is required for peptides to be loaded onto MHC molecules⁶². However, they also show that CSP does not have to arrive in the cytosol as a result of its PEXEL motif, a *Plasmodium* specific export signal discovered in blood stages^{63, 64}, nor does it traffic in an endosome-cytosol translocation manner as was shown to be possible for presentation on dendritic cells⁶². While this suggests a role for secretion in antigen presentation, more work is required to assess how peptides from antigens in the liver stages are presented and how this relates to CD8+ T cell responses. Are antigens from certain subcellular locations in the parasite more favourably presented? This will be important for focused vaccine target discovery to find protective antigens. It has already been shown in Toxoplasma gondii that targeting proteins with immunogenic epitopes to dense granules (facilitating increased protein secretion into the parasitophorous vacuole increases the protective cognate CD8+ T cell response⁶⁵. It has also been shown that signal peptide regions from *M. tuberculosis* proteins contain a greater abundance of epitopes making them more inherently immunogenic⁶⁶, but we have not tested this concept in the context of *P. berghei*.

Another notion that has been shown in *Toxoplasma gondii* is that making a subdominant CD8+ T cell epitope more C-terminal enhances immunodominance. Feliu et al. showed that the presence of the HF10 epitope from the immunodominant GRA6 protein at the C-terminus of the protein was critical for its protective qualities²⁹. Furthermore, appending the subdominant SM9 epitope from GRA4 at this same C-terminal position in GRA6 increased processing, presentation and ultimately protection. They hypothesise this may be due to GRA6 being a vacuolar protein with the C-terminus exposed to the cytosol²⁹. Whilst we find an association for cell membrane and transmembrane regions, we however find no correlation with the position of an epitope in the protein and the IFN- γ response it induces in the context of *Plasmodium*. Equally, given the lack of annotation for many *Plasmodium* genes and proteins we cannot further strengthen arguments that vacuolar or vacuolar membrane protein are more immunogenic.

The expression data we have used to identify whether a protein is expressed in the sporozoite, liver stage or both is sparse compared to that available for blood stages of *Plasmodium*. While it may be difficult to draw correlations between immunogenicity and specific life stages, we report that there seems to be no correlation between the level of proteins expressed in the pre-erythrocytic stages and immunogenicity. This, however agrees with previous reports using other systems that also fail to find a correlation between antigen expression levels and CD8+ T cell responses⁶⁷, (Chapter 2: Müller and Gibbins et al, paper in preparation).

Part of this study included trying to account for the total IFN-γ producing compartment of the CD8+ T cell population induced in response to *Plasmodium berghei* sporozoite immunisation. Multiple immunisations of C57BL/6 mice with attenuated sporozoites can protect them from subsequent challenge⁸ in a CD8+ T cell manner¹⁴ however the entire epitope repertoire with which CD8+ T cells respond to *Plasmodium* is not known. Hence, we attempted to account for an increased proportion of CD8+ T cells capable of

producing IFN- γ by pooling our novel epitopes with previously published epitopes. Around a quarter of the total CD8+ T cell population exhibit a CD11a^{hi} antigenexperienced phenotype following a double homologous immunisation with sporozoites attenuated by azithromycin prophylaxis. We were able to account for 20% of the IFN-y producing CD8+ T cells of the CD11a^{hi} compartment by restimulating with 6 published peptides and the novel S20 8mer VNYSFLYL. The proportion of cells producing IFN- γ was not increased when we combined 17 novel epitopes into this pool, in fact the proportion decreased. This may be because there are not enough antigen presenting cells in the system, with competition for presentation of peptides and a potential dominance for certain epitopes. Nonetheless, we have been able to show that an increased proportion of *Plasmodium berghei* antigen-specific CD8+ T cells producing IFN- γ can be accounted for by pooling peptides, in excess of that shown previously even without considering the strong responses to CSP⁵³. With more antigen presenting cells in the assay, such as a dendritic cell line capable of superior antigen presentation to splenic cells, this may prove a useful method to determine the full repertoire of antigens that induce CD8+ T cell responses following sporozoite immunisation.

Despite the obvious benefit that immunogenic CD8+ T cell epitopes can give as read outs of correlates of protection, the importance of antigen immunogenicity may be overstated, misleading the efforts to characterise vaccine candidates. We showed recently, that SIINFEKL expressed as part of the UIS4 protein, a vacuolar membrane protein expressed soon after sporozoites invasion of hepatocytes^{68, 69}, is poorly immunogenic compared to SIINFEKL expressed in the context of sporozoite surface protein CSP. Despite this, when mice vaccinated with adenovirus expressing ovalbumin are challenged with sporozoites expressing SIINFEKL in the context of CSP or UIS4, both mice are protected with lower parasite liver loads and comparable high levels of sterile protection (Chapter 2: Müller & Gibbins et al, paper in preparation).

Thus, continued identification of *Plasmodium* antigens expressed in the pre-erythrocytic stages and dissection of the immune responses they induce is required to further inform vaccine research and aid development of an efficacious vaccine against malaria.

ACKNOWLEDGEMENTS

We would like to acknowledge Katja Müller for her technical assistance and Kai Matuschewski for permission to perform the initial screens in his laboratory. We would like to thank Will Stone for guidance on running the statistical analysis used to compare boosted responses. We would like to thank Ernest Diez-Benavente and Marta Campillo Poveda for their critical reading of the manuscript.

JCRH was funded by grants from The Royal Society (University Research Fellowship UF0762736/UF120026 and Project Grant RG130034) and the National Centre for the Replacement, Refinement & Reduction of Animals in Research (Project Grant NC/L000601/1) This project was also part funded by Royal Society International Exchange Grants IE131078 and IE14111. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ADDENDUM TO CHAPTER 6: Identification of non-CSP targets of CD8+ T cell responses to malaria pre-erythrocytic stages in a BALB/c model

INTRODUCTION

CSP-specific responses have been the standard in measuring cellular responses to malaria pre-erythrocytic stages in fundamental immunological studies in mice. The responses to the immunodominant CD8+ T cell epitope of *P. berghei* CSP (Chapter 5: Gibbins et al., paper in preparation) have been widely assessed using BALB/c mice as a model. This is because, in contrast to C57BL/6 that cannot present the SYIPSAEKI epitope due to its MHC restriction, BALB/c mice can present SYIPSAEKI on MHC class I H-2-K^d molecules. Here we attempted to uncover CD8+ T cell epitopes from non-CSP pre-erythrocytic antigens from *P. berghei* and *P. yoelii*, presented in the same mouse model where CD8+ T cell responses to SYIPSAEKI are immunodominant. We used an MHC-I prediction algorithm ^{70, 71} to identify potential epitopes from published and unpublished *P. berghei* and *P. yoelii* sporozoite and liver stage transcriptomic and proteomic data sets ^{23, 24, 72, 73} and *ex vivo* restimulation of splenocytes from immunised mice to screen the candidate epitopes.

RESULTS AND DISCUSSION

Identification of a novel epitope that induces reproducible CD8+ T cell responses and exhibits *Plasmodium* cross-species reactivity. Using *ex vivo* peptide restimulation of splenocytes from *P. berghei* RAS immunised mice, ICS and flow cytometry (Figure 4A), we identified a novel CD8+ T cell epitope exhibiting subdominant IFN- γ responses above the cut-off (Figure 4B). This epitope, LYIKSINNI, also exhibited cross-reactivity between species with consistent stimulation of IFN- γ production from CD8+ T cells when mice were immunised with *Pb*WT or *Py*WT under azithromycin prophylaxis³⁰ (Figure 4C). Immunisation with RAS and sporozoites under azithromycin 250

prophylaxis have been shown to give comparable proportions of antigen experienced CD8+ T cells⁷⁴, (Chapter 3: Gibbins et al., paper in preparation). Our novel epitope, LYIKSINNI, derives from the S14 protein, originally identified in P. yoelii 23 (PY17X 0608400 aa286-294) with total epitope sequence equivalence to P. berghei PBANKA 0605900 (aa247-255). At present this protein is a conserved uncharacterised antigen expressed in the sporozoite^{23, 26} and liver stage²⁷ with an unknown function. Our results independently confirm IFN-y production by S14-specific CD8+ T cells, which have recently been shown to be induced in BALB/c mice following multiple immunisations with a DNA vaccine based on P. yoelii S14 (PY17X_0608400)75. DNA vaccination with P. yoelii S14 led to a reduction in parasite load in the liver when mice were challenged with P. yoelii, with the protection only partially reliant on CD8+ T cells⁷⁵. Additionally, the S14 epitope showed stronger responses compared to another recently published liver-stage antigen, ribosomal protein L3 epitope, discovered in *P. yoelii* ⁵⁶ (Figure 4C) though we were unable to replicate the strong responses recorded by the authors using ELiSPOT⁵⁶ in our assay. In addition, our novel epitope induces responses in mice immunised with PbCSP^{SINFEKL} (Figure 4C) in the absence of CSP responses. Comparable CD8+ T cell responses to S14 presented here can also be seen when mice are immunised with one RAS inoculum of PbWT or PbCSP^{SIINFEKL} or two RAS immunisations with PbWT, PbCSP^{SIINFEKL} or another transgenic parasite also lacking the SYIPSAEKI epitope of CSP (unpublished and data not shown).

FIGURE 5

Identification of a novel non-CSP CD8+ T cell epitope. (A) The flow cytometry gating strategy used to determine proportions of IFN- γ + CD11a+ CD8+ T cells from splenocytes from immunised mice. (B) BALB/c mice (n=4) were twice immunised with *Pb*WT RAS. Spleens were harvested and pooled splenocytes restimulated with a panel of 144 predicted CD8+ T cell epitope peptides. The bar chart shows the magnitude of the responses to the top 20 most responsive peptides, in terms of percentage of IFN- γ + CD11a+ CD8+ T cells. CSP: SYIPSAEKI; S14: LYIKSINNI. The cut-off is mean + 3 S.D. calculated by a finite mixture model. The data is representative of three separate experiments. (C) BALB/c mice (n=3-5) were immunised twice with *Pb*WT (black bars), *Py*WT (grey bars) or *Pb*CSP^{SIINFEKL} sporozoites (white bars) under azithromycin cover. Spleens were harvested and pooled splenocytes were restimulated with SYIPSAEKI from *Pb*CSP⁵⁴, SYVPSAEQI from *Py*CSP⁵⁵, LYIKSINNI from S14 and GYKSGMSHI from L3⁵⁶. Data shown is the mean ± SEM from four separate experiments (only one result shown for *Pb*CSP^{SIINFEKL}).

This highlights the identification of a subdominant CD8+ T cell response in a mouse model, where the majority of the response seen is against CSP (Figure 5B-C). These results also highlight the use of transgenic parasites which lack the immunodominant epitope of CSP we describe in this paper. While CSP^{SIINFEKL}, which lacks the immunodominant epitope of CSP, has helped confirm the validity of the novel S14 epitope, the immunodominant nature of CSP in this mouse model, may be precluding the ability to identify further epitopes as the response to S14 was not increased in the absence of SYIPSAEKI presentation. The profile of CD8+ T cell responses observed from BALB/c mice certainly contrast with the profile of responses to novel CD8+ T cell epitopes assaved using C57BL/6 mice (Chapter 6: Gibbins et al., paper in preparation). It is possible that the CD8+ T cell response to SYIPSAEKI is swamping the CD8+ T cell response to other antigens. Alternatively, the host genetics of these two mice may play a role in the epitopes that are presented. The use of an appropriate animal models and discovery strategies are crucial to finding more targets against the *Plasmodium* parasite. to best inform vaccine research and push development towards an efficacious malaria vaccine.

ADDITIONAL MATERIALS AND METHODS

Mosquitoes were infected with *Pb*WT, *Pb*CSP^{SIINFEKL} and *P. yoelii* XNL (*Py*WT) parasites and kept in 80% humidity incubators (Panasonic) at 20°C (*Pb*) or 26°C (*Py*). Proteins and genes shown to be upregulated in the pre-erythrocytic stages of malaria from published *P. berghei* and *P. yoelii* sporozoite and liver stage transcriptomic and proteomic datasets ^{23, 24, 27, 72, 73}, orthologs of LSA-1^{31, 76} and unpublished data (Alyssa Ingmundson, personal communication) were used to identify novel CD8+ T cell epitopes with sequences acquired from PlasmoDB³¹. 9-mer peptide sequences with a H-2-K^d and H-2-L^d MHC-I restriction were predicted *in silico* using NetMHC⁷⁰ and IEDB⁷¹. 144 peptides with strong predicted binding were synthesised and purchased from Peptides and Elephants (Potsdam, Germany). For peptide screening, mice were immunised twice

intravenously with 10^4 *Pb*WT RAS, two weeks apart. For comparing CD8+ T cell responses between *P. berghei* and *P. yoelii* immunised mice, 10^4 sporozoites were administered intravenously twice (two weeks apart) with azithromycin (Pfizer) given at a dose of 240 mg/kg intraperitoneally on the same day as immunisation and another dose the day after immunisation³⁰. Two weeks after the last immunisation, spleens were harvested from immunised mice and 2-4x10⁶ splenocytes were restimulated with peptides and assayed for flow cytometry as before.

REFERENCES

- 1. Carter, R. and K.N. Mendis, *Evolutionary and historical aspects of the burden of malaria*. Clin Microbiol Rev, 2002. **15**(4): p. 564-94.
- 2. WHO, *World Malaria Report 2017* 2017, World Health Organisation: Geneva, Switzerland.
- 3. Yoshida, N., et al., *Hybridoma produces protective antibodies directed against the sporozoite stage of malaria parasite*. Science, 1980. **207**(4426): p. 71-3.
- 4. Potocnjak, P., et al., *Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection.* J Exp Med, 1980. **151**(6): p. 1504-13.
- 5. Yoshida, N., et al., *Biosynthesis of Pb44, the protective antigen of sporozoites of Plasmodium berghei.* J Exp Med, 1981. **154**(4): p. 1225-36.
- 6. Vanderberg, J.P., *Reflections on early malaria vaccine studies, the first successful human malaria vaccination, and beyond.* Vaccine, 2009. **27**(1): p. 2-9.
- 7. Rts, S.C.T.P., *Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.* Lancet, 2015. **386**(9988): p. 31-45.
- 8. Nussenzweig, R.S., et al., *Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei.* Nature, 1967. **216**(5111): p. 160-2.
- 9. Gwadz, R.W., et al., *Preliminary studies on vaccination of rhesus monkeys with irradiated sporozoites of Plasmodium knowlesi and characterization of surface antigens of these parasites.* Bull World Health Organ, 1979. **57 Suppl 1**: p. 165-73.
- 10. Clyde, D.F., et al., *Immunization of man against sporozite-induced falciparum malaria*. Am J Med Sci, 1973. **266**(3): p. 169-77.
- Rieckmann, K.H., et al., Letter: Sporozoite induced immunity in man against an Ethiopian strain of Plasmodium falciparum. Trans R Soc Trop Med Hyg, 1974. 68(3): p. 258-9.
- 12. Schofield, L., et al., *Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.* Nature, 1987. **330**(6149): p. 664-6.
- Weiss, W.R., et al., CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proc Natl Acad Sci U S A, 1988. 85(2): p. 573-6.
- 14. Doolan, D.L. and S.L. Hoffman, *The complexity of protective immunity against liverstage malaria.* J Immunol, 2000. **165**(3): p. 1453-62.
- 15. Weiss, W.R. and C.G. Jiang, *Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites.* PLoS One, 2012. **7**(2): p. e31247.
- 16. Medica, D.L. and P. Sinnis, *Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes.* Infect Immun, 2005. **73**(7): p. 4363-9.
- 17. Yamauchi, L.M., et al., *Plasmodium sporozoites trickle out of the injection site*. Cell Microbiol, 2007. **9**(5): p. 1215-22.
- 18. Amino, R., et al., *Quantitative imaging of Plasmodium transmission from mosquito to mammal.* Nat Med, 2006. **12**(2): p. 220-4.
- 19. Sette, A., et al., *The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes.* J Immunol, 1994. **153**(12): p. 5586-92.
- 20. Zvi, A., et al., *Novel CTL epitopes identified through a Y. pestis proteome-wide analysis in the search for vaccine candidates against plague.* Vaccine, 2017. **35**(44): p. 5995-6006.
- 21. Teh-Poot, C., et al., *From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics.* J Infect Dis, 2015. **211**(2): p. 258-66.
- 22. Hafalla, J.C., et al., *Identification of targets of CD8(+) T cell responses to malaria liver stages by genome-wide epitope profiling*. PLoS Pathog, 2013. **9**(5): p. e1003303.

- Kaiser, K., et al., Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol Microbiol, 2004. 51(5): p. 1221-32.
- 24. Matuschewski, K., et al., *Infectivity-associated changes in the transcriptional repertoire of the malaria parasite sporozoite stage.* J Biol Chem, 2002. **277**(44): p. 41948-53.
- Lasonder, E., et al., Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity. PLoS Pathog, 2008.
 4(10): p. e1000195.
- 26. Lindner, S.E., et al., *Total and putative surface proteomics of malaria parasite salivary gland sporozoites.* Mol Cell Proteomics, 2013. **12**(5): p. 1127-43.
- 27. Tarun, A.S., et al., *A combined transcriptome and proteome survey of malaria parasite liver stages.* Proc Natl Acad Sci U S A, 2008. **105**(1): p. 305-10.
- 28. Blanchard, N. and N. Shastri, *Topological journey of parasite-derived antigens for presentation by MHC class I molecules*. Trends Immunol, 2010. **31**(11): p. 414-21.
- 29. Feliu, V., et al., *Location of the CD8 T cell epitope within the antigenic precursor determines immunogenicity and protection against the Toxoplasma gondii parasite.* PLoS Pathog, 2013. **9**(6): p. e1003449.
- 30. Friesen, J., et al., *Natural immunization against malaria: causal prophylaxis with antibiotics.* Sci Transl Med, 2010. **2**(40): p. 40ra49.
- 31. Aurrecoechea, C., et al., *PlasmoDB: a functional genomic database for malaria parasites.* Nucleic Acids Res, 2009. **37**(Database issue): p. D539-43.
- 32. Hoof, I., et al., *NetMHCpan, a method for MHC class I binding prediction beyond humans.* Immunogenetics, 2009. **61**(1): p. 1-13.
- Nielsen, M. and M. Andreatta, NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med, 2016. 8(1): p. 33.
- 34. Karosiene, E., et al., *NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.* Immunogenetics, 2012. **64**(3): p. 177-86.
- Lund, O., et al., Bioinformatics identification of antigenic peptide: predicting the specificity of major MHC class I and II pathway players. Methods Mol Biol, 2013. 960: p. 247-260.
- 36. Muller, K., et al., *Evidence of cross-stage CD8+ T cell epitopes in malaria preerythrocytic and blood stage infections.* Parasite Immunol, 2017.
- 37. Howland, S.W., et al., *Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria.* EMBO Mol Med, 2013. **5**(7): p. 916-31.
- Lau, L.S., et al., Blood-stage Plasmodium berghei infection generates a potent, specific CD8+ T-cell response despite residence largely in cells lacking MHC I processing machinery. J Infect Dis, 2011. 204(12): p. 1989-96.
- 39. Poh, C.M., et al., *Damage to the blood-brain barrier during experimental cerebral malaria results from synergistic effects of CD8+ T cells with different specificities.* Infect Immun, 2014. **82**(11): p. 4854-64.
- 40. Lau, L.S., et al., *CD8+ T cells from a novel T cell receptor transgenic mouse induce liverstage immunity that can be boosted by blood-stage infection in rodent malaria.* PLoS Pathog, 2014. **10**(5): p. e1004135.
- 41. Smyth, G.K., *Linear models and empirical bayes methods for assessing differential expression in microarray experiments.* Stat Appl Genet Mol Biol, 2004. **3**: p. Article3.
- 42. Benjamini, Y. and Y. Hochberg, *Controlling the False Discovery Rate a Practical and Powerful Approach to Multiple Testing.* Journal of the Royal Statistical Society Series B-Methodological, 1995. **57**(1): p. 289-300.
- Jaffe, R.I., G.H. Lowell, and D.M. Gordon, *Differences in susceptibility among mouse strains to infection with Plasmodium berghei (ANKA clone) sporozoites and its relationship to protection by gamma-irradiated sporozoites.* Am J Trop Med Hyg, 1990.
 42(4): p. 309-13.

- 44. Rai, D., et al., *Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts.* J Immunol, 2009. **183**(12): p. 7672-81.
- 45. Agnandji, S.T., et al., *Evaluation of the safety and immunogenicity of the RTS,S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization.* J Infect Dis, 2010. **202**(7): p. 1076-87.
- 46. Jensen, L.J., et al., *Prediction of human protein function from post-translational modifications and localization features.* J Mol Biol, 2002. **319**(5): p. 1257-65.
- 47. Jensen, L.J., et al., *Prediction of human protein function according to Gene Ontology categories.* Bioinformatics, 2003. **19**(5): p. 635-42.
- 48. Emanuelsson, O., et al., *Predicting subcellular localization of proteins based on their Nterminal amino acid sequence.* J Mol Biol, 2000. **300**(4): p. 1005-16.
- 49. Nielsen, H., et al., *Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.* Protein Eng, 1997. **10**(1): p. 1-6.
- 50. Sonnhammer, E.L., G. von Heijne, and A. Krogh, *A hidden Markov model for predicting transmembrane helices in protein sequences.* Proc Int Conf Intell Syst Mol Biol, 1998. **6**: p. 175-82.
- 51. Dosztanyi, Z., et al., *IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content.* Bioinformatics, 2005. **21**(16): p. 3433-4.
- 52. Petersen, T.N., et al., *SignalP 4.0: discriminating signal peptides from transmembrane regions*. Nat Methods, 2011. **8**(10): p. 785-6.
- 53. Doll, K.L., et al., *Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses.* J Immunol, 2016. **196**(10): p. 4253-62.
- 54. Romero, P., et al., *Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria.* Nature, 1989. **341**(6240): p. 323-6.
- 55. Weiss, W.R., et al., *Cytotoxic T cells recognize a peptide from the circumsporozoite protein on malaria-infected hepatocytes.* J Exp Med, 1990. **171**(3): p. 763-73.
- Murphy, S.C., et al., A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations. Proc Natl Acad Sci U S A, 2013.
 110(15): p. 6055-60.
- 57. Pichugin, A., et al., *Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen.* Front Immunol, 2018. **9**: p. 91.
- 58. Deres, K., et al., *Preferred size of peptides that bind to H-2 Kb is sequence dependent*. Eur J Immunol, 1992. **22**(6): p. 1603-8.
- 59. DeVette, C.I., et al., *NetH2pan: A Computational Tool to Guide MHC peptide prediction on Murine Tumors.* Cancer Immunol Res, 2018.
- 60. Paster, W., et al., *Structural elements of a protein antigen determine immunogenicity of the embedded MHC class I-restricted T cell epitope*. J Immunol, 2002. **169**(6): p. 2937-46.
- 61. Tran, L., et al., *The immunogenicity of the tumor-associated antigen alpha-fetoprotein is enhanced by a fusion with a transmembrane domain.* J Biomed Biotechnol, 2012.
 2012: p. 878657.
- 62. Cockburn, I.A., et al., *Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo.* PLoS Pathog, 2011. **7**(3): p. e1001318.
- 63. Marti, M., et al., *Targeting malaria virulence and remodeling proteins to the host erythrocyte.* Science, 2004. **306**(5703): p. 1930-3.
- 64. Hiller, N.L., et al., *A host-targeting signal in virulence proteins reveals a secretome in malarial infection.* Science, 2004. **306**(5703): p. 1934-7.
- 65. Grover, H.S., et al., *Impact of regulated secretion on antiparasitic CD8 T cell responses*. Cell Rep, 2014. **7**(5): p. 1716-1728.

- 66. Kovjazin, R., et al., *Signal peptides and trans-membrane regions are broadly immunogenic and have high CD8+ T cell epitope densities: Implications for vaccine development.* Mol Immunol, 2011. **48**(8): p. 1009-18.
- 67. Croft, N.P., et al., *Kinetics of antigen expression and epitope presentation during virus infection*. PLoS Pathog, 2013. **9**(1): p. e1003129.
- 68. Mueller, A.K., et al., *Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface.* Proc Natl Acad Sci U S A, 2005. **102**(8): p. 3022-7.
- 69. Silvie, O., et al., *Post-transcriptional silencing of UIS4 in Plasmodium berghei* sporozoites is important for host switch. Mol Microbiol, 2014. **91**(6): p. 1200-13.
- Lundegaard, C., et al., NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res, 2008. 36(Web Server issue): p. W509-12.
- 71. Vita, R., et al., *The immune epitope database (IEDB) 3.0.* Nucleic Acids Res, 2015.
 43(Database issue): p. D405-12.
- 72. Rosinski-Chupin, I., et al., *Serial Analysis of Gene Expression in Plasmodium berghei salivary gland sporozoites.* BMC Genomics, 2007. **8**: p. 466.
- 73. Wang, Q., et al., *Transcriptome of axenic liver stages of Plasmodium yoelii*. Mol Biochem Parasitol, 2004. **137**(1): p. 161-8.
- 74. Friesen, J. and K. Matuschewski, *Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.* Vaccine, 2011. **29**(40): p. 7002-8.
- 75. Speake, C., et al., *Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein.* PLoS One, 2016. **11**(7): p. e0159449.
- 76. Guerin-Marchand, C., et al., *A liver-stage-specific antigen of Plasmodium falciparum characterized by gene cloning*. Nature, 1987. **329**(6135): p. 164-7.

CHAPTER 7

Discussion

DISCUSSION

SUMMARY OF FINDINGS

The data presented in this thesis has furthered our understanding of the CD8+ T cell immune responses that are induced against the pre-erythrocytic stages of malaria, unveiling antigen-specific and protective responses, with particular focus on antigens expressed in the EEF. I have shown that an EEF vacuolar membrane protein, UIS4, can protect mice from challenge, following vaccination, despite the low magnitude of antigenspecific CD8+ T cell responses induced following RAS immunisation (Chapter 2). The protection induced is comparable to that targeted against the major sporozoite surface protein, CSP, which has been extensively investigated over the years, in part due to its high immunogenicity. This shows that poorly immunogenic antigens do not necessarily make poor vaccine targets. Additionally, I showed that attenuation of sporozoites using radiation or azithromycin drug prophylaxis did not affect CD8+ T cell responses seen against UIS4 (Chapter 3). Extending the expression of UIS4 prior to arrest did not enhance antigen-specific CD8+ T cell responses. To further probe responses to EEF antigens, I showed that mid-late expressed EEF antigens could offer some protection, following vaccination, despite no observable antigen expression in the first 12 hours of EEF development, and induction of low CD8+ T cell responses following sporozoite immunisation (Chapter 4). This, in conjunction with Chapter 2, highlights the potentiality for use of EEF antigens in pre-erythrocytic vaccines, where, if a large proportion of antigen-specific CD8+ T cells could be induced, then a degree of protection can be achieved. Furthermore, with reference to the protection offered by CSP, I have demonstrated that a single CD8+ T cell epitope of CSP is crucial for this protection (Chapter 5). Despite this, in the absence of this epitope, multiple immunisations with a parasite lacking this CSP epitope can provide complete sterile protection indicating that other antigens contribute to the induction of immune responses. From this, I have established novel pre-erythrocytic antigens that induce CD8+ T cell responses following sporozoite immunisation (Chapter 5 and 6). They were discovered in the context of two 261

different mouse models, BALB/c and C57BL/6, which, can or cannot, also present the immunodominant epitope of CSP respectively. Using bioinformatics analysis to predict epitopes, I have identified a novel CD8+ T cell epitope presented in BALB/c mice (Chapter 5) and nine CD8+ T cell epitopes presented in C57BL/6 mice (Chapter 6). These will be useful in providing readouts of immunisation status in addition to the small number of currently known CD8+ T cell epitopes, with a forward view to assessing their role in protection.

POTENTIAL FUTURE RESEARCH

Further probing of CD8+ T cell responses to EEF antigens

Shifts in *Plasmodium* gene expression lead to a distinct repertoire of antigens being expressed only during intra-hepatocyte development¹. Infected hepatocytes have also been shown to be eliminated in a cognate manner; only parasite specific peptides presented on infected hepatocytes by host MHC molecules²⁻⁴ will be destroyed by the corresponding CD8+ T cells. In the context of UIS4, LISP1 and LISP2, I have shown that CD8+ T cell responses to EEF antigens following sporozoite immunisation are poor. The identification of EEF targets has been slow, possibly due to their low immunogenicity. However, we provide a proof of principle that despite their poor CD8+ T cell immunogenicity, EEF antigens can elicit protection, following vaccination and the induction of a large population of antigen-specific CD8+ T cells. This suggests that the induction of protective responses against EEF antigens is no different to that against CSP- a 'numbers game'. It has been shown that induction of a memory anti-CSP CD8+ T cell response, above a threshold of 1% of total peripheral blood lymphocytes, provides long-term protection to mice against sporozoite challenge⁵. The reason for the poor immunogenicity of EEF antigens may revolve around the fact that EEF antigens are only presented on hepatocytes, which have been shown to be poor at priming T cell responses in the tolerogenic liver environment^{6,7}. In contrast, sporozoite surface antigen CSP is presented on hepatocytes as well on dendritic cells in the skin draining lymph nodes, an immune site responsible for CD8+ T cell priming².

Nonetheless, as effective presentation can occur, what remains to be determined is the mechanism for EEF antigen processing and presentation on MHC class I molecules. Cockburn et al showed that peptides from CSP are presented in different pathways depending on whether presentation occurs on dendritic cells or hepatocytes⁸. Cockburn et al also showed that presentation on hepatocytes occurs with CSP epitopes bring loaded onto MHC molecules in an endosomal independent, TAP dependent manner; which indicates that the protein must have made it to the hepatocyte cytosol and been processed by the proteasome⁸. In addition, parasites expressing ovalbumin, containing a PEXEL motif and localising at the PVM, has been shown to be presented better than cytosolic residing ovalbumin indicating a link between export signals and presentation⁹. The presentation of endogenous EEF proteins, associated and not associated with the PVM remains to be fully determined, including the mechanisms used for protein translocation across the PVM into the cytosol. By resolving these mechanisms, we will have a better understanding of the processes involved in the presentation of different parasite antigens, which may uncover subsets of antigens that are preferentially presented but, given the tolerogenic nature of the liver, manage to subvert cellular immune responses. If this was the case, as shown in Chapters 2 and 4, then large population of antigen-specific CD8+ T cells could be induced by vaccination to eliminate developing EEFs, with a combination of antigens likely to be necessary to achieve sterile protection. It is important to remember also that the development of human Plasmodium in the liver is longer than that of rodent *Plasmodium* and so the induction and contribution of different immune responses will likely be different. In addition, the presentation of proteins in humans will vary depending on MHC allele genotype, which will have an obvious effect on vaccine efficacy.

Research into the mode of parasite killing in the liver has also gained momentum, with the rise of intravital imaging and more advanced microscopy techniques. Several groups have visualised CD8+ T cells clustering around infected hepatocytes^{3, 10}, with IFN- γ generally considered the central mediator of protection¹¹ though other effector molecules 263

may act in concert^{12, 13}. With respect to the results I have presented in Chapter 4, one consideration that remains to be resolved is that following vaccination, upon challenge, LISP1 and LISP2 induce a minimal reduction in parasite liver load, yet half of vaccinated mice in a parallel experiment go on to develop sterile protection. As discussed in the chapter, this suggests that the critical window of killing may occur in the final hours of EEF development, possibly because of the delayed activation of memory antigenspecific CD8+ T cells. The delay in parasitaemia in those mice that are not protected also suggests that there is considerable killing of EEFs, but there may just not be enough time to kill all the infected hepatocytes. This may be overcome by inducing even greater numbers of antigen-specific CD8+ T cells. Nonetheless, visualisation of EEF killing inside the livers of sporozoite challenged vaccinated mice, at several time points up to merozoite release, would be pertinent to fully determine the time at which antigen presentation on infected hepatocytes must occur for sufficient memory CD8+ T cells to be activated and protect. The later protein expression is turned on in the parasite, the later the protein could possibly be processed in the hepatocyte cytosol, leading to later MHC-peptide presentation and signalling to CD8+ T cells to mount a liver-wide response. In addition, it would be useful to generate a parasite from the same parent line as LISP1^{SIINFEKL} and LISP2^{SIINFEKL}; which expresses mCherry and SIINFEKL tagged UIS4 for better comparison of the degree of killing targeted against UIS4, LISP1 and LISP2 as UIS4^{SIINFEKL} described in Chapter 2 does not express GFP. By intravital imaging, targeted EEFs were shown to exhibit blebbing and a loss of GFP signal¹⁰ with parasite death occurring after around four hours of interaction with CD8+ T cells¹⁰. Generating a timeline of EEF killing in response to early and later expressed EEF antigens could probably also be determined from stained liver slices from challenged vaccinated mice. However, using intravital imaging would reduce the number of mice required, whilst providing opportunities for more advanced in vivo analysis of Plasmodium infection.

