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Saccades are rapid eye movements that orient the visual axis toward
objects of interest to allow their processing by the central, high-
acuity retina. Our ability to collect visual information efficiently re-
lies on saccadic accuracy, which is limited by a combination of un-
certainty in the location of the target and motor noise. It has been
observed that saccades have a systematic tendency to fall short of
their intended targets, and it has been suggested that this bias orig-
inates from a cost function that overly penalizes hypermetric errors.
Here we tested this hypothesis by systematically manipulating the
positional uncertainty of saccadic targets. We found that increas-
ing uncertainty produced not only a larger spread of the saccadic
endpoints but also more hypometric errors and a systematic bias to-
ward the average of target locations in a given block, revealing that
prior knowledge was integrated into saccadic planning. Moreover,
by examining how variability and bias co-varied across conditions,
we estimated the asymmetry of the cost function and found that it
was related to individual differences in the additional time needed to
program secondary saccades for correcting hypermetric errors, rel-
ative to hypometric ones. Taken together, these findings reveal that
the saccadic system uses a probabilistic-Bayesian control strategy
to compensate for uncertainty in a statistically principled way and to
minimize the expected cost of saccadic errors.
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Saccadic eye movements serve a pivotal role in the foveate1

visual systems of primates, by quickly orienting the fovea2

(the central, high-acuity part of the retina) toward objects of3

interest. It seems reasonable to surmise that saccades have4

evolved to serve vision optimally, however it is not obvious5

what the optimum should be. Given that visual sensitivity is6

much reduced during saccades, one relevant cost to minimize7

could be the time spent in-flight. However, as it has been8

pointed out (1), duration cannot be the only factor, otherwise9

oblique saccades should be significantly faster than purely10

horizontal or vertical ones, and they are not (2). Another11

crucial factor is accuracy: like all our movements, saccades12

are variable and often miss the desired destination due to13

motor noise and sensory uncertainty. These errors might14

have undesirable consequences, such as hindering the timely15

identification of dangers in the environment. Indeed, it has16

been shown that the stereotypical kinematics of saccadic eye17

movements (the so-called ‘main sequence’) are optimal for18

minimizing the variability (and thus the mean error) of landing19

positions in the presence of signal-dependent motor noise20

(3). In light of this, it may seem surprising that, on top of21

their inescapable variability, saccades display a systematic22

hypometric bias: they tend to fall short of their target by a23

fixed proportion of the target distance, about 10% (4).24

What is the origin of this bias, and why has evolution not25

corrected it? One possible explanation relates to the program-26

ming of secondary saccades, which are often needed to correct 27

the saccadic landing error. Importantly, the time required to 28

launch these corrective saccades is not independent of the error 29

of the initial primary saccade: corrective saccades are slower 30

to launch when they are in the opposite direction relative to 31

the primary saccade (5–7). If the total time needed to reach 32

the desired destination (including the latency of corrections) 33

were a relevant factor, then the ideal strategy would be to plan 34

saccades that are, on average, hypometric, thereby decreasing 35

the relative likelihood of overshoot errors. Formally, this can 36

be expressed with an asymmetrical cost function, i.e. one that 37

assigns a greater cost to an overshoot error relative to an under- 38

shoot of the same magnitude. Although this strategic account 39

of saccadic hypometria is appealing, it lacks direct empirical 40

support. In fact, other studies have proposed the alternative 41

view that undershoots may be best viewed as an inevitable 42

property of the oculomotor system (8), due to sub-optimal 43

sensorimotor transformations. 44

Assuming that biases in saccadic targeting are due to a 45

deliberate strategy and this strategy is probabilistic (i.e. if 46

it accounts for uncertainty in a statistically principled way) 47

and Bayesian, two predictions can be made. First, variability 48

and bias should be systematically related one another and 49

the ideal saccadic gain (the ratio of saccadic amplitude and 50

target distance) should decrease when uncertainty about the 51

position of the target increases, as demonstrated in Fig. 1 (see 52

figure caption for detailed explanation). Second, if the strat- 53

egy is Bayesian it should take advantage of prior information 54

whenever available. Results consistent with this latter pre- 55

diction have been reported by Kapoula and Robinson (9, 10), 56
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Fig. 1. Predicted relationship between saccadic variability and undershoot. A. The
red curve represents the cost of a saccadic error plotted against gain (proportion of
target distance). The two Gaussian curves represent the expected distributions of
motor outcomes for two conditions with different uncertainties about the location of the
target: in the condition with larger uncertainty (blue) there is a broader range of motor
outcomes for a given motor command (intended gain, represented by the vertical
arrow). The expected cost for a certain intended gain is computed by integrating all
possible motor outcomes, weighted by their probabilities. B. The expected cost is
plotted as a function of the intended gain. When uncertainty is larger the expected
cost is overall higher, and the ideal gain (which minimizes the expected cost) shifts
toward more hypometric values. C. Relationship between ideal gain and saccadic
endpoint variability, for different degrees of asymmetry. The asymmetry is quantified
as the ratio between the cost of an overshoot relative to an undershoot of the same
size. Since the asymmetry determines the slope of the relationship between gain and
variability, it is possible to estimate it by measuring (at least) two different conditions
with varying levels of uncertainty.

