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Abstract

We consider a compositional data analysis approach to forecasting the age distribution
of death counts. Using the age-specific period life-table death counts in Australia obtained
from the Human Mortality Database, the compositional data analysis approach produces
more accurate one- to 20-step-ahead point and interval forecasts than Lee-Carter method,
Hyndman-Ullah method, and two naı̈ve random walk methods. The improved forecast
accuracy of period life-table death counts is of great interest to demographers for estimating
survival probabilities and life expectancy, and to actuaries for determining temporary
annuity prices for various ages and maturities. Although we focus on temporary annuity
prices, we consider long-term contracts which make the annuity almost lifetime, in particular
when the age at entry is sufficiently high.
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1 Introduction

Actuaries have produced forecasts of mortality since the beginning of the 20th century, in

response to the adverse financial effects of mortality improvements over time on life annuities

and pensions (Pollard 1987). Thus, projected mortality tables for annuitants was one of the

topics discussed at the 5th International Congress of Actuaries, Berlin in 1906 (Cramér and

Wold 1935). Several authors have proposed new approaches for forecasting age-specific central

mortality rates using statistical models (see Booth 2006, Booth and Tickle 2008, Cairns et al.

2008, Shang et al. 2011, for reviews). Instead of modelling central mortality rates, we consider a

compositional data analysis (CoDa) approach for modelling and forecasting the age-specific

numbers of deaths in period life tables. Both central mortality rates or life-table death counts can

be derived from the other based on standard life-table relations (for detail on the life table and

its indicators, see Preston et al. (2001), Chapter 3, or Dickson et al. (2009), Chapters 2-3). By using

the life-table death distribution, we could model and forecast a redistribution of the density of

life-table deaths, where deaths at younger ages are shifted towards older ages. Alternatively, we

may consider a cohort life table which depicts the life history of a specific group of individuals

but is dependent on projected mortality rates for those cohorts born more recently. Instead, we

choose to study the period life table which represents the mortality conditions in a period of

time (see also Oeppen 2008, Bergeron-Boucher et al. 2017).

In the field of demography, Oeppen (2008) and Bergeron-Boucher et al. (2017) have put

forward a principal component approach to forecast life-table death counts within a CoDa

framework by considering age-specific life-table death count (dx) as compositional data. As

with compositional data, the data are constrained to vary between two limits (e.g., 0 and a

constant upper bound), which conditions their covariance structure. This feature can represent

great advantages in a forecasting context (Lee 1998). Thus, Oeppen (2008) demonstrated that

using CoDa to forecast age-specific mortality does not lead to more pessimistic results than

forecasting age-specific mortality (see, e.g., Wilmoth 1995). Apart from providing an informative

description of the mortality experience of a population, the age-at-death distribution yields

readily available information on the “central longevity indicators” (e.g., mean, median and

modal age at death, see Cheung et al. 2005, Canudas-Romo 2010) as well as lifespan variability

(e.g., Robine 2001, Vaupel et al. 2011, van Raalte and Caswell 2013, van Raalte et al. 2014, Aburto

and van Raalte 2018).

Compositional data arise in many other scientific fields, such as geology (geochemical

elements), economics (income/expenditure distribution), medicine (body composition), food

industry (food composition), chemistry (chemical composition), agriculture (nutrient balance

bionomics), environmental sciences (soil contamination), ecology (abundance of different



species), and demography (life-table death counts). In the field of statistics, Scealy et al. (2015)

use CoDa to study the concentration of chemical elements in sediment or rock samples. Scealy

and Welsh (2017) applied CoDa to analyse total weekly expenditure on food and housing costs

for households in a chosen set of domains. Delicado (2011) and Kokoszka et al. (2019) use CoDa

to analyse density functions and implement dimension-reduction techniques on the constrained

compositional data space.

Compositional data are defined as a random vector of K positive components D = [d1, . . . , dK]

with strictly positive values whose sum is a given constant, set typically equal to 1 (portions),

100 (percentage) and 106 for parts per million (ppm) in geochemical trace element compositions

(Aitchison 1986, p. 1). The sample space of compositional data is thus the simplex

SK =

{
D = (d1, . . . , dK)

> , dx > 0,
K

∑
x=1

dx = c

}
,

where S denotes a simplex, c is a fixed constant, > denotes vector transpose, and the simplex

sample space is a K− 1 dimensional subset of real-valued space RK−1.

Compositional data are subject to a sum constraint, which in turn imposes unpleasant con-

straints upon the variance-covariance structure of the raw data. The standard approach involves

breaking the sum constraint using a transformation of the raw data to remove the constraint,

before applying conventional statistical techniques to the transformed data. Among all possible

transformations, the family of log-ratio transformations is commonly used. This family includes

the additive log-ratio, the multiple log-ratio, the centred log-ratio transformations (Aitchison

and Shen 1980, Aitchison 1982, 1986), and the isometric log-ratio transformation (Egozcue et al.

2003).

The contributions of this paper are threefold: First, as the CoDa framework of Oeppen

(2008) is an adaptation of the Lee-Carter model to compositional data, our work could be seen

as an adaptation of Hyndman and Ullah’s (2007) to a CoDa framework. Second, we apply

the CoDa method of Oeppen (2008) to model and forecast the age distribution of life-table

death counts, from which we obtain age-specific survival probabilities, and we determine

immediate temporary annuity prices. Third, we propose a nonparametric bootstrap method for

constructing prediction intervals for the future age distribution of life-table death counts.

Using the Australian age- and sex-specific life-table death counts from 1921 to 2014, we

evaluate and compare the one- to 20-step-ahead point forecast accuracy and interval forecast

accuracy among the CoDa, Hyndman-Ullah (HU) method, Lee-Carter (LC) method and two

naı̈ve random walk methods. To evaluate point forecast accuracy, we use the mean absolute

percentage error (MAPE). To assess interval forecast accuracy, we utilise the interval score

of Gneiting and Raftery (2007) and Gneiting and Katzfuss (2014), see Section 5.1 for details.

Regarding both point forecast accuracy and interval forecast accuracy, the CoDa method



performs the best overall among the three methods which we have considered. The improved

forecast accuracy of life-table death counts is of great importance to actuaries for determining

remaining life expectancies and pricing temporary annuities for various ages and maturities.