Intravital microscopy has not been completely developed in humans yet¹⁴, but if possible, ethical considerations for assessing EEF development in human challenge studies would 264 still need to be resolved. Yet developments in chimeric mouse models have started to allow the determination of the immune responses that occur during P. falciparum infection¹⁵. In terms of assessing the immune responses to *P. falciparum* in the liver, chimeric mice engrafted with human hepatocytes^{16, 17} or hepatocytes and erythrocytes¹⁸ have been shown to allow complete P. falciparum EEF development. Chimeric mouse models, which have an engrafted human immune system^{19, 20}, have allowed physiologically relevant antibody and CD8+ T cell responses to *P. falciparum* CSP to be determined when mice were infected with rodent P. berghei which had its orthologous CSP partially or fully replaced with *P. falciparum* CSP^{20, 21}. Whilst a humanised mouse model which contains both human immune system and liver tissues exists²², the contribution of mouse immune cells of the myeloid lineage cannot be discounted as they are not fully replaced in this model¹⁵. Alas, with contribution from hepatic dendritic cells^{23,} ²⁴ and type I IFN effects on myeloid cells²⁵ during *Plasmodium* infection, a single onestop-shop chimeric mouse that can fully capture representative human immune responses to *P. falciparum* in the liver has yet to be developed but would certainly be of benefit.

Further CD8+ T cell epitope discovery

The identification of novel CD8+ T cell epitopes seems to be skewed by host MHC class I (MHC-I) restriction. Two bioinformatics analyses were performed, predicting *P. berghei* peptides presented in two different mouse strains. The addendum of Chapter 5 predicted and assayed peptides with H-2-^d restriction as encoded by BALB/c mice, while Chapter 6 predicted and assessed peptides with H-2-^b restriction as encoded in C57BL/6 mice. Only one novel epitope was discovered with an MHC-I H-2-^d restriction, while nine novel epitopes were discovered with an MHC-I H-2-^b restriction. While the size of the datasets varied in terms of peptides assayed experimentally (144 vs 586), the profile of responses induced by *P. berghei* epitopes with a H-2-^d restriction compared to MHC-I H-2-^b restriction was striking. In BALB/c mice, there is a large response to the immunodominant epitope of CSP, with only a few, much weaker responses to other antigens seen. In

C57BL/6 mice, CD8+ T cell responses to the immunodominant epitope of CSP cannot be determined due to its H-2-^b genotype. In contrast, CD8+ T cell responses observed in C57BL/6 do not exhibit such an obvious immunodominance against one epitope. It would be interesting to know if this immunodominance is purely directed by the MHC-I molecules BALB/c express or whether host genetics play a role in anti-Plasmodium CD8+ T cell responses. To test this, responses in mice with a C57BL/6 background but H-2-^d haplotype could be assessed. If a difference in the protection mediated by SYIPSAEKI-specific CD8+ T cells is observed, then this suggests that host factors besides MHC haplotype affect immune responses against Plasmodium infection. It has been noted that different mice exhibit different protective immune responses following sporozoite immunisation¹² and that the effector mechanisms employed by memory CD8+ T cells differs depending on the parasite species and background strains of the immunised mice¹³. In addition, host genetic factors relating to susceptibility to liver infection, have been characterised though guantitative trait loci studies using different mouse strains^{26, 27}. Host cell factors such as heme oxygenase^{28, 29}, SR-Bl^{28, 30} and CD81³¹ have also been proposed to be involved in resistance of mice to Plasmodium liver infection. Nonetheless more research is required to deconvolute how host genetic factors contribute to resistance and immunity to *Plasmodium* infection³².

With respect to identifying more EEF-specific CD8+ T cell responses, moving forward an alternative approach may be required. In principle we have shown that with UIS4, LISP1 and LISP2, poorly immunogenic antigens can offer protective immunity if the antigen is presented and the cognate CD8 T cell response is large enough. However, not using immunogenicity as an indicator for protective capability does not make it easier to identify potentially protective EEF antigens. In fact, our analysis of the protein features contained in the derivative proteins that contain the most highly immunogenic peptides did not return any striking results (Chapter 6). Apart from an enrichment for signal peptide regions and transmembrane structures, suggesting secreted and surface bound proteins are more immunogenic, we could not deduce any significant characteristic that made a

pre-erythrocytic *Plasmodium* protein particularly good at expanding antigen-specific CD8+ T cells following processing and presentation.

As we were concerned with identifying novel CD8+ T cell epitopes that could be used as an indicator of immunised state with the forward view to identifying systemic correlates of protection in murine and human infections, we focused on identifying those antigens and epitopes that induced large expansions of CD8+ T cells. However, it has been shown that liver tissue-resident CD8+ T cells (T_{RM}) are crucial cells for mediating protection from sporozoite challenge³³⁻³⁷. Whilst, screening of peptides by *ex vivo* restimulation of liver infiltrating lymphocytes would have reduced the number of peptides that could have been tested, it may have identified prominent antigen-specific CD8+ T cell populations in the liver. An alternative approach to CD8+ T cell epitope discovery thus could involve the isolation of CD8+ T cells from livers of immunised mice, particularly those that exhibit protection from sporozoite challenge. Dissociation of peptides from MHC molecules presented on CD8+ T_{RM} cells may shed some light on those antigens that can induce effective intra-hepatic CD8+ T cell responses. Generation of transgenic parasites, including chimeric rodent parasites expressing human Plasmodium proteins³⁸ for testing in human immune system engrafted mice as seen already^{20, 21}, would allow the degree of protection that these proteins can induce to be assessed. This information would be useful in informing subunit vaccine design to develop vaccines that can improve these populations of CD8+ T cells.

IMPACT ON ERADICATION OF MALARIA

The research I have presented here has clear implications for the development of next generation malaria vaccines. The majority of *P. falciparum* subunit malaria vaccines, that are currently in clinical trials target sporozoite antigens³⁹ with only one vaccine targeting EEF antigens, liver stage antigen 1(LSA1) and liver stage associated protein 2 (LSAP2)⁴⁰. This may be due to the relative ease of characterising responses to

sporozoite antigens, as they are not restricted to presentation on hepatocytes, which we know exhibit poor T cell priming, likely not aided by the tolerogenic nature of the liver^{6, 7}. In addition, the amount of transcriptomic and proteomic data available detailing the genetic expression repertoire during EEF development is poor compared to other stages of the life cycle^{1, 41-43}. Thus, this has resulted in a distinct lack of data detailing antigen-specific immune responses targeting the EEF compared to those targeting the sporozoite or blood stages. However, data is starting to accumulate to determine expression differences between replicating EEFs and dormant hypnozoites in *P vivax* and other relapsing malarias⁴⁴⁻⁴⁷, with the dawn of *in vivo* and *in vitro* systems⁴⁸ which may herald the onset of more human *Plasmodium* EEF expression datasets. Yet, here I have presented data that indicates that EEF antigens can offer protection against the pre-erythrocytic stages of malaria and that poor immunogenicity does not necessarily negate an antigen from being a poor vaccine target.

Vaccines that induce antigen-specific antibodies have been shown to protect individuals against many diseases⁴⁹ and the vast majority of vaccines currently licensed, mediate protection by inducing high titres of pathogen-specific antibody titres⁵⁰. More recently, it has now been shown that memory CD8+ T cells above a certain threshold can protect against the pre-erythrocytic stages of malaria^{5, 51}. Research has now started to focus on the development of vaccines that induce strong cellular immune responses⁵² as the induction of effective memory CD8+ T cell responses will be a crucial arm in next generation malaria vaccines. The notion of hepatic CD8+ T_{RM} cells and protection is also really gaining traction with many papers released since the original indication showing that they are crucial for protection against sporozoite challenge in animal models³³⁻³⁷. While not investigated here, memory CD8+ T cell responses and protection against all new antigens should be considered in the context of these cells⁵³. In addition, development of vaccines that induce hepatic CD8+ T_{RM} responses by liver centric vaccination regime^{33, 37} are a very exciting, promising concept in the onward movement to generating a truly efficacious human malaria vaccine.

REFERENCES

- 1. Tarun, A.S., et al., *A combined transcriptome and proteome survey of malaria parasite liver stages.* Proc Natl Acad Sci U S A, 2008. **105**(1): p. 305-10.
- 2. Chakravarty, S., et al., *CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes.* Nat Med, 2007. **13**(9): p. 1035-41.
- 3. Kimura, K., et al., *CD8+ T cells specific for a malaria cytoplasmic antigen form clusters around infected hepatocytes and are protective at the liver stage of infection.* Infect Immun, 2013. **81**(10): p. 3825-34.
- 4. Huang, J., et al., A sufficient role of MHC class I molecules on hepatocytes in antiplasmodial activity of CD8 (+) T cells in vivo. Front Microbiol, 2015. **6**: p. 69.
- Schmidt, N.W., et al., Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proc Natl Acad Sci U S A, 2008. 105(37): p. 14017-22.
- 6. Bertolino, P. and D.G. Bowen, *Malaria and the liver: immunological hide-and-seek or subversion of immunity from within?* Front Microbiol, 2015. **6**: p. 41.
- 7. Thomson, A.W. and P.A. Knolle, *Antigen-presenting cell function in the tolerogenic liver environment.* Nat Rev Immunol, 2010. **10**(11): p. 753-66.
- 8. Cockburn, I.A., et al., *Dendritic cells and hepatocytes use distinct pathways to process protective antigen from plasmodium in vivo.* PLoS Pathog, 2011. **7**(3): p. e1001318.
- 9. Montagna, G.N., et al., *Antigen export during liver infection of the malaria parasite augments protective immunity*. MBio, 2014. **5**(4): p. e01321-14.
- 10. Cockburn, I.A., et al., *In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages.* Proc Natl Acad Sci U S A, 2013. **110**(22): p. 9090-5.
- 11. McCall, M.B. and R.W. Sauerwein, *Interferon-gamma--central mediator of protective immune responses against the pre-erythrocytic and blood stage of malaria*. J Leukoc Biol, 2010. **88**(6): p. 1131-43.
- 12. Doolan, D.L. and S.L. Hoffman, *The complexity of protective immunity against liverstage malaria.* J Immunol, 2000. **165**(3): p. 1453-62.
- 13. Butler, N.S., N.W. Schmidt, and J.T. Harty, *Differential effector pathways regulate memory CD8 T cell immunity against Plasmodium berghei versus P. yoelii sporozoites.* J Immunol, 2010. **184**(5): p. 2528-38.
- 14. Marques, P.E., et al., *Understanding liver immunology using intravital microscopy*. J Hepatol, 2015. **63**(3): p. 733-42.
- Minkah, N.K., C. Schafer, and S.H.I. Kappe, *Humanized Mouse Models for the Study of Human Malaria Parasite Biology, Pathogenesis, and Immunity.* Front Immunol, 2018.
 9: p. 807.
- 16. Morosan, S., et al., *Liver-stage development of Plasmodium falciparum, in a humanized mouse model.* J Infect Dis, 2006. **193**(7): p. 996-1004.
- 17. Sacci, J.B., Jr., et al., *Plasmodium falciparum infection and exoerythrocytic development in mice with chimeric human livers*. Int J Parasitol, 2006. **36**(3): p. 353-60.
- 18. Soulard, V., et al., *Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice*. Nat Commun, 2015. **6**: p. 7690.
- 19. Huang, J., et al., *An AAV vector-mediated gene delivery approach facilitates reconstitution of functional human CD8+ T cells in mice*. PLoS One, 2014. **9**(2): p. e88205.
- Huang, J., et al., Human immune system mice immunized with Plasmodium falciparum circumsporozoite protein induce protective human humoral immunity against malaria. J Immunol Methods, 2015. 427: p. 42-50.
- 21. Li, X., et al., *Human CD8+ T cells mediate protective immunity induced by a human malaria vaccine in human immune system mice.* Vaccine, 2016. **34**(38): p. 4501-4506.

- 22. Wilson, E.M., et al., *Extensive double humanization of both liver and hematopoiesis in FRGN mice.* Stem Cell Res, 2014. **13**(3 Pt A): p. 404-12.
- 23. Jobe, O., et al., *Immunization with radiation-attenuated Plasmodium berghei* sporozoites induces liver cCD8alpha+DC that activate CD8+T cells against liver-stage malaria. PLoS One, 2009. **4**(4): p. e5075.
- 24. Montagna, G.N., et al., *Batf3 deficiency proves the pivotal role of CD8alpha(+) dendritic cells in protection induced by vaccination with attenuated Plasmodium sporozoites.* Parasite Immunol, 2015. **37**(10): p. 533-543.
- 25. Liehl, P., et al., *Host-cell sensors for Plasmodium activate innate immunity against liverstage infection.* Nat Med, 2014. **20**(1): p. 47-53.
- 26. Goncalves, L.A., et al., *Malaria liver stage susceptibility locus identified on mouse chromosome 17 by congenic mapping.* PLoS One, 2008. **3**(3): p. e1874.
- 27. Goncalves, L.A., et al., *TREM2 governs Kupffer cell activation and explains belr1 genetic resistance to malaria liver stage infection.* Proc Natl Acad Sci U S A, 2013. **110**(48): p. 19531-6.
- Rodrigues, C.D., et al., Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. Cell Host Microbe, 2008. 4(3): p. 271-82.
- 29. Epiphanio, S., et al., *Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection.* Cell Host Microbe, 2008. **3**(5): p. 331-8.
- 30. Yalaoui, S., et al., *Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection*. Cell Host Microbe, 2008. **4**(3): p. 283-92.
- 31. Silvie, O., et al., *Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity*. Nat Med, 2003. **9**(1): p. 93-6.
- 32. Huang, H.M., et al., *Host genetics in malaria: lessons from mouse studies.* Mamm Genome, 2018.
- 33. Fernandez-Ruiz, D., et al., *Liver-Resident Memory CD8(+) T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection.* Immunity, 2016. **45**(4): p. 889-902.
- 34. Vaughan, A.M., et al., *A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice.* Infect Immun, 2018. **86**(5).
- 35. Pichyangkul, S., et al., *Chemoprophylaxis with sporozoite immunization in P. knowlesi rhesus monkeys confers protection and elicits sporozoite-specific memory T cells in the liver*. PLoS One, 2017. **12**(2): p. e0171826.
- Frank, R., et al., Varying Immunizations With Plasmodium Radiation-Attenuated Sporozoites Alter Tissue-Specific CD8(+) T Cell Dynamics. Front Immunol, 2018. 9: p. 1137.
- 37. Olsen, T.M., et al., *Prime-and-Trap Malaria Vaccination To Generate Protective CD8(+) Liver-Resident Memory T Cells.* J Immunol, 2018.
- 38. Othman, A.S., et al., *The use of transgenic parasites in malaria vaccine research.* Expert Rev Vaccines, 2017. **16**(7): p. 1-13.
- 39. Draper, S.J., et al., *Malaria Vaccines: Recent Advances and New Horizons*. Cell Host Microbe, 2018. **24**(1): p. 43-56.
- 40. Longley, R.J., et al., *Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates.* Sci Rep, 2015. **5**: p. 11820.
- 41. Wang, Q., et al., *Transcriptome of axenic liver stages of Plasmodium yoelii*. Mol Biochem Parasitol, 2004. **137**(1): p. 161-8.
- 42. Sacci, J.B., Jr., et al., *Transcriptional analysis of in vivo Plasmodium yoelii liver stage gene expression*. Mol Biochem Parasitol, 2005. **142**(2): p. 177-83.
- 43. Siau, A., et al., *Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection*. PLoS Pathog, 2008. **4**(8): p. e1000121.

- 44. Cubi, R., et al., *Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species.* Cell Microbiol, 2017. **19**(8).
- 45. Voorberg-van der Wel, A., et al., *A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi.* Elife, 2017. **6**.
- 46. Gural, N., et al., *In Vitro Culture, Drug Sensitivity, and Transcriptome of Plasmodium Vivax Hypnozoites*. Cell Host Microbe, 2018. **23**(3): p. 395-406 e4.
- 47. Gualdron-Lopez, M., et al., *Characterization of Plasmodium vivax Proteins in Plasma-Derived Exosomes From Malaria-Infected Liver-Chimeric Humanized Mice.* Front Microbiol, 2018. **9**: p. 1271.
- 48. Bourgard, C., et al., *Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics.* Front Cell Infect Microbiol, 2018. **8**: p. 34.
- 49. Casadevall, A., *The methodology for determining the efficacy of antibody-mediated immunity.* J Immunol Methods, 2004. **291**(1-2): p. 1-10.
- 50. Siegrist, C., *2 Vaccine Immunology*, in *Plotkin's Vaccines*. 2018. p. 16-34e7.
- 51. Spencer, A.J., et al., *The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8(+) T Cells Present in the Liver.* J Immunol, 2017. **198**(5): p. 2006-2016.
- 52. Ewer, K.J., et al., *Progress with viral vectored malaria vaccines: A multi-stage approach involving "unnatural immunity"*. Vaccine, 2015. **33**(52): p. 7444-51.
- 53. Holz, L.E., D. Fernandez-Ruiz, and W.R. Heath, *Protective immunity to liver-stage malaria*. Clin Transl Immunology, 2016. **5**(10): p. e105.

APPENDIX 1

Inventory of novel H-2-^b restricted CD8+ T cell epitopes and supplementary information

Novel Peptide number	Peptide sequence	Novel peptides carried forward from batch purity -> high purity (black=top43, grey=other52)	Published control peptides	Top NetMHCpan peptides <22nM and <0.05 Rank %	NetMHCpan other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Gene ID	Protein	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	High purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells
	VNYSELYI								PBANKA 1429200	conserved Plasmodium protein unknown function	0.3725	0.795625
	NCYDENNI								PRANKA 0714500	conserved Plasmodium protein, unknown function	0.01.20	0.67625
	SALLNVDNI								PBANKA 1349800	thrombospondin-related anonymous protein		0.57436
	IITDEENI								PBANKA 1137000	bergheilysin		0.370833333
	VNYSELYLE								PBANKA 1429200	conserved Plasmodium protein unknown function		0.212555556
1	ESIENEEEI										0.046333333	0.16025
	EIVIETNI								PBANKA 0416600	replication protein A1 small fragment		0.157
2										rophodalon proton / ri, onida naginone	0.0625	0.140625
3	ISPDEYNNI										0.053	0 138125
Ŭ	SOLINAKYI								PRANKA 0819000	glideosome-associated protein 50 putative	0.000	0 121923077
4	ITEHWYPSYL										0.053	0.111625
5	YAYYNTYVI										0.0655	0.1085
6											0.089	0.098375
7	YALKNVSYL										0.0805	0.0925
8	YSFLNVDNI										0.1	0.090205
9	TSMSNNIYI										0.1255	0.067375
10	FALNNENYE										0.10525	0.06625
11											0.06875	0.066125
12	FSISNMDDE										0.14	0.060625
13	FSI TNNEVEL										0.11275	0.0475
14	STVSNYDVI										0.06425	0.04475
15	YAI SNISAI										0.10275	0.044
16	VSYYFEYL										0.037	0.0425
17	YIIMNWTTI										0.0415	0.0415
18	DNYNEVGI										0.017	0.03975
19	VAYAFFII										0.022	0.03775
20	MAYVNSKYI										0.041	0.03307125
21	NSINNI DEI										0.10925	0.0325
22	YMHTNIYTI						1				0.13675	0.032
23	ANYFHFFQNYL						1	i i			0.049	0.03183125
24	SNYSYIYEVL			İ			İ				0.039	0.03025
25	IVYVFLHI			1							0.024	0.029
26	FAASNFNLDLL										0.1015	0.0275
27	VSFNYNNL										0.02	0.0270025
28	ISYSYYYL										0.021165	0.026
29	FAIYNLNNLSM						1				0.0735	0.0238775
30	RSIINNVAL						1				0.096	0.02275
31	IILYFFQL										0.024	0.0225
32	VAYKYYTYL			1							0.047	0.022
33	VSYDYYLAL			1							0.029	0.021805
34	MSFMNLKYLLL										0.03275	0.02075
35	SSYIFSIL										0.00952	0.0205
36	FIYFKYNYL										0.0405	0.01975
37	QNYYSFTNL										0.015	0.01975

								Not	MUCaan	1 1 dot		N	otMUC no	on 40 date				Expression da	ta	
Novel Peptide number	Peptide sequence	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1- log50k	nM	%Rank score	MHC allele restriction	1- log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40- 50h) +/-	LINDNER 2013 Spz Mass Spec +/-	LASONDER 2008 spz Mass Spec +/-	LASONDER 2008 Spz (only day 18-22) Mass Spec +/-	LINDNER 2013 Spz Mass Spec +/-
																orthologs c	f P. yoelii	ortho	logs of P. falcipart	ım
	VNYSFLYL	no	0	583	8	317	54.37393	Kb	0.854	4.88	0.01	Kb	0.9211	2.3472	0.0044	-	+	+	+	+
	NCYDFNNI	no	1	745	8	396	53.15436	Kb	0.238	3786.7	9	Kb	0.3864	764.103	1.4628	-	-	-	-	-
	SALLNVDNL	yes	1	606	9	129	21.28713	Db	0.882	3.58	0.01	Db	0.8572	4.6876	0.0043	-	+	+	+	+
	IITDFENL	no	0	1149	8	591	51.43603	Kb	0.531	159.89	0.8	Kb	0.5658	109.749	0.2824	+	+	+	+	
	VNYSFLYLF	no	0	583	9	317	54.37393	Kb	0.746	15.53	0.03	Kb	0.7121	22.5433	0.0548	-	+	+	+	+
1	FSIFNEFEI	no	3	4291	9	2850	66.41808	Db	0.821	6.97	0.01	Db	0.8256	6.602	0.0053	-	-	-	-	
	EIYIFTNI	no	0	486	8	198	40.74074	Kb	0.568	107.14	0.4	Kb	0.6389	49.7716	0.1214	+	+	+	+	+
2	YSLANMIDTI	no	0	348	10	210	60.34483	Db	0.828	6.47	0.01	Db	0.8284	6.4043	0.0052	-	-	-	-	
3	ISPDFYNNL	yes	0	1406	9	1121	79.72973	Kb	0.766	12.51	0.03	Kb	0.8378	5.7846	0.009	+	-	+	-	
<u> </u>	SQLLNAKYL	yes	2	395	9	39	9.873418	Db	0.704	24.47	0.05	Db	0.6878	29.3083	0.0094	+	+	+	+	+
4	IIFHWYPSYL	yes	2	1349	10	627	46.47887	Kb	0.711	22.93	0.05	Kb	0.7652	12.6835	0.0256	+	-	-	-	+
5	YAYYNIYVL	yes	2	246	9	233	94.71545	Db	0.849	5.15	0.01	Db	0.841	5.586	0.0048	-	-	-	-	<u>-</u>
6		no	11	500	11	455	91	KD	0.654	42.25	0.15	KD	0.6943	27.3265	0.0695	+	+	+	-	+
/		no	0	1524	y	795	52.16535	Db	0.913	2.58	0.01	Db	0.8942	3.1415	0.0032	-	-	-	-	[
8	TOMONINI	no	4	3245	y y	448	13.80586	Db	0.871	4.06	0.01	Db	0.846	5.2896	0.0046	-	-	-	-	+
9		yes	0	721	y y	65	9.015257	Db	0.815	7.4	0.01	Db	0.8033	8.3973	0.0059	-	-	+	+	[
10		no	0	050	9	50	8.536585	Db	0.77	12.04	0.03	Db	0.7757	11.3217	0.0068	-	+	-	-	+
10		yes	2	1349	9	1037	70.07170		0.007	0.03	0.01	Db	0.6005	0.1100	0.0056	Ŧ	-	-	-	+
12		110	0	971	9	010	63.93409	Db	0.774	10.41	0.03	Db	0.0421	40.0400	0.013	-	т	-	-	T
14		no	0	4154	10	022	07 15790	Db	0.704	6.20	0.03	Db	0.0902	20.1097	0.0091		-	-	-	
14		no	0	930 441	9	923	97.10709	Db	0.03	2.54	0.01	Db	0.7974	4 1067	0.0001	+	-	-	-	Ľ
16	VSVVEEVI	Ves	11	1245	9	1104	96 30522	Kh	0.814	4 96	0.01	Kh	0.0004	2 3006	0.0003			_	-	+
10		y03	6	2724	0	882	32 37885	Db	0.857	4 72	0.01	Db	0.3220	8 4835	0.0040	-			-	<u>l'</u>
18	DNYNEVGI	no	0	102	8	50	26.04167	Kh	0.624	58.45	0.01	Kh	0.5833	Q0 7555	0.000	+	+	+	-	+
19	VAYAFFII	no	0	194	8	82	42 26804	Kb	0.668	36 12	0.2	Kb	0.7365	17 3072	0.0381	+	+	+	+	+
20	MAYVNSKYI	ves	0	1406	9	1010	71 83499	Db	0.000	22 19	0.05	Db	0.7217	20.3183	0.0084	+	-	+	-	-
21	NSINNI DEI	no	1	865	9	676	78 15029	Db	0.869	4.13	0.01	Db	0.8411	5.5782	0.0048	+	-	-	-	-
22	YMHTNIYTI	ves	0	721	9	295	40.9154	Db	0.875	3.85	0.01	Db	0.7794	10.8791	0.0067	-	-	+	+	-
23	ANYFHFFQNYL	no	4	4204	11	3921	93.26832	Kb	0.73	18.67	0.05	Kb	0.7097	23.1316	0.0563	-	+	-	-	+
24	SNYSYIYFVFL	no	0	147	11	33	22.44898	Kb	0.677	32.77	0.1	Kb	0.7119	22.5826	0.0549	-	-	-	-	-
25	IVYVFLHI	yes	1	2096	8	11	0.524809	Kb	0.752	14.55	0.03	Kb	0.8092	7.8778	0.0122	-	-	-	-	+
26	FAASNFNLDLL	no	0	5176	11	3749	72.43045	Db	0.656	41.12	0.07	Db	0.5839	90.2414	0.0265	+	+	-	-	+
27	VSFNYNNL	no	0	2966	8	422	14.22792	Kb	0.826	6.57	0.01	Kb	0.9185	2.4149	0.0045	-	-	-	-	+
28	ISYSYYYL	no	0	1203	8	746	62.01164	Kb	0.875	3.85	0.01	Kb	0.937	1.9772	0.0035	-	-	-	-	-
29	FAIYNLNNLSM	yes	2	1349	11	1037	76.87176	Db	0.733	17.97	0.05	Db	0.6473	45.4509	0.0124	+	-	-	-	+
30	RSIINNVAL	no	0	993	9	865	87.10977	Db	0.772	11.72	0.03	Db	0.7356	17.4782	0.008	+	+	+	+	-
31	IILYFFQL	yes	0	1796	8	1788	99.55457	Kb	0.726	19.39	0.05	Kb	0.7591	13.5475	0.0279	-	+	-	-	+
32	VAYKYYTYL	no	0	1285	9	407	31.67315	Kb	0.872	3.99	0.01	Kb	0.9314	2.0996	0.0038	-	-	-	-	-
33	VSYDYYLAL	no	0	486	9	475	97.73663	Kb	0.863	4.43	0.01	Kb	0.919	2.4011	0.0045	-	-	-	-	<u> </u>
34	MSFMNLKYLLL	yes	0	3254	11	1671	51.35218	Kb	0.625	57.51	0.2	Kb	0.5717	102.973	0.2662	+	-	-	-	<u> -</u>
35	SSYIFSIL	no	9	736	8	464	63.04348	Kb	0.835	5.99	0.01	Kb	0.9057	2.7727	0.0052	-	+	+	-	+
36	FIYFKYNYL	yes	1	1096	9	494	45.07299	Kb	0.785	10.24	0.01	Kb	0.7347	17.6521	0.0389	-	-	-	-	<u> </u>
37	QNYYSFTNL	yes	0	1864	9	419	22.47854	Kb	0.723	20.03	0.05	Kb	0.7922	9.4727	0.0163	-	+	+	+	+

					Expression data	1	
		Microa	rray	SS	Н	Micro	array
Novel Peptide number	Peptide sequence	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
		+/-	+/-	+/-	+/-	+/-	+/-
			orti	hologs of P. yoelii		P. bergh	ei origin
	VNYSFLYL	-	-	-	+	-	-
	NCYDFNNI	-	-	-	-	-	-
	SALLNVDNL	+	-	-	+	-	-
	IITDFENL	+	+	-	-	-	-
	VNYSFLYLF	-	-	-	+	-	-
1	FSIFNEFEI	-	-	-	-	+	+
	EIYIFTNI	-	-	-	-	+	-
2	YSLANMIDTI	+	+	-	-	-	-
3	ISPDFYNNL	-	-	-	-	-	-
	SQLLNAKYL	-	-	-	-	-	-
4	ITFHWYPSYL	-	-	-	-	-	-
5	YAYYNTYVL	-	+	-	-	-	-
6	VNYDFTYINLL	-	-	-	-	+	-
7	YALKNVSYL	-	+	-	-	-	-
8	YSFLNVDNI	-	-	-	-	-	-
9	TSMSNNIYI	-	-	-	-	+	+
10	FALNNFNYF	+	-	-	-	-	-
11	FAIYNLNNL	-	-	-	-	-	-
12	FSISNMDDF	-	+	-	-	-	-
13	FSLTNNEVFL	-	-	-	-	-	-
14	STVSNYDVI	-	-	-	-	-	-
15	YALSNISAI	-	-	-	-	-	-
16	VSYYFEYL	-	-	-	-	-	-
17	YIIMNWTTI	+	-	+	-	-	-
18	DNYNFVGL	-	-	-	-	-	-
19	VAYAFEII	-	+	-	-	-	-
20	MAYVNSKYI	-	-	-	-	-	-
21	NSINNLDFI	-	-	-	-	-	-
22	YMHTNIYTI	-	-	-	-	+	+
23	ANYFHFFQNYL	-	+	-	-	-	-
24	SNYSYIYFVFL	-	+	-	-	-	+
25	IVYVFLHI	-	-	-	-	-	-
26	FAASNFNLDLL	-	-	-	-	-	-
27	VSFNYNNL	-	-	-	-	-	-
28	ISYSYYYL	-	-	-	-	-	+
29	FAIYNLNNLSM	-	-	-	-	-	-
30	RSIINNVAL	-	-	-	-	-	-
31	IILYFFQL	+	-	-	-	-	-
32	VAYKYYTYL	+	+	-	-	-	-
33	VSYDYYLAL	-	+	-	-	-	-
34	MSFMNLKYLLL	-	-	-	-	-	-
35	SSYIFSIL	-	-	-	-	-	-
36	FIYFKYNYL	-	+	-	-	-	-
37	QNYYSFTNL	+	-	-	-	-	-

Novel Peptide number	Peptide sequence	Novel peptides carried forward from batch purity -> high purity (black=top43, grey=other52)	Published control peptides	Top NetMHCpan peptides <22nM and <0.05 Rank %	NetMHCpan other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Gene ID	Protein	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	High purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells
38	VNYELHSGHI										0.033	0.01957
39	ASFHNOTYI										0.1035	0.019
40	VSYFYFLDL			1							0.0825	0.0183075
41	TNYAHYLSI			1							0.025	0.01769
42	LSLVNETTI										0.076666667	0.0173725
43	FKNMNILEL										0.026	0.01725
44	YALMNDNNSVL										0.1525	0.017
	LSGRYNDL								PBANKA 1337300	conserved Plasmodium protein, unknown function		0.016828
45	KSMSNGSFL								_		0.0675	0.0165
46	LSYNNTLDYF			1							0.014	0.0159225
47	YAIKKKDEI										0.00715	0.01578
48	ICFEHYQLF										0.065	0.0155
49	SSISQNEIVI										0.00978	0.0155
50	IVYRFRKL										0.01	0.01525
51	FAINNNEHL										0.151	0.0151775
52	FSSCNDTLEL										0.012	0.0149575
53	ISFAGFNAL										0.036	0.01481
54	ASLENVETI										0.13525	0.0146675
55	HAHANYAFL										0.0745	0.01425
56	KTMNFYGM										0.015	0.01425
57	NSVNNINYI										0.021	0.0142325
	YYYDYDKI								PBANKA 0521700	transcription factor with AP2 domain(s), putative		0.014082
58	VCIYYFDLL										0.019	0.0139175
	WGDEFEKL								PBANKA_0611600	ribonucleoside-diphosphate reductase large subunit, putative		0.013147
59	KNYFHFFNM										0.01879	0.01308
60	YSLNNTHVL										0.1035	0.013
61	STFLYYLL										0.02	0.01279
62	YAYRNGLYF										0.1085	0.0127725
63	RTFYYFHGLL										0.031	0.0127225
64	NCYIYNYV										0.035	0.01256
65	YALRNFTLF										0.14425	0.01256
66	FSLINHSVI										0.019	0.01212
67	IAVLNSLYL										0.09275	0.0117975
68	ITYLNSINI										0.00733	0.0117675
69	AAINNIEFV										0.1095	0.0115325
70	AAVNNLFTI										0.081	0.01148
	LLPHFSIL								PBANKA_0316000	replication factor C subunit 1, putative		0.011395
71	VGMRHLNL										0.016	0.0111075
72	VSYFYFLDLL										0.0505	0.0110425
73	YAVRNTRYL										0.019	0.01075
74	YALFNGNLI										0.12825	0.010235
75	YNMFYYTIL					ļ		ļ			0.02	0.0097425
76	STYSFMSL							ļ			0.0316	0.00962
77	YAIGNNDIAL										0.1495	0.00947