who found that saccades display a range effect, i.e. a bias57

toward the mean of target positions in a given block. Results58

seemingly inconsistent with this latter prediction appear in59

two recent studies, which failed to replicate the range effect60

(11, 12); however these studies did not manipulate uncertainty.61

Here we aimed to assess whether a range effect would appear62

as uncertainty increased. Indeed, any central tendency bias63

(13) arising from a probabilistic combination of sensory like-64

lihood and prior knowledge should increase as the likelihood65

becomes more diffuse.66

Results67

In order to test the two predictions mentioned in the Intro-68

duction, we conducted a series of experiments in which we69

manipulated the positional uncertainty of the saccadic target,70

as well as the range of its possible positions (thus their prior71

probabilities), and measured how these factors contribute to72

constant and variable saccadic errors. We were interested in73

simple visual orienting responses, therefore we avoided adding74

more explicit tasks that may have influenced the cost func-75

tion. We expected both the hypometric bias and the range76

effect to increase with increasing uncertainty. In Experiment 177

(n=12) we manipulated the uncertainty by blurring a Gaussian78

blob embedded in noise (keeping the total luminance energy79

constant, see Fig. 2A), and measured saccadic responses in80

two sessions, run on separate days, that contained different81

ranges of target eccentricities (this was necessary to measure82

the range effect). Although positional uncertainty should be83

reflected in the distribution of saccade endpoints, to make sure84

that our manipulation was successful, we also measured each85

observer’s perceptual precision for comparing the eccentricities86

of blurred targets in a purely psychophysical task. The results87

confirmed that blurring the targets increases the uncertainty88

of judgments about their positions (see SI). To characterize89

further the relationship between sensory uncertainty and sac-90

cadic targeting, we conducted two additional experiments. In91

Experiment 2 (n=20) we varied independently the size and the92

peak luminance of the saccadic target (Fig. 2A). This experi-93

ment determined the relative contributions of pure changes in 94

target size and visibility. In Experiment 3 (n=26) we further 95

investigated the robustness of the saccadic range effect, by 96

running the two sessions in the same day and using targets that 97

varied only in visibility (but not size). Since these experiments 98

provide complementary findings, in the following we report 99

the results organized by thematic points. Detailed information 100

about experimental procedures and statistical modelling is 101

reported in the SI. 102

Positional uncertainty increases saccadic variability and hy- 103

pometria. We found that increasing the space constant of a 104

Gaussian blob increased the variability of the amplitudes of 105

saccades directed to it, F (2, 22) = 5.66, p = 0.01. Crucially, 106

we found that greater uncertainty not only increased the vari- 107

able error, but also the undershoot (see Fig. 2B). We assessed 108

the variations of saccadic undershoot by means of a multi- 109

level (mixed-effects) linear model (see SI for details), with 110

saccadic amplitude as dependent variable and target distance 111

and blob’s σ as predictors. The estimates of model parameters 112

indicate that the saccadic gain (the slope of the linear relation- 113

ship between saccadic amplitudes and target distance) was 114

already hypometric in the condition with smallest σ (baseline 115

gain 0.93±0.06, mean ± standard error) and became even 116

more hypometric as σ increased: the differences from base- 117

line were -0.01±0.03, for the condition with σ=0.9deg; and 118

-0.17±0.03, for the condition with σ=1.5deg. The finding of 119

a simultaneous increase in variable and constant errors is to 120

be expected under the hypothesis of an asymmetrical cost 121

function (Fig. 1). Moreover, the total changes in variability 122

and bias (quantified as the difference between the condition 123

with largest and smallest uncertainty) were correlated across 124

participants (Pearson’s r=-0.73, 95%CI [-0.92, -0.23]): partici- 125

pants who showed the largest increase in endpoint variability 126

also displayed the largest decrease in saccadic gain, suggesting 127

a systematic relationship between variability and bias. 128

The blur manipulation used in Experiment 1 simultaneously 129

decreased the target’s peak luminance, and increased its size. 130

Saccades might have been biased toward the nearest edge 131

of the target (e.g. the nearest zero-crossing in the second 132

derivative or perhaps the half-height of the luminance profile 133

(14)). The relative contributions of visibility and size could not 134

have been distinguished within Experiment 1, so we designed 135

Experiment 2 to discriminate between them. The procedure 136

was similar, however we varied the stimuli in two distinct 137

conditions. In the first condition size (σ) was kept constant, 138

while we varied the peak luminance (fixed-size; Fig. 2A); this 139

condition was designed to measure how visibility and signal- 140

to-noise ratio affect saccadic eye movements when size is kept 141

constant. In the second condition we kept luminance fixed at 142

its maximum value, removed the background noise (minimizing 143

the possible sources of uncertainty), and varied the size (σ) 144

of the blobs (fixed-luminance); this condition was designed to 145

isolate modulations of saccadic movements that were due only 146

to variations of target size. 147

We found that both manipulations increased the variability 148

of saccadic gain: fixed-luminance, F (2, 38) = 11.29, p = 1.42× 149

10−4; fixed-size, F (2, 38) = 16.84, p = 5.8 × 10−6. Variability 150

however increased up to higher levels in the fixed-size than in 151

the fixed-luminance condition, t(19) = 3.51, p = 0.002. In both 152

conditions, the increase in variability was accompanied by a 153

decrease in saccadic amplitudes, albeit with some qualitatively 154
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DRAFTFig. 2. Manipulation of positional uncertainty increases both behavioral variability and
saccadic undershoot. A. Example of the stimuli used (see main Text and SI for details).
B. Empirical relationship between variability and gain; each symbol represents the
weighted average values (i.e. across observers) for the mean and standard deviation
of saccadic gain in one experimental condition. Saccadic gain is negatively correlated
with saccadic variability, as predicted by the theory (Fig. 1). C. Saccadic gain, plotted
as a function of target distance (Experiment 1 and 2), for three different manipulations
of the saccadic target. Only when the luminance is varied (fixed energy and fixed
size conditions) does the decrease in amplitude vary as a function of target distance,
suggesting the presence of a central bias. All error bars are bootstrapped standard
errors.