The remainder of this paper is organised as follows: Section 2 describes the data set, which is

Australian age- and sex-specific life-table death counts from 1921 to 2014. Section 3 introduces

the CoDa method for producing the point and interval forecasts of the age distribution of

life-table death counts. Section 4 studies the goodness-of-fit of the CoDa method and provides

an example for generating point and interval forecasts. Using the MAPE and mean interval

score in Section 5, we evaluate and compare the point and interval forecast accuracies among

the methods considered. Section 6 applies the CoDa method to estimate the single-premium

temporary immediate annuity prices for various ages and maturities for a female policyholder

residing in Australia. Conclusions are presented in Section 7, along with some reflections on

how the methods presented here can be extended.

2 Australian age- and sex-specific life-table death counts

We consider Australian age- and sex-specific life-table death counts from 1921 to 2014, obtained

from the Human Mortality Database (2019). Although we use all data that include the first and

second World War periods, a feature of our proposed method is to use an automatic algorithm

of Hyndman and Khandakar (2008) to select the optimal data-driven parameters in exponential

smoothing forecasting method. As with exponential smoothing forecasting method, it assigns

more weights to the recent data than distant past data. In practice, it is likely that only a few of

the most distant past data may influence our forecasts, regardless of the starting point.

We study life-table death counts, where the life-table radix (i.e., a population experiencing

100,000 births annually) is fixed at 100,000 at age 0 for each year. For the life-table death counts,

there are 111 ages, and these are age 0, 1, · · · , 109, 110+. Due to rounding, there are zero counts

for age 110+ at some years. To rectify this problem, we prefer to use the probability of dying (i.e.,

qx) and the life-table radix to recalculate our estimated death counts (up to 6 decimal places). In

doing so, we obtain more detailed death counts than the ones reported in the Human Mortality

Database (2019).

To understand the principal features of the data, Figure 1 presents rainbow plots of the

female and male age-specific life-table death counts in Australia from 1921 to 2014 in a single-

year group. The time ordering of the curves follows the colour order of a rainbow, where

data from the distant past are shown in red and the more recent data are shown in purple (see

Hyndman and Shang 2010, for other examples). Both figures demonstrate a decreasing trend in

infant death counts and a typical negatively-skewed distribution for the life-table death counts,
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Figure 1: Rainbow plots of age-specific life-table death count from 1921 to 2014 in a single-year group. The

oldest years are shown in red, with the most recent years in violet. Curves are ordered chronologically

according to the colours of the rainbow.

where the peaks shift to higher ages for both females and males. This shift is a primary source of

the longevity risk, which is a major issue for insurers and pension funds, especially in the selling

and risk management of annuity products (see Denuit et al. 2007, for a discussion). Moreover,

the spread of the distribution indicates lifespan variability. A decrease in variability over time

can be observed directly and can be measured, for example with the interquartile range of

life-table ages at death or the Gini coefficient (for comprehensive reviews, see Wilmoth and

Horiuchi 1999, van Raalte and Caswell 2013, Debón et al. 2017). Age-at-death distributions thus

provide critical insights on longevity and lifespan variability that cannot be grasped directly

from either mortality rates or the survival function.

3 Forecasting method

3.1 Compositional data analysis (CoDa)

In the field of demography, Oeppen (2008) and Bergeron-Boucher et al. (2017) have laid the

foundations by presenting a modelling and forecasting framework. Following Oeppen (2008)

and Bergeron-Boucher et al. (2017), a CoDa method can be summarised as follows:

1) We begin from a data matrix D of size n× K of the life-table death counts (dt,x) with n rows

representing the number of years and K columns representing the age x. The sum of each

row adds up to the life-table radix, such as 100,000. Since we are working with life-table

death counts, it is not necessary to have population-at-risk estimates.



2) We compute the geometric mean at each age, given by

αx = exp
1
n ∑n

t=1 ln(dt,x), x = 1, . . . , K, t = 1, . . . , n. (1)

For a given year t, we divide (dt,1, . . . , dt,K) by the corresponding geometric means (α1, . . . , αK),

then standardise all elements so as to sum up to unity. As with compositional data, it is more

important to know a relative proportion of each component (i.e., age) than the sum of all

components. Although the life-table radix is 100,000 customarily, we model and forecast

relative proportions, which are then multiplied by 100,000 to obtain forecast life-table death

counts. Via standardisation, this is expressed as

ft,x =
dt,x/αx

∑K
x=1 dt,x/αx

,

where ft,x denotes de-centred data.

3) Log-ratio transformation: Aitchison (1982, 1986) showed that compositional data are repre-

sented in a restricted space where the components can only vary between 0 and a positive

constant. Therefore, Aitchison (1982, 1986) proposed a log-ratio transformation to transform

the data into a real-valued space. We apply the centred log-ratio transformation, given by

zt,x = ln
(

ft,x

gt

)
,

where gt denotes the geometric mean over the age at time t, given by

gt = exp
1
K ∑K

x=1 ln( ft,x) .

The transformed data matrix is denoted as Z with elements zt,x ∈ R, where R denotes

real-valued space.

4) Principal component analysis: Principal component analysis is then applied to the matrix Z,

to obtain the estimated principal components and their scores,

zt,x =
min(n,K)

∑
`=1

β̂t,`φ̂`,x =
L

∑
`=1

β̂t,`φ̂`,x + v̂t,x, (2)

where v̂t,x denotes model residual term for age x in year t, {φ̂1,x, . . . , φ̂L,x} represents the

first L sets of estimated principal components, {β̂t,1, . . . , β̂t,L} represents the first L sets of

estimated principal component scores for time t, and L denotes the number of retained

principal components.

5) Forecast of principal component scores: Via a univariate time series forecasting method,

such as exponential smoothing (ETS), we obtain the h-step-ahead forecast of the `th principal

component score β̂n+h,`, where h denotes forecast horizon (see also Hyndman and Ullah



2007). We utilise an automatic algorithm developed by Hyndman and Khandakar (2008)

to determine the optimal ETS model based on the corrected Akaike Information Criterion

(Hurvich and Tsai 1993). Conditioning on the estimated principal components and observed

data, the forecast of zn+h,x can be obtained by

ẑn+h|n,x =
L

∑
`=1

β̂n+h|n,`φ̂`,x. (3)

In (3), the principal component scores can be modelled and forecasted by an ETS method. To

select the optimal ETS parameter, we use the automatic search algorithm of Hyndman and

Khandakar (2008) by the smallest corrected Akaike information criterion. In Table 1, we also

consider three other forecasting methods, namely autoregressive integrated moving average

(ARIMA), random walk with drift (RWD) and random walk without drift (RW).