								Not	MUCoon			N	otMUC no	on 40 data				Expression da	ta	
Novel		Signal	No. of	Protein	Pentide	Peptide	Percentile	Net		5 1.1 Uate		N	etmiopa	an 4.0 uata	1	TARUN 2008 EEF Mass	LINDNER 2013 Spz	LASONDER 2008 spz Mass	LASONDER 2008 Spz (only	LINDNER 2013 Spz
Peptide number	Peptide sequence	peptide predicted	domains predicted	length	length	start position	of protein	MHC allele restriction	1- log50k	nM	%Rank score	MHC allele restriction	1- log50k	nM	%Rank score	Spec (LS40- 50h)	Mass Spec	Spec	day 18-22) Mass Spec	Mass Spec
																+/-	+/-	+/-	+/-	+/-
																orthologs of	of P. yoelii	ortho	logs of <i>P. falcipar</i> u	ım
38	VNYFLHSGHL	yes	0	668	10	369	55.23952	Kb	0.707	23.81	0.05	Kb	0.7319	18.1791	0.0404	+	+	+	+	+
39	ASFHNQTYI	yes	0	2997	9	1060	35.3687	Db	0.824	6.71	0.01	Db	0.7936	9.3281	0.0062	+	+	-	-	+
40	VSYFYFLDL	no	2	7480	9	2002	26.76471	Kb	0.818	7.2	0.01	Kb	0.8928	3.1888	0.0059	-	+	-	-	+
41	TNYAHYLSI	yes	2	1671	9	315	18.85099	Kb	0.716	21.6	0.05	Kb	0.8283	6.41	0.0095	-	-	-	-	+
42	LSLVNETTI	no	0	1757	9	1720	97.89414	Db	0.855	4.83	0.01	Db	0.7878	9.9291	0.0064	+	-	-	-	-
43	FKNMNILEL	no	0	255	9	70	27.45098	Db	0.429	482.07	0.4	Db	0.3628	987.103	0.2364	-	+	-	-	-
44	YALMNDNNSVL	no	2	2599	11	1783	68.60331	Db	0.657	40.9	0.07	Db	0.7014	25.311	0.009	-	-	-	-	+
45	LSGRYNDL	yes	1	329	8	118	35.86626	KD	0.333	1369.5	4	KD	0.3226	1524.09	2.5409	-	+	-	-	-
45	KSMSNGSFL	no	0	5309	9	42/1	80.4483	Db	0.782	10.52	0.03	Db	0.7949	9.1969	0.0062	+	+	-	-	+
40		no	0	174	10	149	85.63218	Db	0.425	500.68	0.4	Db	0.3977	0/0.049	0.1709	-	+	-	-	-
47		10	0	194	9	1//	91.23711		0.400	255.99	0.25	DD	0.5549	123.457	0.035	+	+	+	Ŧ	+
40		10	0	3103	9	1005	11 52046	ND Dh	0.639	49.43	0.17	KD Dh	0.6407	40.7704	0.1190	+	+	-	-	+
49		110	0	543	10	175	32 22836	DD Kh	0.493	234.70	0.2	DD Kh	0.0900	3 0161	0.0234	т	т 1	т	т	+
51		no	9	1613	0	173	26 00630	Db	0.03	8.07	0.01	Db	0.090	7 9231	0.0050	-	-		-	
52		no	0	130	9	434	20.90039	Db	0.007	508.87	0.01	Db	0.0007	609.8	0.0030	+	-	-	-	-
53	ISEAGENAL	Ves	0	473	10	254	53 60070	Kh	0.424	27.26	0.4	Kh	0.7839	10 3658	0.1334	+	· +	-	-	· +
54		ves	0	554	9	105	35 19856	Dh	0.889	3.32	0.01	Dh	0.8595	4 5711	0.0042	-	-	-	-	-
55	HAHANYAFI	ves	0	1303	9	156	11 97237	Db	0.845	5.38	0.01	Db	0 7825	10 525	0.0066	+	+	-	-	+
56	KTMNEYGM	no	0	288	8	71	24.65278	Kb	0.614	65.13	0.25	Kb	0.7061	24.0399	0.0586	+	+	+	+	+
57	NSVNNINYI	ves	4	1785	9	687	38.48739	Db	0.722	20.24	0.05	Db	0.7233	19.9651	0.0083	-	-	-	-	+
	YYYDYDKI	no	0	2775	8	1956	70.48649	Kb	0.264	2858.2	7	Kb	0.3161	1634.72	2.7053	-	+	+	+	+
58	VCIYYFDLL	no	3	4291	9	1096	25.54183	Kb	0.603	73.76	0.3	Kb	0.6025	73.7649	0.187	-	-	-	-	-
	WGDEFEKL	no	0	847	8	401	47.34357	Kb	0.145	10471	32	Kb	0.1564	9206.28	12.8923	+	-	-	-	+
59	KNYFHFFNM	no	2	1585	9	935	58.99054	Kb	0.781	10.69	0.01	Kb	0.8497	5.0865	0.0083	-	-	-	-	-
60	YSLNNTHVL	no	0	2225	9	1829	82.20225	Db	0.831	6.26	0.01	Db	0.8156	7.3513	0.0056	-	+	-	-	+
61	STFLYYLL	no	2	957	8	549	57.36677	Kb	0.83	6.33	0.01	Kb	0.8686	4.1441	0.0073	-	-	-	-	-
62	YAYRNGLYF	yes	2	991	9	171	17.2553	Db	0.744	16.04	0.05	Db	0.7612	13.243	0.0072	+	-	+	+	-
63	RTFYYFHGLL	yes	2	1349	10	832	61.67532	Kb	0.676	33.12	0.1	Kb	0.7185	21.0266	0.0507	+	-	-	-	+
64	NCYIYNYV	no	2	1530	8	115	7.51634	Kb	0.311	1718.9	5	Kb	0.3701	911.712	1.6804	-	+	-	-	-
65	YALRNFTLF	no	11	1935	9	1497	77.36434	Db	0.842	5.53	0.01	Db	0.7852	10.2158	0.0065	+	-	-	-	-
66	FSLINHSVI	no	0	7263	9	3236	44.55459	Db	0.879	3.68	0.01	Db	0.8487	5.1418	0.0046	-	-	-	-	+
67	IAVLNSLYL	no	0	4287	9	3519	82.08537	Ub	0.808	7.94	0.01	Db	0.7972	8.9735	0.0061	-	-	+	-	-
68		no	0	261	9	229	87.73946	Db	0.477	288.34	0.25	Db	0.409	598.77	0.1503	+	-	-	-	-
69		no	0	1149	9	479	41.68842	Ub	0.867	4.24	0.01	Db	0.8333	6.0707	0.005	+	+	+	+	-
70	AAVNNLEII	no	12	491	9	88	17.92261	DD	0.85	5.07	0.01	DD	0.8294	6.335	0.0051	+	+	+	-	+
74		0	0	861	8	650	75.49361	KD	0.386	//1.82	3	KD	0.4523	3/4./56	0.8159	-	+	-	-	+
/1		110	0	7400	8	55	37.16216	KU Kh	0.684	30.38	0.07	KU Kh	0.7246	19.6/41	0.0461	÷	+	+	Ŧ	+
72			<u> </u>	2006	10	2002	20.704/1	Γ.J Db	0.70	5.35	0.03	NU Dh	0.700	6 0604	0.0185	-	т	-	-	т 1
73		yes ves	1	2090	9	100	16 55620	Db	0.639	5.07	0.01	Db	0.0200	5 2433	0.0054	-	-	-	-	+
74		ves	1	2006	9	100	42 84351	Kh	0.03	20.47	0.01	Kh	0.7958	9 1127	0.0040	-	-	-	-	+
76	STYSEMSI	ves	2	175	9 8	090	±.0+001 52	Kh	0.855	20.47 4 R	0.01	Kh	0 9077	2 7136	0.0051	-	-	-	-	+
70	YAIGNNDIAI	no	0	8895	10	448	5 036537	Db	0 746	15.61	0.05	Db	0.6766	33 0909	0.0098	-	+	-	-	+
		1	. V		10	.40	5.000001		070		0.00		3.5. 50	30.0000	0.0000					1

					Expression data	1	
		Microa	irray	SS	Н	Micro	array
Novel Peptide number	Peptide sequence	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
		+/-	+/-	+/-	+/-	+/-	+/-
			ort	hologs of P. yoelii	-	P. bergh	ei origin
38	VNYFLHSGHL	-	-	-	-	-	-
39	ASFHNQTYI	-	+	-	-	-	-
40	VSYFYFLDL	-	-	-	-	-	+
41	TNYAHYLSI	-	-	-	-	-	-
42	LSLVNETTI	-	-	-	-	-	-
43	FKNMNILEL	-	+	-	-	-	-
44	YALMNDNNSVL	+	-	-	-	-	-
	LSGRYNDL	-	-	-	-	-	-
45	KSMSNGSFL	-	-	-	-	-	-
46	LSYNNTLDYF	-	-	-	-	-	+
47	YAIKKKDEI	-	+	-	-	-	-
48	ICFEHYQLF	-	-	-	-	-	-
49	SSISQNEIVI	-	+	-	-	-	-
50	IVYRFRKL	-	-	-	-	-	-
51	FAINNNEHL	-	-	-	-	-	-
52	FSSCNDTLEL	+	-	-	-	-	-
53	ISFAGFNAL	-	+	-	-	-	-
54	ASLENVETI	-	+	-	-	-	-
55	HAHANYAFL	-	ì	-	-	-	-
56	KTMNFYGM	-	+	-	-	-	-
57	NSVNNINYI	-	-	-	-	-	-
	YYYDYDKI	-	-	-	-	-	-
58	VCIYYFDLL	-	-	-	-	+	+
	WGDEFEKL	-	+	-	-	-	-
59	KNYFHFFNM	-	+	-	-	-	-
60	YSLNNTHVL	-	-	-	-	-	+
61	STFLYYLL	-	-	-	-	-	+
62	YAYRNGLYF	-	-	-	-	-	-
63	RTFYYFHGLL	-	-	-	-	-	-
64	NCYIYNYV	+	+	-	-	-	-
65	YALRNFTLF	-	-	-	-	-	-
66	FSLINHSVI	-	-	-	-	-	-
67	IAVLNSLYL	-	-	-	-	-	-
68	IIYLNSINI	-	-	-	-	-	-
69	AAINNIEFV	+	+	-	-	-	-
70	AAVNNLFTI	-	+	-	-	-	-
		-	-	-	-	-	-
71	VGMRHLNL	-	+	-	-	-	-
72	VSYFYFLDLL	-	-	-	-	-	+
73		-	-	-	-	-	-
74		-	-	-	-	-	-
75		-	-	-	-	-	-
/6		-	-	-	-	-	+
11	TAIGININDIAL	1-	-	-	-	-	+

Novel Peptide number	Peptide sequence	Novel peptides carried forward from batch purity -> high purity (black=top43, grey=other52)	Published control peptides	Top NetMHCpan peptides <22nM and <0.05 Rank %	NetMHCpan other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Gene ID	Protein	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	High purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells
78	NCLNYYPL										0.017	0.0090075
79	RIYNFYHKL										0.032	0.0090025
80	NCYKYMLL										0.011	0.0089375
81	VSMYFTMHI										0.033	0.0087525
82	NCYDYGTL										0.022	0.0086875
83	FAHKNNVPI										0.0775	0.00829
84	INYNFYSM										0.0385	0.00733
85	SNFKYSFV										0.015	0.00733
86	NSIKNVLPI										0.088666667	0.007205
87	HSMENVDTM										0.035	0.007155
88	ISYYLYINL										0.042	0.0070475
89	ISFNCFLSTL										0.0335	0.0067025
90	VVIKFLQYM										0.019	0.006655
91	ISYLFHYIHF										0.036	0.0065
92	YSYKYYNYF										0.03925	0.0063025
93	SSYSYSNPL										0.012	0.00551
94	NCFYFKNV										0.01	0.0032725
	EIYIF INI (batch purity)								PBANKA_0416600	replication protein A1, small tragment	0.27	
	NCYDENNI (batch purity)								PBANKA_0714500	conserved Plasmodium protein, unknown function	0.16	
	SQLLNAKYL (batch purity)								PBANKA_0819000	glideosome-associated protein 50, putative	0.0945	
	LSGRYNDL (batch purity)								PBANKA_1337300	conserved Plasmodium protein, unknown function	0.0895	
	WGDEFEKL (batch purity)								PBANKA_0611600	ribonucleoside-diphosphate reductase large subunit, putative	0.089	
	LLPHFSIL (batch purity)								PBANKA_0516000	replication factor C suburit 1, putative	0.0655	
05	Y Y Y D Y DKI (batch purity)								PBANKA_0521700	transcription factor with AP2 domain(s), putative	0.061	
90											0.042	
90											0.041	
97											0.041	
30	YIYREERSI	1					1				0.039	
100							1				0.0375	
101	SIENEIYLI										0.037095	
102											0.0365	
103	ISFLHYYKL										0.036	
104	IAYYFMFL										0.035	
105	ISFYMFYHKM										0.035	
106	HSFCRYILL	1					1				0.035	
107	FTYLYYYYL										0.035	
108	VVYFFIMPV										0.034	
109	FSIANVVYV										0.0335	
110	MSWANNTTFL										0.0335	
111	INYKFFKSI										0.032	
112	NCIEFYEL										0.031	
113	VCYKYMPLI										0.031	
114	INYEYYNL										0.03	

								Not	MHCcone	1 1 date		N	otM⊔Cn	an 40 date				Expression da	ta	
Novel Peptide number	Peptide sequence	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1- log50k	nM	%Rank score	MHC allele restriction	1- log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40- 50h) +/-	LINDNER 2013 Spz Mass Spec +/-	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec +/-
																orthologs c	ot P. yoelii	ortho	logs of P. falcipart	ım
78	NCLNYYPL	no	0	347	8	72	20.74928	Kb	0.367	942.86	3	Kb	0.3645	968.567	1.7654	-	+	-	-	+
79	RIYNFYHKL	no	2	2042	9	1367	66.94417	Kb	0.773	11.66	0.03	Kb	0.8555	4.7742	0.008	-	+	-	-	+
80	NCYKYMLL	no	14	1881	8	1612	85.6991	Kb	0.503	216.47	0.8	Kb	0.5582	119.159	0.3035	-	-	-	-	+
81	VSMYFTMHI	yes	1	1296	9	1094	84.41358	Kb	0.733	17.97	0.05	Kb	0.787	10.0168	0.0181	+	-	-	-	+
82	NCYDYGTL	no	0	583	8	416	71.35506	Kb	0.34	1262.8	4	Kb	0.429	482.323	0.9797	-	+	+	+	+
83	FAHKNNVPI	no	0	5176	9	5025	97.08269	Db	0.891	3.27	0.01	Db	0.8486	5.1477	0.0046	+	+	-	-	+
84	INYNFYSM	no	3	1115	8	1012	90.76233	Kb	0.833	6.12	0.01	Kb	0.8875	3.3793	0.0062	-	-	-	-	
85	SNFKYSFV	no	0	288	8	243	84.375	Kb	0.71	23.05	0.05	Kb	0.8209	6.9417	0.0099	+	+	+	+	+
86	NSIKNVLPI	no	0	5176	9	412	7.959815	Db	0.845	5.38	0.01	Db	0.8102	7.795	0.0057	+	+	-	-	+
87	HSMENVDIM	no	0	946	9	885	93.5518	Db	0.88	3.66	0.01	Db	0.867	4.2184	0.004	-	-	-	-	-
88		no	5	1461	9	155	10.60917	KD	0.808	7.94	0.01	KD	0.8837	3.5207	0.0064	-	+	-	-	+
89		no	2	1407	10	804	57.14286	KD	0.658	40.46	0.12	KD	0.7903	9.6689	0.017	-	-	-	-	-
90		no	0	130	9	32	24.61538	KD	0.682	31.04	0.1	KD	0.721	20.463	0.049	+	-	+	+	+
91		yes	1	599	10	569	94.99165	KD	0.702	25.14	0.07	KD	0.6946	27.2438	0.0692	-	+	+	-	+
92		10	0	360	9	318	83.68421	KD Kb	0.759	13.57	0.03	KD	0.7979	0.9010	0.0140	-	-	-	-	[
93	SSTSTSNPL	10	0	233	9	39	10.7382	KD	0.034	0.03	0.01	KD	0.0002	4.7934	1 6429	-	-	-	-	-
94		10	0	1113	8	763	68.55346	KD	0.200	2/3/.1	0.4	KD	0.3731	40 7716	1.0420	-	+	-	-	+
	NCVDENNI (batch purity)	110	0	400	0	190	40.74074	KD	0.000	2706 7	0.4	KD	0.0309	49.7710	1 4620	Ŧ	-	т	т	т —
	SOLL NAKYL (batch purity)	110	1	205	0	390	0.072410	RD Db	0.230	24.47	9	ND Db	0.3004	20 20 20 20	0.0004	-	-	-	-	-
	I SCRYNDL (batch purity)	yes	2	390	9	118	35,86626	Kh	0.704	1360.5	0.05	KP KP	0.0070	1524.00	2 5400	т	т 1	т Т	т Т	т Т
-	WGDEEEKL (batch purity)	yes	1	947	0	401	47 34357	Kb	0.333	10471	32	Kb	0.3220	0206.28	12 8023	-		-	-	-
	LI PHESIL (batch purity)	10	0	861	9	650	75 40361	Kh	0.140	771.82	3	Kb	0.1504	374 756	0.8150		+			+
	VVVDVDKI (batch purity)	no	0	2775	8	1956	70.48640	Kh	0.360	2858.2	7	Kh	0.3161	1634 72	2 7053	-	+	- +	- +	+
95	HSYPYYTNI	no	13	2715	0	1655	60 95764	Kh	0.792	9 4 9	0.01	Kh	0.8997	2 9593	0.0056	-	-	+	-	-
96		no	0	367	9	249	67 84741	Dh	0.815	7 44	0.01	Db	0.7648	12 7404	0.0071	-	+	-	-	+
97	KSIONMNCTEI	no	0	3018	11	1987	65 8383	Db	0.653	42.71	0.07	Db	0.5719	102.679	0.0302	-	-	-	-	-
98	YSYNRFLTI	no	6	2724		2053	75.36711	Kb	0.78	10.87	0.01	Kb	0.7778	11.0693	0.0213	-	-	-	-	-
99	YIYRFFRSL	no	0	1155	9	182	15.75758	Kb	0.79	9.65	0.01	Kb	0.8812	3.6165	0.0066	+	+	-	-	-
100	VTYENLDPL	no	1	366	9	224	61.20219	Db	0.75	14.87	0.05	Db	0.7369	17.2266	0.0079	-	+	+	+	+
101	SIFNFIYLL	yes	0	1218	9	118	9.688013	Kb	0.728	19.08	0.05	Kb	0.7615	13.2062	0.027	+	-	+	+	+
102	VSYLKHFAMEM	no	0	778	11	537	69.02314	Kb	0.639	49.43	0.17	Kb	0.6321	53.542	0.1321	-	+	-	-	+
103	ISFLHYYKL	no	0	1360	9	704	51.76471	Kb	0.795	9.19	0.01	Kb	0.8978	3.0219	0.0057	+	-	-	-	+
104	IAYYFMFL	no	1	151	8	142	94.03974	Kb	0.827	6.54	0.01	Kb	0.8968	3.0556	0.0057	+	-	-	-	+
105	ISFYMFYHKM	no	11	1935	10	359	18.55297	Kb	0.685	30.05	0.07	Kb	0.8144	7.4507	0.0111	+	-	-	-	-
106	HSFCRYILL	no	0	1090	9	159	14.58716	Kb	0.74	16.57	0.05	Kb	0.721	20.475	0.049	-	-	-	-	+
107	FTYLYYYYL	yes	10	2361	10	2068	87.59	Kb	0.686	29.73	0.07	Kb	0.6247	58.0379	0.149	-	-	-	-	-
108	VVYFFIMPV	yes	1	1296	9	1174	90.58642	Kb	0.762	13.13	0.03	Kb	0.7299	18.5857	0.042	+	-	-	-	+
109	FSIANVVYV	no	0	566	9	4	0.706714	Db	0.878	3.74	0.01	Db	0.8372	5.8204	0.0049	+	-	-	-	-
110	MSWANNTTFL	no	0	513	10	481	93.76218	Db	0.687	29.56	0.07	Db	0.5471	134.311	0.0372	+	+	-	-	+
111	INYKFFKSI	yes	1	2096	9	2062	98.37786	Kb	0.729	18.77	0.05	Kb	0.8822	3.5774	0.0065	-	-	-	-	+
112	NCIEFYEL	no	0	439	8	394	89.74943	Kb	0.274	2579	7	Kb	0.3385	1283.42	2.212	+	+	-	-	+
113	VCYKYMPLI	yes	1	185	9	142	76.75676	Kb	0.584	90.6	0.4	Kb	0.6201	60.9461	0.1564	+	+	-	-	+
114	INYEYYNL	no	0	7263	8	5736	78.97563	Kb	0.845	5.38	0.01	Kb	0.9141	2.5318	0.0048	-	-	-	-	+

					Expression data	1	
		Microa	irray	SS	Н	Micro	array
Novel Peptide number	Peptide sequence	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
		+/-	+/-	+/-	+/-	+/-	+/-
			ort	hologs of P. yoelii	•	P. bergh	<i>ei</i> origin
78	NCLNYYPL	-	-	-	-	-	-
79	RIYNFYHKL	-	-	-	-	-	+
80	NCYKYMLL	-	-	-	-	-	-
81	VSMYFTMHI	-	-	-	-	-	-
82	NCYDYGTL	-	-	-	+	-	-
83	FAHKNNVPI	-	-	-	-	-	-
84	INYNFYSM	-	-	-	-	-	+
85	SNFKYSFV	-	+	-	-	-	-
86	NSIKNVLPI	-	-	-	-	-	-
87	HSMENVDTM	+	-	-	-	-	-
88	ISYYLYINL	-	-	-	-	-	+
89	ISFNCFLSTL	-	-	-	-	-	+
90	VVIKFLQYM	-	+	-	-	-	-
91	ISYLFHYIHF	-	-	-	-	-	-
92	YSYKYYNYF	-	+	-	-	-	-
93	SSYSYSNPL	+	-	-	-	-	-
94	NCFYFKNV	-	-	-	-	-	-
	EIYIFTNI (batch purity)	-	-	-	-	+	-
	NCYDFNNI (batch purity)	-	-	-	-	-	-
	SQLLNAKYL (batch purity)	-	-	-	-	-	-
	LSGRYNDL (batch purity)	-	-	-	-	-	-
	WGDEFEKL (batch purity)	-	+	-	-	-	-
	LLPHFSIL (batch purity)	-	-	-	-	-	-
	YYYDYDKI (batch purity)	-	-	-	-	-	-
95	HSYPYYTNL	-	-	-	-	-	-
96	YSLSNRLQL	-	-	-	-	-	-
97	KSIQNMNCTEI	+	-	-	-	-	-
98	YSYNRFLTI	+	-	+	-	-	-
99	YIYRFFRSL	-	-	-	-	-	+
100	VTYENLDPL	+	-	-	-	-	-
101	SIFNFIYLL	-	-	-	-	-	-
102	VSYLKHFAMEM	-	ì	-	-	-	-
103	ISFLHYYKL	-	-	-	-	-	-
104	IAYYFMFL	-	+	-	-	-	-
105	ISFYMFYHKM	-	-	-	-	-	-
106	HSFCRYILL	-	-	+	-	-	-
107	FTYLYYYYL	-	-	-	-	-	+
108	VVYFFIMPV	-	-	-	-	-	-
109	FSIANVVYV	-	-	-	-	-	-
110	MSWANNTTFL	-	-	-	-	-	-
111	INYKFFKSI	-	-	-	-	-	-
112	NCIEFYEL	-	-	-	-	-	-
113	VCYKYMPLI	-	+	-	-	-	-
114	INYEYYNL	-	-	-	-	-	-

