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Abstract

Reliability analysis of systems based on component reliability models has drawn
the great interest of many researchers so far, as one of the fundamental aspects of
reliability assessment issues. In particular, reliability analysis considering depen-
dent failure occurrences of system components is important because the compo-
nents may fail mutually due to sharing workloads such as heat, tasks and so on. In
such a situation, we are liable to incorrectly estimate the reliability of the system
unless we consider the possibility of the dependent failure occurrence phenomena.
Thus, there are many publications about this topic in the literature. Most of the
existing studies deal with the dependent failure between any two components in
a multi-component system since its mathematical formulation is comparatively
easy. However, the dependent failure may occur among two or more components
in actual cases.

In this thesis, we aim at developing reliability analysis techniques when sev-
eral components of a system break down dependently. First, we newly formulate
a reliability model of systems with the dependent failure by using a multivariate
Farlie-Gumbel-Morgenstern (FGM) copula. Based on the model, we investigate
the effect of the dependent failure occurrence on the system’s reliability. Sec-
ondly, we deal with the parameter estimation for the model in order to evaluate
the dependence among the components by using their failure times. To do so, we
propose a useful estimation algorithm for the multivariate FGM copula. In addi-
tion, we theoretically reveal the asymptotic normality of the proposed estimators
and numerically investigate the estimation accuracy. Finally, we present a new
method for the detection of the dependent failure occurrence in an n-component
parallel system. These results are helpful to both quantitative and qualitative
reliability assessment of the system under the possibility of the dependent failure
occurrences. Also, our estimation method is especially applicable not only the
reliability analysis but also other research fields.
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Chapter 1

Introduction

1.1 Reliability engineering

According to O’Connor, Newton and Bromley [42], reliability engineering origi-

nated in the United States during the 1950’s as a separate engineering discipline.

In its early stage, techniques of reliability engineering had been developed to im-

prove the reliability of military systems. After that, it continuously had evolved

through space exploration programs. For example, in Apollo program (1961-1972),

reliability approaches had been concerned as one of the most significant factors to

assure the success of the mission [55]. Today, reliability engineering has con-

tributed to the improvement of the reliability of various engineering systems such

as electronic devices, communication systems, software systems and so on. In this

way, the more systems support our lives, the more important reliability techniques

are.

In general, systems, components and items eventually break down if we con-

tinue to use them. Therefore, designers, manufacturers, and end users would like

to often maximize system performance and efficiently use their given resources due

to cost reduction, assuring safety and so on. To do so, it is important to know

how often failures may occur. Then, this topic leads to predicting the frequency of

the failure occurrences in the system. However, because we cannot fully analyze

most failure mechanisms in a particular design, the prediction of failures is associ-

ated with uncertainty. That is, it is inherently a probabilistic problem. Therefore,

mathematical and statistical methods can be used for reliability analysis.
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Reliability analysis based on component reliability models has drawn the great

interest of many researchers so far, as one of the fundamental aspects of reliability

assessment issues. Thus, there are many publications on this topic in the literature.

For instance, Carhart [3] is one of the oldest contributions which surveyed the

reliability analysis for series and parallel systems with identical components. Also,

Creveling [8] and Moore and Shannon [34] dealt with more complex systems like

series-parallel and network systems for instance. Zelen [62] well summarized the

reliability analysis for redundant systems including such systems. However, most

of these studies assumed that the lifetimes of the components are statistically

independent.

1.2 Dependent failure analysis

In actual practice, system components may fail mutually due to sharing workloads

such as heat, tasks and so on [32, 56, 64]. Such a failure is called dependent

failure. For example, the dependent failure was observed in the space development

programs in the 1960’s [56]. During the reentry of Gemini spacecraft, one of the

two guidance computers failed, and a few minutes later the other one also failed.

This is because the temperature inside the two computers was much higher than

expected. That is, the two computers failed dependently due to sharing the heat.

In general, the more complex a system is, the more likely the dependent failure

occurs in the system.

The major problem of the dependent failure is that it can cause severe deteri-

oration of the reliability of the redundant system [32]. Moreover, we are liable to

incorrectly estimate the reliability of the system unless we consider the possibility

of the dependent failure occurrence. Therefore, reliability analysis considering the

dependence among the components is required.

The widely acceptable definition of the dependent failure is a set of events in

which the probability of each failures is dependent on the occurrence of the other

failures [33]. In general, the major causes of the dependent failures among systems

or components can be summarized as shown in Tab. 1.1. For example, the case of

Gemini spacecraft [56] is the dependent failure of intersystem due to the physical

reason.
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Table 1.1: Types of dependent events (cf. [33], on page 390).

The effect of the dependent failure occurrence on the system reliability has been

investigated by many researchers. For example, Meeker and Escobar [32] indicated

that the dependence between two components deteriorates/improves the system

reliability. They assumed that the distribution of logarithm of the failure times of

the individual components is bivariate normal distribution with the same mean,

the same deviation and a linear correlation ρ. They stated that when there is the

positive correlation between the failure times of the individual components, the

designed reliability of the series system exceeds the reliability that is predicted by

the 2-independent-component series system as shown in Fig. 1.1. On the other

hand, Fig. 1.2 illustrates that the reliability of the 2-component parallel system

declines when the failure times of the individual components have the positive

correlation. As a result, the paper suggested that the multivariate generalization

of these results is important in reliability modeling application.
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Figure 1.1: Reliability of the 2-dependent-component series system with a linear

correlation ρ [32].

Figure 1.2: Reliability of the 2-dependent-component parallel system with a linear

correlation ρ [32].

An early model of the dependent failure in multi-component systems was pro-

posed by Marshall and Olkin [30]. Their model describes common cause failure

in a multi-component system by using a multivariate exponential distribution.

O’Connor and Mosleh [41] applied a Bayesian network model for common cause
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failure in order to consider the coupling mechanism of components. Humphreys

and Jenkins [20] investigated analysis methods and a cause classification scheme

for the dependent failures.

In the last decade, reliability analysis for the dependent failure by using copulas

is one of the challenging research topics. The copula is a function that joins several

one-dimensional distribution functions to form a multivariate distribution function

with dependency. Also the copula works as a multivariate distribution function by

itself. For examples, Eryilmaz and Tank [11] showed that the positive dependence

between the two components improves the mean time to failure (MTTF) of the

2-component series system by the FGM copula and Ali-Mikhail-Haq copula. Ota

and Kimura [46] investigated the effect of the dependence into the reliability of an

n-component parallel system and series one in the same fashion. Navarro, Ruiz and

Sandoval [39] developed a reliability model for coherent systems with n dependent

components by many kinds of copulas.

Most of the existing studies focus on the dependent failure between any two

components in order to simplify the complexity of the mathematical models. How-

ever, the dependent failure may occur among two or more components in actual

cases.

Therefore, in this thesis, we aim at developing reliability analysis techniques

when several components in a system break down dependently. In this thesis, we

develop two statistical models of systems. The first one is based on the multivari-

ate FGM copula. The second one is based on a switching mechanism of hazard

rate functions. By using these models, we evaluate multivariate dependencies

among system components. They are helpful to both quantitative and qualitative

reliability assessment of the system under the possibility of the dependent failure

occurrences.

1.3 Organization of this thesis

This thesis is divided into six chapters, Appendix and Bibliography. In detail,

Chapter 2 mainly provides mathematical preliminaries and new results of a copula.

In this study, we use the FGM copula as a modeling tool of a pendent failure-

occurrence environment. The FGM copula is one of the copulas and a multivariate

5



distribution with high flexibility. At first, this chapter provides the definition and

some fundamental properties of the copula. Then, we introduce several unique

features of the FGM copula. Finally, we newly reveal the necessary conditions

of the exact ranges of the dependence parameters of the minimum and maximum

value distributions which are based on the FGM copula and show their asymptotic

properties. This result is given by Ota and Kimura [49].

In Chapter 3, we develop reliability models of a parallel system and series

system with n dependent components by using the multivariate FGM copula.

Then, we investigate several reliability-related properties of the systems. As a

result, we reveal that the n-component parallel system cannot deliver its designed

reliability if the lifetimes of the individual components have positive dependence.

On the other hand, we present that the n-component series system can exceed its

designed reliability under such dependent failure-occurrence environment. This

result is given by Kimura, Ota and Abe [27] and Ota and Kimura [46].

In Chapter 4, we present an estimation algorithm for the model parameter and

refer to its asymptotic normality. More specifically, we deal with the parameter

estimation for the d-variate FGM copula which consists of 2d − d− 1 dependence

parameters to be estimated. We propose a new estimation method of the param-

eters of the FGM copula by using the theory of the inference function for margins

[25]. Although the ordinary maximum likelihood estimation is computationally

infeasible for a large number d, our method is feasible for the same situation.

Then, we analytically show its asymptotic property. Finally, we demonstrate the

performance of the proposed method through simulation studies. This result is

given by Ota and Kimura [47] and Ota and Kimura [48].

In Chapter 5, we deal with detection of a dependent failure occurrence in an

n-component parallel system. Making a system redundant by combining identi-

cal components is a useful way to ensure a highly reliable system. However, the

components of such systems may fail mutually, and if the components break down

dependently, the reliability of the system decreases. Therefore, reliability analy-

sis considering the dependence among the components is important in reliability

assessment. In this chapter, we propose a statistical detection method of the de-

pendent failure occurrence in n-component parallel systems by using the failure

occurrence times of the components. If we assume that the lifetime distribution

6



of the components worsens if k out of n components failed, the dependent failure

occurrence can be found by identifying the change of the distribution. Finally, the

performance of the proposed method is demonstrated by simulation studies. This

results is given by Ota and Kimura [43] and Ota and Kimura [45].

In Appendix, the mathematical proofs of principal theorems and corollaries

derived in Chapter 2 and Chapter 4 are given.

7



Chapter 2

Copula

In Chapters 3 and 4, we deal with the FGM (Farlie-Gumbel-Morgenstern) copula

as a modeling tool of a dependent failure-occurrence environment. The FGM

copula is one of the copulas and a multivariate distribution with high flexibility.

As the preliminaries, this chapter provides the definition and some fundamental

properties of the copula at first. Then, we introduce several unique features of

the FGM copula. Finally, we newly reveal the necessary conditions of the ranges

of the dependence parameters of the minimum and maximum value distributions

which are based on the FGM copula and show the asymptotic properties of the

ranges. This result is given by Ota and Kimura [49].

2.1 Copula

The copula is defined as a multivariate distribution function as follows [40].

Definition 2.1. For a d-variate distribution function H, with univariate marginal

distribution functions F1, . . . , Fd, we say that C : [0, 1]d → [0, 1] associated with H

is a copula if

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.1)

for x1, . . . , xd ∈ R.

Here, we introduce an important theorem of copulas, Sklar’s theorem [40].

Theorem 2.1. Let H be a d-variate distribution function with univariate marginal

distribution functions F1, . . . , Fd. If F1, . . . , Fd are continuous functions, then the

8



following relationship is uniquely determined.

C(u1, . . . , ud) = H(F−1
1 (u1), . . . , F

−1
d (ud)), (2.2)

for u1, . . . , ud ∈ [0, 1].

Hence, for many theoretical questions about copulas, one can concentrate on that

all marginal distributions are the uniform distribution in the interval [0, 1].

If C(u1, . . . , ud) is a continuous function, then its density function is given by

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud

. (2.3)

Next, we consider the joint density function of Eq. (2.1) with univariate marginal

distribution functions F1, . . . , Fd. Let h be the joint density function of Eq. (2.1).

If F1, . . . , Fd are continuous functions with respective densities fi(x) =
d
dx
Fi(x) for

i = 1, . . . , d, then the joint density function is given by

h(x1, . . . , xd) = c(u1, . . . , ud)
d∏

i=1

fi(xi). (2.4)

Moreover, the fact that C is a distribution function leads us to the following

properties.

• C(u1, . . . , ud) is an increasing function for u1, . . . , ud ∈ [0, 1].

• If at least one of (u1, . . . , ud) takes the value 0, then C(u1, . . . , ud) = 0 holds.

• The i-th marginal distribution function is given by setting uj = 1 for j ̸= i

as

C(1, . . . , 1, ui, 1, . . . , 1) = ui. (2.5)

For further mathematical formulations and their theoretical deployment to a mul-

tivariate version, refer to [22, 25, 40] for instance.

9



2.2 FGM copula

The FGM copula is one of the copulas. In the early stage of the studies, Farlie

[12], Gumbel [16] and Morgenstern [35] have discussed families of the bivariate

FGM copula. Then, Johnson and Kotz [26] formulated a multivariate version

of the FGM copula. In particular, the multivariate FGM copula is useful as an

alternative to a multivariate normal distribution because it has a simple form and

it can express mutual dependencies among two or more variables [22]. Therefore,

the FGM copula has been applied to stochastic models in various research fields

such as finance, economics, reliability engineering and so on (see e.g., [6, 11, 52]).