different features. To quantify these features, we fit the data155

from each condition with a multilevel (mixed-effects) linear156

model, which had saccadic amplitude as a dependent variable157

and target distance and uncertainty level (indexed either by158

the blob’s σ or its peak luminance) as predictors. In the fixed-159

luminance condition, the decrease in amplitude was constant160

with respect to the distance of the target, so that the slope161

of the linear relationship between saccadic amplitude and162

target distance did not vary systematically with the value of163

σ, χ2(2) = 0.66, p = 0.72. Analysis of the fixed-size condition164

instead revealed a different pattern. We found that, relative165

to the baseline where the peak luminance was 146cd/m2, the166

decrease in saccadic amplitude was not uniform across target167

distances, as indicated by a significant interaction between168

distance and luminance, χ2(2) = 30.06, p = 2.96 × 10−7.169

This result indicates that the decrease in saccadic gain was170

modulated by the eccentricity of the target: gain decreased171

more when eccentricity was larger (see Fig. 2C). This finding172

suggests a bias toward intermediate eccentricities contingent173

on the visibility of the target, corresponding to the range-effect174

mentioned in the Introduction (9, 10) (see next section).175

Saccadic range-effect depends on positional uncertainty. In176

Experiments 1 and 3, each participant was tested under two177

different conditions, with different ranges of target eccentricity178

(Fig. 3). Here we analyzed the effect of the eccentricity range 179

(‘large’ vs ‘small’ eccentricity range) on saccadic behavior. We 180

started by examining how saccades made toward the interme- 181

diate targets (present in both ranges) were influenced by the 182

session. In agreement with recent reports (11, 12), we found 183

no evidence for a central tendency bias when uncertainty was 184

smallest (σ=0.3 or luminance 146cd/m2), as indicated by the 185

absence of systematic differences between saccadic amplitudes 186

directed toward the intermediate targets [Exp. 1, t(11) = 0.59, 187

p = 0.57; Exp. 3, t(11) = 0.37, p = 0.71]. However, analo- 188

gous differences varied systematically across conditions with 189

different uncertainties, as indicated by a significant interaction 190

between range and uncertainty level: Exp. 1, F (1, 23) = 15.05, 191

p = 7.59 × 10−4; Exp. 3, F (1, 23) = 15.05, p = 0.01 (two-way 192

repeated measures ANOVA). 193

In order to quantify more precisely the range effect using 194

all saccades (and not only those directed at the intermediate 195

target) we assumed that the effect was due to a compres- 196

sion of saccadic responses toward the mean of target eccen- 197

tricity in the block (a form for central tendency bias) and 198

estimated the amount of compression using a linear regres- 199

sion approach. The regression model can be expressed as 200

Ŝi = β0 + β1[αĒ + (1 − α)Ei], where Ŝi and Ei are the pre- 201

dicted saccadic amplitude and the target eccentricity at trial 202

i, Ē is the average eccentricity in the current session, and 203

α is a weighting parameter. Positive values of α indicate a 204

bias toward the mean eccentricity, quantified as proportion of 205

compression, such that a value of α = 1 would indicate that all 206

saccades targeted the same central location, regardless of the 207

trial-by-trial target eccentricities. All parameters were allowed 208

to vary across conditions with different σ. We estimated a 209

Bayesian mixed-effects version of this model, with participant 210

as grouping factor (see SI for details). We calculated 95% 211

credible intervals for the fixed-effect estimates of the weight- 212

ing parameter α and found that the amount of compression 213

differed significantly from zero only in the condition with 214

largest uncertainty: Experiment 1, σ = 1.5, α = 0.18, 95%CI 215

[0.06, 0.30]; Experiment 3, peak luminance 50cd/m2, α = 0.09, 216

95%CI [0.01, 0.17] (Fig. 3B). Thus, our results indicate that 217

although a range effect is not normally present for small, highly 218

visible targets, a systematic bias toward the mean eccentricity 219

nonetheless emerges when uncertainty increases. 220

Cost asymmetry determines the relationship between sac- 221

cadic variability and bias. We suggest that the observed mod- 222

ulations of saccadic gain are a consequence of the oculomotor 223

system seeking to minimize a cost function, in which overshoots 224

and undershoots are given different weights. If an asymmet- 225

rical cost function were underlying the relationship between 226

saccadic variability and undershoot, then it should be possible 227

to estimate the degree of asymmetry, as shown in Fig. 1. In 228

order to simplify the analysis, we transformed saccadic am- 229

plitudes in gain values (proportions of target distance) and 230

pooled data from different target eccentricities together. This 231

allowed us to specify a unique cost function for all eccentrici- 232

ties, where the error is defined in gain units. We assumed that 233

cost would be well approximated by a quadratic function of 234

the error, augmented with an additional asymmetry term that 235

set a fixed ratio between the cost of undershoot and overshoot 236

errors (see SI for details). Maximum likelihood estimates of 237

the asymmetry parameter indicate that participants behaved 238

as if they were optimizing an asymmetrical cost function where 239
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Fig. 3. The range effect. A. Mean saccadic gain measured in Experiment 1 and 3,
plotted as a function of target distance, and split according to the eccentricity range
of the experimental session. Dots indicate the average gain, while the lines are the
predictions of the multilevel model fit to the data. For the two conditions with smaller
uncertainties (leftmost subpanels), average saccadic gains toward the intermediate
targets (present in both ‘large’ and ‘small’ sessions) are overlapping, indicating that
saccades were not systematically influenced by the eccentricity range of the targets.
Only in the condition with the largest uncertainty (rightmost panel) did we find an
effect of eccentricity range (i.e. a central bias). B. Size of the central bias, quantified
as the parameter α of the regression model (see Results) and plotted as a function
of the space constant (Experiment 1) or the peak luminance (Experiment 3) of the
target. All error bars and bands are standard errors.