115 MAYYERLS. 0.01 0.03 116 MAYYERLS. 0.03 117 MAYYERLS. 0.03 118 MAYYERLS. 0.03 117 MAYYERLS. 0.03 118 MAYYERLS. 0.03 119 MAYYERLS. 0.03 121 MAYYERLS.	Novel Peptide number	Peptide sequence	Novel peptides carried forward from batch purity -> high purity (black=top43, grey=other52)	Published control peptides	Top NetMHCpan peptides <22nM and <0.05 Rank %	NetMHCpan other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Gene ID	Protein	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	High purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells
116 95/FMNME 0.03 117 SCPTMADA 0.03 118 0.03 0.03 118 0.03 0.03 119 0.03 0.03 110 0.03 0.03 113 0.03 0.03 113 0.03 0.03 113 0.03 0.03 114 0.03 0.03 115 0.03 0.03 116 0.03 0.03 111 0.03 0.03 112 0.03 0.03 113 0.03 0.03 114 0.03 0.03 115 0.03 0.03 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 116 0.04 0.02 <td>115</td> <td>KNYYFTLSL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.03</td> <td></td>	115	KNYYFTLSL										0.03	
117 SCYFMAM. 0.23 118 VSYFYFFF 0.23 118 VSYFYFFF 0.23 128 NAPPWIFAL 0.23 128 NAPPWIF	116	YSFFMYNEM										0.03	
118 VEYSYERAF 0.23 119 VEYSYERAF 0.23 120 SANKCL 0.24 121 SAYEL 0.25 123 SAYEL 0.25 124 VEYSYERAF 0.25 125 SAYEL 0.25 126 VEYSYERAF 0.25 127 VEYSYERAF 0.25 128 VEYSYERAF 0.25 128 VEYSYERAF 0.25 128 VEYSYERAF 0.26 128 VEYSYERAF 0.27 128 VEYSYERAF 0.267 138 VEYSYERAF 0.267 139 VEYSYERAF	117	SCFYRMQML										0.029	
118 MAYPY MFALL Image: Constraint of the second of th	118	YSYSYFINF										0.029	
120 SANNCL <td< td=""><td>119</td><td>YAFYFWFFALL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.029</td><td></td></td<>	119	YAFYFWFFALL										0.029	
121 SYFLL Image: SYFL 0.028 122 NCMF/HI Image: SYFL 0.028 123 NCMF/HI Image: SYFL 0.028 124 NCMF/HI Image: SYFL 0.028 125 VSF/FMAL Image: SYFL 0.028 126 VSF/FMAL Image: SYFL 0.028 126 VSF/FMAL Image: SYFL 0.028 127 VSF/FMAL Image: SYFL 0.028 128 VSF/FMAL Image: SYFL 0.027 129 VSF/FFH Image: SYFL 0.027 120 VSF/FFH Image: SYFL 0.027 121 VSF/FFH Image: SYFL 0.027 123 VSF/FFN Image: SYFL 0.027 123 VSF/FFN Image: SYFL 0.027 123 VSF/FFN Image: SYFL Image: SYFL 124 Image: SYFL Image: SYFL Image: SYFL 125 Image: SYFL Image: SYFL Image: SYFFFH 126 Image: SYFFFH Image: SYFFFH Image: SYFFFH 126 <td>120</td> <td>SAINNCLI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0285</td> <td></td>	120	SAINNCLI										0.0285	
121 NCNFLL Image: Second S	121	SSYIFILL										0.028	
121 MSRFWH 0.028 0.028 124 MSRFWN 0.028 0.028 125 VSFFYHAL 0.028 0.028 126 WSFFYFAL 0.028 0.028 127 SSYKKFLL 0.028 0.028 128 KSRWNTD 0.028 0.028 128 KSRWNTD 0.027 0.027 128 KSRWNTD 0.027 0.027 129 FAYFNEEI 0.027 0.027 130 WAHMAN SPL 0.027 0.027 131 IGYFFYNI 0.027 0.027 133 IGYFFYNI 0.027 0.027 134 ISYFWYM 0.027 0.027 135 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.027 0.027 138 IGYFFYNI 0.026 0.027 139 IGYFFYNI 0.027 0.027 139 IGYFFYNI 0.028 0.028	122	NCINFLLL										0.028	
124 MSLNEYNI 0.28 0.28 129 VSYPFYAL 0.028 0.28 129 VSYPFYAL 0.028 0.228 128 VSYPFYAL 0.028 0.028 128 VSYPFYAL 0.027 0.028 128 VSYPFYAL 0.027 0.027 128 VSYPFYAL 0.027 0.027 128 VSYPFYAL 0.027 0.027 130 VAHAMLSP, 0.027 0.027 130 VHAMALSP, 0.027 0.027 131 VHAMALSP, 0.027 0.027 132 VSYPFYM 0.027 0.027 133 VSYPFYM 0.027 0.027 139 VSYPFYM 0.026 0.027 139 VSYPFYM 0.026 0.026 140 VSYPFYM 0.026	123	NCMSFYHI										0.028	
128 USPFYHAL 0.028 128 USPFYHAL 0.028 128 USVKFRLL 0.028 128 USVKFRLL 0.028 128 USVKFRLL 0.027 128 USVKFRLL 0.027 128 USVKFRLL 0.027 128 USVKFRL 0.027 129 USVKFRL 0.027 120 VMMN.SPL 0.027 131 USVFFRNL 0.027 133 USVFFRNL 0.027 134 USVFFRNL 0.027 135 USVFFRNL 0.027 134 USVFFRNL 0.027 135 USVFFRNL 0.027 136 USVFFRNL 0.027 138 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.027 139 USVFFRNL 0.028 139 USVFFRNL 0.028 139 USVFFRNL 0.028 139 USVFFRNL 0.028 140 USVFYFEL 0.028 </td <td>124</td> <td>MSILNEYNI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.028</td> <td></td>	124	MSILNEYNI										0.028	
128 WGVGKVYPL 0.28 0.28 128 SKKRLL 0.28 0.28 128 SKKRLL 0.27 0.27 129 SKKRLL 0.27 0.27 130 SKKRLL 0.27 0.27 131 CYFFRI 0.27 0.27 133 SKKRLL 0.27 0.27 133 SKKRLL 0.27 0.27 133 SKKRLL 0.27 0.27 134 SKKRLL 0.27 0.27 135 SKKRNLL 0.27 0.27 134 SKKRNLL 0.27 0.27 135 SKKRNLL 0.27 0.27 136 SKKNLL 0.27 0.27 137 SKKNLL 0.26 0.27 138 SKKNLL 0.26 0.27 139 NYFFPLUS 0.26 0.26 139 NYFFRLL 0.26 0.26 140 0.26 0.26 0.26 141 0.26 0.26 0.26 141	125	VSPFYHAL										0.028	
1212 SSYNKFILL I <t< td=""><td>126</td><td>WGYGFKYYPL</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.028</td><td></td></t<>	126	WGYGFKYYPL										0.028	
128 KSINYNT 0.027 139 FAYNFEEI 0.027 131 [CYFFYN 0.027 132 SYYFSFNL 0.027 133 RSYNFLL 0.027 133 RSYNFLL 0.027 134 ISYNFAN 0.027 135 RSINNFLL 0.027 136 ISYNFFNL 0.027 137 RSYNFLL 0.027 138 TSINNOTL 0.027 139 INYFFYNL 0.027 139 INYFFYNL 0.028 139 INYFFYNL 0.028 139 INYFFYNL 0.028 139 INYFFYNL 0.028 140 VSYNYREL 0.028 140 VSYNYREL	127	SSYKKFILLL										0.028	
129 PATFNEEI I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	128	KSIINYNTI										0.027	
131 CYMHMLSPL Image: Comparison of the second of the	129	FAYFNFEEI										0.027	
131 CYFFFYNI	130	YMHMNLSPL										0.027	
132 SVYFSFRML Image: SVFSFRML Image: SVFSFRML <td>131</td> <td>ICYFFFYNI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.027</td> <td></td>	131	ICYFFFYNI										0.027	
133 RSFNFLL Image: Constraint of the second of the se	132	SVYFSFRNL										0.027	
134 [SFYRYFIM 0.027 135 [SENKONTL 0.027 136 [MYEFLLYGL 0.027 137 [MSYPFFLL] 0.021 138 [ALMFAL 0.021 138 [ALMFAL 0.022 139 [MYNFNSL 0.026 139 [MYNFNSL 0.026 140 [SYPYREL 0.026 141 [TFYRNGL 0.026 142 [NYFFSNYMFF 0.026 143 [SEPFMLL] 0.026 144 [SFPFML] 0.026 145 [SFPFML] 0.026 144 [SFPFML] 0.026 145 [SFPFML] 0.026 144 [SFPFML] 0.026 145 [SFPFML] 0.026 146 [SFPFML] 0.025 146 [SFPFML] 0.025 146 [SFPFML] 0.025 145 [SFPFML] 0.025 146 [SFPFML] 0.025 147 [SFFFML] 0.025 148 [SFPFML] 0.025 149 [SFFFML] 0.025 150 [IVLFRETNL 0.025 151 [SFFML] 0.025 152 [SVNNYFNFL] 0.024 153 [SNYAYFTI] 0	133	RSFNFILL										0.027	
135 TSLRNGNTL 0.027 136 136 100 0.027 137 MSYPFFPLLC 0.026 0.026 138 140 0.026 0.026 138 140 0.026 0.026 138 140 0.026 0.026 139 140 140 0.026 140 147 140 0.026 141 147 140 0.026 142 ViYHFSNVMF 0.026 0.026 143 141 140 0.026 144 141 140 0.026 0.026 143 141 140 0.026 0.026 144 141 140 0.025 0.026 145 145 145 0.025 0.025 144 141 140 140 0.025 145 145 145 145 0.025 146 145 146 146 146 146 0.025 148 146 146 146 146	134	ISFYRYFIM										0.027	
136 IMYEFLLYGL Image: Constraint of the second	135	TSLRNGNTL										0.027	
137 MSYPFFPLLL 0 0.026 138 FALNFIAL 0 0.026 138 INYNENSL 0 0.026 140 USYRYREL 0 0.026 141 UTFYRNGL 0.026 0.026 142 UNYNENYMNF 0 0.026 143 JALINHTNI 0 0.026 144 USYRYRUM 0.026 0.026 144 USYNENYMNF 0 0.026 144 USYNENYMNF 0 0.026 144 VSLNNANINIL 0 0.026 144 VSLNANINIL 0 0.025 144 USYNENYTEL 0.025 0.025 145 USYCSL 0 0.025 146 USYCSL 0 0.025 147 USYFFMUL 0.025 0.025 148 USYNEN 0.025 0.025 149 USYNEN 0.025 0.025 149 USYNEN 0.025 0.025 151 UNYNTUCSUL 0.025 0.025 152 UNYNCYNLL 0.024 0.024 152 UNYNCYNL 0.024 0.0245 153 SUNNEDPU 0.0245 0.0245 154	136	IMYEFLLYGL										0.027	
138 FALINFIAL Image: Constraint of the second	137	MSYPFFPLLL										0.0265	
139 INYNFNSL Image: Constraint of the second se	138	FALINFIAL										0.026	
140 VSYRYREL Image: Constraint of the second s	139	INYNFNSL										0.026	
141 ITFYRNGL 0.026 142 VNYHFSNYMNF 0.026 143 AALNHTN 0.025 144 YSLNNANNIL 0.026 144 YSLNNANNIL 0.025 144 YSLNNANNIL 0.026 144 YSLNNANNIL 0.025 145 YTYTYTPL 0.026 146 ISFCFOAL 0.025 147 YSFFFMHL 0.025 148 CYEYYCSL 0.025 149 CYEYYCSL 0.025 149 CYEYYCSL 0.025 150 IYLFRETNL 0.025 151 NYYYLCSEL 0.026 152 0.025 0.025 153 SNYAYFTL 0.024 154 AQYSNNFDYL 0.024 155 SMINDIPL 0.024 156 IYNNDIPL 0.024 156 IYNNDIPL 0.024 156 SINNAIPFYL 0.024	140	VSYRYREL										0.026	
142 (NYHESWMNF 0.026 143 (AALNHTM) 0 0.0255 144 (YSLNNANINIL 0 0.0255 145 (YTRYTPL 0 0.0255 146 (SFCF0AL 0 0.0255 147 (YSFFFMHL 0 0 0.0255 148 (CYEYYCSL 0 0 0.025 149 (CYEYYCSL 0 0 0 140 (IFLERTNL 0 0 0 140 (IFLERTNL 0 0 0 1415 (NYTYLCSIEL 0 0 0 151 (NYTYLCSIEL 0 0 0 152 (NYNKYIHLL 0 0 0 153 (SNYAYFTIL 0 0 0 154 (AQYSNNFDYL 0 0 0 155 (SNNNEDYL 0 0 0	141	ITFFYRNGL										0.026	
143 AALLNHTNI 0 0 0 0 0.0255 144 YSLNNANINIL 0 0 0 0.0255 144 YSLNNANINIL 0 0 0.0255 146 [JSFCFQAL 0 0.025 0.0255 146 [JSFCFQAL 0 0.025 0.0255 146 [JSFCFQAL 0 0 0.025 147 YSFFFMHL 0 0 0.025 148 [CCYEYYCSL 0 0 0.025 149 NCFHLINL 0 0 0 0.025 149 NCFHLINL 0 0 0 0.025 150 [IYLFRETNL 0 0 0 0.025 151 [VNYTYLCSIEL 0 0 0 0.0248 152 [INYNKYHLL 0 0 0 0.0245 153 [SNYAYFTIL 0 0 0 0.0248 155 [SNNEDYL 0 0 0 0.0244 155 [INYNELY 0 0 0 0.0244 156 [LYSFYNYL 0 0 0 0.024 157 [SSLNELI 0	142	VNYHFSNYMNF										0.026	
144 YSLNANNIL Image: Constraint of the second s	143	AAILNHTNI										0.0255	
143 Y1YKYIPL 0 0 0.025 146 ISFCFQAL 0 0 0.025 147 YSFFMHL 0 0 0.025 148 CCYEYYCSL 0 0 0.025 149 NCFHLINL 0 0 0 0.025 149 NCFHLINL 0 0 0 0.025 149 NCFHLINL 0 0 0 0.025 150 INVLFRETNL 0 0 0 0.025 151 VNYTVCSIEL 0 0 0 0.025 152 INVNKYIHLL 0 0 0 0.025 153 SNYAYFTIL 0 0 0 0.0245 153 SNYAYFTIL 0 0 0 0.0245 154 AQYSNNFDYL 0 0 0 0.0245 155 SMINNDIPL 0 0 0 0.0245 156 ILYSFYNYL 0 0 0 0.024 157 SSLINNELI 0 0 0 0.024 157 SSLINNELI 0 0 0 0.024	144											0.0255	
146 ISPCFCAL Image: Constraint of the second s	145	YIYRYIPL										0.0255	
147 YSPFPMIL Image: Constraint of the second s	146											0.025	
149 CCFETTCSL 0.025 149 NCFHLINL 0.025 150 IMUFRETNL 0.025 151 VNYTYLCSIEL 0.025 152 INYNKYIHLL 0.026 153 SNYAYFTIL 0.025 153 SNYAYFTIL 0.026 153 SNYAYFTIL 0.0248 153 SNYAYFTIL 0.0248 154 AQYSNNFDYL 0.0248 155 SMINNDIPL 0.0249 155 SMINNDIPL 0.0249 156 LYSFYNYL 0.024 157 SSLINNELI 0.024	147											0.025	
149 NCPRLINE 0 0 0.025 150 INFRETNL 0 0 0 0.025 151 VNYTYLCSIEL 0 0 0 0.025 152 INVNKYIHLL 0 0 0 0.02458 153 SNYAYTTIL 0 0 0 0.02458 154 AQYSNNFDYL 0 0 0 0.0245 155 SINNDIPL 0 0 0 0.0245 155 SINNNELI 0 0 0 0.0245 157 SSLNNELI 0 0 0 0.02449 157 SSLNNELI 0 0 0 0.024	140											0.025	
150 ITLPREINL 0.025 151 VNYTVLSIEL 0.025 152 NYNKYIHLL 0.024 153 SNYAYFTIL 0.024 153 SNYAYFTIL 0.024 154 AQYSNNFDYL 0.024 155 SINNNDIPL 0.024 156 LYSFYNYL 0.024 157 SSILNNELI 0.024 157 SSILNNELI 0.024	149											0.025	
151 WH HLGOLL 0.025 152 INYNKYIHLL 0.0245 153 INYAKTIL 0.0245 154 AQYSNNFDYL 0 155 SMINNDIPL 0 156 ILYSFYNYL 0 157 SSLINNELI 0 157 SSLINNELI 0 157 SSLINNELI 0 157 SSLINNELI 0 158 MINDEL 0 159 SULVELI 0 150 ILYSFYNYL 0 156 ILYSFYNYL 0 157 SSLINNELI 0 158 MINDEL 0 159 SULVELI 0 150 ILYSFYNYL 0 157 SSLINNELI 0 158 JANG FOR 0 159 SULVELI 0 150 ILYSFYNYL 0 <t< td=""><td>154</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.025</td><td></td></t<>	154											0.025	
152 VI IVICUIDL 0.02436 153 SV AYFTIL 0.0245 154 VI VICUIDL 0.0245 154 VICUIDL 0.0245 155 SMINDIPL 0 156 LYSFYNYL 0 156 LYSFYNYL 0 157 SLILNNELI 0 157 SLILNNELI 0 158 MUTCDIL 0	151											0.025	
154 AQYSNNFDYL 0 0.0245 155 SMINNDIPL 0 0 156 ILYSFYNYL 0 0 157 SSLINNELI 0 0 157 SSLINNELI 0 0	152											0.02450	
Instruction Instruction	154											0.0245	
156 LYSFYNL 0.024 157 SSILNNELI 0.024	155											0.0243	
157 SSILNNELI 0.024 157 0.024 0.024	156	II YSFYNYI										0.02445	
	157	SSIL NNEL I										0.024	
	158	VMYLFGRL										0.024	

								Not	MHCcons	1 1 date		Ν	otM⊌Cna	n 4 0 dat				Expression da	ta	
			No. of					Neu	WINCCOM	5 1.1 uata	1		etwitepa	4.0 uata		TARUN 2008			LASONDER	
Novel		Signal	transmembrane	Protein	Pentide	Peptide	Percentile									EEF Mass	2013 Spz	2008 spz Mass	2008 Spz (only	2013 Spz
Peptide	Peptide sequence	peptide	domains	length	length	start	of protein	MHC allele	1-		%Rank	MHC allele	1-		%Rank	Spec (LS40-	Mass Spec	Spec	day 18-22)	Mass Spec
number		predicted	predicted		J.	position		restriction	log50k	nM	score	restriction	log50k	nM	score	50h)			Mass Spec	
									-				-							
																+/-	+/- of P voelii	+/-	+/-	+/-
115			10	0064	0	04.45	00.05400	1/h	0.750	12.64	0.02	1/h	0.0402	E 6070	0.0000	orthologs c	n n . youn	ortito	logs of r . raicipart	
115		yes	10	2301	9	2145	90.85133	KD	0.758	13.64	0.03	KD	0.8403	5.6278	0.0088	-	-	-	-	-
110	SCEVENOMI	no	1	1474	9	1043	30.12013	Kb	0.710	86.76	0.03	Kb	0.0902	128 178	0.0070	-	-	-		
118	YSYSYEINE	ves	2	896	9	259	28 90625	Kh	0.300	13.2	0.03	Kh	0.7932	9 3706	0.0230	-	+	+	-	+
119	YAFYFWFFALL	no	4	611	11	266	43.53519	Kb	0.698	26.39	0.07	Kb	0.6034	73.062	0.1851	-	+	-	-	+
120	SAINNCLI	ves	0	3254	8	539	16.56423	Db	0.399	666.93	0.5	Db	0.449	388.441	0.1045	+	-	-	-	-
121	SSYIFILL	no	6	705	8	529	75.03546	Kb	0.828	6.47	0.01	Kb	0.8744	3.8914	0.007	-	+	-	-	+
122	NCINFLLL	no	0	1471	8	988	67.16519	Kb	0.277	2496.6	7	Kb	0.3316	1382.3	2.3504	-	-	-	-	+
123	NCMSFYHI	no	0	228	8	200	87.7193	Kb	0.211	5099	15	Kb	0.3277	1443.1	2.4307	-	-	-	-	-
124	MSILNEYNI	yes	2	1671	9	860	51.46619	Db	0.743	16.13	0.05	Db	0.7429	16.1554	0.0078	-	-	-	-	+
125	VSPFYHAL	yes	2	1671	8	578	34.59007	Kb	0.759	13.57	0.03	Kb	0.8224	6.834	0.0098	-	-	-	-	+
126	WGYGFKYYPL	yes	1	1192	10	659	55.28523	Kb	0.663	38.12	0.12	Kb	0.645	46.564	0.1154	+	+	-	-	+
127	SSYKKFILLL	no	0	5309	10	1102	20.7572	Kb	0.742	16.39	0.03	Kb	0.7168	21.4241	0.0518	+	+	-	-	+
128	KSIINYNTI	no	0	5249	9	3330	63.44066	Db	0.854	4.88	0.01	Db	0.8345	5.9952	0.005	+	-	-	-	-
129		no	0	511	9	191	37.37769	Db	0.877	3.8	0.01	Db	0.8558	4.7581	0.0043	-	-	-	-	+
130		no	8	1272	9	1190	93.55346	DD	0.883	3.53	0.01	DD	0.8267	6.5242	0.0052	-	-	-	-	+
131		yes	11	2204	9	1000	93.03279	KD	0.577	97.73	0.4	KD	0.0093	20.0443	0.0732	-	-	+	+	-
132		Ves	1	824	9	1320	41.30377	Kb	0.720	10.07	0.03	Kb	0.0347	6.4175	0.0092	-	-	-		-
134	ISEYRYEIM	no	4	3053	9	1107	36 25942	Kh	0.789	9.81	0.01	Kh	0.8136	7 5126	0.0033	_	+	-	-	+
135	TSI RNGNTI	ves	0	477	9	33	6 918239	Db	0.700	11 17	0.01	Db	0.7632	12 9621	0.0071	+	-	-	-	-
136	IMYEFLLYGL	ves	0	562	10	476	84.69751	Kb	0.738	17.12	0.05	Kb	0.6791	32.2151	0.0806	-	+	-	-	+
137	MSYPFFPLLL	no	0	4287	10	3924	91.53254	Kb	0.758	13.79	0.03	Kb	0.8018	8.5334	0.0138	-	-	+	-	-
138	FALINFIAL	no	2	190	9	143	75.26316	Db	0.881	3.62	0.01	Db	0.8083	7.9614	0.0058	-	+	-	-	+
139	INYNFNSL	no	4	3350	8	2661	79.43284	Kb	0.834	6.03	0.01	Kb	0.9018	2.8923	0.0054	-	+	-	-	+
140	VSYRYREL	no	4	1504	8	971	64.56117	Kb	0.837	5.8	0.01	Kb	0.9083	2.696	0.0051	+	-	-	-	-
141	ITFFYRNGL	no	2	2091	9	1831	87.56576	Kb	0.749	15.12	0.03	Kb	0.8193	7.0627	0.01	-	-	-	-	-
142	VNYHFSNYMNF	yes	1	2081	11	811	38.97165	Kb	0.639	49.7	0.17	Kb	0.6704	35.3906	0.089	-	+	+	+	+
143	AAILNHTNI	no	4	4204	9	2090	49.71456	Db	0.865	4.33	0.01	Db	0.8136	7.5134	0.0056	-	+	-	-	+
144	YSLNNANINIL	yes	0	1478	11	489	33.08525	DD	0.627	56.89	0.1	DD	0.6103	67.798	0.02	-	-	-	-	+
145		110	10	452	8	83	18.36283	KU Kh	0.846	5.29	0.01	KU Kh	0.9014	2.9059	0.0055	-	+	-	-	-
140	VSEEEMHI	n0	8	411	8	198	40.1/518	Kb	0.042	0.03	0.01	Kb	0.906	2.7047	0.0052	-	+	-		+
147	CCYEYYCSI	no	0	277	0	940	55 59567	Kb	0.624	50.78	0.01	Kh	0.6921	27 9884	0.0037	-	-	-	-	-
140	NCEHLINI	no	2	7126	9	2543	35 68622	Kh	0.007	2858.2	0.17	Kh	0.3237	1505 51	2 5121	_	-	-	-	+
150		no	13	585	10	472	80 68376	Kb	0.645	46.32	0 15	Kb	0.7392	16 8036	0.0368	-	+	+	-	+
151	VNYTYLCSIEL	ves	0	1218	11	972	79.80296	Kb	0.635	51.89	0.17	Kb	0.6976	26.3685	0.0662	+	-	+	+	+
152	INYNKYIHLL	no	0	5249	10	3477	66.24119	Kb	0.707	23.81	0.05	Kb	0.7852	10.2132	0.0188	+	-	-	-	-
153	SNYAYFTIL	yes	0	1354	9	691	51.03397	Kb	0.82	7.05	0.01	Kb	0.9054	2.7834	0.0052	+	+	-	-	+
154	AQYSNNFDYL	yes	0	999	10	122	12.21221	Db	0.681	31.38	0.07	Db	0.6399	49.2067	0.0133	-	+	+	+	+
155	SMINNDIPL	no	0	1766	9	4	0.226501	Db	0.809	7.9	0.01	Db	0.7709	11.933	0.0069	-	-	-	-	-
156	ILYSFYNYL	no	0	1310	9	906	69.16031	Kb	0.83	6.29	0.01	Kb	0.865	4.3095	0.0075	-	-	-	-	-
157	SSILNNELI	yes	0	764	9	297	38.87435	Db	0.865	4.29	0.01	Db	0.8373	5.8119	0.0049	-	-	-	-	+
158	VMYLFGRL	no	12	735	8	372	50.61224	Kb	0.834	6.03	0.01	Kb	0.8954	3.1013	0.0058	-	+	-	-	+

					Expression data	1	
		Microa	irray	SS	H	Micro	array
Novel Peptide number	Peptide sequence	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
		+/-	+/-	+/-	+/-	+/-	+/-
			ort	hologs of P. yoelii		P. bergh	ei origin
115	KNYYFTLSL	-	-	-	-	-	+
116	YSFFMYNEM	-	-	-	-	-	-
117	SCFYRMQML	-	-	-	-	-	-
118	YSYSYFINF	-	-	-	-	-	-
119	YAFYFWFFALL	-	-	-	-	-	-
120	SAINNCLI	-	-	-	-	-	-
121	SSYIFILL	-	-	-	-	-	-
122	NCINFLLL	+	-	-	-	-	-
123	NCMSFYHI	+	+	-	-	-	-
124	MSILNEYNI	-	-	-	-	-	-
125	VSPFYHAL	-	-	-	-	-	-
126	WGYGFKYYPL	-	-	-	-	-	-
127	SSYKKFILLL	-	-	-	-	-	-
128	KSIINYNTI	-	-	-	-	-	-
129	FAYFNFEEI	-	-	-	-	-	-
130	YMHMNLSPL	-	-	-	-	-	-
131	ICYFFFYNI	-	-	-	-	-	-
132	SVYFSFRNL	-	-	-	-	-	-
133	RSFNFILL	-	ì	-	-	-	-
134	ISFYRYFIM	-	-	-	-	-	-
135	TSLRNGNTL	-	+	-	-	-	-
136	IMYEFLLYGL	-	-	-	-	-	-
137	MSYPFFPLLL	-	-	-	-	-	-
138	FALINFIAL	-	-	-	-	-	-
139	INYNFNSL	-	-	-	-	-	-
140	VSYRYREL	-	-	-	-	-	-
141	ITFFYRNGL	-	-	-	-	-	+
142	VNYHFSNYMNF	-	-	-	-	-	-
143	AAILNHTNI	-	+	-	-	-	-
144	YSLNNANINIL	-	-	-	-	-	-
145	YTYRYTPL	-	-	-	+	-	-
146	ISFCFQAL	-	-	-	-	-	-
147	YSFFFMHL	-	-	-	-	-	-
148	CCYEYYCSL	+	-	-	-	-	-
149	NCFHLINL	-	-	-	-	-	+
150	IIYLFRETNL	-	-	-	-	-	-
151	VNYTYLCSIEL	-	-	-	-	-	-
152	INYNKYIHLL	-	-	-	-	-	-
153	SNYAYFTIL	-	-	-	-	-	-
154	AQYSNNFDYL	+	-	-	+	-	-
155	SMINNDIPL	-	-	-	-	-	+
156	ILYSFYNYL	-	+	-	-	-	-
157	SSILNNELI	-	-	-	-	-	-
158	VMYLFGRL	-	+	-	-	-	1-

			NetMHCpan											NetMHCcons 1.1 data			
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
159	VVYRHFATL						0.024	no	0	157	9	62	39.4904459	Kb	0.857	4.67	0.01
160	YALSNGVNI						0.024	no	1	602	9	355	58.9700997	Db	0.885	3.45	0.01
161	VCYDYLYSL						0.024	no	0	2453	9	1920	78.2715043	Kb	0.633	52.74	0.17
162	AAFRNIKSI						0.024	no	0	194	9	150	77.3195876	Db	0.506	209.55	0.2
163	KTYPFFSNI						0.024	yes	0	2150	9	1952	90.7906977	Kb	0.728	18.87	0.05
164	VSYARHFL						0.024	yes	1	2081	8	1291	62.037482	Kb	0.729	18.77	0.05
165	ISYRHYSL						0.023	yes	7	628	8	328	52.2292994	Kb	0.851	5.01	0.01
166	KSLQNVDYI						0.023	no	0	647	9	33	5.10046368	Db	0.883	3.55	0.01
167	MIYYFQSL						0.023	no	2	1765	8	1446	81.9263456	Kb	0.823	6.79	0.01
168	SIYSYSYL						0.023	no	0	651	8	617	94.7772657	Kb	0.834	6.06	0.01
169	YSIMNINEI						0.023	no	0	1221	9	101	8.27190827	Db	0.917	2.47	0.01
170	KCISFFNTL						0.023	no	0	584	9	571	97.7739726	Kb	0.612	66.56	0.25
171	NCFNFNYI						0.023	no	2	1030	8	194	18.8349515	Kb	0.24	3705.68	9
172	NCIKYIKL						0.023	no	3	871	8	146	16.7623421	Kb	0.247	3435.38	9
173	INFSYNNM						0.023	yes	4	1785	8	1218	68.2352941	Kb	0.773	11.66	0.03
174	YSTWNLSFI						0.023	yes	1	1230	9	674	54.796748	Db	0.774	11.6	0.03
175	KAFDRHCNL						0.023	no	0	101	9	46	45.5445545	Kb	0.608	69.5	0.25
176	RCLKNNYTL						0.023	no	0	192	9	120	62.5	Db	0.42	531.38	0.4
177	VGYIFYNRL						0.023	yes	0	256	9	222	86.71875	Kb	0.841	5.62	0.01
178	FSYYKFSSL						0.023	no	0	1737	9	1140	65.6303972	Kb	0.829	6.4	0.01
179	TMLKFYNML						0.023	yes	1	633	9	536	84.6761453	Kb	0.778	10.99	0.01
180	SSMINNDIPL						0.023	no	0	1766	10	3	0.16987542	Db	0.776	11.29	0.03
181	YQLKNLETPI						0.023	yes	0	1406	10	571	40.6116643	Db	0.756	14.09	0.05
182	SNYYNHYFFL						0.023	yes	1	1192	10	701	58.8087248	Kb	0.714	22.19	0.05
183	MVYKKYIGL						0.0225	no	0	778	9	635	81.6195373	Kb	0.79	9.65	0.01
184	SVLSFFYKPL						0.0225	yes	0	2775	10	158	5.69369369	Kb	0.621	60.71	0.25
185	ISYTFLTM						0.022	no	2	177	8	163	92.0903955	Kb	0.832	6.19	0.01
186	RAIQNASTI						0.022	no	0	1331	9	178	13.3734035	Db	0.891	3.27	0.01
187	NCYVNLNL						0.022	no	2	2599	8	2430	93.497499	Kb	0.235	3911.67	9
188	TCFYYFILL						0.022	no	2	1618	9	300	18.5414091	Kb	0.653	42.71	0.15
189	SNYIFNFL						0.022	yes	2	1671	8	1522	91.0831837	Kb	0.805	8.2	0.01
190	KMFVNLSGFI						0.022	no	0	258	10	210	81.3953488	Db	0.507	207.3	0.2
191	MSYPFFPL						0.022	no	0	4287	8	3924	91.5325402	Kb	0.87	4.08	0.01
192	LNYYFYQEI						0.022	yes	3	1149	9	1085	94.4299391	Kb	0.768	12.24	0.03
193	CSMENSTYI						0.022	no	2	2017	9	514	25.4833912	Db	0.841	5.62	0.01
194	SSISFLSSL						0.022	yes	0	654	9	633	96.7889908	KD	0.763	12.99	0.03
195	ISYKYKNYM						0.022	yes	0	1796	9	81	4.51002227	KD	0.76	13.42	0.03
196	YIYPYYNLI						0.022	yes	8	5371	9	3996	/4.3995532	KD	0.732	18.17	0.05
197	IMVPFFSIM						0.022	no	13	585	9	121	/2.8915663	KD	0.736	17.49	0.05
198	VSYARHFLF						0.022	yes	1	2081	9	1291	62.037482	KD	0.787	10.02	0.01
199	ISYFKYQPPV						0.022	yes	2	/13	10	83	11.6409537	KD	0.725	19.6	0.05
200	VNYFNQNLL						0.022	yes	0	1109	9	854	77.006312	KD	0.734	17.88	0.05
201	FMYSRKLKL						0.022	yes	1	3204	9	1984	61.9225968	KD	0.692	28.01	0.07

				n 10 data		Expression data												
			менинсра	in 4.0 uala							Microa	array	SSH		Mic	roarray		
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished		
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-		
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	um		orth	nologs of <i>P. yoelii</i>		P. ber	<i>ghei</i> origin		
159	VVYRHFATL	Kb	0.9077	2.7156	0.0051	-	-	-	-	+	-	+	-	-	-	-		
160	YALSNGVNI	Db	0.8413	5.5693	0.0048	-	-	-	-	-	+	-	-	-	-	-		
161	VCYDYLYSL	Kb	0.7114	22.7002	0.0552	-	+	-	-	+	-	-	-	-	-	-		
162	AAFRNIKSI	Db	0.6274	56.3182	0.0147	+	+	+	+	+	-	+	-	-	-	-		
163	KTYPFFSNI	Kb	0.8556	4.7694	0.008	-	+	-	-	-	-	-	-	-	-	-		
164	VSYARHFL	Kb	0.7846	10.285	0.019	-	+	+	+	+	-	-	-	-	-	-		
165	ISYRHYSL	Kb	0.9048	2.8009	0.0053	-	-	-	-	+	-	-	-	-	-	-		
166	KSLQNVDYI	Db	0.8693	4.1111	0.0039	-	-	-	-	-	-	-	-	-	-	-		
167	MIYYFQSL	Kb	0.877	3.7855	0.0068	-	-	-	-	+	-	-	-	-	-	-		
168	SIYSYSYL	KD	0.8895	3.3052	0.0061	-	+	-	-	+	-	-	-	-	-	+		
169	YSIMNINEI	Db	0.8976	3.0276	0.0031	-	-	-	-	+	-	-	-	-	-	-		
170	KCISFFNIL	Kb	0.6478	45.1686	0.1127	-	-	-	-	-	-	+	-	-	-	-		
171	NCENENYI	Kb	0.3705	908.1188	1.6757	-	-	-	-	+	-	-	-	-	-	-		
1/2	NCIKYIKL	KD	0.287	2241.1646	3.5287	-	+	-	-	+	-	-	-	-	-	-		
173	INFSYNNM	Kb	0.8695	4.1031	0.0072	-	-	-	-	+	-	-	-	-	-	-		
174	YSTWNLSFI	Db	0.7163	21.5292	0.0086	-	+	-	-	+	+	-	-	-	-	-		
175	KAFDRHCNL	Kb	0.7044	24.4841	0.0596	+	+	-	-	+	-	+	-	-	-	-		
1/6	RCLKNNYIL	Db	0.4655	324.8614	0.0891	+	+	+	-	+	-	-	-	-	-	-		
1//	VGYIFYNRL	KD	0.9212	2.3465	0.0044	-	+	-	-	+	-	+	-	-	-	-		
178	FSYYKFSSL	KD	0.8398	5.6598	0.0089	+	-	-	-	-	-	-	-	-	-	-		
179		KD	0.7839	10.3599	0.0192	-	+	+	+	+	-	+	-	-	-	-		
180	SSMINNDIPL	Db	0.7688	12.196	0.007	-	-	-	-	-	-	-	-	-	-	+		
181		DD	0.7513	14.7429	0.0075	+	-	+	-	-	-	-	-	-	-	-		
182	SNYYNHYFFL	KD	0.745	15.7899	0.034	+	+	-	-	+	-	-	-	-	-	-		
103		KD	0.7095	9.757	0.0173	-	+	-	-	+	-	-	-	-	-	-		
104	SVLSFFYKPL	KD	0.0910	26.0645	0.0714	-	+	-	-	-	-	-	-	-	-	-		
100	DAIONASTI		0.0030	3.3107	0.0064	-	-	-	-	-	-	+	-	-	-	-		
100		DD	0.0024	4.4333	0.0042	-	-	-	-	т +	-	-	-	-	-	-		
107		Kh	0.2090	58 6502	4.1402		-	-	-	+	-		-	-	-	-		
100		Kh	0.0237	3 7624	0.1009	-		-	-		-	-	-	-	-	-		
109		Dh	0.0775	136 9209	0.0000	-	-	-	-	-	-		-	-	-	-		
101	MOVDEEDI	Kh	0.0404	2 6074	0.0011		-	- -	-	-	-	-	-	-	-	-		
191		Kb	0.8545	4 8261	0.0049	-	-	-		-	-	_		-		-		
102		Dh	0.0040	5 4727	0.0001	+	-	_	_	_		_		_		-		
193		Kh	0.8177	7 1895	0.0047		· +	-	-	+	-	-	-	-	-	-		
194	ISYKYKNVM	Kb	0.8102	7 706	0.012	-	· +	-	-	+	+	-	-	-	_	-		
106	YTYPYYNI I	Kh	0.7870	9 9237	0.012	_	-	+	-	+	+		-	-	-	-		
107	IMVPEESIM	Kh	0.7561	14 0025	0.0170	_	+	+	-	+	-		-	-	-	-		
198	VSYARHFI F	Kb	0.7464	15 5473	0.0334	-	+	+	+	+	-	-	-	-	-	-		
199	ISYEKYOPPV	Kb	0.7167	21,4353	0.0519	-	-	+	-	-	-	-	-	-	-	-		
200	VNYFNQNI I	Kb	0,6949	27.1484	0.0689	-	-	-	-	-	-	-	-	-	-	+		
201	FMYSRKLKL	Kb	0.5764	97.8019	0.2532	-	-	+	+	-	-	-	-	-	-	-		
		-	5151 01				1											