For various interesting results on the FGM copula, see e.g., [26, 29, 50].

2.2.1 Definition

According to [26, 40], the joint distribution function of the multivariate FGM

copula, written by C, is defined by

C(u1, . . . , ud) =
( d∏

i=1

ui

)(
1 +

∑
S∈S

θS
∏
j∈S

uj

)
, (2.6)

where 0 ≤ ui ≤ 1 for i = 1, . . . , d and ui = 1 − ui. The set S consists of the

subsets which are all combinations of at least two elements of the index number set

{1, . . . , d}. The set S represents an element of S , and j is an index number belongs

to S. Equation (2.6) contains 2d − d− 1 parameters denoted by θS. If all θS’s are

0, Eq. (2.6) corresponds to
∏d

i=1 ui. This means all variables are independent each

other. If not, they are dependent. Therefore, we call θS dependence parameter in

this thesis.

The joint density function of the d-variate FGM copula is given by

c(u1, . . . , ud) = 1 +
∑
S∈S

θS
∏
j∈S

(1− 2uj). (2.7)

For example, when d = 3, the dependence parameters are {θ{1,2}, θ{1,3}, θ{2,3}, θ{1,2,3}},

10



and the joint distribution function is given by

C(u1, u2, u3) = u1u2u3(1+θ{1,2}u1u2+θ{1,3}u1u3+θ{2,3}u2u3+θ{1,2,3}u1u2u3). (2.8)

There is a constraint for the dependence parameters. θS’s must be the param-

eter such that the joint density function always takes non-negative values. Thus,

it is easy to see that θS’s must satisfy the following limitation (cf., [22, 26]).

1 +
∑
S∈S

θS
∏
j∈S

(1− 2uj) ≥ 0, (2.9)

where ∀(u1, . . . , ud) ∈ [0, 1]d. More specifically, in the case of d = 2, we have

1 + θ{1,2}(1− 2u1)(1− 2u2) ≥ 0. (2.10)

In order to find the range of θ{1,2}, we investigate the following four cases, i.e.,

(u1, u2) = (0, 0), (0, 1), (1, 0) and (1, 1) for the necessary and sufficient conditions

for Eq. (2.10). Therefore, they yield

1 + θ{1,2} ≥ 0

1− θ{1,2} ≥ 0

}
. (2.11)

Hence, the appropriate range of θ{1,2} is given by

−1 ≤ θ{1,2} ≤ 1. (2.12)

For d = 3, since S = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, we have

C(u1, u2, u3) = u1u2u3

[
1 + θ{1,2}(1− u1)(1− u2)

+ θ{1,3}(1− u1)(1− u3) + θ{2,3}(1− u2)(1− u3)

+ θ{1,2,3}(1− u1)(1− u2)(1− u3)
]
. (2.13)

By the same manner, the constant parameters θ{1,2}, θ{1,3}, θ{2,3} and θ{1,2,3} have

11



to hold the following conditions (e.g., [26]).

1 + θ{1,2} + θ{1,3} + θ{2,3} ≥ |θ{1,2,3}|
1 + θ{1,2} − θ{1,3} − θ{2,3} ≥ |θ{1,2,3}|
1− θ{1,2} + θ{1,3} − θ{2,3} ≥ |θ{1,2,3}|
1− θ{1,2} − θ{1,3} + θ{2,3} ≥ |θ{1,2,3}|

 . (2.14)

Thus for example, if θ{1,2,3} = 1, the other parameters are fixed to θ{1,2} = θ{1,3} =

θ{2,3} = 0. On the contrary, if θ{1,2} = θ{1,3} = θ{2,3} = 0, then −1 ≤ θ{1,2,3} ≤ 1.

These conditions which are structured as Eq. (2.14) become complex when n is

large.

2.2.2 Relationship with correlation indices

We additionally mention three correlation indices between two variates, namely,

Kendall’s τ , Spearman’s ρ, and Pearson’s linear correlation r. All of the correlation

indices are known as non-parametric ones, and these can be expressed by utilizing

a copula function. Considering population-based definitions of them, we obtain

the following relationships between one of them and θ{1,2} of the FGM copula [40].

Kendall’s τ of the population version can be obtained by

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)c(u1, u2)du1du2 − 1. (2.15)

In the case of FGM copula, we have

τ =
2

9
θ{1,2}. (2.16)

On the other hand, Spearman’s ρ of the population version is given by

ρ = 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3

=
1

3
θ{1,2}, (2.17)

based on the FGM copula. Finally, Pearson’s linear correlation r of the population

12



version is as follows.

r = 12

∫ 1

0

∫ 1

0

u1u2c(u1, u2)du1du2 − 3

=
1

3
θ{1,2}, (2.18)

Note that these indices are free from the selection of marginal distributions of

the copula. This is greatly related to the fact that a copula function can separately

treat the concept of ‘coupling’ and the selection of the marginal distributions.

Also considering the range of θ{1,2} is −1 ≤ θ{1,2} ≤ 1, we understand that the

FGM copula cannot describe the strong dependence, that is, −2/9 ≤ τ ≤ 2/9,

−1/3 ≤ ρ ≤ 1/3 and −1/3 ≤ r ≤ 1/3, respectively.

2.3 Minimum and maximum value distributions

based on d-variate FGM copula

2.3.1 Introduction

One unresolved problem of the FGM copula is that restrictions of its parameters

have not been found as closed forms. For this reason, for example, it has been

difficult to estimate the dependence parameters of the FGM copula so far. As we

mentioned before, the d-variate FGM copula has totally 2d − d − 1 dependence

parameters. In general, a lot of papers have referred to this restriction (e.g.,

[2, 17, 40]). However, there are few studies that explicitly derive the exact ranges

of the parameters for d ≥ 4 in particular because of its complexity.

Under such a situation, as a first step, we focus on the minimum and maximum

value distributions which are constructed by the d-variate FGM copula in this

paper. The former distribution can describe the lifetime (first failure occurrence

time) of a series system with d dependent components, and the latter one does

that of a dependent parallel system. In addition, in order to reduce the complexity

involved in the d-variate FGM copula, we assume that all dependence parameters

are represented by just one parameter. As a result, the necessary conditions for

the dependence parameter of minimum and maximum distributions are explicitly

13



provided.

2.3.2 Main results

From Eq. (2.14), we can see that it is very hard to derive the exact ranges of the

dependent parameters unless some certain conditions are made. Therefore in this

section, as we mentioned in Subsection 2.3.1, we try to obtain the ranges of the

dependence parameters for the minimum and maximum value distributions based

on n-variate the FGM copula when all of the dependence parameters are identical

to θ. That is, we assume that θ ≡ θS for all S in Eq. (2.6).

We first show the minimum and maximum value distributions derived from

one-parameter d-variate FGM copula. Suppose U = (U1, . . . , Ud) be a random

vector that follows an FGM copula with n uniform marginal distributions on

the interval [0, 1]. Let U1:d and Ud:d be the minimum and maximum values of

U , respectively. Let C1:d(u; θ1:d) and Cd:d(u; θd:d) denote the cumulative distribu-

tion functions (CDF) of U1:d and Ud:d, respectively. According to [39] and [27],

C1:d(u; θ1:d) is written as

C1:d(u; θ1:n) = Pr[min(U1, . . . , Ud) ≤ u]

= 1− (1− u)d

(
1 + θ1:d

d∑
k=2

(
d

k

)
(−u)k

)
. (2.19)

Also Cd:d(u; θd:d) is given by

Cd:d(u; θd:d) = Pr[max(U1, . . . , Ud) ≤ u]

= ud

(
1 + θd:d

d∑
k=2

(
d

k

)
(1− u)k

)
. (2.20)

Note that we rewrite θ to θ1:d and θd:d in the above equations respectively in order

to distinguish these two parameters.

The following theorems present the necessary conditions for the ranges of θ1:d

and θd:d in Eqs. (2.19) and (2.20), respectively. In addition, these theorems yield

corollaries about their asymptotic properties.

14



Theorem 2.2. The range of θ1:d is given by the following inequality.

− 1

d− 1
≤ θ1:d ≤

1

2− 2(1− u∗
d)

d − (1 + d)u∗
d

, (2.21)

where

u∗
d = 1−

(
1 + d

2d

) 1
d−1

. (2.22)

Corollary 2.1. As d → ∞, the range of θ1:d is obtained as

0 ≤ θ1:d ≤
1

1− log2
≃ 3.259. (2.23)

Theorem 2.3. The range of θd:d is given by the following inequality.

− 1

2d − 1− d
≤ θd:d ≤

1

(1− v∗d){1 + d− 2(2− v∗d)
d−1}

, (2.24)

where v∗d is the solution of the following equation.

d(2− v∗d)
d−1 − (d− 1)(2− v∗d)

d−2 − 1 + d

2
= 0, (2.25)

for 0 ≤ v∗d ≤ 1.

Remark 2.1. The asymptotic property of v∗d is as follows.

lim
d→∞

v∗d = 1. (2.26)

This remark offers some support to the next conjecture.

Conjecture 2.1. As d → ∞, the following equation holds.

lim
d→∞

1

(1− v∗d){1 + d− 2(2− v∗d)
d−1}

= 0. (2.27)

This conjecture is derived by Remark 2.1 and the assumption that 1 + d −
2(2− v∗d)

d−1 diverges to positive infinity more quickly than 1− v∗d converges to 0.

Then we have the following corollary.

Corollary 2.2. As d → ∞, the range of θd:d is convergent to 0.
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Note that proofs for Theorem 2.2 and Corollary 2.1 are given in Appendix.

Also, we would like to omit the proofs ofTheorem 2.3 andCorollary 2.2 because

they can be shown in the same way as those of Theorem 2.2 and Corollary 2.1.

In summary, the above results guarantee that the ranges of θ1:d and θd:d depend

on only d, and the ranges become narrower as d increases. For example, Table 2.1

shows the numerical results of the ranges of θ1:d and θd:d for d = 2, . . . , 30, and

∞. Note that every value is calculated by Eqs. (2.21) and (2.24), and rounded to

the nearest thousandth. This table implies that the ranges of the negative values

of θ1:d and θd:d are narrower than those of the positive values, respectively. In

addition, we can find that the range of θd:d is narrower than that of θ1:d.

Table 2.1: Numerical results of the ranges of θ1:d and θd:d.

d θ1:d θd:d d θ1:d θd:d
2 [−1.000, 8.000] [−1.000, 8.000] 17 [−0.063, 3.559] [−0.000, 1.104]

3 [−0.500, 5.639] [−0.250, 4.440] 18 [−0.059, 3.541] [−0.000, 1.070]

4 [−0.333, 4.850] [−0.091, 3.229] 19 [−0.056, 3.526] [−0.000, 1.039]

5 [−0.250, 4.454] [−0.038, 2.611] 20 [−0.053, 3.512] [−0.000, 1.011]

6 [−0.200, 4.216] [−0.018, 2.232] 21 [−0.050, 3.499] [−0.000, 0.985]

7 [−0.167, 4.057] [−0.008, 1.974] 22 [−0.048, 3.488] [−0.000, 0.961]

8 [−0.143, 3.943] [−0.004, 1.786] 23 [−0.045, 3.477] [−0.000, 0.940]

9 [−0.125, 3.858] [−0.002, 1.642] 24 [−0.043, 3.468] [−0.000, 0.920]

10 [−0.111, 3.792] [−0.001, 1.528] 25 [−0.042, 3.459] [−0.000, 0.901]

11 [−0.100, 3.738] [−0.000, 1.435] 26 [−0.040, 3.451] [−0.000, 0.884]

12 [−0.091, 3.695] [−0.000, 1.357] 27 [−0.038, 3.444] [−0.000, 0.868]

13 [−0.083, 3.659] [−0.000, 1.292] 28 [−0.037, 3.437] [−0.000, 0.852]

14 [−0.077, 3.628] [−0.000, 1.235] 29 [−0.036, 3.430] [−0.000, 0.838]

15 [−0.071, 3.602] [−0.000, 1.186] 30 [−0.034, 3.425] [−0.000, 0.825]

16 [−0.067, 3.579] [−0.000, 1.143] ∞ [ 0, 1/(1− log2)] 0

2.3.3 Discussion and concluding remarks

The results in the previous subsection have been obtained from the necessary

condition such that the density function always takes non-negative value for any

u ∈ [0, 1] and d in the case of the minimum value distribution (and the maximum
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one as well). Therefore the ranges obtained by Eqs. (2.21) and (2.24) are both

lack of sufficiency. In order to show this fact, let us go back to the FGM copula

presented in Eq. (2.14) with d = 3. By setting all the parameters θ{1,2}, θ{1,3},

θ{2,3} and θ{1,2,3} be identical to θ in Eq. (2.14), we can calculate the possible range

of θ as

−1

4
≤ θ ≤ 1

2
. (2.28)

On the other hand, from Table 2.1, we recall

−1

2
≤ θ1:3 ≤ 5.639, (2.29)

−1

4
≤ θ3:3 ≤ 4.440, (2.30)

for the two kinds of dependence parameters, respectively. It should be noted that

the minimum and maximum value distributions based on the FGM copula are

both exist only if the d-variate FGM copula is theoretically valid. In other words,

for example, if we estimate that the value of θ̂1:3 is 2.0 from a certain data analysis

concerning the minimum value distribution, this value surely satisfies Eqs. (2.21)

and (2.29) but it does not satisfy the limitation denoted by Eq. (2.9) with the

identical dependence parameters. Therefore in this case, we must discard the

estimation result θ̂1:3 = 2.0, and need to find the estimated value from the range

−1
4
≤ θ ≤ 1

2
in Eq. (2.28) instead of Eq.(2.29).