6) Transform back to the compositional data: we take the inverse centred log-ratio transforma-

tion, given by

f̂n+h|n =

[
expẑn+h|n,1

∑K
x=1 expẑn+h|n,x

,
expẑn+h|n,2

∑K
x=1 expẑn+h|n,x

, . . . ,
expẑn+h|n,K

∑K
x=1 expẑn+h|n,x

]
,

where ẑn+h|n,x denotes the forecasts in (3).

7) Finally, we add back the geometric means, to obtain the forecasts of the life-table death

matrix dn+h,

d̂n+h|n =

[
f̂n+h|n,1 × α1

∑K
x=1 f̂n+h|n,x × αx

,
f̂n+h|n,2 × α2

∑K
x=1 f̂n+h|n,x × αx

, . . . ,
f̂n+h|n,K × αK

∑K
x=1 f̂n+h|n,x × αx

]
,

where αx is the age-specific geometric mean given in (1).

To determine the number of components L in (2) and (3), we consider a criterion known as

cumulative percentage of variance (CPV), i.e., define the value of L as the minimum number of

components that reaches a certain level of the proportion of total variance explained by the L

leading components such that

L = argmin
L:L≥1

{
L

∑
`=1

λ̂`

/ n

∑
`=1

λ̂`1{λ̂`>0} ≥ δ

}
,

where δ = 85% (see also Horváth and Kokoszka 2012, p.41) and 1{·} denotes the binary indicator

function which excludes possible zero eigenvalues. For the Australian female and male data,

the chosen number of components L = 1 and L = 2, respectively.

We highlight some similarities and differences between Oeppen’s (2008) approach and

Lee and Carter’s (1992) approach. From Steps 3 to 5, Oeppen’s (2008) approach uses the Lee

and Carter’s (1992) approach to model and forecast the log-ratio of life-table death counts.



The difference is that the Oeppen’s (2008) approach works with life-table death counts in a

constrained space, whereas the Lee and Carter’s (1992) approach works with real-valued log

mortality rates.

When the number of components L = 1, our proposed CoDa method corresponds to the

one presented by Oeppen (2008) and Bergeron-Boucher et al. (2017). However, we allow the

possibility of using more than one pair of principal component and principal component scores

in Steps 4 and 5. As a sensitivity analysis, we also consider setting the number of components

to be L = 6 (see also Hyndman and Booth 2008). From this aspect, our proposal shares some

similarity with the Hyndman and Ullah’s (2007) approach. The difference is that our proposal

works with life-table death counts in a constrained space, whereas the Hyndman and Ullah’s

(2007) approach works with real-valued log mortality rates.

3.2 Construction of prediction interval for the CoDa

Prediction intervals are a valuable tool for assessing the probabilistic uncertainty associated

with point forecasts. The forecast uncertainty stems from both systematic deviations (e.g., due

to parameter or model uncertainty) and random fluctuations (e.g., due to model error term). As

was emphasised by Chatfield (1993, 2000), it is essential to provide interval forecasts as well as

point forecasts to

1) assess future uncertainty levels;

2) enable different strategies to be planned for a range of possible outcomes indicated by the

interval forecasts;

3) compare forecasts from different methods more thoroughly; and

4) explore different scenarios based on various assumptions.

3.2.1 Proposed bootstrap method

We consider two sources of uncertainty: truncation errors in the principal component de-

composition and forecast errors in the projected principal component scores. Since principal

component scores are regarded as surrogates of the original functional time series, these prin-

cipal component scores capture the temporal dependence structure inherited in the original

functional time series (see also Salish and Gleim 2015, Paparoditis 2018, Shang 2018). By

adequately bootstrapping the forecast principal component scores, we can generate a set of boot-

strapped Z∗, conditional on the estimated mean function and estimated functional principal

components from the observed Z in (3).



Using a univariate time series model, we can obtain multi-step-ahead forecasts for the

principal component scores, {β̂1,`, . . . , β̂n,`} for l = 1, . . . , L. Let the h-step-ahead forecast

errors be given by ϑ̂t,h,` = β̂t,` − β̂t|t−h,` for t = h + 1, . . . , n. These can then be sampled with

replacement to give a bootstrap sample of βn+h,`:

β̂
(b)
n+h|n,` = β̂n+h|n,` + ϑ̂

(b)
∗,h,`, b = 1, . . . , B,

where B = 1, 000 symbolises the number of bootstrap replications and ϑ̂
(b)
∗,h,` are sampled with

replacement from {ϑ̂t,h,`}.
Assuming the first L principal components approximate the data Z relatively well, the model

residual should contribute nothing but random noise. Consequently, we can bootstrap the model

fit errors in (2) by sampling with replacement from the model residual term {v̂1,x, . . . , v̂n,x} for

a given age x.

Adding all two components of variability, we obtain B variants for zn+h,x,

ẑ(b)n+h|n,x =
L

∑
`=1

β̂
(b)
n+h|n,`φ̂`,x + v̂

(b)
n+h,x,

where β̂
(b)
n+h,` denotes the forecast of the bootstrapped principal component scores. The construc-

tion of the bootstrap samples {ẑ(1)n+h|n,x, . . . , ẑ(B)
n+h|n,x} is in the same spirit as the construction of

the bootstrap samples for the LC method in (5) and for the HU method in Hyndman and Shang

(2010).

With the bootstrapped ẑ(b)n+h|n,x, we follow steps 6) and 7) in Section 3.1, in order to ob-

tain the bootstrap forecasts of dn+h,x. At the 100(1− γ)% nominal coverage probability, the

pointwise prediction intervals are obtained by taking γ/2 and 1− γ/2 quantiles based on

{d̂(1)n+h|n,x, . . . , d̂(B)
n+h|n,x}.

3.2.2 Existing bootstrap method

The construction of the prediction interval for CoDa has also been considered by Bergeron-

Boucher et al. (2017). After applying the centred log-ratio transformation, Bergeron-Boucher

et al. (2017) fit a nonparametric model to estimate the regression mean and obtain the residual

matrix, from which bootstrap residual matrices can be obtained by randomly sampling with

replacement from the original residual matrix. With the bootstrapped residuals, they then

add them to the estimated regression mean to form the bootstrapped data samples. With

each replication of the bootstrapped data samples, one could then re-apply singular value

decomposition to obtain the first set of principal component and its associated scores. With

the bootstrapped first set of principal component scores, one could then extrapolate them to

the future using a univariate time-series forecasting method. By multiplying the bootstrapped



forecast of the principal component scores with the bootstrap principal component, bootstrap

forecasts of life-table death counts can be obtained via back-transformation.

In Table 1, we compare the interval forecast accuracy, as measured by the mean interval

score, between the two ways of constructing prediction intervals (as described in Section 3.2.1

and 3.2.2.