			NetMHCpan											NetMHCcons 1.1 data			
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
202	VNYLYSNL						0.0215	no	0	920	8	582	63,2608696	Kb	0.861	4.48	0.01
203	IMYTYYFFTSL						0.021495	no	7	288	11	203	70.4861111	Kb	0.695	27.11	0.07
204	LTYNYYHPL						0.021006667	no	0	257	9	8	3.11284047	Kb	0.829	6.36	0.01
205	HAINNIDEI						0.021	no	0	1240	9	459	37.016129	Db	0.865	4.29	0.01
206	TALRNYATL						0.021	no	0	278	9	142	51.0791367	Db	0.889	3.31	0.01
207	YSILNDIFL						0.021	no	0	1485	9	883	59.4612795	Db	0.876	3.83	0.01
208	FCIYRYNNL						0.021	no	4	1504	9	28	1.86170213	Kb	0.581	93.59	0.4
209	LCFTFFPIL						0.021	no	6	755	9	736	97.4834437	Kb	0.555	123.32	0.5
210	VCFFCFTSL						0.021	yes	0	649	9	522	80.431433	Kb	0.607	70.64	0.25
211	GSISFLDYI						0.021	no	0	255	9	211	82.745098	Db	0.467	321.29	0.25
212	SIIIRHNEL						0.021	no	0	288	9	151	52.4305556	Kb	0.581	93.08	0.4
213	VIFMIVFL						0.021	no	2	101	8	51	50.4950495	Kb	0.574	100.41	0.4
214	KIYAFYNNL						0.021	no	4	2077	9	282	13.5772749	Kb	0.818	7.2	0.01
215	INYNYYDML						0.021	no	0	525	9	390	74.2857143	Kb	0.82	7.01	0.01
216	VSYIRYYCSL						0.021	no	0	142	10	110	77.4647887	Kb	0.746	15.7	0.03
217	YSLSNNEYYL						0.021	no	0	5317	10	2243	42.1854429	Db	0.843	5.47	0.01
218	YSIENAVGI						0.021	yes	2	887	9	497	56.0315671	Db	0.766	12.51	0.03
219	YLYNYFYKPL						0.021	yes	0	1272	10	1133	89.072327	Kb	0.61	68.01	0.25
220	YSYKYYNYFKL						0.021	no	0	380	11	318	83.6842105	Kb	0.669	35.92	0.1
221	SLYNYFFNLL						0.020865	no	0	3018	10	1805	59.8078197	Kb	0.717	21.49	0.05
222	FNFLFSNPM						0.0205	yes	1	341	9	320	93.8416422	Kb	0.755	14.17	0.03
223	VIYNESKL						0.02	no	4	3472	8	1548	44.5852535	Kb	0.837	5.83	0.01
224	ICYSKYIGI						0.02	no	0	849	9	91	10.7184923	Kb	0.594	81.31	0.3
225	RCFKFFIFL						0.02	no	0	1228	9	1187	96.6612378	KD	0.571	104.28	0.4
220							0.02	yes	0	1122	9	/83	69.7860963	KD Dh	0.72	20.69	0.05
227							0.02	yes	1	2001	9	1099	52.8111485	Db	0.733	17.97	0.05
220							0.02	yes	1	1290	9	1021	76.7606042	Db	0.773	11.0	0.03
229							0.02	110	2	200	10	00	34.3098039	Db	0.401	340.99	0.25
230	VGMRHLNLL						0.02	no	2	148	9	55	37 1621622	Kb	0.433	34.96	0.3
232	YNISNDOVI						0.02	no	0	288	9	222	77 0833333	Dh	0.071	84 45	0.1
233							0.02	no	0	5317	10	181	3 40417520	Db	0.843	5 44	0.12
234	YTIINDNEI						0.02	ves	0	1030	9	664	64 4660194	Db	0.76	13 35	0.03
235	YNYSEEYI YI						0.02	no.	0	871	10	198	22 7324914	Kh	0.76	13 35	0.03
236	VIETEYHILI						0.02	no	13	585	10	202	34 5299145	Kb	0.679	32.06	0.00
237	FGSQNYDTI						0.02	ves	1	2731	9	2023	74.0754302	Db	0,758	13,64	0.03
238	VSEVRILLL						0.0195	no	11	500		441	88.2	Kb	0.782	10,63	0.01
239	MMYLYNRL						0.019	no	0	3018	8	2024	67.064281	Kb	0.823	6.82	0.01
240	SMYYFSGL						0.019	no	0	489	8	44	8.99795501	Kb	0.85	5.07	0.01
241	ICYKRTSSL						0.019	yes	1	381	9	21	5.51181102	Kb	0.573	101.5	0.4
242	LCIEYFANL						0.019	no	0	1240	9	934	75.3225806	Kb	0.568	107.72	0.4
243	NCYNYANV						0.019	yes	0	2997	8	487	16.2495829	Kb	0.437	442.1	2
244	YCFHYFALM						0.019	no	1	1051	9	8	0.76117983	Kb	0.648	45.09	0.15
		NetMHCpan 4.0 data									Expressi	on data					
----------------------------	------------------	------------------------	----------	-------------	----------------	--	----------------------------------	-----------------------------------	---	----------------------------------	-------------------	----------------------	--	--	---	---	
			менипсра	in 4.0 uala							Microa	array	SSH		Mic	roarray	
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished	
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	
						orthologs	of P. yoelii	orthol	ogs of <i>P. falcipar</i>	um		orth	ologs of P. yoelii		P. ber	<i>ghei</i> origin	
202	VNYLYSNL	Kb	0.9379	1.9576	0.0034	-	-	-	-	-	-	-	-	-	+	-	
203	IMYTYYFFTSL	Kb	0.8173	7.2186	0.0104	-	-	+	+	+	-	+	-	-	-	-	
204	LTYNYYHPL	Kb	0.8999	2.9544	0.0055	+	+	-	-	+	-	+	-	-	-	-	
205	HAINNIDEI	Db	0.8351	5.9576	0.005	-	-	-	-	+	-	-	-	-	-	-	
206	TALRNYATL	Db	0.8254	6.6131	0.0053	-	+	-	-	+	-	-	-	-	-	-	
207	YSILNDIFL	Db	0.8429	5.4719	0.0047	-	-	-	-	+	-	-	-	-	-	-	
208	FCIYRYNNL	Kb	0.5216	177.0402	0.4201	+	-	-	-	-	-	-	-	-	-	-	
209	LCFTFFPIL	Kb	0.6516	43.3848	0.109	-	+	-	-	+	-	-	-	-	-	-	
210	VCFFCFTSL	Kb	0.672	34.7588	0.0874	-	-	+	-	-	-	-	-	-	-	-	
211	GSISFLDYI	Db	0.5271	166.7706	0.0436	-	+	-	-	-	-	+	-	-	-	-	
212	SIIIRHNEL	Kb	0.5155	189.1068	0.4493	+	+	+	+	+	-	+	-	-	-	-	
213	VIFMIVFL	Kb	0.5508	129.0767	0.3255	-	+	-	-	-	-	-	-	-	-	-	
214	KIYAFYNNL	Kb	0.8881	3.3566	0.0062	-	+	-	-	+	-	-	-	-	-	-	
215	INYNYYDML	Kb	0.8858	3.4422	0.0063	-	+	-	-	+	-	-	-	-	-	-	
216	VSYIRYYCSL	Kb	0.8618	4.4605	0.0076	-	-	-	-	-	-	+	-	-	-	-	
217	YSLSNNEYYL	Db	0.7605	13.3528	0.0072	-	+	+	-	-	-	-	-	-	-	-	
218	YSIENAVGI	Db	0.753	14.4809	0.0075	-	+	+	-	+	-	-	-	-	-	-	
219	YLYNYFYKPL	Kb	0.6418	48.1887	0.1185	+	+	-	-	+	-	-	-	-	-	-	
220	YSYKYYNYFKL	Kb	0.728	18.9723	0.0435	-	-	-	-	-	-	+	-	-	-	-	
221	SLYNYFFNLL	Kb	0.7122	22.5106	0.0547	-	-	-	-	-	+	-	-	-	-	-	
222	FNFLFSNPM	Kb	0.7396	16.7381	0.0366	+	+	+	+	+	-	+	-	-	-	-	
223	VTYNFSKL	Kb	0.9104	2.636	0.005	-	-	-	-	-	-	-	-	-	-	+	
224	ICYSKYIGI	Kb	0.608	69.4875	0.1753	-	+	-	-	+	-	-	-	-	-	-	
225	RCFKFFTFL	Kb	0.7104	22.9627	0.0559	-	+	-	-	+	-	-	-	-	-	-	
226	IAYAKFNDF	Kb	0.676	33.3157	0.0836	+	-	+	-	-	-	-	-	-	-	-	
227	VSLININEV	Db	0.7345	17.6785	0.008	-	+	+	+	+	-		-	-	-	-	
228	YGILNLNNM	Db	0.7695	12.1048	0.007	+	-	-	-	+	-	-	-	-	-	-	
229	NALQNKASVV	Db	0.3624	991.2014	0.2372	-	+	-	-	-	-	+	-	-	-	-	
230	TMVIMTSTM	Db	0.4056	621.2883	0.1565	-	+	-	-	-	-	-	-	-	-	-	
231	VGMRHLNLL	Kb	0.6509	43.6749	0.1096	+	+	+	+	+	-	+	-	-	-	-	
232	YNISNDQVL	Db	0.6012	74.7904	0.0221	+	+	+	+	+	-	+	-	-	-	-	
233	IAILNNFEYI	Db	0.7922	9.4699	0.0063	-	+	+	-	-	-	-	-	-	-	-	
234	YTIINDNEI	Db	0.7805	10.7546	0.0066	-	+	-	-	-	-	-	-	-	-	-	
235	YNYSFFYLYL	Kb	0.775	11.4078	0.0222	-	+	-	-	-	-	-	-	-	-	-	
236	VIFTFYHILL	Kb	0.7467	15.5043	0.0332	-	+	+	-	+	-	-	-	-	-	-	
237	FGSQNYDTI	Db	0.7127	22.3809	0.0087	-	+	-	-	-	-	-	-	-	-	-	
238	VSFVRILLL	Kb	0.7761	11.276	0.0219	+	+	+	-	+	-	-	-	-	-	-	
239	MMYLYNRL	Kb	0.8691	4.1212	0.0072	-	-	-	-	-	+	-	-	-	-	-	
240	SMYYFSGL	Kb	0.8971	3.0443	0.0057	-	-	-	-	+	-	-	-	-	-	-	
241	ICYKRTSSL	Kb	0.6038	72.7031	0.1842	-	-	-	-	+	-	+	-	-	-	-	
242	LCIEYFANL	Kb	0.7308	18.4047	0.0413	-	-	-	-	+	-	-	-	-	-	-	
243	NCYNYANV	Kb	0.4647	327.5546	0.7298	+	+	-	-	+	-	+	-	-	-	-	
244	YCFHYFALM	Kb	0.6693	35.795	0.09	-	+	-	-	-	+	+	+	-	-	-	

			NetMHCpan												NetMHCco	ns 1.1 data	
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
245	IIIRHNEL						0.019	no	0	288	8	152	52.777778	Kb	0.601	74.57	0.3
246	NALQNKASV						0.019	no	0	255	9	88	34.5098039	Db	0.586	88.66	0.12
247	KSYSYFSGL						0.019	no	0	812	9	430	52.955665	Kb	0.847	5.24	0.01
248	RSFFYYRL						0.019	yes	0	2997	8	2896	96.6299633	Kb	0.806	8.11	0.01
249	YTYPYYNL						0.019	yes	8	5371	8	3996	74.3995532	Kb	0.818	7.16	0.01
250	SSIINSITL						0.019	no	0	367	9	168	45.7765668	Db	0.867	4.24	0.01
251	STYLYWLYL						0.019	no	0	2623	9	1876	71.521159	Kb	0.781	10.69	0.01
252	SSYTHYISKL						0.019	no	3	646	10	469	72.6006192	Kb	0.725	19.7	0.05
253	ASINNTAFV						0.019	no	1	689	9	594	86.2119013	Db	0.816	7.36	0.01
254	FTLINIPYI						0.019	yes	10	2361	9	2191	92.7996612	Db	0.756	13.94	0.05
255	VSFMYSRKLKL						0.019	yes	1	3204	11	1982	61.8601748	Kb	0.633	53.32	0.17
256	YSYLYLPL						0.01869	no	10	376	8	98	26.0638298	Kb	0.843	5.47	0.01
257	TSISNDNVIYI						0.01867	yes	0	506	11	326	64.4268775	Db	0.646	46.07	0.07
258	IVYTHFYNL						0.0185	yes	1	1296	9	429	33.1018519	Kb	0.81	7.77	0.01
259	ITYYYKNL						0.018	no	0	647	8	495	76.5069552	Kb	0.823	6.79	0.01
260	SIYFFMAL						0.018	no	0	1194	8	453	37.9396985	Kb	0.828	6.47	0.01
261	YSFLNPNYI						0.018	no	3	1429	9	31	2.1693492	Db	0.875	3.89	0.01
262	ICYEFQQEL						0.018	no	0	2704	9	2563	94.785503	KD	0.606	71.02	0.25
263	TCYLFFGGF						0.018	yes	4	262	y	237	90.4580153	KD	0.609	68.38	0.25
264							0.018	yes	0	1796	8	1705	94.9331849	KD	0.75	14.87	0.03
265	ISILIND IFL						0.018	yes	2	10/1	9	795	47.5763016	DD	0.853	4.91	0.01
200							0.018	yes	4	1/00	9	521	29.1876751	KD Kb	0.742	10.22	0.03
207	VSFTHFSNL						0.010	10	0	3439	9	1342	39.0229718	KD	0.003	4.36	0.01
200							0.010	110	0	2310	9	1000	60.3463203	KD	0.700	9.91	0.01
209							0.018	yes	4	1218	0	130	0 60001214	Kb	0.013	9.54	0.01
270							0.018	yes	0	824	0	500	9.06601314	Db	0.791	30.05	0.01
271							0.017	no	0	824	0	753	00.0790117	Kh	0.003	6 79	0.07
273	NSIENEIVI						0.0175	Ves	0	1218	9	117	9 60591133	Dh	0.023	10.81	0.01
274	SGYNNETYI						0.0175	ves	10	2361	9	2063	87 3782296	Db	0.73	18.67	0.05
275	INFYFSML						0.017	no	0	943	8	754	79 9575822	Kb	0.851	5.04	0.01
276	ISYRHYSLL						0.017	ves	7	628	9	328	52.2292994	Kb	0.881	3.6	0.01
277	SSLSNFNYL						0.017	no	0	3796	9	278	7.32349842	Db	0.875	3.85	0.01
278	YSFYFYTFL						0.017	no	1	1563	9	236	15.0991683	Kb	0.831	6.22	0.01
279	NCLNYSKL						0.017	no	0	349	8	325	93.1232092	Kb	0.232	4062.65	10
280	NCYHYFFHL						0.017	no	0	6471	9	3756	58.043579	Kb	0.577	97.73	0.4
281	SCYKYNNLL						0.017	no	0	1650	9	116	7.03030303	Kb	0.592	82.64	0.3
282	SVYDFYFNL						0.017	no	2	7480	9	1340	17.9144385	Kb	0.844	5.41	0.01
283	FSLKNLNTM						0.017	no	0	1519	9	1261	83.0151415	Db	0.862	4.45	0.01
284	IIFDHFMNM						0.017	no	0	607	9	248	40.8566722	Kb	0.78	10.87	0.01
285	FSFNFLNNL						0.017	yes	8	5371	9	1679	31.2604729	Kb	0.782	10.52	0.01
286	VSYLKHFAM						0.017	no	0	778	9	537	69.0231362	Kb	0.777	11.17	0.01
287	TAHLNDHYI						0.017	yes	1	472	9	310	65.6779661	Db	0.816	7.32	0.01

			NotMHCna	n 4 0 data							Expression	on data				
			Netwinopa	iii 4.0 uala							Microa	irray	SSH		Mic	roarray
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	um		orth	ologs of P. yoelii		P. ber	ghei origin
245	IIIRHNEL	Kb	0.5877	86.6073	0.2232	+	+	+	+	+	-	+	-	-	-	-
246	NALQNKASV	Db	0.5356	152.1599	0.0405	-	+	-	-	-	-	+	-	-	-	-
247	KSYSYFSGL	Kb	0.9065	2.7494	0.0052	-	+	-	-	-	-	-	-	-	-	-
248	RSFFYYRL	Kb	0.8916	3.2321	0.006	+	+	-	-	+	-	+	-	-	-	-
249	YTYPYYNL	Kb	0.8729	3.957	0.007	-	-	+	-	+	+	-	-	-	-	-
250	SSIINSITL	Db	0.8463	5.2739	0.0046	-	+	-	-	+	-	+	-	-	-	-
251	STYLYWLYL	Kb	0.7966	9.0283	0.0149	+	+	-	-	+	+	-	-	-	-	-
252	SSYTHYISKL	Kb	0.7845	10.2937	0.019	-	+	+	+	+	-	+	-	-	-	-
253	ASINNTAFV	Db	0.7541	14.3099	0.0074	-	-	-	-	-	-	+	-	-	-	+
254	FTLINIPYI	Db	0.7385	16.9284	0.0079	-	-	-	-	-	-	-	-	-	-	+
255	VSFMYSRKLKL	Kb	0.6685	36.1093	0.091	-	-	+	+	-	-	-	-	-	-	-
256	YSYLYLPL	Kb	0.893	3.1827	0.0059	-	-	-	-	+	-	+	-	-	-	-
257	TSISNDNVIYI	Db	0.5971	78.2277	0.023	+	+	+	-	+	-	-	-	-	-	-
258	IVYTHFYNL	Kb	0.8936	3.1626	0.0059	+	-	-	-	+	-	-	-	-	-	-
259	ITYYYKNL	Kb	0.9127	2.5716	0.0048	-	-	-	-	-	-	-	-	-	-	-
260	SIYFFMAL	Kb	0.8691	4.122	0.0072	-	+	-	-	+	-	-	-	-	-	-
261	YSFLNPNYI	Db	0.8768	3.7904	0.0037	-	-	-	-	+	-	-	-	-	-	-
262	ICYEFQQEL	Kb	0.6772	32.8682	0.0824	-	+	-	-	+	-	-	-	-	-	-
263	TCYLFFGGF	Kb	0.5963	78.9018	0.2003	+	+	-	-	-	-	+	-	-	-	-
264	IIYFFSKI	Kb	0.8538	4.8627	0.0081	-	+	-	-	+	+	-	-	-	-	-
265	ISILNDTFL	Db	0.8062	8.1379	0.0058	-	-	-	-	+	-	-	-	-	-	-
266	YSFNFHNTF	Kb	0.7053	24.2505	0.0591	-	-	-	-	+	-	-	-	-	-	-
267	VSFYHFSNL	Kb	0.932	2.0877	0.0038	-	+	-	-	+	-	-	-	-	-	-
268	VNYRHLSIL	Kb	0.8427	5.4872	0.0087	-	+	-	-	+	-	-	-	-	-	-
269	YNYKFFLL	Kb	0.8416	5.5501	0.0088	-	+	-	-	+	-	-	-	-	-	-
270	SIFNFIYL	Kb	0.8371	5.8298	0.009	+	-	+	+	+	-	-	-	-	-	-
271	YMFKNINPCYL	Db	0.6573	40.7577	0.0113	-	+	-	-	+	-	-	-	-	-	-
272	SSYYYYDNM	Kb	0.8775	3.7637	0.0068	-	-	-	-	-	-	-	-	-	-	+
273	NSIFNFIYL	Db	0.7615	13.2012	0.0072	+	-	+	+	+	-	-	-	-	-	-
274	SGYNNFTYL	Db	0.7471	15.4323	0.0076	-	-	-	-	-	-	-	-	-	-	+
275	INFYFSML	Kb	0.9277	2.1861	0.004	-	-	-	-	+	-	-	-	-	-	-
276	ISYRHYSLL	Kb	0.9237	2.2824	0.0042	-	-	-	-	+	-	-	-	-	-	-
277	SSLSNFNYL	Db	0.873	3.9497	0.0038	-	-	-	-	+	-	-	-	-	-	-
278	YSFYFYTFL	Kb	0.8784	3.7267	0.0067	-	-	-	-	+	-	-	-	-	-	-
279	NCLNYSKL	Kb	0.2666	2792.7485	4.266	-	-	-	-	+	-	+	-	-	-	+
280	NCYHYFFHL	KD	0.6713	35.0227	0.0881	-	-	+	-	-	-	-	-	-	-	+
281	SUYKYNNLL	KD	0.5878	86.5034	0.2229	-	-	+	+	-	-	-	-	-	-	-
282	SVYDFYFNL	KD Dh	0.8987	2.9922	0.0056	-	+	-	-	+	-	-	-	-	-	+
283	FSLKNLNIM	UD Kh	0.8406	5.609	0.0048	-	+	-	-	+	-	-	-	-	-	-
284		KU Kh	0.8321	0.148	0.0093	-	т	-	-	-	-	-	-	-	-	-
205		Kb	0.0247	0.0030	0.0097	-	-	'	-			-	-	-	-	-
200		NU Dh	0.700/	11.0040	0.0160	-	т +	-	-	т +	-	-	-	-	-	-
207	IANLINUNTI	טט	0.7776	11.0946	0.0007	-	т	т	т	т	-	-	-	-	-	-

Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	NetMHCpan other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	High purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein
288	SOYHBEI KI						0.017		no	0	1246	9	650	52 1669342
289	VMYYTYEI						0.017		Ves	1	3204	8	498	15 5430712
290	YGATNYDEM						0.017		ves	8	5371	9	3019	56 209272
291	ITILNYLPL						0.017		ves	0	1030	9	304	29.5145631
292	SVLWFFYKPL						0.017		ves	0	2773	10	158	5.69780022
293	VAYSHEYIGHM						0.017		ves	0	1272	11	1243	97.7201258
294	SNYAYETILNL						0.016605		ves	0	1354	11	691	51.0339734
295	SSYLSYYLLPL						0.0165		ves	2	395	11	231	58,4810127
296	FSYSCHKYLLL						0.0165		ves	1	1791	11	845	47.1803462
297	INYLFGTL						0.016		no	2	2004	8	1126	56.1876248
298	SAVLNFTIL						0.016		no	6	230	9	201	87.3913043
299	SSLSFGNYI						0.016		no	0	91	9	24	26.3736264
300	INFSYFYSL						0.016		no	0	2038	9	833	40.8734053
301	VTYQMYYSRL						0.016		yes	0	248	10	210	84.6774194
302	SSFFFFSKF						0.016		no	11	948	9	425	44.8312236
303	YSFIRFSIL						0.016		no	0	3439	9	942	27.3916836
304	VIYKKFILL						0.016		no	0	2775	9	1374	49.5135135
305	YSFAKKYNYL						0.016		yes	0	335	10	299	89.2537313
306	FSPRNYFEI						0.0155		no	8	4154	9	2168	52.1906596
307	SGISNFFFI						0.01517		no	0	742	9	286	38.5444744
308	FAYNKYAPL						0.015		no	9	1936	9	422	21.7975207
309	MAMLNGFTL						0.015		no	0	438	9	4	0.91324201
310	TSYFFPFL						0.015		yes	3	1058	9	886	83.7429112
311	LCLRYYALL						0.015		no	3	2151	9	383	17.8056718
312	SCYLFISLI						0.015		no	6	951	9	350	36.8033649
313	VNPFYHYL						0.015		yes	1	2081	8	1737	83.4694858
314	VNVHFYINL						0.015		yes	2	429	9	353	82.2843823
315	INYSFSIFL						0.015		yes	1	720	9	698	96.944444
316	YSMSNYEDI						0.015		no	0	1828	9	10	0.54704595
317	VNYINFNYL						0.015		no	0	697	9	225	32.2812052
318	FNIYNLDFI						0.015		yes	0	2150	9	728	33.8604651
319	LSYTRFNNF						0.015		no	0	855	9	590	69.005848
320	STYFFRSIPL						0.015		yes	16	1292	10	870	67.3374613
321	SSYFNCAPI						0.015		no	0	1057	9	522	49.385052
322	SMFFYLSFNL						0.015		yes	0	2150	10	1580	73.4883721
323	YSYKYFYNFIL						0.015		yes	0	1796	11	211	11.7483296
324	VVMNFYFLL						0.01468	0.01100	no	0	1155	9	34	2.94372294
005	Irrelevant negative peptide (SIINFEKL)						0.0110-	0.01468		^	0007	-	0000	00.0000000
325	KOFFYYKLL						0.01465		yes	0	2997	9	2896	96.6299633
326							0.01462		no	0	1069	9	1044	97.6613658
327							0.01457		110	0	441	9	199	43.124/166
328							0.014545		110	16	988	9	28	2.0340081
329							0.0145		110	/	288	9	205	11.1805556
330	SITTOVIL						0.014		10	0	426	8	359	84.2723005

												Exc	pression data			
		N	letMHCcor	ns 1.1 dat	a		NetMHCpa	an 4.0 data	l		1				Mic	roarray
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40- 50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF
										+/-	+/-	+/-	+/-	+/-	+/-	+/-
										orthologs	or P. yoelli	ortho	logs of P. Taicipart	1111	orthologs	s of P. yoelli
288	SQYHRFLKL	Kb	0.756	14.09	0.03	Kb	0.7662	12.5458	0.0252	+	+	+	+	+	-	-
289	VMYYTYEL	Kb	0.687	29.56	0.07	Kb	0.7616	13.1841	0.0269	-	-	+	+	-	-	-
290	YGATNYDEM	Db	0.802	8.47	0.03	Db	0.7419	16.3306	0.0078	-	-	+	-	+	+	-
291	ITILNYLPL	Db	0.775	11.41	0.03	Db	0.7213	20.4	0.0084	-	+	-	-	-	-	-
292	SVLWFFYKPL	Kb	0.599	76.2	0.3	Kb	0.6916	28.1152	0.0715	-	+	-	-	-	-	-
293	VAYSHEYIGHM	Kb	0.606	71.02	0.25	Kb	0.6039	72.6403	0.184	+	+	-	-	+	-	-
294	SNYAYFTILNL	Kb	0.668	36.31	0.1	Kb	0.8295	6.3243	0.0094	+	+	-	-	+	-	-
295	SSYLSYYLLPL	Kb	0.633	52.74	0.17	Kb	0.7	25.6876	0.0638	+	+	+	+	+	-	-
296	FSYSCHKYLLL	Kb	0.591	83.99	0.3	Kb	0.5404	144.409	0.3564	+	-	-	-	+	-	-
297	INYLFGTL	Kb	0.833	6.12	0.01	Kb	0.914	2.5364	0.0048	+	+	-	-	+	-	-
298	SAVLNFTIL	Db	0.866	4.29	0.01	Db	0.8265	6.5339	0.0052	-	-	-	-	+	-	-
299	SSLSFGNYI	Db	0.461	340.99	0.25	Db	0.487	257.467	0.0673	-	-	-	-	+	-	-
300	INFSYFYSL	Kb	0.802	8.52	0.01	Kb	0.907	2.7351	0.0051	-	+	-	-	+	-	-
301	VTYQMYYSRL	Kb	0.685	30.21	0.07	Kb	0.8584	4.6299	0.0078	-	+	+	+	-	-	-
302	SSFFFFSKF	Kb	0.796	9.04	0.01	Kb	0.8279	6.4396	0.0095	-	+	-	-	-	-	-
303	YSFIRFSIL	Kb	0.776	11.35	0.01	Kb	0.8059	8.1645	0.0129	-	+	-	-	+	-	-
304	VIYKKFILL	Kb	0.792	9.49	0.01	Kb	0.8058	8.1774	0.0129	-	+	+	+	+	-	-
305	YSFAKKYNYL	Kb	0.595	80	0.3	Kb	0.6087	69.0043	0.1742	+	-	+	-	-	-	-
306	FSPRNYFEI	Db	0.837	5.83	0.01	Db	0.7631	12.9736	0.0071	+	-	-	-	+	-	-
307	SGISNFFFI	Db	0.844	5.41	0.01	Db	0.8438	5.4172	0.0047	+	-	-	-	-	-	-
308	FAYNKYAPL	Kb	0.85	5.07	0.01	Kb	0.8417	5.5457	0.0088	-	-	-	-	+	-	-
309	MAMLNGFIL	Db	0.868	4.17	0.01	Db	0.8755	3.8457	0.0038	-	-	-	-	+	-	-
310	ISYFFFPFL	Kb	0.831	6.26	0.01	Kb	0.8971	3.043	0.0057	-	-	-	-	-	+	-
311		Kb	0.596	79.14	0.3	Kb	0.6616	38.8957	0.099	-	+	-	-	+	-	-
312	SCYLFISLI	Kb	0.557	120.03	0.5	Kb	0.5682	106.856	0.2756	-	+	-	-	+	-	-
313	VNPFYHYL	Kb	0.736	17.49	0.05	Kb	0.7967	9.0203	0.0149	-	+	+	+	+	-	-
314	VNVHFYINL	Kb	0.786	10.07	0.01	Kb	0.8703	4.0673	0.0072	-	-	+	-	-	-	-
315	INYSFSIFL	Kb	0.796	9.09	0.01	Kb	0.863	4.4023	0.0076	-	+	+	-	+	-	-
316	YSMSNYEDI	Db	0.883	3.55	0.01	Db	0.8535	4.8784	0.0044	-	+	-	-	+	-	-
317		KD	0.797	8.94	0.01	KD	0.8284	6.4057	0.0095	-	+	-	-	+	-	-
318		Db	0.774	11.6	0.03	Db	0.7868	10.046	0.0064	-	+	-	-	-	-	-
319		KD	0.774	11.53	0.03	KD	0.7517	14.6821	0.0308	-	+	-	-	+	-	-
320	STYFFRSIPL	KD	0.755	14.17	0.03	KD	0.7367	17.271	0.038	-	+	-	-	+	-	-
321	SSYFNCAPI	Db	0.76	13.42	0.03	Db	0.7352	17.6	800.0	-	+	-	-	+	-	-
322	SMFFYLSFNL	KD	0.698	26.39	0.07	KD	0.7237	19.8754	0.0468	-	+	-	-	-	-	-
323	YSYKYFYNFIL	KD	0.631	53.9	0.2	KD	0.7186	21.0134	0.0507	-	+	-	-	+	+	-
324	VVMNFYFLL	KD	0.801	8.61	0.01	KD	0.8091	7.8923	0.0122	+	+	-	-	-	-	-
005	Irrelevant negative peptide (SIINFEKL)	1/h	0 700	0.00	0.01	1/h	0.0000	0.0505	0.0000						 	
325	KSFFYYKLL	KD	0.796	9.09	0.01	KD	0.8802	3.6565	0.0066	+	+	-	-	+	-	+
326		KD	0.801	8.57	0.01	KD	0.8212	6.9238	0.0099	+	+	-	-	+	-	-
327		KD	0.777	11.17	0.01	KD	0.8721	3.9901	0.0071	+	-	-	-	-	-	-
328	YSYQNVNIM	DD	0.837	5.8	0.01	DD	0.8333	6.0702	0.005	+	+	-	-	+	-	-
329	YIYYFFISL	KD	0.833	6.09	0.01	KD	0.8841	3.5032	0.0064	-	-	+	+	+	-	+
330	STYYYSML	Kb	0.853	4.93	0.01	Kb	0.8983	3.0057	0.0056	-	+	-	-	+	-	-

			Expr	ession data	
		SSF	1	Micro	array
Novel Peptide number	Peptide sequence	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
		+/-	+/-	+/-	+/-
		orthologs of	P. yoelii	P. bergh	<i>ei</i> origin
288	SQYHRFLKL	-	-	-	-
289	VMYYTYEL	-	-	-	-
290	YGATNYDEM	-	-	-	-
291	ITILNYLPL	-	-	-	-
292	SVLWFFYKPL	-	-	-	-
293	VAYSHEYIGHM	-	-	-	-
294	SNYAYFTILNL	-	-	-	-
295	SSYLSYYLLPL	-	-	-	-
296	FSYSCHKYLLL	-	-	-	-
297	INYLFGTL	-	-	-	-
298	SAVLNFTIL	-	-	-	-
299	SSLSFGNYI	-	-	-	-
300	INFSYFYSL	-	-	-	-
301	VTYQMYYSRL	-	-	-	-
302	SSFFFFSKF	-	-	-	-
303	YSFIRFSIL	-	-	-	-
304	VIYKKFILL	-	-	-	-
305	YSFAKKYNYL	-	-	-	-
306	FSPRNYFEI	-	-	-	-
307	SGISNFFFI	-	-	-	-
308	FAYNKYAPL	-	-	-	-
309	MAMLNGFTL	-	-	-	-
310	TSYFFPFL	-	-	-	-
311	LCLRYYALL	-	-	-	+
312	SCYLFISLI	-	-	-	-
313	VNPFYHYL	-	-	-	-
314	VNVHFYINL	-	-	-	-
315	INYSFSIFL	-	-	-	-
316	YSMSNYEDI	-	-	-	-
317	VNYINFNYL	-	-	-	-
318	FNIYNLDFI	-	-	-	-
319	LSYTRFNNF	-	-	-	-
320	STYFFRSIPL	-	-	-	-
321	SSYFNCAPI	-	-	-	+
322	SMFFYLSFNL	-	-	-	-
323	YSYKYFYNFIL	-	-	-	-
324	VVMNFYFLL	-	-	-	+
	irrelevant negative peptide (SIINFEKL)				
325	RSFFYYRLL	-	-	-	-
326	LNYIRYNML	-	-	-	+
327	ISYLNYLNL	-	-	-	-
328	YSYQNVNTM	-	-	-	-
329	YTYYFFTSL	-	-	-	-
330	STYYYSML	-	-	-	-