In conclusion, we have revealed the necessary conditions for the dependence

parameters θ1:d and θd:d for general d and their asymptotic properties on d → ∞
in this section. However, providing their sufficient conditions and the exact ranges

of the parameters has been remaining for the future work.
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Chapter 3

Modeling of dependent failures by

FGM copula

3.1 Introduction

In the previous chapter, we introduced the multivariate FGM copula from the

viewpoint of probability theory. On the other hand, if we suppose that random

variables of the FGM copula express the lifetimes of system components, we can

deal with it as one of the modeling tools for dependent failure occurrences among

them. Therefore, we can naturally extend the traditional reliability models in

which the lifetimes are i.i.d. to d.i.d.1 cases.

In this chapter, we investigate the effect of dependent failure occurrence on

system reliability assessment. First, we propose statistical models of a parallel

system and series system with n dependent components by using the multivariate

FGM copula. Then, we investigate several reliability-related properties of the

systems. As a result, we reveal that the n-component parallel system cannot

deliver its designed reliability if the lifetimes of the individual components have

positive dependence. On the other hand, we derive that the n-component series

system can exceed its designed reliability under such dependent failure-occurrence

environment. This result is given by Kimura, Ota and Abe [27] and Ota and

Kimura [46].

1The term “d.i.d.”denotes that random variables are statistically dependent and identically
distributed.
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3.2 Reliability assessment of n-component sys-

tems under dependent failure-occurrence en-

vironment

3.2.1 Assumptions

Suppose that the system consists of n components. Let Xi be a random variable

that represents the lifetime of the component i (i = 1, . . . , n). Let F (x1, . . . , xn)

be the joint distribution function of these variables. We assume that F (x1, . . . , xn)

follows the n-variate FGM copula given by Eq. (2.6) and the marginal distributions

are identical exponential distributions. That is, the marginal distribution function

is represented by Fi(xi) ≡ F (xi) = 1−exp[−λxi] (λ > 0). In order to simplify this

modeling, we introduce another dependence parameter θk for k = |S| (e.g., θ2 =

θ{1,2} = θ{1,3} = θ{2,3} for n = 3). This assumption means that any dependence

among k components are equivalent to θk. Here, we have

F (x1, . . . , xn) =
n∏

i=1

(1− e−λxi)

(
1 +

∑
S∈F

θk
∏
j∈S

e−λxj

)
. (3.1)

For those components, we analyze the reliabilities of the parallel system and series

one.

3.2.2 Parallel system with dependent failures

Let Xmax denote max(X1, . . . , Xn). Then, we can derive the CDF of the lifetime

of n-component parallel system, Pr[Xmax ≤ x] ≡ Fmax(x), as

Fmax(x) = F (x)n
(
1 +

n∑
k=2

(
n

k

)
θkF̄ (x)k

)
, (3.2)
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Figure 3.1: Region of (θ2, θ3) for the 3-component parallel system.

from Eq. (2.6) via the simplification of the constant parameters. If n = 3, PDF of

Xmax, namely, fmax(x) can be written as follows.

fmax(x) = 3F (x)2f(x) {1 + θ2(1− F (x))(3− 5F (x))

+θ3(1− F (x))2(1− 2F (x))
}
. (3.3)

The colored area in Figure 3.1 illustrates the region of (θ2, θ3) satisfying fmax(x) ≥ 0

for all x.

From Eq. (3.2), the MTTF of an n-component parallel system can be obtained

as

E[Xmax] ≡ MTTFmax(n) =
1

λ

[
H(n)−

n∑
k=2

J(k)

k
θk

]
, (3.4)

where H(n) describes a partial sum of the harmonic series

H(n) =
n∑

i=1

1

i
, (3.5)

and

J(k) =

(
n

n− k

)
/

(
n+ k

k

)
. (3.6)
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Note that if all of the components are mutually independent, the MTTF can be

given by

MTTF(n) =
1

λ
H(n), (3.7)

(see, e.g., [38]). Hence we can understand that if the system operates under the

positively-dependent failure-occurrence environment (i.e., θk > 0 (k = 2, 3, . . . , n)),

the achieved MTTF declines from the design MTTF under the assumption of the

independence.

From Eq. (3.2), the moment of second order about the origin, M
(2)
max(n), can

be derived as

M(2)
max(n) =− 2

λ2

[
n∑

k=2

1

k2

(
n

k

)
θk +

n∑
r=1

1

r2

(
n

r

)
(−1)r

+
n∑

k=2

(
n

k

)
θk

{
n∑

r=1

1

(k + r)2

(
n

r

)
(−1)r

}]

=
1

λ2

[
H(n)2 +

n∑
i=1

1

i2
− 2

n∑
k=2

J(k)

k
θk

n∑
r=0

1

k + r

]
. (3.8)

Therefore the variance of Xmax is given by

Var[Xmax] ≡ M(2)
max(n)−MTTFmax(n)

2. (3.9)

3.2.3 Series system with dependent failures

By following the same fashion, we can also derive the CDF of the minimum of n

variables, i.e., Pr[min(X1, X2, . . . , Xn) ≡ Xmin ≤ x] = Fmin(x), as

Fmin(x) = 1− F̄ (x)n
(
1 +

n∑
k=2

(
n

k

)
(−1)kθkF (x)k

)
, (3.10)

from Eq. (2.6) with reducing the number of the dependence parameters.

If n = 3, PDF of Xmin, fmin(x) can be obtained as

fmin(x) = 3(1− F (x))2f(x)
{
1− θ2(2− 5F (x))F (x)

+ θ3(1− 2F (x))F (x)2
}
. (3.11)
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Figure 3.2: Region of (θ2, θ3) for 3-component series system.

The colored area in Figure 3.2 illustrates the region of (θ2, θ3) which satisfies

fmin(x) ≥ 0 for all x.

MTTF is given by

E[Xmin] ≡ MTTFmin(n) =
1

nλ
+

1

λ

n∑
k=2

(
n

k

)
θk(−1)k

k∑
r=0

(
k

r

)
(−1)r

1

n+ r

=
1

nλ

{
1 +

n∑
k=2

(−1)kJ(k)θk

}
. (3.12)

Moment of second order about the origin, denoted by M
(2)
min(n) can be obtained as

M
(2)
min(n) =

2

n2λ2
+ 2

n∑
k=2

(
n

k

)
θk(−1)k

k∑
r=0

(
k

r

)
(−1)r

1

λ2(n+ r)2
. (3.13)

Therefore the variance of Xmin can be calculated by

Var[Xmin] ≡ M
(2)
min(n)−MTTFmin(n)

2. (3.14)
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3.3 Numerical illustrations

3.3.1 Basic behavior of FGM copula with exponential marginals

At first, we are interested in the behavior of the FGM copula with exponential

marginals. The CDF of the bivariate case is given by

Pr[X1 ≤ x1, X2 ≤ x2] = (1− e−λx1)(1− e−λx2)(1 + θ2e
−λx1e−λx2). (3.15)

Therefore, the PDF which is expressed by f(x1, x2) is derived as

f(x1, x2) = λ2e−λx1e−λx2 + θ2
{
4λ2e−2λx1e−2λx2

− 2λ2e−λx1e−2λx2 − 2λ2e−2λx1e−λx2 + λ2e−λx1e−λx2
}
. (3.16)

We depict several typical behaviors of Eq. (3.16) in Figure 3.3 with λ = 1. If

θ2 = 0, it behaves as a 2-dimensional independent bivariate exponential density.

On the other hand, when X1 and X2 are dependent, the shape of joint density

changes. The case of θ2 = 1 can be characterized by, for example, the joint density

f(x1, x2) takes larger value if both values are smaller (near by zero), and the shape

of ‘edge’ of density can be seen like a convex curve, since X1 and X2 tend to take

slightly closer values theoretically. On the contrary, the opposite characteristics

can be seen in the case of θ2 = −1.

In general, from the viewpoint of reliability analysis taking account of the

dependent failure-occurrence environment, it can be considered natural that the

value of each θk (k = 2, 3, . . . , n) is non-negative. Hence in the rest of this chapter,

we perform the reliability analysis and the characteristics investigation under the

assumption of θk ≥ 0 (k = 2, 3, . . . , n). It is intuitively understandable that the

MTTF of parallel systems gets smaller when θk is positive. This fact can be

confirmed by Eq. (3.4), since J(k) is a decreasing sequence. On the other hand,

in the case of series systems, the MTTF of the system becomes larger if the term

n∑
k=2

(−1)kJ(k)θk (3.17)

is positive (see, Eq. (3.12)).
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Figure 3.3: Behaviors of the bivariate joint density function (θ2 = −1, 0, 1).

3.3.2 Parallel system with dependent failures

We now focus on the values of the coefficients of dependence parameters θk (k =

2, 3, . . . , n), denoted by J(k)/k in Eq. (3.4). Table 3.1 shows several coefficients of

θk. We can see that the coefficient of θk with the smaller index number k becomes

significantly larger than other coefficients of θk as the number of components, n,

becomes large. In other words, the value of θk with the larger index number k

does not contribute to reduce the MTTF by the possibility of dependent failure

occurrences.

Another finding from Table 3.1 is that these values in Table 3.1 correspond to

Table 3.1: Coefficients of θk of Parallel Systems.

k = 2 k = 3 k = 4 k = 5 k = 6

n = 2 1
12

– – – –

n = 3 3
20

1
60

– – –

n = 4 1
5

4
105

1
280

– –

n = 5 5
21

5
84

5
504

1
1260

–

n = 6 15
56

5
63

1
56

1
385

1
5544
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the values of the coefficients which appear in a certain approximation method of

the difference equation theory (see, e.g., [14, 15]). In addition, an alternative form

of J(k)/k can be described by

J(k)

k
=

(
n

k

)
Γ(k)Γ(n+ 1)

Γ(n+ k + 1)
=

(
n

k

)
B(k, n+ 1), (3.18)

where B(a, b) is the beta function.

Here, we assume θ ≡ θk (k = 2, 3, . . . , n) for more simplicity. This assumption

means that all dependence among k components (k = 1, 2, . . . , n) are equivalent

to θ. Several behaviors of CDF and PDF are shown in Figures 3.4 and 3.5, respec-

tively (λ = 1).

Figure 3.4: Behaviors of CDF (parallel system).
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Figure 3.5: Behaviors of PDF (parallel system).

Figure 3.6: Behaviors of hazard rate (parallel system).
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Figure 3.7: Behaviors of MTTF (parallel system).

Figure 3.5 suggests that the PDF shows a bimodal shape when both of θ and n

become large. Figures 3.6 and 3.7 represent the hazard rate function and MTTF,

respectively. In Figure 3.6, when θ is large, the shape of the hazard rate depicts

characteristic behavior as seen in Figure 3.5. It is also represented that the more

stronger dependence reduces the MTTF in Figure 3.7.

Variance of the lifetime Xmax is illustrated in Figure 3.8 (λ = 1). In the case

of θ = 0, it converges to π2/6 as n → ∞.

Figure 3.8: Variance of Xmax (θ = 1, 1/2, 0) (parallel system).
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Decrement of MTTF

As shown in Figure 3.7, the dependent failure-occurrence environment has a harm-

ful influence on the parallel system in the sense of the decrement of MTTF. For

example, if one has designed an n-component parallel system under the expecta-

tion of the independent failure-occurrence environment, he/she would be betrayed

if the actual operation environment induces the dependent failures. Therefore we

calculate the value of dependence parameter which spoils the amount of MTTF of

one component out of n-component parallel system by using the following equa-

tion.