3.3 Other forecasting methods

3.3.1 Lee-Carter (LC) method

As a comparison, we revisit Lee and Carter’s (1992) method. To stabilise the higher variance

associated with mortality at advanced old ages, it is necessary to transform the raw data by

taking the natural logarithm. For those missing death counts at advanced old ages, we use a

simple linear interpolation method to approximate the missing values. We denote by mt,x the

observed mortality rate at year t at age x calculated as the number of deaths in the calendar

year t at age x, divided by the corresponding mid-year population aged x. The model structure

is given by

ln(mt,x) = ax + bxκt + εt,x, (4)

where ax denotes the age pattern of the log mortality rates averaged across years; bx denotes

the first principal component reflecting relative change in the log mortality rate at each age; κt

is the first set of principal component scores by year t and measures the general level of the log

mortality rates; and εt,x denotes the residual at year t and age x.

The LC model in (4) is over-parametrised in the sense that the model structure is invariant

under the following transformations:

{ax, bx, κt} 7→ {ax, bx/c, cκt},

{ax, bx, κt} 7→ {ax − cbx, bx, κt + c}.

To ensure the model’s identifiability, Lee and Carter (1992) imposed two constraints, given as:

n

∑
t=1

κt = 0,
xp

∑
x=x1

bx = 1,

where n is the number of years, and p is the number of ages in the observed data set.

Also, the LC method adjusts κt by refitting to the total number of deaths. This adjustment

gives more weight to high rates, thus roughly counterbalancing the effect of using a log

transformation of the mortality rates. The adjusted kt is then extrapolated using RW models.

Lee and Carter (1992) used an RWD model, which can be expressed as:

κt = κt−1 + d + et,



where d is known as the drift parameter and measures the average annual change in the series,

and et is an uncorrelated error. It is notable that the RWD provides satisfactory results in many

cases (see, e.g., Tulkapurkar et al. 2000, Lee and Miller 2001). From this forecast of the principal

component scores, the forecast age-specific log mortality rates are obtained using the estimated

age effects ax and bx in (4).

Note that the LC model can also be formulated within a Generalised Linear Model frame-

work with a generalised error distribution (see, e.g., Tabeau 2001, Brouhns et al. 2002, Renshaw

and Haberman 2003). In this setting, the LC model parameters can be estimated by maximum

likelihood methods based on the choice of the error distribution. Thus, in line with traditional

actuarial practice, this approach assumes that the age- and period-specific number of deaths

are independent realisations from a Poisson distribution. In the case of Gaussian error, the

estimation method based on either the singular value decomposition or maximum likelihood

method leads to the same parameter estimates.

Two sources of uncertainty are considered in the LC model: errors in the parameter estima-

tion of the LC model and forecast errors in the forecasted principal component scores. Using a

univariate time series model, we can obtain multi-step-ahead forecasts for the principal com-

ponent scores, {κ̂1, . . . , κ̂n}. Let the h-step-ahead forecast errors be given by νt,h = κ̂t − κ̂t|t−h

for t = h + 1, . . . , n. These can then be sampled with replacement to give a bootstrap sample of

κn+h:

κ̂
(b)
n+h|n = κ̂n+h|n + ν̂

(b)
∗,h , b = 1, . . . , B,

where ν̂
(b)
∗,h are sampled with replacement from {ν̂t,h}.

Assuming the first principal component approximates the data lnm relatively well, the

model residual should contribute nothing but random noise. Consequently, we can bootstrap the

model fit error in (4) by sampling with replacement from the model residual term {ê1,x, . . . , ên,x}
for a given age x.

Adding the two components of variability, we obtain B variants of ln mn+h,x:

ln m̂(b)
n+h|n,x = κ̂

(b)
n+h|nb̂x + ê(b)n+h,x, (5)

where κ̂
(b)
n+h|n denotes the forecast of the bootstrapped principal component scores.

Since the LC model forecasts age-specific central mortality rate, we convert forecast mortality

rate to the probability of dying via a simple approximation. The formula is given as

q̂n+h|n,x = 1− exp−m̂n+h|n,x ,

where q̂n+h|n,x denotes the probability of dying in age x and year n + h, and m̂n+h|n,x denotes

the forecast of central mortality rate in age x and year n + h. With an initial life-table death

count of 100,000, the forecast of d̂n+h|n,x can be obtained from q̂n+h|n,x.



3.3.2 Hyndman-Ullah (HU) method

The HU method differs from the LC method in the following three aspects:

1. Instead of modelling the original mortality rates, the HU method uses a P-spline with a

monotonic constraint to smooth log mortality rates.

2. Instead of using only one principal component and its associated scores, the HU method

uses six sets of principal components and their scores.

3. Instead of forecasting each set of principal component scores by an RWD method, the

HU method uses an automatic algorithm of Hyndman and Khandakar (2008) to select the

optimal model and estimate the parameters in a univariate time series forecasting method.

3.3.3 Random walk with and without drift

Given the findings of linear life expectancy (White 2002, Oeppen and Vaupel 2002) and the

debate about its continuation (Bengtsson 2003, Lee 2003), it is pertinent to compare the forecast

accuracy of the CoDa method with a linear extrapolation method (see Alho and Spencer 2005, pp.

274-276 for an introduction). Using the centred log-ratio transformation, the linear extrapolation

of zt,x in (2) is achieved by applying the RW and RWD models for each age:

zt+1,x = ζ + zt,x + et+1,x, (6)

where zt,x represents the centred log ratio transformed data at age x = 0, 1, . . . , p in year

t = 1, 2, . . . , n− 1, ζ denotes the drift term, and et+1,x denotes model error term. The h-step-

ahead point and interval forecasts are given by

ẑn+h|n,x = E [zn+h,x|z1,x, . . . , zn,x] = ζh + zn,x

var(ẑn+h|n,x) = var[zn+h,x|z1,x, . . . , zn,x] = var(zn,x) + var(en+h,x). (7)

Based on (6) and (7), the RW can be obtained by omitting the drift term. Computationally, the

forecasts of the RW and RWD are obtained by the rwf function in the forecast package (Hyndman

et al. 2019) in R (R Core Team 2019). Then, by way of the back-transformation of the centred log

ratio, naı̈ve forecasts of age-specific life-table death counts can be obtained.

4 CoDa model fitting

For the life-table death counts, we examine the goodness-of-fit of the CoDa model to the

observed data. The number of retained components L in (2) and (3) is determined by explaining

at least 85% of the total variation. For the Australian female and male data, the chosen number



of components L = 1 and L = 2, respectively. We attempt to interpret the first component for

the Australian female and male age-specific life-table death counts.