			NetMHCpan												NetMHCc	ons 1.1 dat	a
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
331	ICFPFFNRL						0.014	no	0	2038	9	408	20.01962709	Kb	0.717	21.37	0.05
332	ICYKYFDVL						0.014	no	0	447	9	236	52.79642058	Kb	0.577	97.73	0.4
333	MCYDHCSAL						0.014	yes	1	2081	9	1757	84.43056223	Kb	0.545	136.67	0.5
334	SCYSYINTM						0.014	no	1	940	9	590	62.76595745	Kb	0.616	64.08	0.25
335	SVFDYFTSF						0.014	yes	1	2096	9	199	9.494274809	Kb	0.752	14.63	0.03
336	KMFVNLSGF						0.014	no	0	258	9	210	81.39534884	Kb	0.568	107.72	0.4
337	VLYLKFCNF						0.014	no	0	174	9	160	91.95402299	Kb	0.649	44.36	0.15
338	INYNFYSML						0.014	no	3	1115	9	1012	90.76233184	Kb	0.877	3.76	0.01
339	MAITNILTI						0.014	no	0	1153	9	968	83.95490026	Db	0.89	3.29	0.01
340	YNYTFQAL						0.014	yes	0	1272	8	525	41.27358491	Kb	0.804	8.29	0.01
341	ISLVNNYVYI						0.014	no	4	2562	10	1330	51.91256831	Db	0.821	6.9	0.01
342	VIYAHILNL						0.0135	yes	2	1349	9	446	33.06152706	Kb	0.75	15.03	0.03
343	LAYAYYSSL						0.0135	no	0	655	9	582	88.85496183	Kb	0.814	7.48	0.01
344	VSYTRYASEM						0.0135	no	0	70	10	6	8.571428571	Kb	0.679	32.24	0.1
345	INYNFINL						0.013485	yes	0	495	8	320	64.64646465	Kb	0.843	5.5	0.01
346	STYVFFPPI						0.01324	yes	5	420	9	406	96.66666667	Kb	0.818	7.16	0.01
347	SVYFFYAYL						0.013	no	4	3976	9	3108	78.16901408	Kb	0.863	4.38	0.01
348	MCYLYILLL						0.013	no	4	1504	9	953	63.3643617	Kb	0.573	102.05	0.4
349	VCWRHFLAM						0.013	no	0	478	9	415	86.82008368	Kb	0.569	105.99	0.4
350	RGYDTEMNL						0.013	no	0	83	g	36	43.37349398	KD	0.598	7.44	0.3
351	LSYKFFPEL						0.013	no	0	572	9 Q	245	42.83216783	KD	0.819	7.13	0.01
352							0.013	no	12	1088	9 Q	641	58.91544118	DD	0.862	4.45	0.01
353	ISIFH YPYL						0.013	no	0	915	9	675	73.7704918	KD	0.805	8.2	0.01
304							0.013	10	0	1249	9	023	49.67990392	Db	0.075	3.00	0.01
300							0.013	10	0	621	9	402	20.00241032		0.000	3.45	0.01
357	33TERESEN						0.013	10	0	2840	9	770	2.00022107	KD	0.791	9.04	0.01
358							0.013	no	0	2040	9	381	46.07003822	Kb	0.797	7.01	0.01
359							0.013	no	3	341	9 10	51	14 95601173	Kb	0.02	22.32	0.01
360	TSVINTDLI						0,013	ves	0	989	Q	486	49 14054601	Db	0.803	8.38	0.03
361	VAYYETYHSYM		1		1		0,013	no	0	1073	11	262	24.41752097	Kb	0.726	19.39	0.05
362	SSMFFYLSF						0.013	ves	0	2150	9	1579	73.44186047	Kb	0.75	15.03	0.03
363	FSFQFYHFTSF						0.013	ves	2	896	11	194	21.65178571	Kb	0.613	65.84	0.25
364	YANKNNNLQFL						0.013	no	0	343	11	.87	25.36443149	Db	0.648	45.09	0.07
365	YSYFYFQNNL						0.012895	no	7	5611	10	3535	63.00124755	Kb	0.724	19.92	0.05
366	ITYSRQPHL						0.012665	no	0	167	9	103	61.67664671	Kb	0.786	10.18	0.01
367	RTLSNFTFI						0.01265	yes	0	1304	9	875	67.10122699	Db	0.816	7.32	0.01
368	SAIVNISLV						0.012525	no	16	988	9	362	36.63967611	Db	0.858	4.65	0.01
369	HSMSNHVPM						0.01219	no	0	3296	9	1074	32.58495146	Db	0.861	4.5	0.01
370	LAYAYYSSLL						0.012135	no	0	655	10	582	88.85496183	Kb	0.701	25.41	0.07
371	RALENYTNI						0.012105	no	0	1986	9	731	36.80765358	Db	0.875	3.89	0.01
372	CMFSFFSYL						0.012	yes	2	259	9	239	92.27799228	Kb	0.838	5.77	0.01
373	SSLVNREFI						0.012	no	0	1005	9	985	98.00995025	Db	0.915	2.51	0.01

		NetMHCpan 4.0 data									Expressi	on data				
		I	ченипсра	11 4.0 Uala							Microa	array	SSH		Mic	roarray
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	ım		orth	ologs of <i>P. yoelii</i>		P. ber	<i>ghei</i> origin
331	ICFPFFNRL	Kb	0.8342	6.015	0.0092	-	+	-	-	+	-	-	-	-	-	-
332	ICYKYFDVL	Kb	0.7062	24.008	0.0585	-	-	-	-	+	-	+	-	-	-	-
333	MCYDHCSAL	Kb	0.5326	157.0695	0.3795	-	+	+	+	+	-	-	-	-	-	-
334	SCYSYINTM	Kb	0.649	44.5869	0.1115	-	-	-	-	+	-	-	-	-	-	-
335	SVFDYFTSF	Kb	0.7994	8.7614	0.0143	-	-	-	-	+	-	-	-	-	-	-
336	KMFVNLSGF	Kb	0.4877	255.3201	0.5884	+	-	-	-	-	-	-	-	-	-	-
337	VLYLKFCNF	Kb	0.6757	33.3991	0.0838	-	+	-	-	-	-	-	-	-	-	+
338	INYNFYSML	Kb	0.9404	1.9053	0.0033	-	-	-	-	-	-	-	-	-	-	+
339	MAITNILTI	Db	0.8657	4.2761	0.004	-	+	-	-	+	-	-	-	-	-	-
340	YNYTFQAL	Kb	0.8442	5.3939	0.0086	+	+	-	-	+	-	-	-	-	-	-
341	ISLVNNYVYI	Db	0.6688	35.9876	0.01	-	-	-	-	+	-	-	-	-	-	+
342	VIYAHILNL	Kb	0.8192	7.0698	0.01	+	-	-	-	+	-	-	-	-	-	-
343	LAYAYYSSL	Kb	0.9052	2.7894	0.0052	-	-	-	-	-	-	+	-	-	-	-
344	VSYTRYASEM	Kb	0.7769	11.1745	0.0216	-	+	+	-	+	-	+	-	-	-	-
345	INYNFINL	Kb	0.9222	2.3202	0.0043	-	-	-	-	-	+	-	-	-	-	-
346	STYVFFPPI	Kb	0.8783	3.7304	0.0067	-	-	-	-	-	-	+	-	-	-	+
347	SVYFFYAYL	Kb	0.89	3.2885	0.0061	-	-	-	-	+	-	-	-	-	-	-
348	MCYLYTLLL	Kb	0.5592	117.9035	0.3006	+	-	-	-	-	-	-	-	-	-	-
349	VCWRHFLAM	Kb	0.5924	82.3221	0.2107	-	-	-	-	-	-	+	-	-	-	-
350	RGYDTFMNL	Kb	0.7266	19.2606	0.0446	-	+	+	-	+	-	+	-	-	-	-
351	LSYKFFPEL	Kb	0.8919	3.2218	0.006	-	+	-	-	+	-	-	-	-	-	-
352	KAINNFEFM	Db	0.877	3.7845	0.0037	-	+	+	+	+	-	-	-	-	-	-
353	ISIFHYPYL	Kb	0.8625	4.4255	0.0076	-	+	-	-	+	-	-	-	-	-	-
354	AALCNQWYI	Db	0.856	4.7513	0.0043	-	+	+	+	+	-	-	-	-	-	-
355	MSLVNNAYI	Db	0.8559	4.7562	0.0043	-	-	+	-	+	-	-	-	-	-	-
356	SSYFHFSFI	Kb	0.8495	5.0967	0.0083	-	+	+	+	+	-	-	-	-	-	-
357	IAYFRSSNL	Kb	0.8399	5.6536	0.0089	-	+	-	-	+	-	-	-	-	-	-
358	VSFYKYNSM	Kb	0.8219	6.8697	0.0099	-	+	-	-	+	-	-	-	-	-	-
359	IAFMFFLNSL	Kb	0.8147	7.4251	0.011	-	-	+	-	+	-	-	-	-	-	-
360	ISVINTDLL	מט	0.7496	15.0122	0.0076	-	+	-	-	+	-	-	-	-	-	-
361	VAYYFTYHSYM	Kb	0.7322	18.1357	0.0402	-	+	-	-	+	-	-	-	-	-	-
362	SSMFFYLSF	Kb	0.7221	20.2177	0.0481	-	+	-	-	-	-	-	-	-	-	-
363	FSFQFYHFISF	Kb	0.5516	127.9255	0.3231	-	+	+	-	+	-	-	-	-	-	-
364	YANKNNNLQFL	Db	0.5123	195.8389	0.0489	-	+	-	-	+	-	-	-	-	-	-
365	YSYFYFQNNL	Kb	0.8214	6.9052	0.0099	-	-	-	-	-	-	-	-	-	-	+
366	ITYSRQPHL	KD	0.776	11.2833	0.0219	+	+	-	-	+	-	+	-	-	-	-
367	RILSNEIFI	מט	0.7682	12.2865	0.007	+	-	-	-	-	+	-	-	-	-	-
368	SAIVNISLV	DD	0.8354	5.9341	0.005	+	+	-	-	+	-	-	-	-	-	-
369	HSMSNHVPM	LDD	0.8386	5.7361	0.0049	-	+	+	+	+	-	-	-	-	-	-
3/0	LATATISSLL	ND Dh	0.7903	9.6666	0.0017	-	-	-	-	-	-	+	-	-	-	-
3/1	KALENY INI		0.7955	9.1365	0.0062	+	+	+	Ŧ	+	-	-	-	-	-	-
3/2		NU Dh	0.8312	0.2133	0.0093	-	-	-	-	+	-	-	-	-	-	-
3/3	SOLVINKEH	מט	0.8791	3.6988	0.0036	-	-	-	-	+	-	-	-	-	-	-

			NetMHCpan												NetMHCo	ons 1.1 dat	a
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
374	VSYKYYDL						0.012	no	0	596	8	146	24.4966443	Kb	0.825	6.64	0.01
375	NCYYFYEI						0.012	no	4	608	8	137	22.53289474	Kb	0.319	1593.49	5
376	VCYIFFISF						0.012	no	22	3004	9	1391	46.30492676	Kb	0.583	91.09	0.4
377	IMYYFSIL						0.012	no	6	4789	8	296	6.180831071	Kb	0.83	6.33	0.01
378	YSIKNSYSL						0.012	no	2	519	9	479	92.29287091	Db	0.84	5.65	0.01
379	ANFNRYSFL						0.012	yes	0	255	9	1	0.392156863	Kb	0.782	10.52	0.01
380	YSIINNRFI						0.012	no	2	2434	9	1634	67.13229252	Db	0.841	5.56	0.01
381	NSMRNSETI						0.012	yes	0	786	9	367	46.69211196	Db	0.815	7.4	0.01
382	SSFLRLGLL						0.012	no	10	554	9	529	95.48736462	Kb	0.756	14.01	0.03
383	YAIKNSNYEIV						0.012	no	4	611	11	88	14.40261866	Db	0.713	22.32	0.05
384	YSIFNNDNEI						0.012	no	4	3053	10	2608	85.42417294	Db	0.801	8.61	0.03
385	VSYARHFLFM						0.012	yes	1	2081	10	1291	62.03748198	Kb	0.742	16.31	0.03
386	SSFLFLSNL						0.011905	no	0	1411	9	505	35.7902197	KD	0.815	/.4	0.01
387	INYFAYYISYL						0.011585	yes	1	453	11	311	68.65342163	KD	0.051	43.88	0.15
300	QITPTISIL						0.0115	10	0	243	9	174	71.60493827	KD	0.000	0.11	0.01
309							0.011	no	0	146	0		24.36350104	Kb	0.029	6 10	0.01
390	SAMENVEVI						0.011	no	0	797	9	752	04 35382685	Db	0.032	3.51	0.01
302							0.011	10	0	542	9	276	50 92250923	Kh	0.004	6.43	0.01
393	NCLIYSU						0.011	no	0	349	8	232	66 4756447	Kh	0.020	2678 54	7
394	NCYNEGI V						0.011	no	0	501	8	202	43 71257485	Kb	0.304	1854 1	5
395	RCYSKYIYL						0.011	no	0	2418	9	728	30 10752688	Kb	0.622	59.73	0.25
396	SCFFFFYEM						0.011	no	0	1114	9	153	13,73429084	Kb	0.618	62.37	0.25
397	SCYSYSNLF						0.011	no	0	129	9	41	31,78294574	Kb	0.586	88.18	0.4
398	VNFFFMYL						0.011	no	1	918	8	119	12.96296296	Kb	0.838	5.77	0.01
399	KSIVNKDFI						0.011	no	0	649	9	242	37.28813559	Db	0.873	3.97	0.01
400	VMYFFGSSL						0.011	no	12	505	9	153	30.2970297	Kb	0.81	7.77	0.01
401	SSLQNVSFL						0.011	yes	3	628	9	75	11.94267516	Db	0.868	4.17	0.01
402	YSIPNSYSI						0.011	yes	0	1049	9	849	80.93422307	Db	0.824	6.75	0.01
403	STICNTDSI						0.011	no	0	2518	9	934	37.0929309	Db	0.788	9.91	0.03
404	FSFMNGVLI						0.011	no	13	585	9	222	37.94871795	Db	0.828	6.43	0.01
405	YSINNNEQL						0.011	yes	1	473	9	404	85.41226216	Db	0.767	12.44	0.03
406	YMYVNIFEI						0.011	no	10	2269	9	1278	56.32437197	Db	0.871	4.06	0.01
407	AAIHNANDLAL						0.011	yes	0	917	11	241	26.28135224	Db	0.648	45.09	0.07
408	FAFSFFNGL						0.01069	no	11	500	9	107	21.4	Kb	0.824	6.71	0.01
400	no peptide restimula	tion					0.010650367			070	-	000	40.0000000	Dh	0 700	40.07	0.00
409	TANKNYSSI						0.01064	yes	2	6/9	9	339	49.9263623		0.786	10.07	0.03
410	VGTESFSPL						0.010625		0	1100	9	15	11.45038168	Kb	0.762	10.58	0.01
411	LODOVVI KI						0.0103375	yes ves	1	000	9	556	40.0442953	Kb	0.77	12.04	0.03
412							0.01	yes no	0	3076	9	176	4 426550256	Kb	0.000	2021 74	0.0
414	KSVENPTEI						0.01	Ves	4	1406	٥ ۵	0/	6 685633001	Dh	0.230	14 95	0.05
415	SSYIYELI						0.01	ves	11	1035	9 8	894	86 85990338	Kb	0.75	5 29	0.03
-10				1	1	1	0.01			1000	0	555	55.000000000		0.040	0.20	5.01

		,	NetMHCpan 4.0 data								Expressi	on data				
			vetiviiriopa	11 4.0 uala							Microa	array	SSH		Mic	roarray
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
						orthologs	of P. yoelii	ortho	ogs of P. falcipar	um		orth	ologs of P. yoelii		P. ber	ghei origin
374	VSYKYYDL	Kb	0.8961	3.0762	0.0057	-	-	-	-	+	-	-	-	-	-	-
375	NCYYFYEI	Kb	0.4334	459.5107	0.9427	-	+	-	-	+	-	-	-	-	-	-
376	VCYIFFISF	Kb	0.4978	229.0651	0.5367	-	-	+	+	-	-	-	-	-	-	-
377	IMYYFSIL	Kb	0.8813	3.6112	0.0066	-	-	+	+	+	-	-	-	-	-	-
378	YSIKNSYSL	Db	0.8388	5.7221	0.0049	-	+	-	-	+	-	-	-	-	-	-
379	ANFNRYSFL	Kb	0.8264	6.5408	0.0096	-	+	+	+	+	-	-	-	-	-	-
380	YSIINNRFI	Db	0.8134	7.5271	0.0056	-	+	-	-	+	-	-	-	-	-	-
381	NSMRNSETI	Db	0.8123	7.6178	0.0057	+	+	-	-	+	-	-	-	-	-	-
382	SSFLRLGLL	Kb	0.7581	13.7059	0.0283	-	+	-	-	-	-	-	-	-	-	-
383	YAIKNSNYEIV	Db	0.7283	18.9165	0.0082	-	+	-	-	+	-	-	-	-	-	-
384	YSIFNNDNEI	Db	0.7228	20.0629	0.0084	-	+	-	-	+	-	-	-	-	-	-
385	VSYARHFLFM	Kb	0.7167	21.448	0.0519	-	+	+	+	+	-	-	-	-	-	-
386	SSFLFLSNL	Kb	0.904	2.8252	0.0053	-	-	-	-	-	-	-	-	-	-	+
387	INYFAYYISYL	Kb	0.7772	11.1472	0.0215	+	+	+	-	+	-	-	-	-	-	-
388	QTYPYYSTL	Kb	0.8685	4.1505	0.0073	+	+	+	+	+	-	-	-	-	-	-
389	ASYEFTTL	Kb	0.9015	2.9032	0.0055	-	+	-	-	+	-	-	-	-	-	-
390	IIYRRYASL	Kb	0.8753	3.8552	0.0069	-	-	-	-	+	-	-	-	-	-	-
391	SAMENYFVL	Db	0.8911	3.2477	0.0033	-	-	-	-	+	-	-	-	-	-	-
392	SIYTFMRL	Kb	0.9059	2.7677	0.0052	-	+	-	-	+	+	+	-	-	-	-
393	NCLIYSLL	Kb	0.3542	1082.694	1.9291	+	+	+	-	+	-	-	-	-	-	-
394	NCYNFGLV	Kb	0.3572	1047.956	1.8854	+	+	+	+	+	-	-	-	-	-	-
395	RCYSKYIYL	Kb	0.6131	65.7385	0.1672	-	+	-	-	+	-	-	-	-	-	-
396	SCFFFFYEM	Kb	0.6484	44.8802	0.1121	-	-	-	-	+	-	-	-	-	-	-
397	SCYSYSNLF	Kb	0.5492	131.3236	0.3303	-	-	-	-	-	-	+	-	-	-	-
398	VNFFFMYL	Kb	0.9108	2.6254	0.0049	-	+	-	-	+	-	-	-	-	-	-
399	KSIVNKDFI	Db	0.8611	4.4935	0.0042	-	-	-	-	-	-	-	-	-	-	+
400	VMYFFGSSL	Kb	0.8493	5.1044	0.0083	-	+	-	-	+	-	+	-	-	-	-
401	SSLQNVSFL	Db	0.8457	5.3078	0.0047	-	+	+	-	+	-	+	-	-	-	-
402	YSIPNSYSI	Db	0.8223	6.8395	0.0054	-	-	+	+	-	-	-	-	-	-	-
403	STICNTDSI	Db	0.8183	7.1399	0.0055	-	-	-	-	-	-	-	-	-	-	+
404	FSFMNGVLI	Db	0.7852	10.2136	0.0065	-	+	+	-	+	-	-	-	-	-	-
405	YSINNNEQL	Db	0.7673	12.406	0.007	-	+	-	-	+	-		-	-	-	-
406	YMYVNIFEI	Db	0.7601	13.4036	0.0072	-	+	-	-	+	-		-	-	-	+
407	AAIHNANDLAL	Db	0.5566	121.2569	0.0345	+	+	-	-	+	-	-	-	-	-	-
408	FAFSFFNGL	Kb	0.8464	5.2669	0.0085	+	+	+	-	+	-	-	-	-	-	-
	no peptide restimula	1														
409	YANKNYSSI	Db	0.7631	12.9754	0.0071	+	-	-	-	-	-	+	-	-	-	-
410	VGYESFSPL	Kb	0.8498	5.081	0.0083	-	+	-	-	+	+	+	-	-	-	-
411	FSYINYSNL	Kb	0.8319	6.2	0.0093	+	+	-	-	+	-	-	-	-	-	-
412	ICPSYYLKL	Kb	0.6753	33.5571	0.0842	+	+	+	-	+	-	-	-	-	-	-
413	NCIFYFLL	Kb	0.3662	951.0274	1.7381	-	-	-	-	+	-	-	-	-	-	-
414	KSVENPTEI	Db	0.7052	24.2862	0.0089	+	-	+	-	-	-	-	-	-	-	-
415	SSYIYFLL	Kb	0.8986	2.994	0.0056	-	+	-	-	+	-	-	-	-	-	-

			NetMHCpan												NetMHCc	ons 1.1 dat	a
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-y+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
416	VSYLFTPNM						0.01	no	5	1902	9	1744	91.69295478	Kb	0.81	7.77	0.01
417	TTFSFFFTL						0.01	no	5	399	9	379	94.98746867	Kb	0.794	9.24	0.01
418	TTYYFMLHL						0.01	no	0	3368	9	3183	94.50712589	Kb	0.806	8.16	0.01
419	SNYFRFRLAL						0.01	no	0	494	10	5	1.012145749	Kb	0.75	14.95	0.03
420	SAPNNNINPL						0.01	no	0	607	10	190	31.3014827	Db	0.77	11.98	0.03
421	KAMINDITI						0.00998	no	0	1192	9	703	58.97651007	Db	0.844	5.41	0.01
422	SSYKKFILL						0.009976667	no	0	5309	9	1102	20.75720475	Kb	0.823	6.79	0.01
423	YTILNDENM						0.00995	yes	1	2096	9	903	43.08206107	Db	0.736	17.49	0.05
424	SSYGKLMYFLM						0.00995	no	0	609	11	223	36.61740558	Kb	0.679	32.06	0.1
425	ISVENYPVI						0.00993	yes	1	1809	9	1280	70.75732449	Db	0.747	15.45	0.05
426	INYNYYLM						0.0099	no	0	1370	8	294	21.45985401	Kb	0.828	6.47	0.01
427	SNYRNFFLL						0.00986	no	0	4800	9	415	8.645833333	Kb	0.774	11.47	0.03
428	KNYNFIFL						0.00979	yes	4	1785	8	621	34.78991597	Kb	0.772	11.79	0.03
429	ITFLFYNIL						0.00979	yes	0	2150	9	1910	88.8372093	Kb	0.793	9.34	0.01
430	VNYHFSNYM						0.00978	yes	1	2081	9	811	38.97164825	Kb	0.826	6.61	0.01
431	YIYERYIRL						0.00974	no	0	2412	9	381	15.7960199	Kb	0.799	8.8	0.01
432	KIYGYFILL						0.00972	no	0	1250	g	39	3.12	KD	0.81	7.77	0.01
433	ASVVFQEL						0.00969	no	0	255	8	94	36.8627451	KD	0.601	74.97	0.3
434							0.00962	yes	1	1192	8	661	55.45302013	KD	0.812	7.65	0.01
435							0.009615	no	0	541	9	490	90.57301294	KD	0.76	13.35	0.03
430							0.00961	10	13	000 675	9	202	34.52991453	KD	0.764	12.92	0.03
437							0.00955	10	4	0/0	9	306	45.333333333	KD	0.000	4.29	0.01
430	VSEEENNI						0.00953	10	0	1413	10	472	33.35069040	KD	0.79	9.7	0.01
439							0.0035	10	0	4709	0	2330	49.19007434	Db	0.030	9.95 8.04	0.01
440							0.00943	no	12	1210	9	1110	44.41200743	Kh	0.797	55.08	0.03
441							0.00345	10	2	524	9	441	84 16030534	Kb	0.023	4 36	0.2
443							0.00330	no	0	2337	8	398	17 03038083	Kb	0.004	5 15	0.01
444	VSI SNI EYI						0.00932	no	0	1228	9	304	24 75570033	Db	0.827	6.5	0.01
445	IMFAFAGL						0.00927	no	6	283	8	199	70 3180212	Kb	0.833	6.09	0.01
446	YALENKSLL						0.00927	ves	0	479	9	257	53,65344468	Db	0.83	6.33	0.01
447	KTYLYYHTLL						0.00925	no	0	663	10	59	8.898944193	Kb	0.688	29.41	0.07
448	INYIHMCLFLL						0.00922	ves	0	748	11	544	72.72727273	Kb	0.617	63.05	0.25
449	KSYYFYISL						0.00918	no	0	1059	9	366	34.56090652	Kb	0.842	5.53	0.01
450	ITMSNIDYI						0.00915	no	0	410	9	387	94.3902439	Db	0.813	7.56	0.01
451	FAMKNNVDCI						0.00914	no	0	255	10	98	38.43137255	Db	0.779	10.93	0.03
452	FSLENNITEL						0.00907	yes	0	879	10	626	71.21729238	Db	0.792	9.44	0.03
453	MSYPFFPLL						0.00902	no	0	4287	9	3924	91.53254024	Kb	0.865	4.31	0.01
454	IMFERWNQL						0.00895	no	6	4789	9	3151	65.79661725	Kb	0.816	7.36	0.01
455	YSIFNVNAEII						0.00887	no	2	7126	11	1166	16.36261577	Db	0.657	40.68	0.07
456	KAVKNYVEI						0.008725	yes	0	776	9	472	60.82474227	Db	0.823	6.82	0.01
457	STYYYEYAM						0.00869	yes	0	3254	9	1912	58.75845114	Kb	0.737	17.21	0.05
458	VIFSRLSNF						0.008675	no	0	1384	9	843	60.91040462	Kb	0.748	15.28	0.03

		NetMHCpan 4.0 data									Expressi	on data				
			ченипора	11 4.0 Uala							Microa	array	SSH		Mic	roarray
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	ım		orth	ologs of <i>P. yoelii</i>		P. ber	<i>ghei</i> origin
416	VSYLFTPNM	Kb	0.8832	3.5393	0.0065	-	+	-	-	+	-	-	-	-	-	-
417	TTFSFFFTL	Kb	0.86	4.5485	0.0077	-	+	+	-	+	+	-	-	-	-	-
418	TTYYFMLHL	Kb	0.8293	6.3383	0.0094	-	+	-	-	+	-	-	-	-	-	-
419	SNYFRFRLAL	Kb	0.8169	7.2514	0.0105	-	+	-	-	-	-	-	-	-	-	-
420	SAPNNNINPL	Db	0.6424	47.8919	0.013	-	-	-	-	+	-	-	-	-	-	-
421	KAMINDITI	Db	0.8371	5.8243	0.0049	-	+	-	-	-	-	-	-	-	-	-
422	SSYKKFILL	Kb	0.8357	5.9148	0.0091	+	+	-	-	+	-	-	-	-	-	-
423	YTILNDENM	Db	0.6846	30.3523	0.0095	-	-	-	-	+	-	-	-	-	-	-
424	SSYGKLMYFLM	Kb	0.5482	132.7579	0.3333	-	+	-	-	+	-	-	-	-	-	-
425	ISVENYPVI	Db	0.7045	24.4579	0.0089	-	-	-	-	+	-	-	-	-	-	+
426	INYNYYLM	Kb	0.8719	3.9999	0.0071	-	+	-	-	+	-	-	-	-	-	-
427	SNYRNFFLL	Kb	0.8136	7.5158	0.0112	-	+	-	-	+	-	-	-	-	-	-
428	KNYNFIFL	Kb	0.8367	5.8507	0.009	-	-	-	-	+	-	-	-	-	-	-
429	ITFLFYNIL	Kb	0.8518	4.9718	0.0082	-	+	-	-	-	-	-	-	-	-	-
430	VNYHFSNYM	Kb	0.8392	5.6943	0.0089	-	+	+	+	+	-	-	-	-	-	-
431	YIYERYIRL	Kb	0.781	10.6944	0.0203	-	+	-	-	+	-	-	-	-	-	-
432	KIYGYFTLL	Kb	0.8425	5.4975	0.0087	-	+	+	+	+	-	-	-	-	-	-
433	ASVVFQEL	Kb	0.702	25.123	0.0618	-	+	-	-	-	-	+	-	-	-	-
434	YGFKYYPL	Kb	0.8332	6.0781	0.0092	+	+	-	-	+	-	-	-	-	-	-
435	IGFNRFTTF	Kb	0.7512	14.7576	0.0311	-	+	-	-	+	-	-	+	-	-	-
436	VIFTFYHIL	Kb	0.8715	4.0152	0.0071	-	+	+	-	+	-	-	-	-	-	-
437	IVYYFYARM	Kb	0.899	2.983	0.0056	-	+	-	-	-	-	-	-	-	-	-
438	SSFYFFFNSL	Kb	0.8426	5.4902	0.0087	-	-	-	-	-	-	-	+	-	-	-
439	VSFEFNNL	Kb	0.9238	2.2811	0.0042	-	-	+	+	+	-	-	-	-	-	-
440	HAIENIPAI	Db	0.7467	15.4925	0.0076	+	+	+	-	+	-	-	-	-	-	-
441	ISMSHYLYSTL	Kb	0.6648	37.5724	0.0952	-	-	+	-	-	-	-	-	-	-	-
442	INFNYFSLL	Kb	0.9277	2.1872	0.004	-	-	+	-	-	-	-	-	-	-	-
443	ITYLYFNL	Kb	0.9194	2.3906	0.0045	-	-	+	+	-	-	-	-	-	-	-
444	VSLSNLFYL	Db	0.8209	6.9409	0.0054	-	+	-	-	+	-	-	-	-	-	-
445	IMFAFAGL	Kb	0.905	2.7937	0.0053	-	+	+	+	+	-	-	-	-	-	-
446	YALENKSLL	Db	0.809	7.8936	0.0058	-	-	+	+	+	-	-	-	-	-	-
447	KTYLYYHTLL	Kb	0.7478	15.316	0.0327	-	-	+	+	-	-	-	-	-	-	-
448	INYIHMCLFLL	Kb	0.5888	85.5336	0.2201	+	+	-	-	+	-	-	-	-	-	-
449	KSYYFYISL	Kb	0.8912	3.2467	0.006	-	+	-	-	+	-	-	-	-	-	-
450	ITMSNIDYI	Db	0.8368	5.8443	0.0049	-	+	+	+	+	-	-	-	-	-	-
451	FAMKNNVDCI	Db	0.723	20.0252	0.0084	-	+	-	-	-	-	+	-	-	-	-
452	FSLENNITEL	Db	0.6862	29.8297	0.0095	-	-	+	+	-	-	-	-	-	-	-
453	MSYPFFPLL	Kb	0.904	2.8252	0.0053	-	-	+	-	-	-	-	-	-	-	-
454	IMFERWNQL	Kb	0.7578	13.7455	0.0284	-	-	+	+	+	-	-	-	-	-	-
455	YSIFNVNAEII	Db	0.7047	24.4137	0.0089	-	-	-	-	+	-	-	-	-	-	+
456	KAVKNYVEI	Db	0.7909	9.6097	0.0063	+	+	+	+	+	-	-	-	-	-	+
457	STYYYEYAM	Kb	0.7242	19.7647	0.0464	+	-	-	-	-	-	-	-	-	-	-
458	VIFSRLSNF	Kb	0.711	22.7966	0.0555	+	+	-	-	+	+	-	-	-	-	-