overshoot errors were considered about 7.5 times costlier (me-240

dian across participants) than undershoots in Experiment 1,241

95% CI [3.0, 15.7]; 6.7 times costlier in Experiment 2, 95%242

CI [2.9, 8.5] and 7.7 times costlier in Experiment 3, 95% CI243

[4.5, 18.4]. There was no significant difference in the estimated244

cost asymmetry across experiments, F (2, 56) = 0.67, p = 0.51.245

Overall, the assumption of an asymmetric, quadratic cost246

functions provides a good fit to variations in saccadic gain247

across all our experiments (Fig. 4). As an additional test, we248

used a leave-one-out cross-validation procedure to evaluate the249

predictive ability of the quadratic-asymmetric model against250

a descriptive model, which only assumed that the undershoot251

bias has a linear relationship with saccadic variability, without252

requiring that this relationship be adequate for minimizing253

an asymmetrical cost function. Across the three experiments,254

this test confirmed that assuming an asymmetric cost function255

results in a better and more parsimonious description of the256

data (see SI).257

As an additional test of our hypothesis, we investigated258

whether gain variability could account for differences in gain,259

after controlling for the effects of our manipulations. For260

each experiment, we fit a multilevel linear model with the261

saccadic gain as dependent variable and luminance or space262

constant as categorical predictor, and participant as grouping263

factor. We took the residuals of these models and computed264

the correlation to the standard deviation of saccadic gain.265

We found a significant correlation (Pearson’s r=-0.14, 95%CI266

[-0.26, -0.11]), which indicates that even after controlling for267

the influence of our manipulation, saccadic variability retains268

information about saccadic gain, a remarkable result given269

the individual differences in the degree of asymmetry of the270

cost function (see next section).271

Cost asymmetry is related to the programming of corrective272

saccades. We examined further whether individual differences273

in the asymmetry of the cost function could be related to differ-274

ences in the post-saccadic processing of the target. Across our 275

three experiments we recorded a large number of secondary 276

saccades (see SI for details), which can be appropriately de- 277

fined as corrective because their amplitude was negatively 278

correlated with residual error of the primary saccade (Fig. 5A). 279

As mentioned in the Introduction, corrective saccades tend 280

to have longer latencies when they are made in the direction 281

opposite to that of the primary saccade (5–7), suggesting that 282

overshoots and undershoots have different consequences for 283

post-saccadic oculomotor processing. The latencies of small 284

saccades, however, are also modulated by their amplitudes, 285

which are often larger after undershoot errors (because they 286

are larger, on average, than overshoots). To control for this 287

effect, prior to segregating forward and backward corrective 288

saccades (that is, in the opposite and same direction of the 289

primary one, respectively), we fit a quadratic model to the 290

latency of secondary saccades (as the dependent variable) as 291

a function of their amplitudes (see SI and Fig. 5). We took 292

the residuals of this model and classified them into forward 293

and return saccades depending on the direction relative to 294

the primary saccade. We then took, for each participant, 295

the difference between the mean residuals of return saccades 296

(which were expected to have longer latencies) and of forward 297

saccades. This difference represents an estimate of the addi- 298

tional time cost required to prepare corrective saccades in the 299

opposite direction to the primary one (Fig. 5B). Overall, this 300

additional time cost was estimated to be about 30 ms, 95% 301

CI [18, 44]. 302

If the cost-function asymmetry that we estimated from the 303

bias-variability relationship of primary saccades were related 304

to this latency cost, then we should find a positive correlation 305

between these two measures. Our data support this conjecture, 306

providing clear evidence for a positive relationship (see Fig. 5), 307

Pearson’s r=0.50, 95%CI [0.28, 0.68]∗. Computed separately 308

for each experiment, the correlation estimates were: Exper- 309

iment 1: r=0.60, 95%CI [0.04, 0.89]; Experiment 2: r=0.62, 310

95%CI [0.25, 0.84]; Experiment 3: r=0.46, 95%CI [0.07, 0.73]. 311

To summarize, the joint analysis of secondary saccade latencies 312

and primary saccade bias and variability indicates that the 313

slower a participant is in correcting an overshoot error (rela- 314

tive to an undershoot), the more hypometric her/his saccades 315

become with uncertainty about target location. This finding 316

supports the notion that undershoots result from the visual 317

system’s strategy for keeping saccadic targets in the same 318

visual hemifield (15), and extends that notion by showing that 319

the parameters of primary saccades are optimized, taking into 320

account the possibility that a secondary, corrective movement 321

will be necessary. 322

Discussion 323

In the present study, we manipulated the positional uncer- 324

tainty of a peripheral visual target and examined how the 325

oculomotor system responded to increased uncertainty when 326

planning saccades. In Experiment 1, we found that increasing 327

the blur of the target (a Gaussian blob embedded in noise) 328

produced a larger spread of the saccadic landing positions 329

and decreased the precision of positional judgments in a re- 330

lated perceptual task. Crucially, as the uncertainty increased, 331

∗To estimate the correlation we removed 3 data points (out of 59) corresponding to participants for
which the standard error of the latency cost was larger than 30 ms (their mean standard error was
≈ 65 ms, whereas it was only ≈ 18 ms for the remaining participants). Adding these less reliable
data points does not change the conclusions and yields a correlation of r=0.41, 95%CI [0.18, 0.60].
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Fig. 4. Cost asymmetry determines the relationship
between saccadic variability and bias. A. Estimated
relationship between saccadic variability and bias for
some example participants (two participants for each
of the three experiments). The average saccadic gain
for each condition and session is plotted as a function
of the variability, as estimated by the model. Black
lines represent the predicted gain, assuming the opti-
mization of an asymmetrical, quadratic cost function.
(Symbols follow the same conventions of Fig. 2, with
the addition that for experiment divided in session with
different eccentricity ranges filled and empty symbols
indicate ‘small’ and ‘large’ sessions, respectively.) Er-
ror bars are 95% confidence intervals. B. Predicted
and observed saccadic gain for all the participants,
split by condition and experiment. The vertical and
horizontal dotted lines indicate group means. See Fig.
S1 for a similar plot showing observed and predicted
standard deviations of saccadic gain.

saccades also became more hypometric, and systematically332

shifted toward the mean location of the target, a form of cen-333

tral tendency bias (13). The decrease in saccadic amplitude334

was well described by a simple model based on the assump-335

tion that the system is adapted to optimize an asymmetrical,336

quadratic cost function. In support of this assumption, we337

found that the estimated degree of asymmetry of the cost338

function was related across participants to the additional time339

required to plan a backward corrective saccade, made in the340

opposite direction to the primary one, relative to a forward341

one made in the same direction. In other words, the more342

time participants required to correct an overshoot (relative343

to an undershoot) with a secondary saccade, the more they344

decreased the mean amplitude of their primary saccades as345

the uncertainty in the target’s position increased. These find-346

ings were corroborated by the results of Experiment 2 and 3,347

which also revealed that the reduced visibility of the target348

is the main source of these effects, while increasing the size349

of the target only produces a moderate, eccentricity-invariant350

decrease in saccadic amplitudes. Overall, the results presented351

here provide the first empirical evidence for theories arguing352

that an asymmetrical cost function is the source of the typical353

saccadic undershoot (15, 16), and establish experimentally the354

presence of a probabilistic mechanism that takes into account355

sensory and motor uncertainty to adjust where saccades are356

directed.357

There are several (not necessarily incompatible) reasons358

for why the saccadic system might have evolved to avoid over-359

shoot errors. According to one hypothesis (16), the system360

might seek to minimize the overall saccadic flight time: since361

visual sensitivity is much reduced during a saccade (17), it362

seems reasonable that the visual system may be adapted to363

maximize periods of clear view (even though the advantage364

would be only few milliseconds per saccade). Yet another365

hypothesis was advanced by Robinson (15), who proposed366

that the system may seek to maintain the post-saccadic target367

in the same visual hemifield as the pre-saccadic one, in order368

to facilitate further processing. This idea has been further369

developed by Ohl and colleagues (6, 18), who showed that sec-370

ondary saccades are faster and more frequent after undershoots.371

These findings were interpreted in the context of a conceptual372

model, originally developed to explain the generation of micro-373

saccades (19), which postulates that saccadic amplitudes are374

coded in a motor map endowed with short-range excitatory375

and long-range inhibitory connections. As a result, after each 376

saccade the spatial distribution of neural activity would be 377

biased toward the retinal location of the target in a way that 378

facilitates further movements along similar direction, while 379

slowing down movements in the opposite direction. If this 380

imbalance represented an implementation constraint of the 381

eye plant, then the system should take it into account by 382

adopting a strategy that reduces the likelihood of overshoot 383

errors. Therefore, Ohl’s conceptual model (6, 18) provides a 384

biologically plausible implementation of the cost function in 385

our model, which was formulated at a more abstract, computa- 386

tional level of description. Our results support this conjecture, 387

by showing that individual differences in the latency cost (see 388

Fig 5C) are positively correlated with the estimated asym- 389

metry of the cost function. Furthermore, additional analyses 390

confirmed that individual differences in the latency cost were 391

due to the difficulty in quickly planning backward corrective 392

movements (see Supplementary Information, Fig. S3), rather 393

than to the facilitation of forward corrections. This latter 394

finding supports our interpretation that the functional role of 395

saccadic hypometria is to avoid the slower corrections entailed 396

by overshoot errors. 397

The present results help resolve a debate in the literature 398

about the presence of a range effect (a central tendency bias) 399

in saccadic targeting (9–12) by demonstrating that, although 400

the range effect is not generally present when the target can 401

be located with good precision, it does emerge when the posi- 402

tional uncertainty is large. In agreement with previous reports 403

that ‘averaging’ saccades, which tend to fall in between the 404

target and a distractor, are biased toward the most proba- 405

ble location of the target (20) our results support the view 406

that a Bayesian process is working to optimize saccadic eye 407

movement by taking advantage of prior knowledge. Although 408

previous research suggested the saccades are normally based 409

only on the most recent sensory information available (21–23), 410

our current results show that when uncertainty is particularly 411

high the saccadic system can reflect expectations developed 412

over longer timescales, spanning multiple trials. 413

Finally, given that our experiment involved conditions of 414

artificially high uncertainty that are uncommon in everyday 415

life, one important issue in their interpretation is to what 416

extent they generalize to more ecological conditions. While 417

our experimental conditions were specifically designed to allow 418

precise measurements of saccadic bias and variability under 419
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DRAFT
Fig. 5. Cost asymmetry is related to the programming of corrective saccades. A.
Secondary saccades recorded in our experiments were corrective, as indicated by
their negative correlation with the error of primary saccades. (Ellipses are 95%
bivariate confidence intervals of the mean.) B. The latency cost is defined as the
difference in latency between backward and forward saccades, after correcting for
the mean trend due to the amplitude of secondary saccades (see SI for details, and
Fig. S2 for a plot of saccadic latencies distributions). C. The relationship between
estimated cost asymmetry (expressed as log-ratio of costs for an error of constant
size) and the latency cost. See Fig. S3 in the Supplementary Information for separate
analysis of the latencies of forward and backward saccades. Ellipses represent 75%
and 95% bivariate confidence intervals.