MTTF(n− 1) = MTTFmax(n), (3.19)

where MTTF(n− 1) is derived by Eq. (3.7). Solving Eq. (3.19) with respect to θ

analytically, we have

θ(n) = 1/
[
n(

H(n)

2
− n

n+ 1
)
]
. (3.20)

Table 3.2 is a summary of the relation between n (n ≥ 5) and θ. n ≥ 5 is needed

to satisfy the condition θ ≤ 1. In this table, for example, it can be stated that

the MTTF of the 5-component dependent parallel system cannot beyond that of

4-component independent parallel system if θ ≥ 24/37. Also this threshold value

decreases as n increases. In other words, the potentially-dependent parallel system

with the large number of components can easily lose its design MTTF by the very

small amount of dependency which is represented by θ.

Table 3.2: Threshold value of θ which spoils MTTF of n-independent-component
parallel system.

n = 5 6 7 8 9 10

θ = 24
37

140
309

20
59

630
2369

560
2593

5544
30791

=0.6487 =0.4531 =0.3390 =0.2660 =0.2160 =0.1801
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3.3.3 Series system with dependent failures

Here, we investigate several characteristics of an n-component series system with

dependent failures by following the same manner to the previous section. Ta-

ble 3.3 presents the coefficients of θk (k = 2, 3, . . . , 6), that is, J(k)/n. The same

behavior except for the factor of (−1)k is observed by comparing Table 3.1. There-

fore, we can understand that the MTTF of a series system under the dependent

failure-occurrence environment gets longer than that of the case of independent-

component series system if the positive dependence [11] is possible. In addition,

corresponding to Eq. (3.18), it is obvious that

J(k)

n
=

(
n− 1

k − 1

)
Γ(k)Γ(n+ 1)

Γ(n+ k + 1)
=

(
n− 1

k − 1

)
B(k, n+ 1). (3.21)

Several behaviors of CDF and PDF based on Eq. (3.10) are shown in Figures

3.9 and 3.10, respectively (λ = 1). Different from the parallel system, these curves

seem unimodal.

Table 3.3: Coefficients of θk of Series Systems.

k = 2 k = 3 k = 4 k = 5 k = 6

n = 2 1
12

– – – –

n = 3 1
10

− 1
60

– – –

n = 4 1
10

− 1
35

1
280

– –

n = 5 2
21

− 1
28

1
126

− 1
1260

–

n = 6 5
56

− 5
126

1
84

− 1
462

1
5544
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Figure 3.9: Behaviors of CDF (series system).

Figure 3.10: Behaviors of PDF (series system).

Figures 3.11 and 3.12 show the hazard functions and MTTF respectively (λ =

1). It is interesting that the hazard rate temporarily drops at the early stage of

the lifetime. It can be confirmed that the MTTF increases when the degree of

positive dependence becomes high. Variance of the lifetime Xmin is illustrated in

Figure 3.13. It converges to 0 as n → ∞.
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Figure 3.11: Behaviors of hazard rate (series system).

Figure 3.12: Behaviors of MTTF (series system).
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Figure 3.13: Variance of Xmin (θ = 1, 1/2, 0) (series system).

Increment of MTTF

In the series systems under the dependent failure-occurrence environment, the

positive dependency among the components prolongs the lifetime of the system.

In contradistinction to the property of n-component parallel systems which was

discussed in Section 3.3.2, we find the threshold value of the dependence parameter

θ, which gains the amount of MTTF of one component out of an n-component

series system. By solving the following equation

MTTF(n− 1) = MTTFmin(n), (3.22)

with respect to θ, we obtain the relation as

θ(n) =
2(n+ 1)

(n− 1)2
. (3.23)

Table 3.4 consists of several numerical results. By the same reason to the case of

Table 3.2, n ≥ 5 is required.
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Table 3.4: Threshold value of θ which gains MTTF of (n − 1)-independent-
component series system.

n = 5 6 7 8 9 10

θ = 3
4

14
25

4
9

18
43

5
16

22
81

=0.75 =0.56 =0.4444 =0.3673 =0.3125 =0.2716

3.4 Conclusion

In this chapter, we have presented several reliability-related properties of the n-

component systems under the assumption that the components may fail depen-

dently. We have restricted the structure of n-component systems into the parallel

and series systems, respectively. As a modeling framework, the FGM copula has

attractive characteristics, and it is comparatively easy for doing mathematical

manipulations. As a result, it has been confirmed that there exist several com-

plex conditions among the dependence parameters. By using the simplification

for many constant parameters, we have derived the closed forms of MTTF and

variance of the systems. In order to illustrate the characteristics of two kinds of

n-component systems, several numerical examples have been shown.
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Chapter 4

Parameter estimation for FGM

copula

In the previous chapter, we have formulated the model of the series system and

parallel one with dependent components by using the multivariate FGM copula.

In this chapter, we estimate the parameters of the model in order to evaluate

the dependence among the components by using their failure times. To do so,

we newly present an estimation algorithm for the parameters of the multivariate

FGM copula by using the theory of the inference functions for margins (IFM, for

short). Then, we theoretically analyze the asymptotic normality of the proposed

estimators and numerically investigate the estimation accuracy. This result is

given by Ota and Kimura [47] and Ota and Kimura [48].

4.1 Introduction

In general, parameter estimation for copulas is effective in analyzing dependence

structures among data. However, it is computationally hard work because copulas

have many parameters such as marginal parameters and dependence parameters

in general. Thus, efficient/computable estimation methods have been required so

far.

The problem here is that there are no practical estimation methods of the

parameters of the multivariate FGM copula. The reason mainly depends on the

computational complexity of estimating many parameters and dealing with the pa-
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rameter space. As we mentioned in Chapter 2, the d-variate FGM copula consists

of 2d − d− 1 dependence parameters. In fact, the FGM copula has relatively a lot

of parameters compared with other multivariate copulas (e.g., a d-variate Gaus-

sian copula [22] has 2d +
(
d
2

)
(< 2d − d − 1) dependence parameters). It implies

that the parameter estimation for the dependence parameters of the multivariate

FGM copula is computationally more complicated than that for the parameters

of the other copula distributions. Especially, the ordinary maximum likelihood

estimation (MLE, for short) is infeasible over such high dimensional space.

One acceptable estimation method is IFM estimation (IFME, for short). IFME

is known as a framework of the parameter estimation for copulas. It was proposed

by Joe and Xu[23], and well explained in Xu [61]. It is based on k-th marginal

likelihood functions. This method firstly estimates the univariate parameters from

separate univariate likelihood functions of a copula. Then, it estimates bivariate,

trivariate and multivariate parameters from bivariate, trivariate and multivariate

likelihoods with lower order parameters fixed as estimated values. The advantages

of IFME are its computational efficiency and asymptotic property that holds under

several regularity conditions [24, 52, 61]. However, when we apply IFME to the

multivariate FGM copula, the following problems exist: (i) it has not been known

how to apply IFME to the parameter estimation of the FGM copula, (ii) it has

not been found whether or not the asymptotic property holds.

Therefore, in this chapter, we solve the above problems. We present how to

apply IFME to the multivariate FGM copula. Then, we theoretically analyze the

asymptotic normality of the proposed estimators. Moreover, we investigate its

computation time and estimation accuracy via numerical studies.

This result facilitates evaluating the dependence structure among system com-

ponents. If we have lifetime data of the components, we can find the dependencies

by estimating the dependence parameters of the multivariate FGM copula. Thus,

this result contributes to the dependent failure analysis in reliability engineering.

The remainder of this chapter is organized as follows. In Section 4.2, we present

algorithms of MLE and IFME for the multivariate FGM copula. Their asymptotic

properties are analytically revealed in Section 4.3. The performance of IFME is

discussed through simulation in Section 4.4. Finally, we conclude our study with

a summary in Section 4.5.
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4.2 Estimation

First of all, we start with redefining the distribution function of the d-variate

FGM copula. Suppose X = (X1, . . . , Xd) be a random vector that follows the

d-variate FGM copula with arbitrary continuous marginal distributions. For i =

1, . . . , d, let Fi(xi; δi) and fi(xi; δi) be the i-th marginal distribution function and

the density function with a parameter vector δi, respectively. Let us define δ as

δ = (δ1, . . . , δd). Then, the joint distribution function of X, denoted by Hd, can

be written as

Hd(x1, . . . , xd; δ,θ) = Pr[X1 ≤ x1, . . . , Xd ≤ xd],

=
d∏

i=1

Fi(xi; δi)

(
1 +

d∑
k=2

∑
1≤j1<···<jk≤d

θj1···jkF j1 · · ·F jk

)
,

(4.1)

where F i ≡ 1− Fi(xi; ·) for i = 1, . . . , d, δ = (δ1, . . . , δd), and θ is the parameter

vector of the FGM copula (e.g., for d = 3, θ = (θ12, θ13, θ23, θ123)). Also, the joint

density function of of X is given by

hd(x1, . . . , xd; δ,θ)

=
d∏

i=1

fi(xi; δi)

(
1 +

d∑
k=2

∑
1≤j1<···<jk≤d

θj1···jk(2F j1 − 1) · · · (2F jk − 1)

)
.

(4.2)

Note that, θ must satisfy the following limitation.

Θ =

{
θ

∣∣∣∣∣ 1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1···jk(1− 2uj1) · · · (1− 2ujk) ≥ 0

}
, (4.3)

where ∀(u1, . . . , ud) ∈ [0, 1]d and Θ denotes the parameter space. As we mentioned

in Chapter 2, the parameter space Θ becomes more and more complex as d becomes

large. When we estimate the dependence parameters, we need to consider this

parameter space.
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4.2.1 Ordinary maximum likelihood estimation

The ordinary MLE is one of the natural choices to estimate parameters of ran-

dom distributions because its estimators satisfy the asymptotic property under

several regularity conditions (see e.g., [25]). In this method, we estimate all of

the parameters δ and θ simultaneously. For a sample size n, with observed inde-

pendent random vectors xi = (xi1, . . . , xid) for i = 1, . . . , n, the full-dimensional

log-likelihood function of δ and θ can be written by

ℓ ≡ ℓ(δ,θ;x1, . . . ,xn) =
n∑

i=1

log hd(xi1, . . . , xid; δ,θ). (4.4)

Thus, the ordinary maximum likelihood estimators for the parameters, denoted

by δ̂ and θ̂, are given below.

(δ̂, θ̂) = arg max
δ,θ∈Θ

ℓ. (4.5)

More specifically, (δ̂, θ̂) is the root of the following non-linear simultaneous equa-

tions.  ∂

∂δT

∑
log hd(·; δ,θ)

∂

∂θT

∑
log hd(·; δ,θ)

 = 0. (4.6)

To find the above root, we need to use some numerical optimization technique.

However, a numerical optimization in such a high dimensional space needs a huge

amount of computation resources. This issue relates to computational feasibility.

In addition, its estimation accuracy behaves worse because MLE may not find the

global optimum but a local one. Even if all of the marginal distributions are uni-

parameter distributions (i.e., δi = δi), Eq. (4.6) consists of the 2d − 1 unknown

parameters. For example, the 4-variate FGM copula has 4 marginal parameters

and 11 dependence parameters. Thus, one should find the global maximum over

the 15-dimensional space to obtain the maximum likelihood estimators. Its com-

putation is not practical. Therefore, other simple estimation methods have been

required for the parameters of the FGM copula.
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4.2.2 Inference functions for margins estimation

To reduce the computational difficulty of the ordinary MLE, we use the IFME.

In this method, we estimate the dependence parameters one by one so that each

estimation result satisfies the parameter space Θ given by Eq. (4.3).

In the previous subsection, we defined the full-dimensional likelihood. Now, let

us define k-dimensional marginal likelihood functions for k = 1, 2, . . . , d− 1. It is

easy to see that the k-dimensional marginal distribution function is as follows.

Hk(x1, . . . , xk; ·) =
k∏

i=1

Fi(xi; δi)

1 +
k∑

p=2

∑
1≤j1<···<jp≤k

θj1···jpF j1 · · ·F jp

 . (4.7)

Thus, for example, we have

H1(xj1 ; δj1) = Fj1 , (4.8)

H2(xj1 , xj2 ; δj1 , δj2 , θj1j2) = Fj1Fj2(1 + θj1j2F j1F j2), (4.9)

H3(xj1 , xj2 , xj3 ; δj1 , δj2 , δj3 , θj1j2 , θj1j3 , θj2j3 , θj1j2j3)

= Fj1Fj2Fj3(1 + θj1j2F j1F j2 + θj1j3F j1F j3 + θj2j3F j2F j3 + θj1j2j3F j1F j2F j3).