Based on the historical death counts from 1921 to 2014 (i.e., 94 observations), in Figure 2, we

present the geometric mean of female and male life-table death counts, given by αx, transformed

data matrix Z, and the first set of estimated principal component obtained by applying the

principal component analysis to Z. The shape of the first estimated principal component

appears to be similar to the first estimated principal component in the Lee and Carter’s (1992)

and Hyndman and Ullah’s (2007) methods. Because Z is unbounded, the principal component

analysis captures a similar projection direction. By using the automatic ETS forecasting method,

we produce the 20-steps-ahead forecast of principal component scores for the year between

2015 and 2034.

Apart from the graphical display, we measure the in-sample goodness-of-fit via an R2

criterion given as

R2 = 1−
∑111

x=1 ∑94
t=1

(
dt,x − d̂t,x

)2

∑111
x=1 ∑94

t=1

(
dt,x − dx

)2 ,

where dt,x denotes the observed age-specific life-table death count for age x in year t, and d̂t,x

denotes the fitted age-specific life-table death count obtained from the CoDa model. For the

Australian female and male data, the R2 values are 0.9946 and 0.9899 using the CPV criterion

while the R2 values are 0.9987 and 0.9987 based on L = 6, respectively. Using the CPV criterion,

we select L = 1 for both female and male data. One remark is that choosing the number of

principal components L = 6 does not improve greatly the R2 values, but it improves the forecast

accuracy greatly as will be shown in Table 1.

5 Comparisons of point and interval forecast accuracy

5.1 Forecast error criteria

An expanding window analysis of a time-series model is commonly used to assess model

and parameter stability over time, and prediction accuracy. The expanding window analysis

determines the constancy of a model’s parameter by computing parameter estimates and their

resultant forecasts over an expanding window of a fixed size through the sample (For details,

Zivot and Wang 2006, pp. 313-314). Using the first 74 observations from 1921 to 1994 in the

Australian female and male age-specific life-table death counts, we produce one- to 20-step-

ahead forecasts. Through a rolling-window approach, we re-estimate the parameters in the

time series forecasting models using the first 75 observations from 1921 to 1995. Forecasts from

the estimated models are then produced for one- to 19-step-ahead. We iterate this process
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Figure 2: Elements of the CoDa method for analysing the female and male age-specific life-table death counts in

Australia. We present the first principal component and its scores, although we use L = 6 for fitting.



by increasing the sample size by one year until reaching the end of the data period in 2014.

This process produces 20 one-step-ahead forecasts, 19 two-step-ahead forecasts, . . . , and one

20-step-ahead forecast. We compare these forecasts with the holdout samples to determine the

out-of-sample point forecast accuracy.

To evaluate the point forecast accuracy, we consider the MAPE which measures how close

the forecasts are in comparison to the actual values of the variable being forecast, regardless of

the direction of forecast errors. The error measure can be written as

MAPE(h) =
1

111× (21− h)

20

∑
ς=h

111

∑
x=1

∣∣∣∣∣
dn+ς,x − d̂n+ς,x

dn+ς,x

∣∣∣∣∣× 100,

where dn+ς,x denotes the actual holdout sample for the xth age and ςth forecasting year, while

d̂n+ς,x denotes the point forecasts for the holdout sample.

To evaluate and compare the interval forecast accuracy, we consider the interval score of

Gneiting and Raftery (2007). For each year in the forecasting period, the h-step-ahead prediction

intervals are calculated at the 100(1− γ)% nominal coverage probability. We consider the

common case of the symmetric 100(1− γ)% prediction intervals, with lower and upper bounds

that are predictive quantiles at γ/2 and 1− γ/2, denoted by d̂l
n+ς,x and d̂u

n+ς,x. As defined by

Gneiting and Raftery (2007), a scoring rule for the interval forecasts at time point dn+ς,x is

Sγ,ς

[
d̂l

n+ς,x, d̂u
n+ς,x, dn+ς,x

]
=
(

d̂u
n+ς,x − d̂l

n+ς,x

)
+

2
γ

(
d̂l

n+ς,x − dn+ς,x

)
1
{

dn+ς,x < d̂l
n+ς,x

}

+
2
γ

(
dn+ς,x − d̂u

n+ς,x

)
1
{

dn+ς,x > d̂u
n+ς,x

}
,

where 1{·} represents the binary indicator function, and γ denotes the level of significance,

customarily γ = 0.2 or γ = 0.05. The interval score rewards a narrow prediction interval, if

and only if the true observation lies within the prediction interval. The optimal interval score

is achieved when dn+ς,x lies between d̂l
n+ς,x and d̂u

n+ς,x, and the distance between d̂l
n+ς,x and

d̂u
n+ς,x is minimal.

For different ages and years in the forecasting period, the mean interval score is defined by

Sγ(h) =
1

111× (21− h)

20

∑
ς=h

111

∑
x=1

Sγ,ς

[
d̂l

n+ς,x, d̂u
n+ς,x; dn+ς,x

]
,

where Sγ,ς

[
d̂l

n+ς,x, d̂u
n+ς,x; dn+ς,x

]
denotes the interval score at the ςth curve in the forecasting

year.

5.2 Forecast results

Using the expanding window approach, we compare the point and interval forecast accuracies

among the CoDa, HU, LC and two naı̈ve RW methods based on the MAPE and mean interval



score. Also, we consider forecasting each set of the estimated principal component scores

by the ARIMA, ETS, RWD and RW. The overall point and interval forecast error results are

presented in Table 1, where we average over the 20 forecast horizons. From Table 1, we find

that the CoDa method with the ETS forecasting method generally performs the best among

a range of methods considered. Among the four univariate time series forecasting methods,

the ETS method produces the smallest errors and thus is recommended to be used in practice.

Also, setting L = 6, including additional principal component decomposition pairs, generally

provides more accurate point and interval forecast accuracies than setting L = 1 or L = 2 for

the Australian female and male data.

Table 1: A comparison of the point and interval forecast accuracy, as measured by the overall MAPE and mean

interval score, among the CoDa, HU, LC and two naı̈ve RW methods (in italic) using the holdout sample

of the Australian female and male data. Further, we consider four univariate time series forecasting

methods for the CoDa and HU methods. In terms of interval forecast accuracy, we compare the finite-

sample performance between the proposed bootstrap approach and an existing bootstrap approach of

Bergeron-Boucher et al. (2017). The smallest errors are highlighted in bold.