conditions of varying uncertainty, previous studies have demon-420

strated that a systematic undershoot bias is present also under421

more ecological conditions, involving for example free viewing422

(24), visual search (25, 26), and free scanning of continuously423

present targets (27). High rates of error-correcting secondary424

saccades were found also under conditions designed to increase425

the difficulty of saccadic targeting during the scanning of sta-426

tionary targets (28). In sum, the phenomena we examined in427

our study (saccadic undershoot and corrective saccades) are428

found also in a broad range of different and arguably more429

ecological experimental conditions, indicating that they reflect430

fundamental aspects of saccadic planning.431

In conclusion, our results demonstrate that a flexible adap-432

tive strategy underlies the control of saccadic amplitudes. By433

estimating the relationship between uncertainty about the434

target location, saccadic accuracy, and saccadic variability,435

we have shown that the typical undershoot bias of saccadic436

eye movements can be adequately explained as the result437

of strategy designed to optimize saccadic amplitudes, given438

sensorimotor uncertainty and an asymmetrical cost function.439

This strategy is probabilistic and Bayesian, in the sense that440

it must have at its disposal a trial-by-trial representation of441

uncertainty and it takes prior information into account. To-442

gether with previous reports that show how the distributions443

of saccadic landing positions are sensitive to rewards and task444

demands (29), the present results highlight the utility of eye-445

movement analysis as a tool to study probabilistic aspects of446

information processing in the brain.447

Materials and Methods 448

See SI for the details of the experimental procedures and statistical 449

analyses. All participants gave their informed consent in written 450

form; the protocol of the study received full approval from the 451

Research Ethics Committee of the School of Health Sciences of City, 452

University of London. Data and code are available as an Open 453

Science Framework repository: https://osf.io/293gc/. 454
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Supporting Information Text11

Material and methods12

Participants. In total, 55 naïve participants and 3 authors participated in 3 experiments. 10 naïve participants and 2 authors13

participated in Experiment 1 (mean age 37 years, SD 11.8; 2 females). 18 naïve participants and 2 authors participated in14

Experiment 2 (mean age 36 years, SD 12.1; 5 females). 25 naïve participants and 1 author participated in Experiment 315

(mean age 30 years, SD 9.1; 14 females). All participants had normal or corrected-to-normal vision and gave their informed16

consent in written form (the protocol of the study received full approval of the local ethics committee). Naïve participants were17

compensated with £8 for each hour of experiment.18

Apparatus. During both perceptual and saccadic tasks, right eye-gaze positions were recorded with an Eyelink 1000 (SR19

Research Ltd., Mississauga, Ontario, Canada). The participant’s head was placed on a chinrest with an adjustable forehead20

rest. Visual stimuli were presented on a gamma-linearized LCD monitor, 51.5cm wide, placed at 77cm of viewing distance.21

The monitor resolution was 1920×1200. An Apple computer controlled stimulus presentations and response collection; the22

experimental protocol was implemented using MATLAB (The MathWorks Inc., Natick, Massachusetts, USA), the PsychToolbox23

(1, 2) and the Eyelink toolbox (3).24

Stimuli. Stimuli were Gaussian blobs presented on a background made of squares (side≈0.08 deg), with random luminance25

drawn from a Gaussian distribution (RMS contrast≈10%). In Experiment 1, blobs with different space constants (σ) were26

designed to have the same total energy, a manipulation that has already been shown to influence uncertainty about target27

position (4, 5). The peak luminance of the blob with smallest σ in the set corresponds to the maximum luminance that can28

be reached by the display (147 cd/m2). When the peak coincided with a bright pixel of noise its luminance was set at this29

ceiling level. Three levels of σ were used: 0.3, 0.9 and 1.5 deg, which resulted in peak luminance values of 147, 57 and 5030

cd/m2, respectively. Experiment 2 was composed of two different conditions: in the first condition (fixed-size) σ was kept fixed31

at 0.9 deg, and we varied the peak luminance so as to match the peak luminance values obtained in Experiment 1. In the32

second condition (fixed-luminance), the peak luminance was fixed at the maximum value while σ varied in the same three33

levels of Experiment 1. Additionally, only in the fixed-luminance condition, we set the background noise to 0% RMS contrast.34

Experiment 3 used blobs with the same parameters as the fixed-size condition of Experiment 2.35

We note that previous studies using brief, masked saccadic targets (6) found that both the precision of position judgments36

and the saccadic gain decreased with the duration of target presentation. However, a more recent study (7) examined in detail37

the effect of masks on saccadic programming, and concluded that a mask influences saccadic programming in the same way38

that a remote distractor does (8). The effect of the mask on saccadic amplitude depended in a complex way on target duration39

and characteristics of the visual mask (7). In particular, a tendency for the opposite bias (overshoot or hypermetria) was found40

for short presentation durations, when the mask was limited to the hemifield of the target rather than covering all of the41

monitor’s width, suggesting that the effects of the mask are, at least in part, due to the spatial averaging (9) of mask and42

target. For these reasons, in the present study, we carefully avoided the use of spatially limited masks. One possible observation43

to our manipulations is that the more uncertain targets were also less salient. Although salience is an ill-defined concept, it is44

usually identified with low-level features such as luminance and contrast, which are known to bias saccadic landing positions45

when displays contain complex or multiple stimuli (10, 11). There is, however, little prior evidence that salience can influence46

saccadic accuracy in the case of single, simple targets such as our Gaussian blobs. For example, one study found saccadic47

accuracy to be roughly constant with respect to the luminance of the target, despite a large modulation of saccadic latencies48

(12).49

Procedure. In all tasks, each trial started when gaze position was maintained within 2 deg from the central fixation point for50

at least 200 ms. If the trial did not start within 2 seconds, the program paused, allowing participants to take a break and51

re-calibrate the eye-tracker. Participants were encouraged to take a break whenever they felt the need to rest. To prevent the52

use of monitor edges as stable landmarks for the localization of the peripheral targets, the position of the fixation point was53

jittered across trials: each trial a new position was drawn from a circular, 2D Gaussian distribution centered on the screen54

center, with a standard deviation of 0.2 deg. The position of the peripheral targets (the Gaussian blobs) was always clamped55

with respect to the trial-by-trial position of the fixation point.56

Perceptual task. The noise background (randomly generated each trial) appeared immediately after fixation was detected in the57

central position, followed after a random interval uniformly distributed within 300-500 ms by the two Gaussian blobs. The58

two blobs were placed at different distances on the left and right side of the fixation point. They were displayed for 250 ms,59

and then they disappeared together with the fixation point; the noise background instead remained visible until participants60

provided a response by pressing on the left/right arrow keys. The average distance of the two blobs was always 10 deg, while61

the difference in distance was adaptively adjusted using a separate QUEST+ (13) staircase for each blob’s space constant. The62

procedure allowed us to select, for each trial and separately for each blob’s σ, the stimulus that minimized the expected entropy63

of the three-dimensional posterior probability density of the parameter estimates of the psychometric function (a cumulative64