(4.10)

The key point of these functions is that their variables are controlled by the only

parameters with the same subscript, respectively. Then, we obtain the following

log-likelihood functions of the k-dimensional marginal distribution for k < d and

1 ≤ j1 < · · · < jk ≤ d.

ℓj1 ≡ ℓj1(δj1 ;xj1) =
∑

log fj1(·; δj1), (4.11)

ℓj1,j2 ≡ ℓj1,j2(δj1 , δj2 , θj1j2 ;xj1 ,xj2) =
∑

log h2(·; δj1 , δj2 , θj1j2), (4.12)

ℓj1,j2,j3 ≡ ℓj1,j2,j3(δj1 , δj2 , δj3 , θj1j2 , θj1j3 , θj2j3 , θj1j2j3 ;xj1 ,xj2 ,xj3)

=
∑

log h3(·; δj1 , δj2 , δj3 , θj1j2 , θj1j3 , θj2j3 , θj1j2j3), (4.13)

...
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ℓj1,··· ,jd−1
≡ ℓj1,··· ,jd−1

(δj1 , . . . , δjd−1
, θj1j2 , . . . , θj1···jd−1

;xj1 , . . . ,xjd−1
)

=
n∑

i=1

log hd−1(·; δj1 , . . . , δjd−1
, θj1j2 , . . . , θj1···jd−1

). (4.14)

In the case of IFME, we firstly estimate parameters of marginal distributions,

denoted by δ̃, as follows.

δ̃j1 = arg max
δj1

ℓj1(δj1 ;xj1), (4.15)

for j1 = 1, 2, . . . , d. Next, we estimate the dependence parameters of 2-dimensional

marginal distributions as follows.

θ̃j1j2 = arg max
θj1j2∈{Θ∩F}

ℓj1,j2(δ̃j1 , δ̃j2 , θj1j2 ;xj1 ,xj2), (4.16)

where F is the set consisting of all estimates of the dependence parameters that

are already obtained. Since θ̃ ∈ Θ must hold, we need to find the estimate on

F . As a result, Θ ∩ F may not contain the true value of θj1j2 . However, we can

omit this issue if we have a large sample from the viewpoint of the asymptotic

unbiasedness which is mentioned in the next section. Then, we have the estimates

of the trivariate dependence parameters as follows.

θ̃j1j2j3 = arg max
θj1j2j3∈{Θ∩F}

ℓj1,j2,j3(δ̃j1 , δ̃j2 , δ̃j3 , θ̃j1j2 , θ̃j1j3 , θ̃j2j3 , θj1j2j3 ;xj1 ,xj2 ,xj3).

(4.17)

In the same manner, we estimate all dependence parameters of higher dimen-

sions in order. Finally, θ12···d is estimated in a bottom-up fashion. Thus, we can

estimate all dependence parameters by repeatedly maximizing one-unknown pa-

rameter functions. In section 4, we demonstrate the estimation procedure with an

example. Therefore, IFME can be used to estimate the dependence parameters

of the d-variate FGM copula no matter how d is a large number (even if MLE is

infeasible). In addition, if the ordinary MLE is feasible, the estimators of IFME

can be dealt with a good starting point for the numerical maximization of the full

log-likelihood function [25].
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4.3 Asymptotic normality

It is well known that the estimator of the ordinary MLE satisfies the asymptotic

normality under the several conditions for the distribution function (see e.g., [7]).

Because the asymptotic property means that the estimator is convergent in prob-

ability to the actual value, MLE has been frequently used as a method of the

parameter estimation. As for the case of IFME, it is also known that its estimator

supports the asymptotic property if the copula distribution satisfies the several

conditions [25]. However, no studies assure that these properties hold in the case

of the multivariate FGM copula.

In this section, therefore, we newly present that the asymptotic normalities of

MLE and IFME hold for the FGM copula. Then, we compare their asymptotic

efficiencies for a specific case of the parameters.

Without loss of generality, let us consider the asymptotic properties of each

estimator in the case of d = 3 and δj = δj. Let η be (δ,θ) (i.e., η = (η1, . . . , η7) =

(δ1, δ2, δ3, θ12, θ13, θ23, θ123)), and a parameter with the subscript 0 denotes the true

value of the parameter (e.g., θ0 and δ0). Then, for a random vector of the FGM

copula X = (X1, X2, X3), the following theorems hold.

Theorem 4.1. The ordinary maximum likelihood estimators, η̂, satisfy the fol-

lowing equation for n → ∞.

√
n(η̂ − η0)

D→ N(0, I−1), (4.18)

where
D→ denotes the convergence in distribution, and I is the Fisher information

matrix which is given by

I = −E

[
∂2 log h3(X1, X2, X3; ·)

∂η∂ηT

∣∣∣∣
η=η0

]
. (4.19)

Theorem 4.2. The estimators of IFME, η̃, satisfy the following equation for

n → ∞.
√
n(η̃ − η0)

D→ N(0, V ), (4.20)
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where

V = D−1M(D−1)T , (4.21)

D = E

[
∂s(X;η)

∂η

∣∣∣∣
η=η0

]

= E





∂s1
∂δ1

0 0 0 0 0 0

0 ∂s2
∂δ2

0 0 0 0 0

0 0 ∂s3
∂δ3

0 0 0 0
∂s4
∂δ1

∂s4
∂δ2

0 ∂s4
∂θ12

0 0 0
∂s5
∂δ1

0 ∂s5
∂δ3

0 ∂s5
∂θ13

0 0

0 ∂s6
∂δ2

∂s6
∂δ3

0 0 ∂s6
∂θ23

0
∂s7
∂δ1

∂s7
∂δ2

∂s7
∂δ3

∂s7
∂θ12

∂s7
∂θ13

∂s7
∂θ23

∂s7
∂θ123



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
η=η0


, (4.22)

M = E[s(X;η0)s(X;η0)
T ], (4.23)

s(X;η) =



s1

s2

s3

s4

s5

s6

s7


=



∂
∂δ1

log f1(X1; ·)
∂
∂δ2

log f2(X2; ·)
∂
∂δ3

log f3(X3; ·)
∂

∂θ12
log h2(X1, X2; ·)

∂
∂θ13

log h2(X1, X3; ·)
∂

∂θ23
log h2(X2, X3; ·)

∂
∂θ123

log h3(X1, X2, X3; ·)


. (4.24)

Note that we cannot obtain the explicit forms ofD and V but can compute them for

a specific η0. Proofs for Theorem 4.1 and Theorem 4.2 are given in Appendix.

Now, a natural question arises: how much is η̂ relatively efficient compared

with η̃? To take account of this question, we investigate one analytical example.

To simplify the asymptotic covariance matrices, let us consider the case that δ is

given. That is, the parameters of interest are only θ. Suppose (θ12, θ13, θ23, θ123) =
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(0.3, 0.3, 0.3, 0.3). Then, each asymptotic covariance matrix is given by

I−1 =


8.48 0.725 0.725 −0.462

0.725 8.48 0.725 −0.462

0.725 0.725 8.48 −0.462

−0.462 −0.462 −0.462 24.18

 , (4.25)

V =


8.70 0.736 0.736 −0.474

0.736 8.70 0.736 −0.474

0.736 0.736 8.70 −0.474

−0.474 −0.474 −0.474 24.18

 . (4.26)

Since the i-th diagonal element of Eq. (4.25) is less than that of Eq. (4.26) for

i = 1, . . . , 4, we can find that MLE is more effective than IFME. For example, the

variance of θ̂12 is around 97% (= 8.48/8.70) of the variance of θ̃12. In the next

section, we verify these results through simulation.

4.4 Numerical study

4.4.1 Random variate

To perform a simulation, we introduce a method that generates random variate

from the d-variate FGM copula with arbitrary marginal distributions. Here, the

conditional method described in [25] allows us to generate a random sequence from

the d-variate FGM copula. Let (X1, . . . , Xd) be a random vector of the d-variate

FGM copula. For i = 2, 3, . . . , d, we define the conditional distribution functions

as follows.

Hi|12···i−1(xi|x1, . . . , xi−1) = Pr[Xi ≤ xi|X1 = x1, . . . , Xi−1 = xi−1]. (4.27)

Let v1, . . . , vd be samples from the i.i.d. uniform distribution in the interval (0, 1).

Here, we construct a random sequence through the following processes.

• Let u1 = H−1
1 (v1).

• Let u2 = H−1
2|1 (v2|u1),. . . ,
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• Let ud = H−1
d|1···d−1(vd|u1, . . . , ud−1).

• Return (x1, x2, . . . , xd) = (F−1
1 (u1; δ1), F

−1
2 (u2; δ2), . . . , F

−1
d (ud; δd)).

Consequently, such a (x1, . . . , xd) follows the d-variate FGM copula. Thus, we

need to know the closed form of H−1
i|1···i−1(·|·) to perform the above process. Here,

we present it as follows. First, the conditional distribution function is given by

Hi|1···i−1(ui|u1, . . . , ui−1) =

∫ ui

0

hi(u1, . . . , ui−1, u)

hi−1(u1, . . . , ui−1)
du. (4.28)

With the FGM copula, since

hi(u1, . . . , ui) = hi−1(u1, . . . , ui−1) +
i∑

p=2

∑
1≤j1<···<jp=i

θj1···jp(1− 2uj1) · · · (1− 2ujp),

(4.29)

it leads that

hi(u1, . . . , ui)

hi−1(u1, . . . , ui−1)
= 1 +

∑i
p=2

∑
1≤j1<···<jp=i θj1···jp(1− 2uj1) · · · (1− 2ujp)

hi−1(u1, . . . , ui−1)
.

(4.30)

Let us define D as

D =

∑i
p=2

∑
1≤j1<···<jp=i θj1···jp(1− 2uj1) · · · (1− 2ujp−1)

hi−1(u1, . . . , ui−1)
. (4.31)

Thus, by integrating both sides of Eq. (4.30), we obtain

Hi|1···i−1(ui|u1, . . . , ui−1) = (1 +D)ui −Du2
i , (4.32)

where

D =

∑i
p=2

∑
1≤j1<···<jp=i θj1···jp(1− 2uj1) · · · (1− 2ujp−1)

hi−1(u1, . . . , ui−1)
. (4.33)

From Du2
i − (1 + D)ui + Hi|1···i−1(ui|u1, . . . , ui−1) = 0, we are able to represent

ui by D and Hi|1···i−1(ui|u1, . . . , ui−1) based on the quadratic formula. Hence,

43



H−1
i|1···i−1(vi|u1, . . . , ui−1) takes one of the values of

1 +D ±
√

(1 +D)2 − 4Dvi
2D

, (4.34)

for which it is greater than 0 and less than 1. For example, for i = 2, we have

H−1
2|1 (v2|u1) =

1 + θ12(1− 2u1) +
√

(1 + θ12(1− 2u1))2 − 4θ12(1− 2u1)v2
2θ12(1− 2u1)

. (4.35)

As far as we have found, the signs of Eq. (4.34) for i = 2, 3 and 4 are +,−, and

−, respectively. Consequently, we can generate samples of the multivariate FGM

copula by the conditional method with Eq. (4.34).

4.4.2 Short example

In this subsection, we present the detailed procedure of IFME for the FGM copula

and the asymptotic normality of its estimators. The several settings of this example

are as follows.

1. The sample size is 30000.

2. Assume that all of the marginal distributions are given (i.e., the target pa-

rameters are the only dependence parameters).

3. For d = 3, (θ12, θ13, θ23, θ123) = (0.3, 0.3, 0.3, 0.3).

We generate the random samples under the situation, and then we estimate the

parameters from the samples. The procedure of generating the samples from the

FGM copula is discussed in the previous subsection. Here, we compute the esti-

mates through the following steps.

Step 1 θ̃12 is given by arg max
−1≤θ12≤1

ℓ12. θ̃12 = 0.304.

Step 2 θ̃13 is given by arg max
θ13∈{Θ∩θ12=0.304}

ℓ13. θ̃13 = 0.304.

Step 3 θ̃23 is given by arg max
θ23∈{Θ∩θ12=0.304∩θ13=0.304}

ℓ23. θ̃23 = 0.310.
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Figure 4.1: Histogram for each estimator and the theoretically derived PDF of its
asymptotic distribution whose variance is a diagonal element of Eq. (4.26).

Step 4 θ̃123 is given by arg max
θ123∈{Θ∩θ12=0.304∩θ13=0.304∩θ23=0.310}

ℓ. θ̃123 = 0.310.

Note that the steps 1, 2 and 3 are exchangeable although we estimate the depen-

dence parameters in the order of θ12, θ13 and θ23 in this example. If the order of

the steps is changed, the estimation result is different from the above result.