Series L Method Forecasting Criteria

method Proposed bootstrap Existing bootstrap

MAPE Sγ=0.2 Sγ=0.05 Sγ=0.2 Sγ=0.05

Female CPV CoDa ARIMA 20.51 423.69 653.17 575.89 670.54

ETS 20.65 492.77 870.10 529.32 655.10

RWD 21.32 476.77 782.52 711.58 859.78

RW 32.18 512.30 629.45 1302.91 2368.32

L = 6 CoDa ARIMA 17.02 298.93 431.48 578.12 812.75

ETS 14.60 232.10 369.76 277.51 407.85

RWD 16.46 369.77 640.87 427.40 689.46

RW 29.25 985.94 2512.42 1056.94 2422.63

HU ARIMA 19.60 348.84 462.21

ETS 16.71 262.36 376.59

RWD 16.49 349.00 472.72

RW 30.95 350.32 442.68

LC 26.54 516.79 667.54

RWD 16.59 703.09 1185.52

Continued on next page



Series L Method Forecasting Criteria

method Proposed bootstrap Existing bootstrap

MAPE Sγ=0.2 Sγ=0.05 Sγ=0.2 Sγ=0.05

RW 30.04 703.79 1186.35

Male CPV CoDa ARIMA 31.93 1122.74 2079.19 1624.23 3889.32

ETS 25.48 644.38 752.16 1139.60 2184.71

RWD 32.16 690.67 896.75 1750.66 4434.10

RW 44.82 1428.70 3142.54 2115.80 5683.19

L = 6 CoDa ARIMA 27.18 648.85 860.78 1484.00 4067.55

ETS 18.37 371.22 516.23 699.92 1417.62

RWD 23.59 776.14 1221.44 1124.12 2854.69

RW 37.48 457.71 576.84 1638.70 4721.93

HU ARIMA 27.22 641.30 944.56

ETS 24.64 726.86 1281.29

RWD 25.14 806.16 1703.06

RW 39.48 965.43 2288.80

LC 38.61 1273.36 2692.18

RWD 23.60 783.15 1166.38

RW 38.18 783.30 1166.34

The CoDa method tends to provide less bias forecasts than the Lee-Carter method as it

allows the rate of mortality improvements to change over time (see Bergeron-Boucher et al.

2017). With respect to the positivity and summability constraints, the CoDa method can adopt

temporal changes of the age distribution of the life-table death counts over the years. The

unsatisfactory performance of the HU and LC methods may because of the approximation of

converting the forecasts of central mortality rate to the probability of dying at higher ages. The

inferior performance of the two naı̈ve RW methods may because of their slow responses to

adapt to the change of age distribution of death counts. Between the two naı̈ve RW methods,

we found that the RW is preferable for producing point forecasts, while the RWD is preferable

for producing interval forecasts.

While Table 1 presents the average over 20 forecast horizons, we show the one-step-ahead



to 20-step-ahead point and interval forecast errors in Figure 3. Since it is advantageous to set

L = 6, we report the CoDa method with the ETS forecasting method and L = 6 in Figure 3. The

difference in forecast accuracy between the CoDa and the other methods is widening over the

forecast horizon. We suspect that in the relatively longer forecast horizon, the errors associated

with all the methods become larger, but they are relatively smaller for the CoDa method with

the ETS forecasting method and L = 6.

6 Application to a single-premium temporary immediate annuity

An important use of mortality forecasts for those individuals at ages over 60 is in the pension

and insurance industries, whose profitability and solvency crucially rely on accurate mortality

forecasts to appropriately hedge longevity risks. When a person retires, an optimal way of

guaranteeing one individual’s financial income in retirement is to purchase an annuity (as

demonstrated by Yaari 1965). An annuity is a financial contract offered by insurers guaranteeing

a steady stream of payments for either a temporary or the lifetime of the annuitants in exchange

for an initial premium fee.

Following Shang and Haberman (2017), we consider temporary annuities, which have

grown in popularity in a number of countries (e.g., Australia and United States of America),

because lifetime immediate annuities, where rates are locked in for life, have been shown to

deliver poor value for money (i.e., they may be expensive for the purchasers; see for example

Cannon and Tonks 2008, Chapter 6). These temporary annuities pay a pre-determined and

guaranteed level of income which is higher than the level of income provided by a lifetime

annuity for a similar premium. Fixed-term annuities offer an alternative to lifetime annuities

and allow the purchaser the option of also buying a deferred annuity at a later date.

Using the CoDa method, we obtain forecasts of age-specific life-table death counts and then

determine the corresponding survival probabilities. In Figure 4, we present the age-specific

life-table death count forecasts from 2015 to 2064 for Australian females.

With the mortality forecasts, we then input the forecasts of death counts to the calculation

of single-premium term immediate annuities (see Dickson et al. 2009, p. 114), and we adopt a

cohort approach to the calculation of the survival probabilities. The τ year survival probability

of a person aged x currently at t = 0 (or year 2016) is determined by

τ px =
τ

∏
j=1

px+j−1 =
τ

∏
j=1

(
1− qx+j−1

)
=

τ

∏
j=1

(
1− dx+j−1

lx+j−1

)
,

where dx+j−1 denotes the number of death counts between ages x + j− 1 and x + j; and lx+j−1

denotes the number of lives alive at age x + j− 1. Note that τ px is a random variable given that

death counts for j = 1, . . . , τ are the forecasts obtained by the CoDa method.
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Figure 3: A comparison of the point and interval forecast accuracy, as measured by the MAPE and mean interval

score, among the CoDa, HU, LC and two naı̈ve RW methods using the holdout sample of the Australian

female and male data. In the CoDa method, we use the ETS forecasting method with the number of

principal components L = 6.
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Figure 4: Age-specific life-table death count forecasts from 2015 to 2064 for Australian females.

The price of an annuity with a maturity term of a T year is a random variable, as it depends

on the value of zero-coupon bond price and future mortality. The annuity price can be written

for an x-year-old with benefit one Australian dollar per year is given by

aT
x =

T

∑
τ=1

B(0, τ)τ px,

where B(0, τ) is the τ-year bond price and τ px denotes the survival probability.

In Table 2, to provide an example of the annuity calculations, we compute the best estimate

of the annuity prices for different ages and maturities for a female policyholder residing in

Australia. We assume a constant interest rate at η = 3% and hence zero-coupon bond is

given as B(0, τ) = exp−ητ. Although the difference in annuity price might appear to be

small, any mispricing can involve a significant risk when considering a large annuity portfolio.

Given that an annuity portfolio consists of N policies where the benefit per year is B, any

underpricing of τ% of the actual annuity price will result in a shortfall of NBaT
x τ/100, where

aT
x is the estimated annuity price being charged with benefit one Australian dollar per year.