Gaussian psychometric function with symmetric lapse rate, i.e.65

Ψ (x, µ, σψ, λ) = λ+ (1− 2λ)Φ
(
x− µ
σψ

)
, [1]66
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where Φ is the CDF of the standard normal distribution, λ the lapse rate, and σψ is the shape parameter of the psychometric67

function, which will be referred to as JND). This method allows for the possibility that participants may have attentional lapses,68

while at the same time selecting ideal stimuli to constrain the parameters of the psychometric function. Participants performed69

one session of the perceptual task (12 blocks of 25 trials each) on each day of testing (in total each participant run 600 trials).70

Saccadic task. The background noise appeared after fixation was detected in the central position, and it was followed by the71

Gaussian blob after a random interval uniformly distributed within 300-500 ms. In Experiment 1 the blob was located to the72

left or to the right of the fixation point, at an eccentricity of either 8, 9, or 10 deg in the "small" eccentricity session, or at73

either 10, 11, or 12 deg in the "large" eccentricity session (naïve participants were not informed about the difference between74

the two sessions; for the two authors the order was selected randomly and they were not given explicit information about the75

range of target eccentricity). These two blocks were run on different days, with order counter-balanced across participants.76

In Experiment 2 all the 5 eccentricities of the target were presented within a single session. In Experiment 3, the range was77

extended to 8 different eccentricities, equally spaced between 6 and 13 deg, which were split into two sessions (large vs small,78

with the target at 9 and 10 deg present in both sessions). In all tasks, each trial started when gaze position was maintained79

within 2 deg from the central fixation point for at least 200 ms. If the trial did not start within 2 seconds, the program paused,80

allowing participants to take a break and re-calibrate the eye-tracker. Participants were encouraged to take a break whenever81

they felt the need to rest. To prevent the use of monitor edges as stable landmarks for the localization of the peripheral targets,82

the position of the fixation point was jittered across trials: each trial a new position was drawn from a circular 2D Gaussian83

distribution centered on the screen center, with a standard deviation of 0.2 deg. The position of the peripheral targets (the84

Gaussian blobs) was always clamped with respect to the trial-by-trial position of the fixation point. In Experiments 1 and 285

the blob was displayed for 500 ms, while in Experiment 3 the duration was increased to 800 ms, intended to allow more time86

for secondary, corrective saccades. In all cases participants were instructed to shift their gaze onto it with a single saccade,87

as quickly and as accurately as possible. Trials in which participants blinked or moved their gaze before the appearance of88

the target were aborted and repeated at the end of the block. In Experiment 1 each session comprised 288 trials divided in89

6 blocks (in total each participant run 576 trials); one of the participants ran the experiment split in 4 smaller sessions. In90

Experiment 2, each participant ran 2 sessions of the task for each of the two conditions (fixed-size and fixed-luminance); each91

session comprised 12 blocks of 15 trials (in total, each participant ran 720 trials). In Experiment 3, each participant ran 292

sessions, each comprising 240 trials, divided in 12 blocks. In all experiments the order of the different sessions (large vs small;93

fixed-size vs fixed-luminance) was counterbalanced across participants.94

Analysis95

Statistical analyses were performed using the free, open-source software R (14). Unless stated otherwise, group level estimates96

are reported as mean ± standard error, computed across participants and weighted by the number of trials (which could show97

slight variations across observers due different proportions of excluded trials). In the case of multilevel model estimates we98

reported the population level, or fixed-effect estimate, ± its standard error. Confidence intervals were obtained by bootstrapping99

(103 replications) using the bias-corrected and accelerated (Bca) method (15). χ2 statistics indicate likelihood ratio tests100

between a full model and a reduced model where the specified parameter was constrained to be zero.101

Perceptual task. To analyze psychophysical performance in our perceptual task while keeping into account the possibility that102

some error responses may be due to attentional lapses (i.e. stimulus-independent errors), we fit our data with 3 psychometric103

models that make different assumptions about the occurrence of lapses. The first model assumes that the lapse probability is104

always zero; the second one allows for a non-zero lapse probability that is assumed constant across conditions with different105

values of σ; the third model allows for lapse probability to vary across conditions (see Analysis section for details). We compared106

these different psychometric models using the AIC (Akaike Information Criterion). We found that for 10 out of 12 participants107

the model with fixed lapse rate was better than the model with varying lapse rate; and that for 7 out of 12 subjects the108

best model was the simpler one with lapse rate constrained to 0. Since we are interested in measuring how the positional109

uncertainty varies across conditions rather than in deciding which model provides a better description of the data, we averaged110

the estimates of the three models, weighting them according to the Akaike weights of each model (16), and performed group111

level analyses on the averaged estimates. The estimates of JNDs were: σ=0.3deg, JND=0.79±0.15deg (mean ± standard error);112

σ=0.9deg, JND=0.95±0.14deg; σ=1.5deg, JND=1.74±0.35deg.113

Pre-processing of gaze recordings. Saccadic onsets and offsets were detected offline using MATLAB and an algorithm based114

on two-dimensional eye velocity (17). More specifically, saccades were identified as outliers in the two-dimensional velocity115

distribution of each trial and were identified as the part of gaze recordings that exceeded the median velocity by 5 standard116

deviations for at least 8 ms. Once saccadic parameters were measured, further statistical analyses were made using the open117

source software R (14). In our analysis we considered the whole sequence of saccades and microsaccades produced since the118

detection of the initial fixation to the end of the trial. For each trial, we selected as the primary saccade the first saccade that119

started after the onset of the target, from within a circular area of 2.5 deg around the initial fixation point, ended outside of120

that circular area, and had an amplitude of at least 1 deg. We excluded trials where the primary saccade had a latency shorter121

than 100ms or longer than 600ms. Since we were interested in studying the whole distribution of saccadic amplitudes for a122

given target distance, rather than just the saccades of a pre-specified amplitude, we applied only a loose filter on saccadic123

landing locations, by excluding only those trials where the landing location was more than 3 standard deviations away from124
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the mean landing location (computed separately for each eccentricity and condition). In order to reduce the error due to125

imprecisions in the eye-tracker calibration, we took the difference between the coordinates of the central fixation point, and the126

mean of all initial saccadic positions (made by a participant in a particular session) and used it to correct the initial and final127

saccadic positions. Finally, since the gaze is typically not exactly on the fixation point when the saccade starts, we normalized128

saccadic amplitudes in order to remove the variability due to trial-by-trial fluctuations in the fixation position by computing129