Next, we also investigate how well these estimates fit to the asymptotic distri-

bution. We iterate above simulation 1000 times, and then obtain 1000 samples of

each estimate. Figure 4.1 depicts the histogram of these samples with the PDF

of the asymptotic distribution whose covariance matrix is given by Eq. (4.26).

Since the histograms well fit the asymptotic distribution, the figure implies that

each estimator holds the asymptotic normality. Actually, this result satisfies the

Kolmogorov-Smirnov test for multivariate normality at with the 5% significance

level.
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Figure 4.2: Average computation times of estimating all dependence parameters
of the d-variate FGM copula for d = 4, 5 (number of iterations: 5).

4.4.3 Computation time

In this subsection, we investigate the computation times of MLE and IFME.We use

a PC equipped with Intel(R)Core(TM) i7-6700k 4.00GHz, 32GB RAM, running

on Windows 10 professional 64bit. We perform simulation under the following

settings.

1. The dimensions d are 4 and 5.

2. The sample sizes, n, are 100, 1000, 10000.

3. Assume that all of the marginal distributions are given (i.e., the target pa-

rameters are the only dependence parameters).

4. In the case of d = 4, the values of the dependence parameters are as follows:

θj1j2 = 0, θj1j2j3 = 0.2, θ1234 = 0.2 for 1 ≤ j1 < j2 < j3 ≤ 4.

5. In the case of d = 5, the values of the dependence parameters are as follows:

θj1j2 = 0, θj1j2j3 = 0, θj1j2j3j4 = 0.2, θ12345 = 0.2 for 1 ≤ j1 < j2 < j3 < j4 ≤ 5.

Figure 4.2 depicts the computation times to estimate the dependence parame-

ters under the above situation. We can find that IFME works faster than MLE in

all of the cases, and both of MLE and IFME spend more computation time as d

and n increase. In particular, for d = 5 and n = 10000, MLE cannot work due to
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out of memory (it is denoted by the symbol “N/A”). Therefore, estimating the pa-

rameters of the multivariate FGM copula, we should not use MLE but IFME from

the viewpoint of the computation costs. For future works, a theoretical analysis

of the computational complexity of IFME is required.

4.4.4 Performance evaluation

Now, we investigate the estimation accuracy of IFME through Monte Carlo simu-

lation. In this subsection, we again consider that all of the marginal distributions

are given. For d = 4, we perform the simulation under the following settings.

1. The sample sizes, n, are 100, 1000, 10000, and the number of iteration times,

m, is 100.

2. All of the marginal distributions are the i.i.d. uniform distribution in the

interval [0, 1]. It means that the target parameters are only the dependence

parameters.

3. We deal with the following four situations of the dependence parameters.

(a) (θ12, θ13, θ14, θ23, θ24, θ34, θ123, θ124, θ134, θ234, θ1234)

= (0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.2).

(b) (θ12, θ13, θ14, θ23, θ24, θ34, θ123, θ124, θ134, θ234, θ1234)

= (0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.5).

(c) (θ12, θ13, θ14, θ23, θ24, θ34, θ123, θ124, θ134, θ234, θ1234)

= (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2).

(d) (θ12, θ13, θ14, θ23, θ24, θ34, θ123, θ124, θ134, θ234, θ1234)

= (0, 0, 0, 0, 0, 0,−0.2,−0.2,−0.2,−0.2,−0.2).
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For the settings, we calculate the following Bias and RMSE (Root-Mean-Squared

error) as the indicators of the estimation accuracy for each estimator.

Bias(θ̃) =


1
m

∑m
i=1(θ̃12,i − θ12(0))

...
1
m

∑m
i=1(θ̃1234,i − θ1234(0))

 ,

RMSE(θ̃) =


√

1
m

∑m
i=1(θ̃12,i − θ12(0))2

...√
1
m

∑m
i=1(θ̃1234,i − θ1234(0))2

 ,

where θ̃·,i is the θ̃·’s estimate obtained in the i-th iteration step and θ̃·,(0) is the true

value of θ̃·. Bias and RMSE mean the average and dispersion of the estimation

errors, respectively.

The numerical results are presented in Tables 4.1, 4.2, 4.3 and 4.4. These

tables lead to the following remarks. The estimation accuracy is improved with

a power of 10 samples. In order to obtain estimates with Bias of less than 0.1,

we need 100, 1000 and 10000 samples for θj1j2 , θj1j2j3 , and θ1234, respectively. On

the other hand, Bias tends to be a negative value for small samples. This means

that the proposed method estimates lower than the true values of the dependence

parameters (e.g., in Tab. 4.2 for θ̃1234 and n = 100, the mean value of the estimate

is 0.051 even though its true value is 0.5).

4.5 Conclusion

In this chapter, we have presented how to estimate the parameters of the multivari-

ate FGM copula in practical computation time. Consequently, the computational

difficulties of the ordinary MLE have been reduced by using the IFM framework.

Because of this, IFME can estimate all of the dependence parameters of the FGM

copula no matter how the dimension d is high. Then, we have revealed that the

estimators of IFME satisfy the asymptotic normality in the case of the FGM cop-

ula. Finally, we have numerically shown the computation time and estimation

accuracy of IFME. In conclusion, IFME is computationally easier than MLE, and
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the estimation accuracies are not much difference between them. Therefore, IFME

is a useful approach to estimate the parameters of the FGM copula.

From the viewpoint of reliability engineering, this result can be applied to a

quantitative evaluation of the dependence among system components. If we have

the lifetime data of the components, we can find the latent dependence structure

among them by estimating the parameters of the multivariate FGM copula with

arbitrary marginal distributions. Moreover, our estimation method is especially

applicable not only the reliability analysis but also other research fields. Therefore,

this result also contributes to the evolution of statistical theory.
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Chapter 5

Dependent failure detection

5.1 Introduction

In this chapter, we propose a statistical detection method of the dependent failure

occurrence in n-component parallel systems that utilizes the failure occurrence

times of the components. If we assume that the lifetime distribution of the com-

ponents worsens if k out of n components failed, the dependent failure occurrence

can be found by identifying the change of the distribution. The performance of

the proposed method is demonstrated by simulation studies. This results is given

by Ota and Kimura [43] and Ota and Kimura [45].

Cascading failure, one kind of dependent failures, is a phenomenon in which

the failure occurrence of one component triggers other failures [1, 9, 18]. In this

case, the lifetimes of the triggered components depend on the lifetime of the trig-

ger component. For example, this phenomenon is observed in complex network

systems such as blackouts of power transmission systems. On 30th and 31st July,

2012, the northern region of India experienced large blackouts due to the late ar-

rival of monsoons that caused excessive demands for the power [54]. Indeed, a

disturbance in a part of the power grid triggered the cascading failure of the power

transmission systems. In this way, the cascading failure tends to occur in network

systems whose components cannot be immediately repaired/replaced after their

failures. Dobson, Carreras and Newman [9] have also reported that the trigger

component can cause a huge number of failures after it fails if other components

strongly rely on the trigger component. Consequently, if a cascading failure occurs
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in a redundant system, the system cannot deliver the designed performance [9, 56].

The related works of the cascading failure have been mainly focused on the

modeling and reliability assessment for the actual cases. Dobson, Carreras and

Newman [9] proposed a stochastic model of load-dependent cascading failure in

electric power transmission systems. Watts [60] studied the conditions that the

cascading failure occurs in large-scale network systems by developing a stochastic

model. Bialek et al. [1] surveyed the state of the art in the cascading failure with

a lot of the actual incidents. These important studies are helpful in understand-

ing the mechanisms of the cascading failure and suggesting the ways to reduce

particular factors of cascading failure occurrences.

From the viewpoint of reliability management, the factors of cascading failure

should be eliminated at the design or test stages. At the design stage, which

is located before the system implementation, Failure Mode and Effect Analysis

and Fault Tree Analysis [28, 36, 57] are effective methods in identifying the factors

behind dependent failure occurrences in a redundant system. This is because these

two methods can explain the logical structure of the components. However, system

designers cannot always be aware of all the likely causes of the dependent failure

(cf. Section 11 in [42]). This fact implies the importance of the test stage, which

is performed after the implementation.

As for the test stage, detection methods of the dependent failure occurrence

are useful. In general, it is assumed that anomaly of the system tend to cause the

dependent failure occurrence, and there are a lot of statistical detection methods

of such anomaly phenomena in the literature. For example, McCool [31] proposed

a detection method for a parallel system with 2 components whose lifetimes follow

identical Weibull distributions. the anomaly detection methods for the monitored

signal data were well studied by [58, 59]. Rocco and Zio [53] used an SVM (Support

Vector Machine) in order to detect a specific anomaly in a nuclear power plant.

Zhang, Lin and Karim [63] studied the anomaly detection in a hydroelectric plant

with the signals captured from several parts of the units. However, the detection of

the anomaly events and locating them are difficult as the system structure becomes

more complex despite that these are essential topics in reliability engineering [10,

21].

Ota and Kimura [44] have recently developed and proposed a statistical test
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method that detects the dependent failure occurrence in a redundant system by

analyzing the failure occurrence times of the components. They dealt with a

parallel system having two identical components as a simple network model. Thus,

this study aims at evaluating whether or not the first failure occurrence worsens

the reliability of the surviving component. The result implies the possibility that

the dependent failure occurrence in other systems can be also detected.

Hence, we expand the modeling framework to n-component parallel redundant

systems in this chapter. That is, we propose the detection method of the dependent

failure occurrence for the system. Note that, we regard the cascading failure as the

dependent failure in this chapter. The novelty of our research is that this method

can specify the trigger component of the cascading failure and the time point at

which a cascading failure occurred. Therefore, this result contributes to the cause

analysis of the dependent failure occurrence in the n-component parallel system.

In the next section, we explain a stochastic model that represents both of

independent and dependent failure occurrences in a parallel system. In Section

5.3, we present an algorithm for the dependent failure detection method with

failure occurrence times. The accuracy of the detection method is demonstrated

by numerical studies in Section 5.4. We conclude our study in Section 5.5 with a

summary.

5.2 Failure model

This model expresses both independent and dependent failure occurrences by

the switching mechanism of the hazard rate functions. Let Ti and ti be the

random variable and the observed value of the i-th failure occurrence time for

i = 1, 2, . . . , n, respectively. Suppose the lifetimes of the components follow the

i-th conditional hazard rate function hi(t|t1, t2, . . . , ti−1) in the time interval be-

tween ti−1 and ti. Then, we consider the n-component parallel system and the

dependent failure occurrence with the following assumptions.

Assumption I：The parallel system is constructed by n components whose life-

times are independent and identically distributed.

Assumption II：The hazard rate function of each component is one of the fol-

56



Figure 5.1: Behavior of the hazard rate function [43].

lowing: DFR (decreasing failure rate), CFR (constant failure rate) or IFR

(increasing failure rate).

Assumption III：At t = 0, the hazard rate function of each component is given

by

h1(t) = λ1m1t
m1−1 (λ1,m1 > 0). (5.1)

This assumption describes that the lifetime distribution of the n components

is an identical Weibull distribution, which is frequently used for the modeling

of failure data [37].

Assumption IV： If the i-th failure occurs at ti, the i-th hazard rate function

hi(t|t1, . . . , ti−1) switches to hi+1(t|t1, . . . , ti). This conditional hazard rate

function hi+1(t|t1, . . . , ti) is given by

hi+1(t|t1, . . . , ti)

= gi+1(t)− gi+1(ti) + hi(ti|t1, . . . , ti−1) (t > ti), (5.2)

where

gi(t) = λimit
mi−1 (λi,mi > 0, i = 1, 2, . . . , n). (5.3)

From the above, this model has 2n parameters denoted by λi and mi for i =

1, 2, . . . , n. Figure 5.1 shows two examples of the hazard rate functions in the case
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of two components. The lifetimes of the two components obey the distribution

function with the hazard rate function h1(t) until the first failure occurs. After

the first failure occurrence, the lifetime of the surviving component obeys h2(t).

In the case of the graph on the left (a), since the hazard rate function switches,

the surviving component breaks down sooner than originally expected. This is

because the residual lifetime of the surviving component, T2 − T1, is statistically

shortened in the sense that λ2 is greater than λ1. The graph on the right (b)

demonstrates the switching from CFR to IFR. In Section 5.4, we generate the

lifetimes of the components by Monte Carlo simulation [19] based on this model

in order to evaluate the accuracy of the proposed method.

This model describes one failure occurrence phenomenon by setting the model

parameters. We call such a parameter setting “failure case”. It is the aim of our

research to investigate how the detection method accurately detects the depen-

dent failure occurrences for the various failure cases. Moreover, the failure cases

discussed in this chapter are the following cases: (i) no changes of the hazard rate

functions occur, and (ii) the hazard rate functions do not change twice but only

once at any of T1, T2, . . . , or Tn−1.