			NetMHCpan												NetMHCcons 1.1 data		
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score
459	KSIKNNDFI						0.00864	no	2	7480	9	3533	47.23262032	Db	0.85	5.1	0.01
460	SSYLSYYLL						0.008565	yes	2	395	9	231	58.48101266	Kb	0.768	12.24	0.03
461	NSLLNVDEI						0.00853	no	0	622	9	336	54.0192926	Db	0.863	4.43	0.01
462	ISYNFYRIF						0.008525	no	0	787	9	75	9.529860229	Kb	0.796	9.09	0.01
463	RTFYYFHGL						0.0085	yes	2	1349	9	832	61.67531505	Kb	0.761	13.28	0.03
464	YANYNNTYI						0.00842	no	2	3724	9	311	8.351235231	Db	0.869	4.1	0.01
465	INYNKYIHL						0.00839	no	0	5249	9	3477	66.2411888	Kb	0.828	6.47	0.01
466	VSIENYHLI						0.00838	no	0	547	9	458	83.72943327	Db	0.826	6.57	0.01
467	VSFMYSRKL						0.00831	yes	1	3204	9	1982	61.86017478	Kb	0.744	16.04	0.03
468	CSISNPTYI						0.00811	no	0	1396	9	1344	96.27507163	Db	0.843	5.47	0.01
469	SLYNYFFNL						0.008	no	0	3018	9	1805	59.80781975	Kb	0.77	12.11	0.03
470	TGYARYFAL						0.008	no	0	256	9	168	65.625	Kb	0.776	11.35	0.01
471	SNYIKYNQL						0.008	yes	0	1354	9	295	21.7872969	Kb	0.792	9.44	0.01
472	YAQTNPLPL						0.008	no	0	1038	9	138	13.29479769	Db	0.806	8.16	0.01
473	KSIKNTDNI						0.008	yes	0	1109	9	982	88.54824166	Db	0.775	11.35	0.03
474							0.00795	no	0	6521	10	3221	49.39426468	KD	0.717	21.37	0.05
4/5	IST SFUNEL						0.00791	10	0	797	9	179	97.74153074	KD Dh	0.625	0.00	0.01
470							0.00783	10	0	1070		135	3.3/631239/	Db	0.009	20.93	0.07
477							0.00774	10	0	2006	9	950	74.00000409		0.000	4.20	0.01
470							0.00763	10	4	2990	0	2049	27 21 31 1475	KD	0.044	0.41 4.52	0.01
479	STEEETI I						0.00763	no	2	533	0	270	50 65666041	Kb	0.001	6.97	0.01
400							0.00763	Ves	3	1149	0	40	3 481 288077	Kb	0.021	12 64	0.01
482	INVIVNGI						0.0076	ves	1	1809	9	1240	69 04367054	Kh	0.700	18.37	0.05
483	YALENKSI LPI						0.00758	ves	0	479	11	257	53 65344468	Db	0.685	30.05	0.07
484	ITYKYSLI						0.00752	ves	0	2773	8	415	14 96574107	Kb	0.852	4.96	0.01
485	LAIQNNMPTM						0.0075	ves	- 1	1791	10	890	49.69290899	Db	0.736	17.49	0.05
486	ASFEFISHL						0.00749	no	0	1168	9	502	42.97945205	Kb	0.779	10.93	0.01
487	SIFLFTPL						0.00746	no	9	1936	8	866	44.73140496	Kb	0.827	6.5	0.01
488	YAINNPNFNNL						0.00707	no	0	1388	11	788	56.77233429	Db	0.7	25.69	0.05
489	YSIVNEDIV						0.00678	no	0	415	9	404	97.34939759	Db	0.877	3.76	0.01
490	SSLLNEIEI						0.006725	no	0	219	9	91	41.55251142	Db	0.844	5.41	0.01
491	FTITNNHSPL						0.006665	no	0	154	10	46	29.87012987	Db	0.705	24.33	0.05
492	VSYALFALL						0.00649	yes	1	625	9	609	97.44	Kb	0.831	6.26	0.01
493	VSLLFFSYL						0.00647	no	13	585	9	530	90.5982906	Kb	0.823	6.79	0.01
494	KAISNFLPL						0.00644	no	0	3796	9	2645	69.67860906	Db	0.89	3.29	0.01
495	ASYERFINIL						0.00643	no	0	757	10	601	79.39233818	Kb	0.681	31.38	0.1
496	INYSRLFVSFL						0.00637	no	6	4789	11	600	12.52871163	Kb	0.641	48.37	0.17
497	IAYYFSVL						0.00636	no	0	659	8	332	50.37936267	Kb	0.841	5.59	0.01
498	YAISNFLSQTI						0.00635	no	0	1758	11	1653	94.02730375	Db	0.704	24.6	0.05
499	FSFCNSIPL						0.00633	no	0	2957	9	2413	81.60297599	DD	0.878	3.74	0.01
500	YSYNFYSTL					ļ	0.00632	no	0	1174	9	8	0.681431005	Kb	0.875	3.89	0.01
501	SIYYFFSKL			1	1		0.0063	yes	16	1292	9	649	50.23219814	KD	0.849	5.12	0.01

	NotMHCpap 4.0 data						Expression data											
		r	ченипсра	11 4.0 Uala							Microa	array	SSH		Mic	roarray		
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished		
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-		
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	ım		orth	ologs of <i>P. yoelii</i>		P. ber	<i>ghei</i> origin		
459	KSIKNNDFI	Db	0.8246	6.6708	0.0053	-	+	-	-	+	-	-	-	-	-	+		
460	SSYLSYYLL	Kb	0.821	6.9344	0.0099	+	+	+	+	+	-	-	-	-	-	-		
461	NSLLNVDEI	Db	0.8115	7.6908	0.0057	-	+	-	-	+	-	-	-	-	-	-		
462	ISYNFYRIF	Kb	0.8295	6.3247	0.0094	+	+	+	+	+	-	-	-	-	-	-		
463	RTFYYFHGL	Kb	0.8569	4.7022	0.0079	+	-	-	-	+	-	-	-	-	-	-		
464	YANYNNTYI	Db	0.8222	6.8464	0.0054	-	-	-	-	+	-	-	-	-	-	-		
465	INYNKYIHL	Kb	0.8812	3.6178	0.0066	+	-	-	-	-	-	-	-	-	-	-		
466	VSIENYHLI	Db	0.7775	11.103	0.0067	-	-	+	+	-	-	-	-	-	-	-		
467	VSFMYSRKL	Kb	0.875	3.8661	0.0069	-	-	+	+	-	-	-	-	-	-	-		
468	CSISNPTYI	Db	0.8193	7.0642	0.0054	-	-	+	+	+	-	-	-	-	-	-		
469	SLYNYFFNL	Kb	0.8577	4.6644	0.0079	-	-	-	-	-	+	-	-	-	-	-		
470	TGYARYFAL	Kb	0.8233	6.7637	0.0098	+	+	+	+	+	-	-	-	-	-	-		
471	SNYIKYNQL	Kb	0.8195	7.046	0.01	+	+	-	-	+	-	-	-	-	-	-		
472	YAQTNPLPL	Db	0.8029	8.4339	0.0059	+	+	+	+	+	+	-	-	-	-	-		
473	KSIKNTDNI	Db	0.7668	12.4713	0.007	-	-	-	-	-	-	-	-	-	-	+		
474	IIYNFFINNL	Kb	0.8281	6.4212	0.0095	-	+	-	-	+	-	-	-	-	-	-		
475	ISYSFQNEL	Kb	0.8587	4.6115	0.0078	-	-	-	-	-	-	+	-	-	-	-		
476	FALCNSNFHII	Db	0.7254	19.5102	0.0083	-	+	-	-	+	-	-	-	-	-	-		
477	YTMCNYTLM	Db	0.834	6.0288	0.005	-	-	-	-	+	-	-	-	-	-	-		
478	YNYYFSYL	Kb	0.9059	2,7692	0.0052	-	+	-	-	+	-	-	-	-	-	-		
479	YSYLYTPL	Kb	0.9139	2.5374	0.0048	-	+	-	-	+	-	-	-	-	-	-		
480	STEFETLL	Kb	0.8904	3.2737	0.0061	-	+	-	-	+	-	-	-	-	-	-		
481	ITYQRHIPF	Kb	0.7305	18.4742	0.0416	+	-	-	-	-	-	-	-	-	-	-		
482	INYIYNGI	Kb	0.8573	4.6813	0.0079	-	-	-	-	+	-	-	-	-	-	+		
483	YALENKSLLPI	Db	0.7592	13.5329	0.0073	-	-	+	+	+	-	-	-	-	-	-		
484	ITYKYSLL	Kb	0.9156	2.4912	0.0047	-	+	-	-	-	-	-	-	-	-	-		
485	LAIQNNMPTM	Db	0.6268	56,7162	0.0148	+	-	-	-	+	-	-	-	-	-	-		
486	ASFEFISHL	Kb	0.8672	4.2069	0.0074	-	+	-	-	+	-	-	-	-	-	-		
487	SIFLFTPL	Kb	0.8895	3.3053	0.0061	-	-	-	-	+	-	-	-	-	-	-		
488	YAINNPNFNNL	Db	0.6978	26.3118	0.0091	+	+	+	+	+	-	-	-	-	-	-		
489	YSIVNEDIV	Db	0.8636	4.3749	0.0041	-	+	-	-	+	-	-	-	-	-	-		
490	SSLLNEIEI	Db	0.7901	9.6927	0.0063	+	+	-	-	+	-	-	-	-	-	-		
491	FTITNNHSPL	Db	0.6764	33,1679	0.0098	+	-	-	-	+	-	+	-	-	-	-		
492	VSYALFALL	Kb	0.8875	3.3783	0.0062	-	+	+	+	+	-	-	-	-	-	-		
493	VSLLFFSYL	Kb	0.8852	3.4629	0.0064	-	+	+	-	+	-	-	-	-	-	-		
494	KAISNFLPL	Db	0.8749	3.8719	0.0038	-	-	-	-	+	-	-	-	-	-	-		
495	ASYERFINIL	Kb	0.7217	20.3071	0.0484	-	+	+	-	-	+	-	-	-	-	-		
496	INYSRLFVSFL	Kb	0.7239	19.8297	0.0467	-	-	+	+	+	-	-	-	-	-	-		
497	IAYYFSVL	Kb	0.9011	2.9143	0.0055	-	-	-	-	-	-	+	-	-	-	-		
498	YAISNFLSQTI	Db	0.7878	9.9369	0.0064	-	-	+	+	+	-	-	-	-	-	-		
499	FSFCNSIPL	Db	0.8716	4.0107	0.0039	-	+	+	-	+	-	-	-	-	-	+		
500	YSYNFYSTL	Kb	0.924	2.2758	0.0042	-	+	-	-	+	-	-	-	-	-	-		
501	SIYYFFSKL	Kb	0.9037	2.8355	0.0053	-	+	-	-	+	-	-	-	-	-	-		

Nord Pescele Top percent NetWorkson N				NetMHCpan												NetMHCcons 1.1 data			
5622 DCYYPYIL Code29 no 0 420 8 172 302.888524.00 0.248 338.41 C 6031 FGLINFILE 0.006221 no 0 2456 9 1121 45.601580 0.0053 55.17 55.01 0.00625 no 0 0.428 9 38.427.2007/160 0.611 7.22 0.011 7.22 0.011 7.22 0.011 7.22 0.011 7.22 0.011 7.22 0.011 7.22 0.011 7.22 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 7.23 0.011 0.012 0.011 7.20 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011	Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score	
630 FSLNEREL 0.00827 no. 0.2458 9 1121 45.0018383 Db 0.352 6.19 0.01 650 STYYYSIL 0.00625 no. 3 570 9.004 (0.3198720) Kb 0.831 7.20 0.01 650 STYYYSIL 0.00622 no. 0 101 9 282 22471322 (b) 0.061 8.57 0.01 650 STYYSIL 0.00621 no. 0 0.01 9 8.60 0.71 0.442 (b) 0.041 (b) 0.65 0.00 650 STYYSIL 0.00616 no. 0.001 (b) 9.02 (c) 0.001 (b) 0.01 (c)	502	NCYYPYTL						0.00629	no	0	420	8	127	30.23809524	Kb	0.248	3398.41	9	
664 IMPSPYNL 0.06628 hp 3 070 s 0.04 31 5987628 kb 0.838 5.8 0.01 666 TMYYRSIL 0.06622 hp 0.0662 hp 0.113 0.238 232713722 kb 0.814 7.62 0.013 0.013 0.238 232713722 kb 0.0143 0.0143 0.0143 2487 kb 0.0143 0.0143 0.0143 2487 kb 0.0143 0.0143 2487 kb 0.0171 0.013 0.0143 2487 kb 0.0171 0.013 0.0143 2487 kb 0.0171 0.013 0.0143 2477324 kb 0.013 0.0143 247732 kb 0.013 0.0143 247732 kb 0.013 0.0143 247733 kb 0.028 477 0.013 0.013 247783 kb 0.013 0.013 247783 kb 0.028 477 0.013 0.013 247783 kb 0.013 247783 kb 0.0134 247783 kb 0.013 2477888	503	FSILNENEL						0.00627	no	0	2458	9	1121	45.60618389	Db	0.832	6.19	0.01	
665 STYYYSMLL 0.00622 ho 0 426 9 398 82/223007 Kb 0.814 7.52 0.01 606 TMYYSML 0.0062 ho 0 1613 82 23/23722 Kb 0.816 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 8.7 0.01 0.77 13.8 0.01 0.77 13.8 0.01 0.77 13.8 0.02 0.77 13.8 0.02 0.77 13.8 0.02 0.77 13.8 0.02 0.77 13.8 0.02 0.22 0.8 0.02 1.01 1.01 1.01 0.02 <td< td=""><td>504</td><td>IIYSFYIYL</td><td></td><td></td><td></td><td></td><td></td><td>0.00625</td><td>no</td><td>3</td><td>970</td><td>9</td><td>904</td><td>93.19587629</td><td>Kb</td><td>0.838</td><td>5.8</td><td>0.01</td></td<>	504	IIYSFYIYL						0.00625	no	3	970	9	904	93.19587629	Kb	0.838	5.8	0.01	
See IntryFressika 0.00002 [no) 0 1013 9 2.26 2.32917122 0.00 0.01 Sord [CVYYVPYM] 0.00002 [no) 0 670 9 880 77.011443 00.084 6.580 0.01 Sord [CVYYVPYM] 0.00001 [no) 0 2857 9 2004 97.4234218 00.0757 15.80 0.01 Sord [CVYYVPYM] 0.00001 [no) 0 4400 11 1372 2035333 00.077 13.80 0.03 Sord [CVYYVPAM] 0.00001 [no) 0 4400 11 1372 20.35333 00.077 13.86 0.03 1.66 0.03 1.66 0.03 1.66 0.03 1.66 0.071 0.04443742 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.071 0.0443772 0.0409 7.9 0.01 0.0515 0.0471 0.0443772 0.04037 0.04037 0.0437 7.80 0.032 8.47 </td <td>505</td> <td>STYYYSMLL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00625</td> <td>no</td> <td>0</td> <td>426</td> <td>9</td> <td>359</td> <td>84.27230047</td> <td>Kb</td> <td>0.814</td> <td>7.52</td> <td>0.01</td>	505	STYYYSMLL						0.00625	no	0	426	9	359	84.27230047	Kb	0.814	7.52	0.01	
sbr/licyrynym 0.0062 [no 0 870 9 865 (97.7019443 (b) 0.44 5.68 0.01 569 VSMNRCFI 0.006617 [no 0.2007 9 2006 (97.243218 (b) 0.085 4.62 0.01 509 VSLSRFSM 0 0.006615 [no 6 245 9 60 2040 (97.243218 (b) 0.072 2.025 0.065 511 MAYSKYLL 0 0.006615 [no 0 440 1978 (2.872446) (b) 0.84 6.71 0.01 512 YITAMKEL 0 0.00660 [no 0 730 6 331 (3.971440) (b) 0.048 6.68 0.03 513 WYNKEL 0 0.00660 [no 0 730 6 341 (4.849707) (b) 0.048 6.86 0.03 513 WYNKEL 0 0.00660 [no 0 735 0 0.048 6.86 0.03 515 WYNKEL 0 0.00650 [no 0 345 0 0.84 6.87 0.01 516 WSNKEL 0 0.06650 [no 0 345 0 0.84 6.8 0.03 7.55 0.01	506	TMYYFSISL						0.00622	no	0	1013	9	236	23.29713722	Kb	0.801	8.57	0.01	
Seb USMNRECFI 0.00617 (n 0.207 9 2004 97.4334318 (b) 0.359 4.62 0.01 Stoll FAFKNSCLAPM 0.00616 (n) 5 245 9 50.004 (s) 0.00616 (n) 0 4800 11 1172 28.7083333 (b) 0.72 20.58 0.06 S11 MAYSKYLL 0.00661 (n) 0 4400 11 1172 28.7083333 (b) 0.72 20.58 0.06 S13 YANLMIL 0.00660 (n) 0 170 9 531 (a) 8.66 0.00 S13 YANLMIL 0.00660 (n) 0 386 9 31 10.054373 (b) 0.48 5.67 0.07 0.07 0.07 S13 YANLMIL 0.00660 (p) 0.386 9 31 10.0543738 (b) 0.607 0.600 16 17.69 0.000 11 17.69 0.000 18.49 0.000 18.49 0.000 18.49 0.000 18.49 0.000 18.49 0.000 18.49 0.000 18.49 0.000	507	IGYYYYPYM						0.0062	no	0	870	9	850	97.70114943	Kb	0.84	5.68	0.01	
500 VSLSRFFSM 0.00615 0.00605	508	VSMVNECFI						0.00617	no	0	2057	9	2004	97.42343218	Db	0.859	4.62	0.01	
s10 EARNSCLAPM 0.00651 ln 0 4800 11 1376 28.7033333 (b) 0.72 20.58 0.00 511 MNXSYNUL 0.00651 ln 0 414 9 25.762.0723408 (b) 0.84 6.67 0.01 512 VALNMIHL 0.00665 ln 0 1370 9 531 38.7912409 (b) 0.8 8.66 0.001 513 VALNMIHL 0.00665 ln 0 368 9 27 10.8434783 (b) 0.0060 7.9 0.01 511 VALVELE 0.00665 ln 0 368 9 27 43.4121241 (b) 0.000 8.47 0.00 511 VALVELE 0.00658 ln 0 343 9 57 40.019405 (b) 0.002 8.47 0.003 511 VALVELES 0.00558 ln 0 551 9 0.225 41.495824 (b) 0.014 4.69 0.014 5.51 0.02 8.47 0.00 0.011 0.011 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0	509	VSLSRFFSM						0.00616	no	5	245	9	50	20.40816327	Kb	0.757	13.86	0.03	
S11 NNYSKYLL 0.00511 0 0 141 9 257 62.0772469 No. 0.824 6.71 0.01 S12 YTONNEL 0.00605 no 0 137 0 134 751 251 38.75912490 Db. 0.843 5.47 0.001 S11 RSFIPTSAM 0.00605 no 0 386 9 311 0.543783 No. 0.843 5.47 0.001 S11 RSFIPTSAM 0.00605 pice 0 384 9 571 4.0150805 Db. 0.843 5.47 0.001 S11 LSKINVEL 0.00658 no 0 343 10 601 7.42271137 Db 0.860 8.16 0.001 S11 VSLINLESL 0.00558 no 0 333 10 601 7.42271137 Db 0.862 8.70 0.001 1.052 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 1.0529 <	510	FAFKNSCLAPM						0.00615	no	0	4800	11	1378	28.70833333	Db	0.72	20.58	0.05	
612 0.00668 [no 0 1370 9 531 387.494.09 [Db 0.8 8.66 0.00 513 VANINMHL 0.00667 [no 0 336 48.497702 [Db 0.843 5.47 0.01 514 VANINFLE 0.00666 [no 0 366 9 371 10.6543473 [kb 0.809 7.9 0.01 515 VINNERLE 0.00665 [no 0 334 9 571 44.015805 [bb 0.802 8.47 0.001 517 VALENDSVL 0.00658 [no 0 334 10 611.495924 [bb 0.86 4.52 0.001 520 VSKYKLAL 0.00528 [no 0 333 8365 9.5002611 [kb 0.824 6.72 0.01 520 VSKYKLAL 0.00528 [no 0 333 8365 9.500261 [kb 0.824 6.72 0.01 522 VSKYKLAL 0.00528 [no 0 1471 8 662 45.00 0.01 522 NYSKYKLAL 0.00441 [no 0 163 10<4711	511	MNYSKYLLL						0.00611	no	0	414	9	257	62.07729469	Kb	0.824	6.71	0.01	
511 STARESPERSAM 0.00607 Ino 0 739 9 381 48.8479702 Db 0.843 5.47 0.01 514 D.00602 Jes 8 592 9 27 10.0434733 IKo 0.809 7.9 0.01 516 D.00602 Jes 8 592 9 257 43.41216216 IKo 0.813 7.56 0.00 517 VALENNDSVL 0.006585 Ino 0 343 10 60 17.49271137 Db 0.806 8.16 0.001 518 VATURESL 0.00556 Ino 0 517 9 5143 9.002110 0.806 8.16 0.001 520 YSYKVLA 0.00536 Ino 0 338 365 9.5002111KO 0.827 3.47 0.01 3.47 8.62 4.0001815 Db 0.887 3.4 0.0015 0.01171 8.621 49030215 Db 0.887 3.4 0.0015 0.01171 8.621 4903021 Kb 0.677 3.24 0.0015 0.01171 8.621 4000181 Db 0.887 3.4 0.0016 0.01171 8.621 4000181 Db 0.821 4001 0.021 410018 <	512	YTIQNKDEL						0.00608	no	0	1370	9	531	38.75912409	Db	0.8	8.66	0.03	
114 RSFIFYSAM 0 368 9 27 10.0543/783 kb 0.809 7.9 0.01 515 VYYNEREL 0.0060 yes 0 1354 9 557 44.0915005 b 0.0802 8.47 0.00 515 VXINLESL 0.00585 in 0 1343 10 617.442971137 bb 0.806 8.6 0.01 519 VXINLESL 0.00585 in 0 5343 9 2250 41.40596246 bb 0.866 8.6 0.01 520 VSINVIRL 0.00526 in 0 5317 9 524 66.2701333 bb 0.867 3.4 0.01 521 VSINVIRL 0.00528 in 0 515 9 163 0.4000115 bb 0.887 3.4 0.01 522 VINSYFVLL 0.00523 in 0 1471 8 662 45.0033905 kb 0.824 6.76 0.01 522 VINSYFVLL 0.00464 in 0 9556 9 0.027 54	513	YANLNMIHL						0.00607	no	0	739	9	361	48.84979702	Db	0.843	5.47	0.01	
151 0.00602 yes 8 592 9 257 43.4124216 Kb 0.0131 7.56 0.01 515 LSLSNYLE 0.00585 no 0.343 10 60 17.4221137 Db 0.802 8.47 0.032 517 YALENNDSVL 0.00585 no 0.343 10 60 17.49271137 Db 0.86 4.55 0.001 518 YXIVLESL 0.00536 no 0.333 8.365 5.53022111 Kb 0.86 4.55 0.001 520 YSYVLAL 0.00536 no 0.333 8.365 5.5302211 Kb 0.847 5.24 0.001 521 SLENNYEM 0.00526 no 0.551 9 188 30400115 Db 0.824 6.75 0.01 524 FYKRGV 0.00551 0.00551 0.01431 10 4071127680723 Kb 0.677 32.24 0.07 32.24 0.07 0.024 6.54 0.00 0.571 9.2785775NL 0.626 5.40221 Kb 0.677 0.404310 <	514	RSFIFYSAM						0.00605	no	0	368	9	37	10.05434783	Kb	0.809	7.9	0.01	
1616 LSLSNYLFL 0.006 yes 0 1354 9 597 44.0015005 Db 0.802 8.47 0.005 517 YALENDSVL 0.00658 no 0 343 10 60 17.4927137 Db 0.806 8.16 0.005 519 VSTNDISI 0.00658 no 0 5337 9 5514 9.2504 41.40596246 Db 0.867 524 0.001 520 VSTNVLA 0.00556 no 0 5331 8 365 95.30026115 D 0.867 3.4 0.01 521 SELENVEM 0.00556 no 0 1471 8 662 45.0033905 Kb 0.824 6.75 0.01 522 SNLYYYL 0.0058 no 0 1471 8 662 45.0033905 Kb 0.824 6.75 0.01 523 SNLYYYL 0.00484 no 0 0.855 8 4002 41.87944747 Kb 0.827 6.48 0.01 6.56 9 40024	515	VNYNKFLEL						0.00602	yes	8	592	9	257	43.41216216	Kb	0.813	7.56	0.01	
617 YALENDSYL 0.00585 Ino 0 343 10 60 17.49271137 Db 0.806 8.16 0.01 518 YAYTNIESI 0.00542 Ino 0 5317 9 5124 96.37013333 Db 0.847 5.24 0.00536 520 YSYTVL 0 0.00536 Ino 0 333 8 365 95.3002811 lb: 0.847 5.24 0.00 521 SSLENMYEM 0 0.00536 Ino 0 551 9 188 30.49001815 Db 0.887 3.4 0.00 523 YNYFYUL 0 0.00528 Ino 0 14171 8 662.45.0033905 Vb 0.624 0.75 0.01 523 YNYFYQL 0 0.00434 Ino 0 1467 17.276732 kb 0.677 32.44 0.1 525 FINFNYGQL 0.00445 Ino 0 0.00445 Ino 0 1677 9 167 1.227433 kb 0.712 22.68 0.00 528 FINFNYGQL 0.00445 Ino 0 0.00445 Ino 0 0.077 9 16 0.655 94.400 0.555 4.83 0.00 528 NYFYKPL 0.0	516	LSLSNYLFL						0.006	yes	0	1354	9	597	44.0915805	Db	0.802	8.47	0.03	
1618 YAYINLESL 0.00581 [no. 0.6434 9 2250 [41.40596246] Db. 0.86 4.55 0.01 519 VEXINDSI 0.00536 [no. 0.383 8.365 95.3002611 [kb. 0.825 6.68 0.01 521 SELENMYEM 0.00536 [no. 0.383 8.365 95.3002611 [kb. 0.827 3.4 0.01 522 SIYLYYYL 0.00556 [no. 0.1471 8.622 [45.00339005 [kb. 0.824 6.75 0.01 523 YINESYFPL 0.0056 [no. 0.1471 8.622 [45.00339005 [kb. 0.824 6.75 0.01 524 [FSYKRIGYL 0.0056 [no. 0.14671 9.76 7.122774133 [kb. 0.0172 22.68 0.05 525 [FINNEQL 0.00441 [no. 0.9556 9.4002 [41.6794471 [kb. 0.827 [6.54 [4.00] 0.826 [4.00] 0.827 [6.54 [4.00] 0.826 [4.00] 0.827 [6.54 [4.00] 0.825 [4.83 [0.01] 0.228 [FINNENDH] 0.00442 [no. 0.677 [9.411 [6.056129660 [kb. 0.825 [4.83 [0.01] 0.228 [FINNENDH] 0.00463 [yes 0.177 [9.411 [6.056129660 [kb. 0.855 [4.83 [0.01] 0.23 [FINNENDH] 0.00443 [yes 0.772 [8.132114 [kb. 0.855 [4.83 [0.01] 0.855 [4.83 [0.01] 0.855 [4.83 [0.01]	517	YALENNDSVL						0.00585	no	0	343	10	60	17.49271137	Db	0.806	8.16	0.01	
1619 VSLTNIDS1 0.00542 Inc 0.00542 Inc 0.00536 Inc 0.0338 86 365 53.002611 Kb 0.847 5.24 0.01 520 VSYVLAL 0.00536 Inc 0.0536 Inc 0.551 9 168 30.49001815 Db 0.887 3.4 0.01 522 SVVYVLA 0.00523 Inc 0.1471 8 624.50033905 Kb 0.827 5.4 0.01 523 VNFSSYFPLL 0.00623 Inc 0.1471 8 624.50033905 Kb 0.827 6.34 0.01 524 FSYKRIGVL 0.00441 Inc 0.0167 9 76 7.122774133 Kb 0.677 32.94 0.712 525 FINFNYCGL 0.004441 Inc 0.00467 Inc 3.4291 9 1167 27.189477 Kb 0.827 6.54 0.00 526 FISHRNLDHI 0.00467 Inc 3.4291 9 1167 27.189477 Kb 0.855 4.83 0.01 529 INSINNFSYI 0 0.00463 Ips 0.1272 8 1135 89.22955975 Kb 0.875 4.83 0.01 529 INSINNFSYI 0 0.00443 Ips 0.00444 Ips 0.246 9 <td< td=""><td>518</td><td>YAYINLESL</td><td></td><td></td><td></td><td></td><td></td><td>0.00581</td><td>no</td><td>0</td><td>5434</td><td>9</td><td>2250</td><td>41.40596246</td><td>Db</td><td>0.86</td><td>4.55</td><td>0.01</td></td<>	518	YAYINLESL						0.00581	no	0	5434	9	2250	41.40596246	Db	0.86	4.55	0.01	
220 YSYKYLAL 0.00356 no 0.383 8 365 95.302611 kb 0.0256 6.68 0.01 521 SSLENMYEM 0.00523 no 0.1471 8 662 45.00339905 kb 0.887 3.4 0.01 522 SYLYYYL 0.0055 no 0.3183 10 407 12.7867923 kb 0.677 32.94 0.71 524 F5YKRGYL 0.00491 no 0.1067 9 76 12.77867923 kb 0.677 32.94 0.01 526 F5HRRUDHI 0.00484 no 0.9556 9 4002 41.87944747 kb 0.827 6.54 0.01 526 F5HRNLDHI 0.00466 no 0 677 9 116 0.65129895 kb 0.855 4.83 0.01 528 MSINFSYL 0.00466 no 0 677 9 116 0.65129895 kb 0.855 4.83 0.01 529 MSINNFSYL 0.00462 no 4 2966 9 2193 73.197586 bb 0.031 2.9 0.01 531 VSYAKFPPI 0.00443 pes 7768	519	VSLTNIDSI						0.00542	no	0	5317	9	5124	96.37013353	Db	0.847	5.24	0.01	
1 0.00526 no 0 551 9 168 30.4001815 Db 0.887 3.4 0.01 522 SYLYYYL 0 0.00523 no 0 1471 8 662 45.003905 Kb 0.887 3.24 0.01 523 SYLYYL 0 0.0051 no 0 3183 10 407 12.78667923 Kb 0.887 3.24 0.01 524 FSYKRICYL 0 0.00491 no 0 1067 9 76 7.12274133 Kb 0.712 22.68 0.00 525 FSYRYSNL 0 0.00464 no 0 9741 8.0855 4.83 0.00 526 FSHRNLDHI 0 0.00466 no 0 777 9 41 6.05295975 Kb 0.875 4.83 0.00 528 FNYFKRL 0 0.00463 yes 0 1272 8 1136 80.2295975 Kb 0.79 9.71 0.00 530 YSLNYYNL 0	520	YSYKYLAL						0.00536	no	0	383	8	365	95.3002611	Kb	0.825	6.68	0.01	
522 SYLYYL 0.00523 no 0 1471 8 662 45.0033905 kb 0.824 6.75 0.01 523 YNESSYFPL 0 0.00491 no 0 1667 9 76 7.12274133 kb 0.712 22.68 0.05 525 FIVNEYQGL 0 0.00491 no 0 9556 9 4002 41.87.19427 kb 0.825 4.83 0.01 526 FINNLDHI 0 0.00467 no 3 4291 9 1167 12.72.194437 kb 0.825 4.83 0.01 527 FSYSYSNL 0 0.00466 no 0 677 9 41 6.056129985 kb 0.79 9.7 0.01 528 FNYFKPL 0 0.00468 no 0 677 9 41 6.056129985 kb 0.79 9.7 0.01 529 MSIMNESY1 0 0.00462 no 4 2996 9 2135 3.04799326 bb 0.901 2.9 0.00 531 VSYAKPP1 0 0.00443 no 0 7.46 0.01 0.933 2.235 3.04799326 bb 0.833 8.38 0.01	521	SSLENMYEM						0.00526	no	0	551	9	168	30.49001815	Db	0.887	3.4	0.01	
523 YNFSYFPLL 0.005 no 0 3183 10 407 12.7867923 kb 0.677 32.94 0.1 524 FSYKRGVL 0.00491 no 0.00491 no 0.0067 9 76 7.122774133 kb 0.712 22.68 0.00 525 FIYNFYQGL 0.00464 no 0.9556 9 4002 41.87944747 Kb 0.827 6.54 0.01 526 FSHRNLDHI 0.00466 no 0.77 9 41 6.05194577 Db 0.855 4.83 0.01 527 FSYSYNL 0.00466 no 0.77 9 41 6.0519458 kb 0.79 9.7 0.01 528 YNYFYKPL 0 0.00462 no 4 296 9 2133 73.959876 kb 0.79 9.7 0.01 530 YSLINYNL 0 0.00462 no 4 296 9 2133 73.959876 kb 0.837 3.7 6 0.01 531 VSYAKEPPI 0 0.00443 pes 726 9 235 53.94799326 Db 0.877 3.7 0.01 532 VSFNFSLL 0 0.0043 pes 2 246 9 2028 6.033	522	SIYLYYYL						0.00523	no	0	1471	8	662	45.00339905	Kb	0.824	6.75	0.01	
523 FSYKRIGYL 0.00431 no 0.00431 no 0.00457 9 76 7.122774133 Kb 0.172 22.68 0.00 525 FSHRNLDHI 0.00467 no 3 4291 9 1167 27.1964577 Db 0.855 4.83 0.01 526 FSHRNLDHI 0.00468 no 0.077 9 416 0.0512985 Kb 0.855 4.83 0.01 527 FSYSYSNL 0 0.00468 no 0.677 9 416 0.0512985 Kb 0.855 4.83 0.01 528 FSNFYKRJ 0 0.00468 no 0.677 9 416 0.0512985 Kb 0.855 4.83 0.01 528 FSNFYKRJ 0 0.00462 no 4 2996 9 2193 73.1975968 Db 0.901 2.9 0.01 531 VSYKKFPPI 0 0.00443 no 27126 9 2355 33.04799326 Db 0.877 3.76 0.01 531 VSYKKFPPI 0 0.00443 no 0.644 9 9.426 57.88604071 kb 0.887 7.4 0.01 533 VSFNLCPI 0 0.00443 no 0.640 9 39 6.0533539 Db 0.831 8.38 0.01 534 LSTNLSY1 0 0.00424 no 0.640 9 39 6.0533539 Db 0.841 5.62 0.00 533 INSTULSY1 0 0.00424 no 0.958 9 54 66 699373695 Db	523	YNFSSYFPLL						0.005	no	0	3183	10	407	12.78667923	Kb	0.677	32.94	0.1	
525 F/NFYQGL 0.00467 0.00466 0.00466 0.00466 0.00466 0.00466 0.00466 0.00466 0.00462	524	FSYKRIGYL						0.00491	no	0	1067	9	76	7.122774133	Kb	0.712	22.68	0.05	
526 FSHRNLDH 0.00467 no 3 4291 9 1167 27, 1964577 Db 0.855 4.83 0.01 527 FSYSYSNL 0 0.00466 no 0 677 9 41 0.056129685 Kb 0.855 4.83 0.01 528 YNYFYKPL 0 0.00463 yes 0 1272 8 1135 89.22955975 Kb 0.79 9.7 0.01 520 MSIMMFSYI 0 0.00462 no 4 2996 9 2133 73.1975988 Db 0.901 2.9 0.01 531 VSYAKFPPI 0 0.00443 no 2 7126 9 2355 57.88804071 Kb 0.877 3.76 0.01 533 VSFNPFSLL 0 0.0043 yes 2 246 9 202 82.11382114 Kb 0.803 8.38 0.01 533 USFNPFSLL 0 0.0043 no 0 640 9 39 6.09375 Db 0.792 9.44 0.05 534 LSITNLSY1 0 0.00429 no 2 27126 9 4328 60.73533539 Db 0.841 5.62 0.01 53	525	FIYNFYQGL						0.00484	no	0	9556	9	4002	41.87944747	Kb	0.827	6.54	0.01	
527 FSYSYISNL 0 677 9 41 6.056129985 Kb 0.855 4.83 0.01 528 YNFYKPL 0 0.00463 yes 0 1272 8 1135 89.2995975 Kb 0.79 9.7 0.00 529 MSIMNFSY1 0 0.00462 no 4 2996 9 2193 73.1975968 Db 0.901 2.9 0.01 530 YSLINYNL 0 0.00443 no 2 7126 9 2355 33.04799326 Db 0.877 3.76 0.01 531 VSYAKFPPI 0 0.00443 yes 7126 9 235 33.04799326 Db 0.877 3.76 0.01 532 VSYAKFPPI 0 0.00443 yes 2 246 9 202 82.114 Kb 0.803 8.38 0.01 533 SVMSNLCPI 0 0.00429 no 2 7126 9 4328 6.09375695 Db 0.841 5.62 0.01	526	FSHRNLDHI						0.00467	no	3	4291	9	1167	27.1964577	Db	0.855	4.83	0.01	
528 YNY-YRL 0.00443 yes 0 1272 8 1138 89.2295975 Kb 0.79 9.7 0.01 529 MSIMNFSYI 0 0.00442 no 4 2996 9 2193 73.1975968 Db 0.907 3.76 0.001 530 YSLINYYNL 0 0.00443 no 2 7126 9 2355 33.04799326 Db 0.877 3.76 0.01 531 VSYAKFPPI 0 0.00443 yes 0 786 9 455 57.88804071 Kb 0.815 7.4 0.01 533 VSYMSNLCPI 0 0.0043 yes 2 246 9 202 82.11382114 Kb 0.803 8.38 0.01 533 SVMSNLCPI 0 0.00429 no 0 640 9 39 6.09375 Db 0.803 8.38 0.01 533 MAYQNVEEI 0 0.00429 no 2 7126 9 4328 60.73533539 Db 0.812 <t< td=""><td>527</td><td>FSYSYYSNL</td><td></td><td></td><td></td><td></td><td></td><td>0.00466</td><td>no</td><td>0</td><td>677</td><td>9</td><td>41</td><td>6.056129985</td><td>KD</td><td>0.855</td><td>4.83</td><td>0.01</td></t<>	527	FSYSYYSNL						0.00466	no	0	677	9	41	6.056129985	KD	0.855	4.83	0.01	
S29 MSIMNESYI 0.00462 no 4 2996 9 2193 7.3.1975968 lb 0.0901 2.9 0.011 530 YSLINYYNL 0.00445 no 2 7126 9 2355 33.04799326 lb 0.877 3.76 0.011 531 VSYAKEPPI 0.00443 yes 0.00443 yes 786 9 455 57.8804071 Kb 0.815 7.4 0.014 532 VSENPFSLL 0.0043 yes 2 246 9 202 82.11382114 kb 0.803 8.38 0.01 533 SVMSNLCPI 0.00443 no 0.00429 no 2 7126 9 4328 60.73533539 Db 0.841 5.62 0.01 534 LSITNLSYI 0 0.00429 no 2 7126 9 4328 60.73533539 Db 0.841 5.62 0.01 535 MAYQNVEEI 0 0.00423 no 0 0.58 9 546 56.99373695 Db 0.841 5.61 0.01 537 ITYQYSIF 0 0 0.00423 no 4 1513 9 133 8.43357568 Db 0.844 5.41 0.01 539 F	528	YNYFYKPL						0.00463	yes	0	1272	8	1135	89.22955975	Kb	0.79	9.7	0.01	
D3UTSLINTINE 0.00443 00 2 7126 9 2355 33.04799326 Db 0.877 3.76 0.01 531 VSYAKFPPI 0.00443 yes 0 786 9 455 57.8804071 Kb 0.817 3.76 0.01 532 VSYAKFPPI 0 0.0043 yes 2 246 9 202 82.1182114 Kb 0.803 8.38 0.01 533 SVMSNLCPI 0 0.0043 no 0 640 9 39 6.0375 Db 0.792 9.44 0.03 534 LSITNLSYI 0 0.00429 no 2 7126 9 4328 60.73533539 Db 0.841 5.62 0.01 535 MAYQNVEEI 0 0.00421 no 0 958 9 546 56.99373695 Db 0.841 5.62 0.01 536 ISMTNELPI 0 0.00423 no 4 1513 9 138 84.335768 Db 0.844 5.41 0.01 </td <td>529</td> <td>MSIMNESYI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00462</td> <td>no</td> <td>4</td> <td>2996</td> <td>9</td> <td>2193</td> <td>73.1975968</td> <td></td> <td>0.901</td> <td>2.9</td> <td>0.01</td>	529	MSIMNESYI						0.00462	no	4	2996	9	2193	73.1975968		0.901	2.9	0.01	
D31 //S YARPPH 0.0043 yes 0 760 9 455 57.88040/71 Kb 0.815 7.4 0.011 532 //SFNPFSLL 0.0043 yes 2 246 9 202 82.11382114 Kb 0.803 8.38 0.01 533 //SFNPFSLL 0.0043 no 0 040 9 39 6.0375 Db 0.792 9.44 0.00 534 LSITNLSYI 0 0.00429 no 2 7126 9 4328 60.73533539 Db 0.841 5.62 0.01 535 MAYQNVEEI 0 0.00424 no 0 958 9 546 56.99373695 Db 0.844 5.41 0.01 536 ISMTNELPI 0 0.00421 no 0 9138 88.43357568 Db 0.844 5.41 0.01 537 ITYQYYSIF 0 0.00408 no 0 1319 9 913 64.5229682 Kb 0.809 7.9 0.01 538 HTYNFYSLM 0 0.003285 yes 0 1478 9 1013 66.53286653 Db 0.77 1.98 0.03 540 KSISNGNTI 0 0.003229 no	530	T SLINYYNL						0.00445	110	2	/126	9	2355	33.04799326		0.877	3.76	0.01	
Doz / SFINFFSLL U.0493 yes Z Z46 9 Z02 / 82.11382114 (kb 0.803 8.38 0.01 533 SVMSNLCPI 0.0043 no 0 640 9 39 6.09375 Db 0.803 8.38 0.01 534 LSITNLSYI 0 0.0043 no 0 640 9 39 6.09375 Db 0.841 5.62 0.01 535 MAYQNVEEI 0 0.00424 no 0 958 9 546 56.99373695 Db 0.841 5.62 0.01 536 ISMTNELPI 0 0.00423 no 4 1513 9 138 88.4335768 Db 0.844 5.41 0.01 537 ITYQYSIF 0 0.00411 no 0 309 9 130 42.07119741 Kb 0.01 539 FSILNNIL 0.00438 no 0 1415 9 913 64.5229862 kb 0.807 7.19 0.00 539 FSILNNIL 0 0.003289 yes 0 1475 <td< td=""><td>531</td><td>VSTAKEPPI</td><td></td><td></td><td></td><td></td><td></td><td>0.00443</td><td>yes</td><td>0</td><td>/86</td><td>9</td><td>455</td><td>57.88804071</td><td>NU Kh</td><td>0.815</td><td>/.4</td><td>0.01</td></td<>	531	VSTAKEPPI						0.00443	yes	0	/86	9	455	57.88804071	NU Kh	0.815	/.4	0.01	
533 SVMSNLCPI 0 0.0043 10 0 040 9 39 6.09375 Db 0.732 9.44 0.02 533 LSTNLSYI 0 0.00429 no 2 7126 9 4328 60.73533539 Db 0.811 5.62 0.01 535 MAYQNVEEI 0 0.00429 no 0 958 9 546 66.99373695 Db 0.812 7.6 0.01 536 ISMTNELPI 0 0.00423 no 4 1513 9 1338 88.43357568 Db 0.844 5.41 0.01 537 ITYQYSIF 0 0.00441 no 0 309 9 130 42.07119741 Kb 0.772 11.72 0.03 538 HTYNFYSLM 0 0.00488 no 0 0 1415 9 913 64.5229682 Kb 0.809 7.9 0.01 539 FSUNNIL 0 0.00329 no 0 1415 9 103 68.53856563 Db 0.807 11.78 0.00 540 KSISNGNTI 0 0.00329 no 0 990 9 58 5.858585859 Db 0.806 8.16 0.01	532	VSFNPFSLL						0.0043	yes	2	240	9	202	82.11382114	KD Dh	0.603	0.30	0.01	
334 LSHNESH 0.00424 no 2 7120 9 4326 00.7333339 D0 0.041 3.02 0.011 355 MAYQNVEEI 0 0.00424 no 0 0.958 9 546 65.99373095 D0 0.844 5.41 0.011 536 ISMTNELPI 0 0.00424 no 0 0.958 9 546 65.99373095 D0 0.844 5.41 0.011 537 ITYQYSIF 0 0.00411 no 0 309 9 130 42.07119741 Kb 0.772 11.72 0.03 538 HTYNFYSLM 0 0.00408 no 0 1415 9 913 64.5229682 Kb 0.809 7.9 0.01 539 FSILNNIL 0 0.003895 yes 0 1478 9 1013 66.53856583 Db 0.806 8.16 0.00 540 KSISNGNTI 0 0.00329 no 0 990 9 58 5.85856583 Db 0.806 8.16 0.00 541 ISFYFYNKL 0 0.00322 no 0 0 1194 10 838 70.18425461 Kb 0.732 18.27 0.00 542 VSYGKYSP1	533							0.0043	10	0	7126	9	39	6.09375	Db	0.792	9.44	0.03	
S33 MATCHVEEI 0.00424 III 0 936 9 946 9597395 [Db 0.612 7.6 0.01 536 ISMTNELPI 0.00423 no 4 1513 9 1338 88.43357568 Db 0.844 5.41 0.01 537 ITYQYSIF 0.00421 no 0.00423 no 4 1513 9 1338 88.43357568 Db 0.844 5.41 0.01 537 ITYQYSIF 0.00411 no 0 309 9 130 42.07119741 Kb 0.772 11.72 0.00 538 HTYNFYSLM 0.00408 no 0 1415 9 913 64.5229682 Kb 0.809 7.9 0.01 539 FSILNNIIL 0.003895 yes 0 1478 9 1013 68.53856563 Db 0.77 11.98 0.03 540 KSISNGNTI 0 0.00329 no 0 990 9 58 5.858585859 Db 0.806 8.16 0.01 541 ISFYFYNNKL 0 0.00322 no 0 0 1194 10 838	534							0.00429	110	2	7120	9	4320	60.73535559	Db	0.041	5.02	0.01	
330 331 3 1336 36 68.4337306 D0 0.044 0.111 537 ITYQYYSIF 0.00411 no 0 0309 9 130 42.07119741 Kb 0.772 11.72 0.00 538 HTYNFYSLM 0 0.00408 no 0 1415 9 913 64.5229682 Kb 0.809 7.9 0.01 539 FSILNNIIL 0 0.00329 no 0 1478 9 1013 68.53856563 Db 0.77 11.98 0.03 540 KSISNGNTI 0 0.00329 no 0 990 9 58 5.858585859 Db 0.806 8.16 0.01 541 ISFYFYNKL 0 0.00322 no 0 1194 10 838 70.18425461 Kb 0.732 18.27 0.05 542 VSYGKYSPI 0 0.00322 no 0 511 9 447	535							0.00424	10	0	900	9	1220	00.99373093	Db	0.012	7.0 5.41	0.01	
Soft HTYNFYSLM 0 309 5 100 42.07 1974 100 0.772 0.772 0.00 538 HTYNFYSLM 0 0.00408 no 0 1415 9 913 64.5229682 Kb 0.809 7.9 0.01 539 FSILNNIL 0 0.003895 yes 0 1478 9 1013 66.53256663 Db 0.77 1.98 0.00 540 KSISNGNTI 0 0.00329 no 0 990 9 58 5.85856859 Db 0.806 8.16 0.01 541 ISFYFYNKL 0 0.00324 no 0 1194 10 838 70.18425461 Kb 0.732 18.27 0.00 542 VSYGKYSPI 0 0.00322 no 0 511 9 447 87.47553816 Kb 0.827 6.5 0.00 543 ISYVEKSYI 0 0.00338 yes 5	530							0.00423	no	4	300	9	1330	42 07110741	Kh	0.044	0.41 11 70	0.01	
OSOBITI MI SLIM OSOBITI MI	520							0.00411	no	0	1415	9	012	64 5220602	Kh	0.772	70	0.03	
State State <th< td=""><td>530</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00400</td><td>Ves</td><td>0</td><td>1478</td><td>9</td><td>1013</td><td>68 53856563</td><td>Dh</td><td>0.009</td><td>11 08</td><td>0.01</td></th<>	530							0.00400	Ves	0	1478	9	1013	68 53856563	Dh	0.009	11 08	0.01	
Stor Stor <th< td=""><td>540</td><td>KSISNGNTI</td><td></td><td></td><td></td><td></td><td></td><td>0.003095</td><td>no</td><td>0</td><td>990</td><td>9</td><td>59</td><td>5 858585858</td><td>Db</td><td>0.806</td><td>8 16</td><td>0.03</td></th<>	540	KSISNGNTI						0.003095	no	0	990	9	59	5 858585858	Db	0.806	8 16	0.03	
542 VSYGKYSPI 0 0 0 0 10 0.002200 100 0.132	541	ISEYEYNNKI						0.00324	no	0	1194	10	838	70 18425461	Kh	0 732	18 27	0.05	
5/2/(SV/EKS)	542	VSYGKYSPI						0.00322	no	0	511	Q	447	87 47553816	Kb	0.827	6.5	0.00	
	543	ISYVEKSYI						0.00318	ves	5	2248	Q	252	11 20996441	Kb	0.831	6 22	0.01	
544 JAYYRMPL 0.00315 no 1 1897 8 583 30.7327359 Kb 0.775 1.141 0.01	544	IAYYRMPL						0.00315	no	1	1897	8	583	30.7327359	Kb	0.775	11.41	0.01	