For example τ = 0.1%, N = 10, 000 policies written to 80-year-old female policyholders with

maturity τ = 20 years and benefit 20, 000 Australian dollars per year will result in a shortfall of

10, 000× 20, 000× 7.8109× 0.1% = 1.5622 million.

To measure forecast uncertainty, we construct the bootstrapped age-specific life-table death

counts, derive the survival probabilities and calculate the corresponding annuities associated

with different ages and maturities. Given that we consider ages from 60 to 110, we construct



Table 2: Estimates of annuity prices with different ages and maturities (T) for a female policyholder residing in

Australia. These estimates are based on forecast mortality rates from 2015 to 2064. We consider only

contracts with maturity so that age + maturity ≤ 110. If age + maturity > 110, NA will be shown in the

table.

Age T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

CPV

60 4.5109 8.2748 11.3625 13.8221 15.6564 16.8572

65 4.4831 8.1608 11.0904 13.2752 14.7054 15.4242

70 4.4314 7.9614 10.5940 12.3173 13.1833 13.4609

75 4.3445 7.5847 9.7056 10.7715 11.1132 11.1684

80 4.1440 6.8566 8.2198 8.6568 8.7274 8.7322

85 3.7975 5.7060 6.3177 6.4166 6.4232 NA

90 3.1874 4.2090 4.3742 4.3852 NA NA

95 2.4261 2.8183 2.8445 NA NA NA

100 1.6751 1.7870 NA NA NA NA

105 1.1283 NA NA NA NA NA

L = 6

60 4.5197 8.3091 11.4419 13.9673 15.8921 17.1909

65 4.4972 8.2151 11.2122 13.4965 15.0380 15.8363

70 4.4538 8.0441 10.7806 12.6271 13.5835 13.8961

75 4.3788 7.7163 9.9683 11.1348 11.5160 11.5764

80 4.2042 7.0411 8.5105 8.9907 9.0668 9.0715

85 3.8680 5.8714 6.5261 6.6299 6.6364 NA

90 3.2348 4.2919 4.4595 4.4699 NA NA

95 2.4406 2.8276 2.8515 NA NA NA

100 1.6466 1.7486 NA NA NA NA

105 1.0859 NA NA NA NA NA



50-steps-ahead bootstrap forecasts of age-specific life-table death counts. In Table 3, we present

the 95% pointwise prediction intervals of annuities for different ages and maturities, where age

+ maturity ≤ 110.

Table 3: 95% pointwise prediction intervals of annuity prices with different ages and maturities (T) for a female

policyholder residing in Australia. These estimates are based on forecast mortality rates from 2015 to

2064. We consider only contracts with maturity so that age + maturity ≤ 110. If age + maturity > 110,

NA will be shown in the table.

Age T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

CPV

60 (4.497, 4.571) (8.270, 8.495) (11.363, 11.848) (13.828, 14.678) (15.722, 17.012) (16.977, 18.800)

65 (4.454, 4.569) (8.115, 8.486) (11.060, 11.813) (13.276, 14.542) (14.746, 16.650) (15.498, 18.021)

70 (4.372, 4.563) (7.865, 8.455) (10.488, 11.669) (12.234, 14.154) (13.114, 15.736) (13.423, 16.475)

75 (4.218, 4.552) (7.400, 8.359) (9.541, 11.328) (10.591, 13.265) (10.975, 14.076) (11.041, 14.274)

80 (3.978, 4.500) (6.601, 8.050) (8.002, 10.362) (8.474, 11.375) (8.546, 11.579) (8.551, 11.598)

85 (3.521, 4.354) (5.295, 7.252) (5.894, 8.569) (5.992, 8.856) (6.004, 8.881) NA

90 (2.888, 3.919) (3.888, 5.719) (4.047, 6.128) (4.058, 6.162) NA NA

95 (2.204, 3.267) (2.582, 4.022) (2.610, 4.082) NA NA NA

100 (1.491, 2.258) (1.598, 2.460) NA NA NA NA

105 (0.898, 1.561) NA NA NA NA NA

L = 6

60 (4.499, 4.572) (8.286, 8.501) (11.455, 11.864) (14.033, 14.712) (16.057, 17.097) (17.460, 18.992)

65 (4.467, 4.571) (8.174, 8.495) (11.221, 11.839) (13.547, 14.627) (15.206, 16.825) (16.164, 18.379)

70 (4.397, 4.569) (7.983, 8.477) (10.763, 11.768) (12.699, 14.411) (13.809, 16.234) (14.281, 17.154)

75 (4.293, 4.563) (7.596, 8.427) (9.946, 11.544) (11.258, 13.729) (11.775, 14.881) (11.892, 15.186)

80 (4.088, 4.537) (6.953, 8.250) (8.616, 10.851) (9.271, 12.240) (9.380, 12.659) (9.389, 12.704)

85 (3.736, 4.453) (5.873, 7.673) (6.712, 9.376) (6.897, 9.928) (6.913, 9.971) NA

90 (3.112, 4.150) (4.322, 6.396) (4.571, 7.038) (4.592, 7.113) NA NA

95 (2.370, 3.523) (2.901, 4.571) (2.942, 4.694) NA NA NA

100 (1.546, 2.507) (1.682, 2.821) NA NA NA NA

105 (0.964, 1.617) NA NA NA NA NA

The forecast uncertainties become larger as maturities increase from T = 5 to T = 30 for a

given age. The forecast uncertainties also increase as the initial ages when entering contracts

increase from 60 to 105 for a given maturity.



7 Conclusion

We proposed an adaptation of the Hyndman and Ullah’s (2007) method to a CoDa framework.

Using the Australian age-specific life-table death counts, we evaluate and compare the point

and interval forecast accuracies among the CoDa, HU, LC and two naı̈ve RW methods for

forecasting the age distribution of death counts. Based on the MAPE and mean interval

score, the CoDa method with the ETS forecasting method and L = 6 is recommended, as it

outperforms the HU method, LC method and two naı̈ve RW and RWD for forecasting the

age distribution of death counts. The superiority of the CoDa method is driven by the use of

singular value decomposition to model the age distribution of the transformed death counts

and the summability constraint of the age distribution of death counts.

We apply the CoDa method to forecast age-specific life-table death counts from 2015 to 2064.

We then calculate the cumulative survival probability and obtain temporary annuity prices. As

expected, we find that the cumulative survival probability has a pronounced impact on annuity

prices. Although annuity prices for an individual contract may be small, mispricing could have

a dramatic effect on a portfolio, mainly when the yearly benefit is a great deal larger than one

Australia dollar per year.