We investigate behaviors of CDF of T2 in the case of the independent and

dependent failures. Figure 5.2 illustrates the CDFs of T2 when only λ2 is a variable.

In this figure, the functions in the case of the dependent failures are apart from

the independent one as λ2 increases. Figure 5.3 also indicates that the same fact

holds between m2 and the CDFs of T2. Note that F2(t) is written by

F2(t) =

∫ t

0

G2(t− t1|t1)f1(t1)dt1, (5.4)

whereG2(t|t1) denotes the conditional CDF of h2(t|t1) (i.e., G2(t|t1) = 1−e−
∫ t
0 h2(s+t1|t1)ds

for t ≥ 0), and f1(t) denotes the PDF of T1. Because of its complexity, F2(t) is

not an elementary function except for some of the failure cases.
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Figure 5.2: Cumulative distribution functions of T2 when only λ2 is a variable.

Figure 5.3: Cumulative distribution functions of T2 when only m2 is a variable.
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5.3 Method

In this section, we propose a statistical detection method of the dependent failure

occurrence for the n-component parallel system based on the samples of failure

occurrence times. First, we discuss the detection method of the dependent failure

occurrence for the 2-component parallel system. As Ota and Kimura [44] men-

tioned, the key point of the detection method of the dependent failure occurrence

is to statistically identify the change of the hazard rate function. After that, we

expand the method to the case of the n-component parallel system.

5.3.1 Algorithm for 2-component parallel system

As preliminaries, let X1 and X2 be random variables of the lifetimes of two compo-

nents, which follow an identical Weibull distribution function F (t) = 1− e−λ1tm1 .

If X1 and X2 are independent, we obtain the following relationships. CDF of T1

is given by F1(t) = 1− e−2λ1tm1 , and CDF of T2 is equal to F2(t) = (1− e−λ1tm1 )2,

since T1 corresponds to Min(X1, X2) and T2 corresponds to Max(X1, X2). Note

that these functions have common parameters λ1 and m1. Hence, we can estimate

F2(t) with the sample of T1 if the independent failure occurs [44].

In order to detect the dependent failure occurrence, let us consider the following

value.

sup
0≤t<∞

∣∣∣(1− eλ1tm1 )2 − F2(t)
∣∣∣. (5.5)

In Eq. (5.5), the first term corresponds to F2(t) that holds under the condition

of the independent failure, and the second one is given by Eq. (5.4). That is,

the value of Eq. (5.5) is theoretically 0 if and only if the independent failure

occurs, otherwise greater than 0 (i.e., in the case that the change of the hazard

rate function occurs). Furthermore, we can infer from Figures 5.2 and 5.3 that the

value of Eq. (5.5) increases as λ2(≥ λ1) or m2(≥ m1) increases. Accordingly, these

facts indicate that the dependent failure occurrence can be detected by performing

a goodness-of-fit-test between the empirical distribution of T2 and the estimated

F2(t) by the sample of T1.

The detection method judges by performing a goodness-of-fit test between the

sample of T2 and F̂2(t) estimated with the sample of T1. First, we estimate F̂1(t)
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with the sample of T1 by the method of maximum likelihood (i.e., we obtain λ̂1

and m̂1). Next, we can obtain F̂2(t) by using λ̂1 and m̂1 with the assumption that

these components failed independently. Finally, we perform a goodness-of-fit test

between the sample of T2 and F̂2(t). That is, we investigate whether or not the

estimated value of Eq. (5.5) is statistically significant. If F̂2(t) fits the data, it

implies that the independent failure occurred in the system. If not, the dependent

failure is considered to have occurred. Thus, the accuracy of the test is affected by

the parameters λi or mi (i = 1, 2) because Eq. (5.5) contains them. From these

points of view, we use the Kolmogorov-Smirnov (K-S) test [13] as a goodness-of-fit

test.

The algorithm to detect the dependent failure occurrence is as follows.

Algorithm 1: 2-component parallel system

(i) Estimate F̂1(t) = 1− e−2λ̂1tm̂1 by the method of maximal likelihood with the

sample of T1.

(ii) Set F̂2(t) = (1− e−λ̂1tm̂1 )2 with the assumption that the independent failure

occurs.

(iii) Calculate K-S statistics D as

D = sup0≤t<∞ |F̂2(t)− S2(t)|,
where S2(t) denotes the empirical distribution function [13] of the sample of

T2. Let (t21, t22, . . . , t2N) be N random samples of T2. Then,

S2(t) =


0 (0 ≤ t < t21)

k/N (t2k <≤ t < t2k+1)

1 (t ≥ t2N)

(5.6)

(iv) Set the null hypothesis H0 and the alternative hypothesis H1 as follows.

H0: The sample of T2 obeys F̂2(t).

H1: The sample of T2 does not obey F̂2(t).

(v) Perform K-S test with the hypotheses.

If
√
ND > 1.36, reject H0 with the significance level of 5% and accept H1.

If not, accept H0.
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(vi) If H0 is accepted, the independent failure occurred. If H1 is accepted, the

dependent failure occurred.

In this algorithm, F̂2(t) is the substitution of the first term of Eq. (5.5) and S2(t)

is the substitution of F2(t). Consequently, if the null hypothesis H0 is accepted

on the test, we can state that an independent failure occurred in the 2-component

parallel system under the significance level of 5% (N.B., Pr[
√
ND > 1.36] = 0.05

under the null hypothesis H0 as N → ∞). If not, the dependent failure occurred.

5.3.2 Algorithm for n-component parallel system

In this subsection, we propose the detection method of the dependent failure oc-

currence for the n-component parallel system by analogy with the 2-component

parallel system. To do so, let us consider the distribution of the following order

statistics. Suppose X1, X2, . . . , Xn be the components’ lifetimes that initially fol-

low the hazard rate function h1(t). Let Fk(t) be the CDF of the time to the k-th

failure occurrence Tk. If there is no dependent failure occurrence, Fk(t) can be

obtained as

Fk(t) =
n∑

i=k

(
n

i

)
(1− e−λ1tm1 )ie−λ1(n−i)tm1 (k = 1, 2, . . . , n), (5.7)

by the theory of order statistics [42, 56]. That is, Fk(t) can be estimated with

the sample of T1. Therefore, we can detect the dependent failure occurrence by

performing K-S test between the sample of Tk and the estimated Fk(t) with the

sample of T1 for k = 2, 3, . . . , n. Let {tk1, tk2, . . . , tkN} be the N samples of Tk.

The algorithm of the detection method is shown below, and its schematic chart is

given in Figure 5.4.

Algorithm 2: n-component parallel system

(i) Estimate F̂1(t) = 1− e−nλ̂1tm̂1 by the method of maximal likelihood with the

sample of T1.

(ii) Set k = 2, and iterate the following steps.
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Figure 5.4: Schematic chart of the detection method.

(iii) Set F̂k(t) =
∑n

i=k

(
n
i

)
(1− e−λ̂1tm̂1 )ie−λ̂1(n−i)tm̂1 with the assumption that the

independent failure occurs at Tk−1.

(iv) Perform K-S test with a significance level of 5% between F̂k(t) and the k-th

sample {tk1, tk2, . . . , tkN}.

(v) If H0 is accepted, let k be k + 1 and go back to (iii). If H0 is rejected or

k = n+ 1, go to the next step.

(vi) IfH0 is never rejected, the dependent failure never occurred. IfH0 is rejected,

the dependent failure occurred at time Tk−1.

Throughout these straightforward steps, we can detect the time point of the first

dependent failure occurrence with the failure data under the significance level

of 5%. Note that the accuracy of the proposed method depends on λi or mi

(i = 1, 2, . . . , n) as the case of the 2-component parallel system.
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5.4 Numerical studies

In this section, we perform simulation studies to evaluate how the proposed method

can accurately detect the dependent failure occurrence. After a demonstration of

the detection scheme with a short example, we investigate the performance of the

proposed method.

5.4.1 Short example

In this subsection, we explain how the proposed method detects the dependent

failure occurrence by using one example. Suppose a RAID 1 system (Redundant

Arrays of Inexpensive Disks: 1st level [51]) constructed by two hard disks as

shown in Figure 5.5. This system consists of an exact copy of a set of data on

the two disks. Although the disks are typically designed to work independently,

the dependent failure may occur if they share heat (i.e., workload [4]). For this

system, we try to evaluate whether or not the dependent failure occurs after one

hard disk fails. Note that, we assume that these hard disks are used until both

of them fail (i.e., we suppose that the failed disk are not repaired/replaced due to

some unavoidable reasons).

To model the RAID 1 system, we deal with it as a 2-component parallel system.

Several assumptions for the model are as follows. Let the values of the parameters

be (λ1, λ2,m1,m2) = (1, 3, 2, 2). In this case, the setting of the parameters ex-

presses a dependent failure because T2 sooner occurs than the originally expected

one in the sense that λ2 is 3×λ1. Thus, the correct evaluation is that a dependent

failure occurs at T1. We obtain N (= 100) samples of (T1, T2) by Monte Carlo

simulation [19] based on the failure model, and show the data set in Table 5.1.

Here, the estimation result is listed in Table 5.2. We obtain the estimates

λ̂1 = 0.846 and m̂1 = 1.85 by the method of maximal likelihood with the sample

of T1. As the result of K-S test, the test statistics
√
ND equals to 2.22, and its

p-value equals to 0.0001. In this case, it is statistically natural to consider that

the failure at T1 caused the dependent failure rather than the independent failure

of the small significance level. Accordingly, the null hypothesis H0 is rejected with

the significance level of 5%. That is, the proposed method identifies this failure

case as the dependent failure case. Therefore, the dependent failure occurrence
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Figure 5.5: Example of a 2-component parallel system.

can be correctly detected in this example. In the next subsection, we investigate

the various failure cases to evaluate the performance of the proposed method.

5.4.2 Performance evaluation

We analyze the 3-component parallel system as examples of the n-component

parallel system. In this numerical studies, we assume that the dependent failure

occurs at most once. Thus, in this case, the failure cases are divided into the

following three types:

• Type 0: no dependent failure occurs.

• Type 1: dependent failure that occurs at T1.

• Type 2: dependent failure that occurs at T2.

For example, the failure case of (λ1, λ2, λ3,m1,m2,m3) = (1, 1, 1, 2, 2, 2) is Type 0

because the hazard rate function does not change. The accuracy of the proposed

method is defined as the probability of a correct judgment that specifies the true

failure case of the system.

The simulation is performed as follows. First, the failure model described in

Section 5.2 generates N = 100 samples of (T1, T2, T3) under the several failure

case environments by Monte Carlo simulation [19]. Then, the detection method
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Table 5.1: Simulation data (t1i and t2i are the pair of the failure times for i =
1, 2, . . . , 100). Failure case: (λ1, λ2,m1,m2) = (1, 3, 2, 2).

t1i = {0.52, 1.04, 0.47, 0.59, 0.89, 0.30, 1.09, 0.56, 0.36, 0.67, 0.15, 0.21, 0.52, 1.43,
0.59, 0.52, 0.29, 0.85, 0.20, 0.41, 1.16, 1.18, 0.87, 0.69, 0.63, 1.13, 1.29, 0.24, 0.47,
0.29, 0.28, 0.28, 0.94, 0.53, 0.18, 0.79, 0.60, 0.58, 1.10, 0.16, 0.50, 0.54, 1.10, 0.76,
0.14, 0.98, 1.97, 0.33, 1.11, 1.15, 1.18, 0.29, 0.43, 0.70, 0.38, 1.71, 0.59, 0.98, 0.79,
0.85, 0.49, 0.31, 0.63, 0.06, 0.68, 0.40, 1.15, 0.87, 0.42, 0.12, 0.33, 0.73, 0.75, 0.32,
0.75, 1.09, 1.00, 0.62, 0.33, 0.83, 0.79, 0.75, 0.03, 1.09, 0.93, 0.50, 0.69, 0.65, 1.36,
0.67, 0.30, 0.23, 0.73, 0.35, 1.65, 0.51, 0.57, 0.57, 0.51, 0.56}
t2i = {0.92, 1.23, 0.54, 0.98, 1.04, 0.86, 1.29, 0.65, 0.95, 1.11, 0.17, 0.42, 0.99, 1.52,
1.00, 0.69, 0.51, 1.47, 1.04, 0.84, 1.39, 1.44, 1.38, 0.89, 1.12, 1.39, 1.47, 0.45, 0.54,
1.10, 1.38, 0.73, 1.89, 1.13, 0.50, 1.19, 0.84, 0.98, 1.50, 0.24, 0.81, 0.85, 1.15, 1.88,
0.72, 1.34, 2.00, 0.68, 1.14, 1.20, 1.20, 0.45, 0.74, 1.31, 0.81, 2.00, 1.22, 1.26, 1.65,
0.89, 0.51, 0.76, 0.92, 0.64, 0.68, 0.89, 1.45, 0.96, 0.97, 0.52, 1.16, 0.94, 1.28, 0.49,
1.16, 1.87, 1.06, 0.78, 0.93, 0.98, 1.66, 0.76, 0.72, 1.33, 1.44, 1.14, 1.48, 1.00,
1.51, 0.98, 1.11, 0.42, 1.26, 1.22, 2.48, 0.63, 0.82, 0.95, 0.98, 1.50}

Table 5.2: Estimation result.