Sn = T × S
E

where S is the raw saccade amplitude (distance between initial and final position), E is the retinal error of the130

target (distance between saccade initial position and target position), T is the distance of the target from the fixation point,131

and Sn is the saccade’s normalized ampitude. In this article all saccade amplitudes reported are normalized according to this132

procedure, unless stated otherwise. Since the position of the saccadic targets differed from the initial fixation points only in133

its horizontal coordinates, in our analysis we considered only the horizontal components of saccadic amplitudes. Moreover,134

the vertical landing positions did not show any systematic bias or relationship with the horizontal component of saccadic135

amplitudes.136

For the analysis of the range effect in Experiment 1 only, saccadic amplitudes were adjusted to eliminate differences across137

in mean baseline gain across sessions run on separate days. This correction was done by multiplying saccadic amplitudes in the138

session number i (with i=1,2) by the factor ci = 1 +G−Gi where Gi is the mean saccadic gain for a given subject in session i139

for the condition with smallest uncertainty (σ=0.3 deg) and G is the mean saccadic gain for the same condition but averaged140

over sessions. The correction is computed on the basis of the condition with σ=0.3 deg, because based on prior studies (18, 19)141

we did not expect any range effect in that condition, and before applying it we verified that this was the case also in our142

dataset (see Results). This allowed us to estimate how the central bias changed with respect to a baseline where uncertainty143

was minimal. This correction was not applied in the analysis of Experiment 3, in which both sessions were run in the same day.144

For analyses involving secondary-corrective saccades, we included in the analysis the first saccade after the primary one,145

with a latency of at least 30 ms from the offset primary saccade. Since this interval may include some voluntary saccades146

made by the participant to shift back their gaze toward the center of the screen, in anticipation of the next fixation target, we147

excluded secondary saccades that increased the error of the primary saccade by more than 2.5 deg.148

Analysis of saccadic landing positions. Multilevel models used in the analysis of saccadic landing positions were fitted using149

the R package lme4 (20). In all cases all fixed-effects parameters had corresponding random effects, grouped according to the150

participant. A fully parametrized, random effects variance-covariance matrix was estimated in all cases.151

Bayesian multilevel models (used in the analysis of the central bias) were estimated using Stan (21) and its R interface. In152

both Experiment 1 and Experiment 3, we fit the models using MCMC sampling to approximate the posterior distribution of153

the parameters. We ran six Markov chains of 2000 samples each, and verified convergence by checking that there were no154

divergent transitions and that the variance between and within chains did not differ significantly; the R̂ statistic was smaller155

than 1.1 for all parameters (22). Beta coefficients were given weakly informative Gaussian priors, with standard deviation of156

2, centered on zero for the intercepts and on 1 for the slopes of saccadic amplitudes. Compression parameters α were given157

Guassian priors centered on zero and with a standard deviation of 1. Bayesian credible intervals were obtained using the158

percentile method on the samples from the posterior distribution.159

In the analysis of secondary saccades, the use of a quadratic model is motivated by the observation that the relationship160

between secondary saccade latency and amplitude was not perfectly linear. Latency decreased faster for smaller amplitudes,161

and then tended to asymptote toward a minimum, as the amplitude increased. To better summarize this relationship, we162

added a quadratic term to the model, so that the expected value of the saccadic latency was modelled as a second-degree163

polynomial function of the saccadic amplitude. We included also the experiment (1, 2, or 3), with interactions for both the164

linear and quadratic terms, giving the model a total of 9 free parameters: 9 for the fixed effects (the three coefficients of a165

second-order polynomial times the three experiments) and 6 for the random effects (the elements of the variance-covariance166

matrix of a trivariate normal distribution). The model was fit to 7885 secondary saccades.167

Estimation of asymmetric cost function. It has long been known that saccades display not only a variable error but also a168

constant error or bias. This bias has been found also in other primate species (e.g. (23)), is typically larger in infants and169

gradually decreases during development (24) and some evidence suggests that it is present also in free-viewing tasks (25).170

While it is clear that the variable error originates from a combination of uncertainty in the estimated location of the target and171

motor noise (26), the origin of the undershoot has been long debated. Studies of oculomotor adaptation have provided the172

first empirical evidence that the undershoot bias may be a deliberate strategy: when the target position is moved during the173

saccade, so as to cancel the undershoot bias, the saccadic system quickly learns to undershoot the new, altered, postsaccadic174

location of the target (27). This empirical observation suggested that the oculomotor system is willing to tolerate a small175

undershoot bias in order to reduce the probability of overshoots. In the present study, we have formalized this idea by assuming176

that the system is optimizing an asymmetrical cost function that assigns a larger cost to overshoot errors than to undershoot177

of the same size. Specifically, we assumed that the saccadic system seeks to optimize the asymmetric cost function178

L(x) = [a+ (1− 2a) · 1x<0] · x2 [2]179

where x is the landing error in gain units (if S is the saccadic amplitude, and E the target eccentricity, then x = S/E− 1), 1x<0
is an indicator function (equal to 1 when the argument in the subscript is verified, and 0 otherwise) and a is the asymmetry
parameter, bounded between 0 and 1. Assuming that the variability of saccadic gain is well approximated by a Gaussian
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distribution, the expected cost for a given level of gain variability σg and cost asymmetry a can be expressed as

E [L | µ, σg, a] =
∫ ∞
−∞

L(x) · 1
σg
φ

(
x− µ
σg

)
dx [3]

=
µ2 + σ2

g

2 + (1− 2a)

 (µ2 + σ2
g) · erf

(
−µ√
2σg

)
2 − µ · σg · e

− µ2

2σ2
g

√
2π


where φ is the probability density function of the standard normal distribution, φ (x) = 1√

2π e
−x2/2, and erf the error function,180

erf (x) = 2/
√
π
∫ x

0 e−t
2
dt. Note that when a = 0.5 (i.e. the cost function is symmetric) the last term cancels out and the181

minimum of the expected cost is obtained for µ = 0, that is when the saccadic system aims precisely at the center of the target182

(by trying to produce a saccade with gain equal to 1). The above equations allow finding the ideal gain, arg minµ E [L | µ, σg, a],183

that is the aimpoint µ that yields the minimum of the expected cost for arbitrary levels of saccadic variability σg and cost184

asymmetry a. The ideal gain and the variability level can be used to specify a likelihood function for the observed distribution185

of saccadic errors for a given condition, i.e.186

p (x | σg, a) = 1
σg
φ

(
x− arg minµ E [L | µ, σg, a]

σ2
g

)
. [4]187

This likelihood function can be used to estimate the value of the parameters that maximize the probability of the observed188

data. We used Brent’s method (28) to find the ideal gain for given combinations of parameters, and we used box-constrained189

optimization (with 0 < a < 1 and all σg > 0), as implemented in the optim() function in R and the L-BFGS-B (29, 30)190

algorithm, to identify the parameters values that maximized the likelihood of the observed distributions of saccadic errors.191