There are a few ways in which this paper could be extended, and we briefly discuss four.

First, a robust CoDa method proposed by Filzmoser et al. (2009) may be utilised, in the presence

of outlying years. Second, the methodology can be applied to calculate other types of annuity

prices, such as the whole-life immediate annuity or deferred annuity. Thirdly, we can consider

cohort life-table death counts for modelling a group of individuals. Finally, we may consider

other density forecasting methods as in Kokoszka et al. (2019), such as the log quantile density

transformation method.
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Appendix: supplementary material

Annuity price calculation for the Australian male data In Section 6, we present the annuity

price calculation for the Australian female data. Since the mortality rates are different

between male and female, the estimate of annuity prices ought to be different. Here, we

present the annuity price calculation for the Australian male data.

R code and data files The R code for implementing the compositional data analysis approach

and for producing point and interval forecasts is provided, along with the Australian age-

and sex-specific life-table death counts.



Supplementary materials

“Forecasting age distribution of death counts: An application to annuity pricing”

by Han Lin Shang and Steven Haberman

S1. Annuity price calculation for the Australian male data

In Table A, to provide an example of the annuity calculations, we compute the best estimate of

the annuity prices for different ages and maturities for a male policyholder residing in Australia.

We assume a constant interest rate η = 3% and hence zero-coupon bond is given as B(0, τ) =

exp−ητ.

Table A: Estimates of annuity prices with different ages and maturities (T) for a male policyholder residing in
Australia. These estimates are based on forecast mortality rates from 2015 to 2064. We consider only
contracts with maturity so that age + maturity ≤ 110. If age + maturity > 110, NA will be shown in the
table.

Age T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

CPV

60 4.4821 8.1694 11.1358 13.4387 15.0911 16.1213

65 4.4417 8.0150 10.7890 12.7794 14.0204 14.5930

70 4.3779 7.7766 10.2151 11.7356 12.4372 12.6353

75 4.2734 7.3396 9.2514 10.1336 10.3827 10.4173

80 4.0425 6.5631 7.7262 8.0546 8.1001 8.1027

85 3.6839 5.3838 5.8637 5.9303 5.9341 NA

90 3.0140 3.8651 3.9832 3.9899 NA NA

95 2.2655 2.5799 2.5978 NA NA NA

100 1.5593 1.6481 NA NA NA NA

105 1.0617 NA NA NA NA NA

K = 6

60 4.4851 8.1866 11.1898 13.5540 15.2963 16.4257

65 4.4520 8.0641 10.9077 13.0033 14.3617 15.0298

70 4.4041 7.8712 10.4262 12.0825 12.8970 13.1469

75 4.3124 7.4903 9.5503 10.5634 10.8742 10.9212

80 4.1171 6.7858 8.0983 8.5010 8.5618 8.5655

85 3.7732 5.6287 6.1980 6.2840 6.2893 NA

90 3.1297 4.0899 4.2350 4.2438 NA NA

95 2.3655 2.7229 2.7448 NA NA NA

100 1.6179 1.7171 NA NA NA NA

105 1.0895 NA NA NA NA NA



To measure forecast uncertainty, we construct the bootstrapped age-specific life-table death

counts, derive the survival probabilities and calculate the corresponding annuities associated

with different ages and maturities. Given that we consider ages from 60 to 110, we construct

50-steps-ahead bootstrap forecasts of age-specific life-table death counts. In Table B, we present

the 95% pointwise prediction intervals of annuities for different ages and maturities, where age +

maturity ≤ 110.

Table B: 95% pointwise prediction intervals of annuity prices with different ages and maturities (T) for a male
policyholder residing in Australia. These estimates are based on forecast mortality rates from 2015 to 2064.
We consider only contracts with maturity so that age + maturity ≤ 110. If age + maturity > 110, NA will
be shown in the table.

Age T = 5 T = 10 T = 15 T = 20 T = 25 T = 30

CPV

60 (4.540, 4.572) (8.384, 8.500) (11.582, 11.867) (14.188, 14.739) (16.146, 17.136) (17.437, 19.004)

65 (4.510, 4.570) (8.263, 8.487) (11.319, 11.828) (13.624, 14.612) (15.147, 16.786) (15.866, 18.174)

70 (4.461, 4.563) (8.083, 8.453) (10.814, 11.698) (12.610, 14.239) (13.460, 15.845) (13.711, 16.480)

75 (4.367, 4.547) (7.656, 8.341) (9.809, 11.306) (10.845, 13.191) (11.137, 13.959) (11.179, 14.106)

80 (4.137, 4.480) (6.825, 7.989) (8.109, 10.208) (8.457, 11.104) (8.502, 11.278) (8.506, 11.290)

85 (3.727, 4.301) (5.500, 7.047) (6.015, 8.135) (6.088, 8.332) (6.092, 8.347) NA

90 (2.959, 3.761) (3.806, 5.258) (3.930, 5.557) (3.938, 5.575) NA NA

95 (2.157, 2.980) (2.451, 3.523) (2.465, 3.568) NA NA NA

100 (1.460, 2.000) (1.538, 2.137) NA NA NA NA

105 (0.811, 1.434) NA NA NA NA NA

K = 6

60 (4.542, 4.573) (8.396, 8.505) (11.631, 11.882) (14.302, 14.773) (16.375, 17.216) (17.828, 19.201)

65 (4.520, 4.572) (8.319, 8.498) (11.437, 11.858) (13.862, 14.700) (15.560, 17.008) (16.512, 18.656)

70 (4.477, 4.568) (8.166, 8.479) (11.039, 11.785) (13.042, 14.475) (14.159, 16.395) (14.592, 17.442)

75 (4.406, 4.560) (7.835, 8.416) (10.235, 11.547) (11.567, 13.793) (12.075, 15.025) (12.198, 15.418)

80 (4.230, 4.518) (7.192, 8.201) (8.848, 10.857) (9.446, 12.278) (9.564, 12.697) (9.573, 12.784)

85 (3.923, 4.426) (6.083, 7.594) (6.893, 9.353) (7.082, 9.900) (7.091, 9.948) NA

90 (3.275, 4.077) (4.460, 6.292) (4.689, 6.994) (4.713, 7.097) NA NA

95 (2.423, 3.494) (2.907, 4.582) (2.955, 4.740) NA NA NA

100 (1.611, 2.651) (1.739, 3.006) NA NA NA NA

105 (1.055, 1.840) NA NA NA NA NA