	NotMHC pap 4.0 data						Expression data											
		ľ	ченипора								Microa	array	SSH		Microarray			
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished		
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-		
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	ım		orth	ologs of <i>P. yoelii</i>		P. ber	<i>ghei</i> origin		
502	NCYYPYTL	Kb	0.3056	1831.71	2.9722	-	+	-	-	-	-	-	-	-	-	-		
503	FSILNENEL	Db	0.8312	6.2134	0.0051	-	-	-	-	-	-	-	-	-	-	+		
504	IIYSFYIYL	Kb	0.8392	5.6966	0.0089	-	+	-	-	+	-	-	-	-	-	-		
505	STYYYSMLL	Kb	0.8369	5.839	0.009	-	+	-	-	+	-	-	-	-	-	-		
506	TMYYFSISL	Kb	0.814	7.4804	0.0111	+	+	+	-	+	-	-	-	-	-	-		
507	IGYYYYPYM	Kb	0.8992	2.9748	0.0056	-	-	+	+	-	-	-	-	-	-	-		
508	VSMVNECFI	Db	0.822	6.8636	0.0054	-	-	-	-	-	-	-	-	-	-	-		
509	VSLSRFFSM	Kb	0.7539	14.3393	0.0298	-	+	+	-	+	-	-	-	-	-	-		
510	FAFKNSCLAPM	Db	0.7426	16.2014	0.0078	-	+	-	-	+	-	-	-	-	-	-		
511	MNYSKYLLL	Kb	0.8453	5.3351	0.0086	-	+	-	-	+	-	-	-	-	-	-		
512	YTIQNKDEL	Db	0.7905	9.6491	0.0063	-	+	-	-	+	-	-	-	-	-	-		
513	YANLNMIHL	Db	0.7801	10.8029	0.0066	-	+	-	-	-	-	-	-	-	-	-		
514	RSFIFYSAM	Kb	0.8703	4.0689	0.0072	-	+	+	+	+	-	-	-	-	-	-		
515	VNYNKFLEL	Kb	0.8443	5.3932	0.0086	-	+	-	-	+	-	-	-	-	-	-		
516	LSLSNYLFL	Db	0.7257	19.44	0.0083	+	+	-	-	+	-	-	-	-	-	-		
517	YALENNDSVL	Db	0.7371	17.1847	0.0079	-	+	-	-	-	-	-	-	-	-	-		
518	YAYINLESL	Db	0.8657	4.2756	0.004	-	+	-	-	+	-	-	-	-	-	-		
519	VSLTNIDSI	Db	0.8401	5.6389	0.0048	-	+	+	-	-	-	-	-	-	-	-		
520	YSYKYLAL	Kb	0.8777	3.7566	0.0068	-	+	-	-	+	+	-	-	-	-	-		
521	SSLENMYEM	Db	0.8305	6.256	0.0051	-	+	-	-	-	-	-	-	-	-	-		
522	SIYLYYYL	Kb	0.8517	4.9739	0.0082	-	-	-	-	+	+	-	-	-	-	-		
523	YNFSSYFPLL	Kb	0.71	23.0544	0.0561	+	+	-	-	+	-	-	-	-	-	-		
524	FSYKRIGYL	Kb	0.7292	18.7241	0.0425	-	+	-	-	+	-	-	-	-	-	-		
525	FIYNFYQGL	Kb	0.842	5.5273	0.0087	-	+	-	-	+	-	-	-	-	-	-		
526	FSHRNLDHI	Db	0.8076	8.0223	0.0058	-	-	-	-	-	-	-	-	-	+	+		
527	FSYSYYSNL	Kb	0.9269	2.2047	0.004	+	+	-	-	+	-	-	-	-	-	-		
528	YNYFYKPL	Kb	0.8789	3.7092	0.0067	+	+	-	-	+	-	-	-	-	-	-		
529	MSIMNFSYI	Db	0.9005	2.9357	0.003	-	+	-	-	+	-	-	-	-	-	-		
530	YSLINYYNL	Db	0.8027	8.4576	0.006	-	-	-	-	+	-	-	-	-	-	+		
531	VSYAKFPPI	Kb	0.8421	5.5224	0.0087	+	+	-	-	+	-	-	-	-	-	-		
532	VSFNPFSLL	Kb	0.832	6.155	0.0093	-	-	-	-	-	-	+	-	-	-	-		
533	SVMSNLCPI	Db	0.8021	8.5141	0.006	-	-	-	-	-	-	+	-	-	-	+		
534	LSITNLSYI	Db	0.8422	5.5124	0.0048	-	-	-	-	+	-	-	-	-	-	+		
535	MAYQNVEEI	Db	0.825	6.6402	0.0053	-	+	-	-	+	-	-	-	-	-	-		
536	ISMTNELPI	Db	0.8278	6,4422	0.0052	-	-	-	-	-	-	-	-	-	-	+		
537	ITYQYYSIF	Kb	0.8137	7.5051	0.0112	+	+	-	-	+	-	-	-	-	-	-		
538	HTYNFYSLM	Kb	0.8177	7.1869	0.0104	-	-	-	-	-	-	-	+	-	-	-		
539	FSILNNIIL	Db	0.7509	14.8014	0.0075	-	-	-	-	+	-	-	-	-	-	-		
540	KSISNGNTI	Db	0.8052	8.2324	0.0059	-	+	-	-	+	-	-	-	-	-	-		
541	ISFYFYNNKL	Kb	0.8651	4.3041	0.0075	-	-	+	-	-	-	-	-	-	-	-		
542	VSYGKYSPI	Kb	0.8331	6.084	0.0092	-	+	+	+	-	-	-	-	-	-	-		
543	ISYVFKSYL	Kb	0.8994	2.9707	0.0056	-	-	+	+	+	-	-	-	-	-	-		
544	IAYYRMPL	Kb	0.8251	6.6326	0.0097	-	-	+	-	+	-	-	-	-	-	-		

			NetMHCpan												NetMHCcons 1.1 data				
Novel Peptide number	Peptide sequence	Top NetMHCpan peptides <22nM and <0.05 Rank %	other peptides 22.381- 388.44nM but always %Rank of 0.5 or below	Top NetMHCcons NC and C2	Top NetMHCcons peptides <22nM and <0.05 Rank %	NetMHCcons other peptides 23.05nM- 531.38nM but always %Rank of 0.5 or below	Batch purity restimulation % IFN-γ+ CD11a+ / total CD8+ T cells	Signal peptide predicted	No. of transmembrane domains predicted	Protein length	Peptide length	Peptide start position	Percentile of protein	MHC allele restriction	1-log50k	nM	%Rank score		
545	NAMVNNFFTI						0.00311	no	0	3439	10	2017	58.65077057	Db	0.753	14.48	0.05		
546	YGYTHYLQL						0.0031	no	0	5317	9	3369	63.36279857	Kb	0.762	13.06	0.03		
547	YNILNSDTI						0.0031	no	0	1010	9	355	35.14851485	Db	0.864	4.36	0.01		
548	YSYINENEI						0.00309	no	0	233	9	131	56.22317597	Db	0.788	9.91	0.03		
549	KSMSNLDLL						0.00304	no	0	6521	9	5956	91.33568471	Db	0.808	8.03	0.01		
550	HSLKNGDTI						0.00304	yes	3	583	9	180	30.87478559	Db	0.853	4.88	0.01		
551	LSFIFYSLL						0.00273	no	10	541	9	497	91.86691312	Kb	0.824	6.75	0.01		
552	FNYYHFYKPL						0.00259	no	0	529	10	36	6.805293006	Kb	0.711	22.93	0.05		
553	VSYNFKSRL						0.00256	no	4	3350	9	236	7.044776119	Kb	0.829	6.4	0.01		
554	VMFSRASAL						0.00254	no	0	264	9	211	79.92424242	Kb	0.792	9.54	0.01		
555	INYTKFLSL						0.00251	no	0	455	9	241	52.96703297	Kb	0.792	9.44	0.01		
556	KSYSKYILL						0.00247	no	0	1174	9	162	13.79897785	Kb	0.809	7.9	0.01		
557	YSNANMATL						0.00216	no	4	2562	9	2082	81.264637	Db	0.879	3.72	0.01		
558	NCYKYKNL						0.00215	no	2	3724	8	2733	73.38882922	Kb	0.428	487.32	2		
559	INYFYLLL						0.002	no	8	4154	8	1606	38.66153105	Kb	0.824	6.71	0.01		
560	YAFFFYPNL						0	no	6	951	9	436	45.84647739	Kb	0.818	7.2	0.01		
561	INYERFNAL						0	no	0	439	9	98	22.32346241	Kb	0.842	5.53	0.01		
562	YSFSNYYSI						0	no	2	3209	9	2638	82.2062948	Db	0.868	4.17	0.01		
563	YSMFNLSII						0	yes	2	217	9	197	90.78341014	Db	0.853	4.91	0.01		
564	YSYLNIDLL						0	no	0	1591	9	867	54.49402891	Db	0.871	4.06	0.01		
565	YGLINITTI						0	yes	1	3204	9	3117	97.28464419	Db	0.904	2.83	0.01		
566	YSYQNYSFL						0	no	0	252	9	51	20.23809524	Db	0.872	3.99	0.01		
567	TALYNTETI						0	no	0	881	9	277	31.4415437	Db	0.873	3.93	0.01		
568	FALYNVNIM						0	yes	0	2150	9	1665	77.44186047	Db	0.826	6.57	0.01		
569	SSFNNMHYM						0	no	0	812	9	657	80.91133005	Db	0.817	7.24	0.01		
570	YSISNDELI						0	no	0	1429	9	1356	94.89153254	Db	0.868	4.17	0.01		
571	SSIKNVFSL						0	no	0	1214	9	343	28.25370675	Db	0.804	8.34	0.01		
572	YSPLNYDVL						0	no	0	1218	9	724	59.44170772	Db	0.89	3.29	0.01		
573	FAIENNMEI						0	yes	2	293	9	204	69.62457338	Db	0.855	4.78	0.01		
574	YAYNNIFLI						0	no	13	2715	9	1866	68.72928177	Db	0.797	8.99	0.03		
575	VAPTNITTI						0	no	0	655	9	152	23.20610687	Db	0.882	3.57	0.01		
576	IALLNCDSI						0	no	0	784	9	569	72.57653061	Db	0.843	5.44	0.01		
577	I SIANFYLL						0	по	0	1083	9	546	50.41551247	מט	0.83	6.29	0.01		
578	YMIENLCVI						0	no	2	3209	9	1922	59.89404799	DD	0.839	5.68	0.01		
579							0	no	2	2091	9	1915	91.58297465		0.865	4.31	0.01		
580							0	110	0	581	9	233	40.1032/022		0.869	4.15	0.01		
581							0	110	0	414	9	19	4.5893/1981		0.821	0.97	0.01		
582	KSMHNNIPI						0	110	0	1991	9	623	31.29080864		0.81	1.11	0.01		
583							0	110	1	327	10	306	93.57798165		0.713	22.44	0.05		
584							0	110	0	1591	9	1036	05.1162/90/		0.007	4.72	0.01		
585	TAIQNSNNEPI						0	110	0	1519	11	685	45.09545754	מט	0.704	24.47	0.05		

				n 4 0 data		Expression data											
		I	ченипора	11 4.0 Uala							Microa	array	SSH		Mic	croarray	
Novel Peptide number	Peptide sequence	MHC allele restriction	1-log50k	nM	%Rank score	TARUN 2008 EEF Mass Spec (LS40-50h)	LINDNER 2013 Spz Mass Spec	LASONDER 2008 spz Mass Spec	LASONDER 2008 Spz (only day 18-22) Mass Spec	LINDNER 2013 Spz Mass Spec	TARUN 2008 spz	Tarun 2008 EEF	UIS genes Matuschewski 2002 (oocyst spz v sg spz)	S genes Kaiser 2004 (sg spz v merozoites)	DSK hi (highly downregulated in SLARP KO) Silvie, unpublished	DSK Io (lowly downregulated in SLARP KO) Silvie, unpublished	
						+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	+/-	
						orthologs	of P. yoelii	orthol	ogs of P. falcipar	um		orth	ologs of P. yoelii	•	P. ber	ghei origin	
545	NAMVNNEETI	Db	0.669	35.9413	0.01	-	+	-	-	+	-	-	-	-	-	-	
546	YGYTHYI QI	Kb	0.8291	6.3527	0.0095	-	+	+	-	-	-	-	-	-	-	-	
547	YNILNSDTI	Db	0.8255	6.6053	0.0053	-	+	-	-	-	-	-	-	-	-	-	
548	YSYINENEI	Db	0.8228	6.8042	0.0053	-	+	-	-	+	-	+	-	-	-	-	
549	KSMSNLDLL	Db	0.8233	6.762	0.0053	-	+	-	-	+	-	-	-	-	-	-	
550	HSLKNGDTI	Db	0.818	7.1685	0.0055	-	+	-	-	-	-	-	-	-	-	-	
551	LSFIFYSLL	Kb	0.8918	3.2248	0.006	-	+	-	-	+	-	-	-	-	-	-	
552	FNYYHFYKPL	Kb	0.7803	10.7751	0.0205	-	+	-	-	+	-	-	-	-	-	-	
553	VSYNFKSRL	Kb	0.8897	3.2983	0.0061	-	+	-	-	+	-	-	-	-	-	-	
554	VMFSRASAL	Kb	0.7539	14.3285	0.0298	+	+	+	+	+	-	-	-	-	-	-	
555	INYTKFLSL	Kb	0.8691	4.1198	0.0072	-	+	-	-	+	-	+	-	-	-	-	
556	KSYSKYILL	Kb	0.7959	9.0994	0.015	-	+	-	-	+	-	-	-	-	-	-	
557	YSNANMATL	Db	0.81	7.8129	0.0057	-	-	-	-	+	-	-	-	-	-	+	
558	NCYKYKNL	Kb	0.4468	397.7509	0.8498	-	-	-	-	+	-	-	-	-	-	-	
559	INYFYLLL	Kb	0.9074	2.7246	0.0051	+	-	-	-	+	-	-	-	-	-	-	
560	YAFFFYPNL	Kb	0.8944	3.1362	0.0058	-	+	-	-	+	-	-	-	-	-	-	
561	INYERFNAL	Kb	0.8616	4.4681	0.0077	-	+	-	-	+	+	-	-	-	-	-	
562	YSFSNYYSI	Db	0.8587	4.6117	0.0043	-	+	-	-	+	-	-	-	-	-	-	
563	YSMFNLSII	Db	0.8582	4.6393	0.0043	-	+	-	-	-	-	-	-	-	-	-	
564	YSYLNIDLL	Db	0.8447	5.3654	0.0047	-	+	-	-	+	-	-	-	-	-	-	
565	YGLINITTI	Db	0.844	5.4057	0.0047	-	-	+	+	-	-	-	-	-	-	-	
566	YSYQNYSFL	Db	0.8411	5.5801	0.0048	-	+	-	-	+	-	-	-	-	-	-	
567	TALYNTETI	Db	0.8353	5.9435	0.005	-	+	+	-	+	+	-	-	-	-	-	
568	FALYNVNIM	Db	0.8267	6.5198	0.0052	-	+	-	-	-	-	-	-	-	-	-	
569	SSFNNMHYM	Db	0.8258	6.5824	0.0053	-	+	-	-	-	-	-	-	-	-	-	
570	YSISNDELI	Db	0.8238	6.7288	0.0053	-	+	-	-	+	+	-	-	-	-	-	
571	SSIKNVFSL	Db	0.8204	6.9838	0.0054	-	+	-	-	+	-	-	-	-	-	-	
572	YSPLNYDVL	Db	0.8104	7.7827	0.0057	-	+	-	-	+	-	-	-	-	-	-	
573	FAIENNMEI	Db	0.8074	8.0367	0.0058	-	-	+	-	+	-	-	-	-	-	-	
574	YAYNNIFLI	Db	0.8042	8.3181	0.0059	-	-	+	-	-	-	-	-	-	-	-	
575	VAPTNITTI	Db	0.8028	8.4432	0.0059	-	+	+	-	+	-	-	-	-	-	-	
576	IALLNCDSI	Db	0.8027	8.4525	0.006	-	+	-	-	-	-	-	-	-	-	-	
577	TSIANFYLL	Db	0.7961	9.0773	0.0061	-	-	+	+	+	-	-	-	-	-	-	
578	YMIENLCVI	Db	0.793	9.3859	0.0062	-	+	-	-	+	-	-	-	-	-	-	
579	FAIINVLLL	Db	0.7927	9.422	0.0063	-	-	-	-	-	-	-	-	-	-	+	
580	YAPRNSDNI	Db	0.7883	9.8811	0.0064	-	+	-	-	-	-	-	-	-	-	-	
581	YGAHNYDPI	Db	0.7826	10.5049	0.0066	-	-	+	+	+	-	-	-	-	-	-	
582	RSMHNNIPI	Db	0.7681	12.2958	0.007	-	+	-	-	+	-	-	-	-	-	-	
583	YSFNFHVTYL	Kb	0.7602	13.3874	0.0275	-	+	+	-	+	+	-	-	-	-	-	
584	YQLKNVDEL	Db	0.7593	13.5198	0.0073	-	+	-	-	+	-	-	-	-	-	-	
585	TAIQNSNNFPI	Db	0.7231	19.9958	0.0083	-	+	-	-	+	-	-	-	-	-	-	