The median of maximum-likelihood estimates of the asymmetry parameter (together with their 95% confidence intervals)192

was 0.87 [0.75, 0.94] in Experiment 1, 0.87 [0.74, 0.89] in Experiment 2, and 0.88 [0.82, 0.95] in Experiment 3. Individual193

differences in the degree of asymmetry of the cost function were examined by analyzing the logarithm of the cost ratio between194

overshoots and undershoots (given a fixed error magnitude), which can be calculated as log
(

α
1−α

)
. We preferred to use195

the logarithm of the ratio in order to compute the correlations reported in the main text, because its distribution is not196

different from normal according to a Kolmogorov-Smirnoff test, D=0.07, p=0.92, whereas both the distributions of the pa-197

rameter α and that of the simple ratio did deviate significantly from normality:α, D=0.20, p=0.01; cost-ratio, D=0.28, p=0.0001.198

199

To assess the predictive ability of our model based on the quadratic-asymmetric cost function, we compared it against an200

alternative, descriptive model by means of a cross-validation test. The alternative, descriptive model assumed only that the201

undershoot bias has a linear relationship with saccadic variability, without requiring that this relationship be adequate for202

minimizing an asymmetrical cost function. More specifically, while the relationship in the asymmetric-cost model is specified203

by a single parameter (the parameter which determines the asymmetry of the function), in the null model this relationship is204

determined by two parameters, an intercept (β0) and a slope (β1). The likelihood function for this model can be expressed as205

p (x | σg, β0, β1) = 1
σg
φ

(
x− β0 − β1σg

σ2
g

)
. [5]206

In order to quantitatively evaluate the predictive ability of the quadratic-asymmetric model, we performed a cross-validation207

test. For each participant we iteratively estimated the model, keeping the data from one condition aside as test set. In each208

experiment there were six of such conditions (three levels of uncertainty times 2 sessions). In the cross-validation test we209

iteratively fitted the model on five of these, and used the estimated parameters to predict the hold-out test condition. Overall,210

across the three experiments, the cross-validated log likelihoods (summed over test set for each participant) indicated that211

for 43 out of 59 cases the quadratic-asymmetric model was better at predicting the test set than the null model. The mean212

log-likelihood difference (quadratic minus null) was 17853 (SD: 10164, range: -60 to 580115). To summarize, this result indicates213

that assuming an asymmetric cost function results in a better and more parsimonious description of the data.214

Supplemental results215

Perceptual precision decreases with increasing blur of the targets. In our first experiment positional uncertainty was manip-216

ulated by varying the space constant (σ) of a Gaussian blob embedded in noise. The maximum luminance of this saccadic217

target co-varied, such that its contrast energy remained constant. To verify that our manipulation did indeed affect positional218

uncertainty we used a perceptual bisection ta sk, in which two targets were simultaneously presented for 250ms and participants219

(n=12) were asked to indicate which of the two was the furthest from an intermediate fixation point. Our dependent variable220

was the just noticeable difference, or JND, quantified here as the reciprocal of the psychometric slope. A repeated-measures221

ANOVA confirmed that the JND increased with the space constant of the Gaussian blob, F (2, 22) = 16.74, p = 4.48× 10−4. In222

sum, the results of the perceptual task confirmed that our manipulation successfully affected the positional uncertainty of the223

target, presumably because of imperfect spatial integration of target’s luminance contrast, which would make these larger224

targets harder to see.225
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Relationship between saccadic latency and undershoot. The undershoot also varied with saccadic latency, with a tendency226

toward greater undershoots with longer latencies. This finding precludes any speed-accuracy trade-off (cf. (31)). We binned227

trials according to the quartiles of individual latency distributions, and run a two-way repeated measures ANOVA to assess228

whether saccadic gain varied as a function of latency. We found an interaction between latency quartile and σ, suggesting that229

the effect of latency tended to become larger as σ increased [latency quartile, F (3, 33) = 2.40, p = 0.086; σ, F (2, 22) = 16.21,230

p = 4.71×10−5; interaction: F (6, 66) = 2.68, p = 0.022]. This pattern is opposite to what has been reported in a study of target231

displacement (i.e., from fixation to the parafoveal visual field; (32)), wherein saccadic delay allows a low-pass filtered signal of232

the target’s position to approach its asymptote. In our case, fluctuations in saccadic latency were likely caused by differences233

across trials in the random noise background and its effect on target visibility. Indeed, less visible targets, which resulted in234

longer latencies, produced also a greater spread of saccadic landing positions [latency quartile, F (3, 33) = 5.09, p = 0.005; σ,235

F (2, 22) = 7.41, p = 0.003; interaction: F (6, 66) = 1.55, p = 0.174], suggesting that target visibility is the main modulator of236

positional uncertainty.237
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Fig. S1. Relationship between observed and predicted (that is the model-based estimate σg ) standard deviation of saccadic gain. Conventions are the same as Fig. 4B, Main
text.
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Fig. S2. Empirical distribution functions of secondary saccadic latencies, pooled across all experiments and divided according to the direction (forward vs. backward, continuous
and dashed lines, respectively) and the conditions of expected uncertainty (from right to left, increasing blur, decreasing luminance or increasing size).
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Fig. S3. Additional analyses of secondary saccade latencies. To further investigate the origins of the individual differences in the latency cost that we measured (see Fig.
5B and 5C in the main text), we examined the relationship between the estimated cost asymmetry and the latency of forward and backward secondary saccades. Panel
A represents the raw latencies, split according to direction (forward vs backward), and plotted as a function of the log cost asymmetry. Ellipses represents 95% bivariate
confidence intervals of the mean, and the lines show linear regressions with 95% confidence bands. Panel B represents the same analysis but performed on the residual
individual differences in latencies, that is after removal of the mean effect of saccadic amplitude (as shown in Fig. 5C). The values of the parameters, together with bootstrapped
95% CI are shown in panel C. The intercept parameter represents latency when the estimated ratio of undershoot and overshoot costs is 1 (and therefore the log cost ratio is
equal to 0, indicating a symmetrical cost function). It can be seen that this parameter does not differ significantly between forward and backward saccades. This indicates that,
for subjects with very small asymmetry (log cost-ratio ≈ 0), the latency of secondary saccades was similar regardless of the direction (forward vs backward). However, as
the estimated cost asymmetry increases, we find that the average latency of secondary backward saccades increases systematically (see the slope parameters in panel C),
whereas that of the forward saccades remains constant. In other words, the between-subjects variability in the latency cost that we measured (i.e. the latency of backward
saccades minus that of forward saccades) is due to backward saccades being slower in subjects with greater cost asymmetry, and not from forward saccades being faster. To
summarize, this analysis reveals that subjects with a greater cost asymmetry (i.e. those who, given a certain increase in saccadic variability, display the largest increase in
the undershoot bias) are characterized by comparatively slower backward secondary saccades; not faster forward ones. Thus, the relationship between saccadic variability
and undershoot bias appears to be determined by the increased difficulty (for the oculomotor system) in programming a backward corrective saccade. This finding therefore
supports our hypothesis that participants who have slower backward saccades avoid costlier overshoot errors by undershooting more, as end-point variability increases.
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