λ̂1 m̂1

√
ND p-value

0.846 1.85 2.22 0.0001

identifies the failure case as one of Type 0, 1 and 2 based on the data set. Finally,

we iterate this evaluation 500 times and calculate the accuracy as follows

Accuracy (%) =
# of times of the correct judgment given

500
× 100. (5.8)

5.4.3 Accuracy for Type 1

We calculate the accuracy of the test for the following 20 failure cases of Type

1. In the first 10 cases, λ2 (= λ3) is a variable that takes the values 1, 2, . . . , 10.

The other parameters are fixed as (λ1,m1,m2,m3) = (1, 2, 2, 2). Figure 5.6 shows

these behaviors of the hazard rate functions. If λ2 = λ3 = 1, the failure case is an

independent failure case because there is no change of the hazard rate function.

Table 5.3 shows the accuracy of the test in these 10 cases. As shown in the

table, the detection method correctly judges with the probabilities of 43.0(%) and
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83.0(%) if λ2 = λ3 = 2 and λ2 = λ3 = 3, respectively. This result demonstrates

that the accuracy gets higher as λ2 and λ3 increase.

Figure 5.6: Behavior of the hazard rate functions (Type 1).

Table 5.3: Type 1 accuracy for the 3-component parallel system.

Accuracy (%)

λ2(= λ3) Type 0 Type 1 Type 2

1 *65.8 9.6 24.6

2 16.0 *43.0 41.0

3 1.8 *83.0 15.2

4 0.0 *97.4 2.6

5 0.0 *99.6 0.4

6 0.0 *100.0 0.0

7 0.0 *100.0 0.0

8 0.0 *100.0 0.0

9 0.0 *100.0 0.0

10 0.0 *100.0 0.0

1 Fixed parameters: (λ1,m1,m2,m3) = (1, 2, 2, 2).
2 * symbol denotes the probability of a correct judgment.
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Table 5.4: Type 1 accuracy for the 3-component parallel system.

Accuracy (%)

m2(= m3) Type 0 Type 1 Type 2

2 *65.8 9.6 24.6

3 11.8 *30.0 58.2

4 1.0 *55.8 43.2

5 0.0 *72.0 28.0

6 0.0 *82.4 17.6

7 0.0 *89.0 11.0

8 0.0 *91.4 8.6

9 0.0 *97.0 3.0

10 0.0 *98.4 1.6

1 Fixed parameters: (λ1, λ2, λ3,m1) = (1, 1, 1, 2).
2 * symbol denotes the probability of a correct judgment.

In the remaining 10 cases, m2 (= m3) is a variable that takes the values

2, 3, . . . , 10. The other parameters are fixed as (λ1, λ2, λ3,m1) = (1, 1, 1, 2). The

accuracy shown in Table 5.4 suggests that m2 also affects the accuracy.

5.4.4 Accuracy for Type 2

We also investigate how the proposed method can accurately detect the dependent

failure that occurred at time T2. Here, the hazard rate function does not change at

T1 but T2. Hence, for the dependent failure cases of Type 2, we deal with a correct

judgment as a judgment for the dependent failure occurrence at T2 without any

incorrect judgments (i.e., judgments that the dependent failure occurred at T1 or

that no dependent failure occurred).

First, we calculate the accuracy for Type 2 while λ3 is a variable and other

parameters are fixed as (λ1, λ2,m1,m2,m3) = (1, 1, 2, 2, 2). Figure 5.7 shows these

behaviors of the hazard rate functions. The case of λ3 = 1, of course, describes the

independent failure. These results are listed in Table 5.5. For example, we can find

that the detection method correctly judges with the probabilities of 37.4(%) and

87.8(%) if λ3 = 2 and λ3 = 10, respectively. That is, the accuracy for Type 2 is
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Table 5.5: Type 2 accuracy for the 3-component parallel system.

Accuracy (%)
λ3 Type 0 Type 1 Type 2

1 *65.8 9.6 24.6
2 52.8 9.8 *37.4
3 39.4 8.4 *52.2
4 21.0 8.8 *70.2
5 15.0 9.8 *75.2
6 10.8 8.0 *81.2
7 6.8 12.6 *80.6
8 4.4 9.2 *86.4
9 2.8 8.4 *88.8
10 2.4 9.8 *87.8

1 Fixed parameters: (λ1, λ2,m1,m2,m3) = (1, 1, 2, 2, 2).
2 * symbol denotes the probability of a correct judgment.

getting better as λ3 increases. Note that although the dependent failure occurred

at T2, the method gives an approximately 10% wrong judgment for Type 1 among

the entire failure cases. The reason is the significance level of the test.

Next, we derive the accuracy for Type 2 while m3 is a variable and other

parameters are given by (λ1, λ2, λ3,m1,m2) = (1, 1, 1, 2, 2). Table 5.6 shows the

accuracy in these failure cases. These results demonstrate that m3 affects the test

performance similarly to λ3.

Figure 5.7: Behavior of the hazard rate functions (Type 2).
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Table 5.6: Type 2 accuracy for the 3-component parallel system.

Accuracy (%)
m3 Type 0 Type 1 Type 2

2 *65.8 9.6 24.6
3 40.0 7.6 *52.4
4 9.2 11.0 *79.8
5 3.0 9.0 *88.0
6 0.4 8.4 *91.2
7 0.2 9.0 *90.8
8 0.0 11.2 *88.8
9 0.0 9.4 *90.6
10 0.0 8.6 *91.4

1 Fixed parameters: (λ1, λ2, λ3,m1,m2) = (1, 1, 1, 2, 2).
2 * symbol denotes the probability of a correct judgment.

5.4.5 Discussion

We found that, for i < j, the proposed method can detect the dependent failure

that occurred at Ti with a higher probability than that occurred at Tj. For exam-

ple, the probability of a correct judgment for Type 1 is higher than for Type 2.

On the other hand, as i increases, it is hard for the proposed method to precisely

identify Ti due to the significance level of the test. However, this is not a serious

problem because of the following reasons. We are primarily interested in detecting

the dependent failure that occurred at Ti with a small number i rather than a

large number j. This is because the dependent failure that occurred at Ti short-

ens a system’s reliability more strongly than the case of Tj. Moreover, in actual

cases, a large number of components n is not applied because the effectiveness of

redundancy declines as n increases [5]. That is, i is a small number in the actual

cases. Therefore, the proposed method makes sense for use in practical cases.

5.5 Conclusion

In this chapter, we have developed a method of detecting the dependent failure

occurrence for the n-component parallel system. This method has succeeded in

detecting the dependent failure occurrence by testing whether or not the lifetimes
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of the components follow an expected Weibull distribution between tk−1 and tk

(for k = 2, 3, . . . , n) with the sample of T1. In other words, we can discriminate

whether the components of the parallel system failed independently or dependently

by obtaining the failure occurrence times of each component. It helps in making

the objective judgments in order to identify the first dependent failure occurrence

out of n failures in the parallel system. In Subsection 5.4.1, we have illustrated how

the proposed method can be applied to the RAID 1 system with two hard disks.

In the same fashion, the proposed method can also detect the dependent failure

occurrence in a RAID 1 system with n hard disks. Therefore, we recommend using

the statistical detection method of the dependent failure occurrence for quality

control at the stage of system testing.

A limitation of this work is that the assumption for the hazard rate of the

components. In Section 5.2, we assumed that the hazard rate function of the com-

ponents is one of the following: DFR, CFR, or IFR (Assumption II). However, this

is not always realistic in practical engineering. For example, the typical bathtub

curve is a combination of these three [42]. In that case, the proposed method

cannot work correctly because the switching of the hazard rate function is not the

only evidence for the dependent failure occurrence. This problem can be ignored

only if we use the proposed method for a particular period of the life-cycle of the

item (i.e., one of the DFR, CFR and IFR periods). Thus, we need to pay attention

to the appropriateness of the Assumption II when we apply the proposed method

to real data.

For the future work, we would like to improve the detection method which can

also find two or more dependent failure occurrences. Moreover, an application of

this method to real data is required for its verification.
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Chapter 6

Conclusion

6.1 Novelties and contributions of this thesis

This thesis has the following novelties and contributions in the research fields of

reliability engineering and statistics.

• Necessary conditions of the ranges of the dependence parameters for the

minimum and maximum value distributions based on the FGM copula are

shown (Chapter 2).

• MTTFs of the parallel system and series one with dependent components

are analytically found (Chapter 3).

• The result enables us to estimate dependencies among several components

by using their lifetime data in an acceptable computation time (Chapter 4).

• The result enables us to detect the dependent failure occurrence in an n-

component parallel system (Chapter 5).

6.2 Summary

In this thesis, we have considered reliability analysis techniques when several com-

ponents in a multi-component system break down dependently. First, we have
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formulated the reliability model for the dependent failure by using the multivari-

ate FGM copula. Based on the model, we have investigated the effect of the de-

pendent failure occurrence on the system’s reliability. Secondly, we have proposed

the useful estimation algorithm for the multivariate FGM copula. In addition, we

have theoretically revealed the asymptotic normality of the proposed estimators.

Finally, we have presented the new method for the detection of the dependent

failure occurrence in the n-component parallel system. These results are helpful

to both quantitative and qualitative reliability assessment of the system under the

possibility of the dependent failure occurrences. Our estimation method is appli-

cable not only the reliability analysis but also other research fields in particular.

In Chapter 2, we have discussed mathematical preliminaries for our study and

the new results of the FGM copula in order to use them as the modeling tool of

the interdependent failure-occurrence environment in Chapters 3 and 4. Chapter 2

has been devoted to the definition and some fundamental properties of the copula.

Then, several unique features of the FGM copula have been introduced. Finally,

we have discovered the necessary conditions of the ranges of the dependence pa-

rameters for the minimum and maximum value distributions which are based on

the FGM copula and presented the asymptotic properties of the ranges.

In Chapter 3, we have developed the reliability models of a parallel system

and series system with n dependent components by using the multivariate FGM

copula. Then, we have investigated the several reliability-related properties of the

systems. As a result, we have analytically shown that the n-component parallel

system cannot deliver its designed reliability if the lifetimes of the individual com-

ponents have positive dependence. On the other hand, we have derived that the

n-component series system can exceed its designed reliability under such dependent

failure-occurrence environment.

In Chapter 4, we have presented the estimation algorithm for the model param-

eter and referred to its asymptotic normality. More specifically, we have dealt with

the parameter estimation for the d-variate FGM copula which consists of 2d−d−1

dependence parameters to be estimated. We have proposed the new estimation

method for the FGM copula by using the theory of the inference function for mar-

gins. Although the ordinary maximum likelihood estimation is computationally

infeasible for a large number d, our method is feasible for the same situation.
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Then, we have presented its asymptotic property. Finally, we have demonstrated

the performance of the proposed method through the simulation studies.

In Chapter 5, we have studied the detection method of dependent failure oc-

currence in the n-component parallel system. Making a system redundant by

combining identical components is a useful way to ensure a highly reliable system.

However, the components of such systems may fail mutually, and if the components

break down dependently, the reliability of the system decreases. Therefore, relia-

bility analysis considering the dependence among the components is important in

reliability assessment. In this chapter, we have proposed the statistical detection

method of the dependent failure occurrence in n-component parallel systems by

using the failure occurrence times of the components. If we assume that the life-

time distribution of the components worsens if k out of n components failed, the

dependent failure occurrence can be found by identifying the change of the distri-

bution. Finally, the performance of the proposed method has been demonstrated

by the simulation studies.
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Appendix A

Proofs

In this appendix, we present the mathematical proofs of principal theorems and

corollaries derived in Chapter 2 and Chapter 4.

Proof of Theorem 2.2: We need to derive the closed form of the limitation

θ1:d ∈ {θ | d
du
C1:d(u; θ) ≥ 0, 0 ≤ u ≤ 1}. First we define the probability density

function (PDF) of U1:d by the following c1:d(u; θ1:d).

c1:d(u; θ1:d) =
d

du
C1:d(u; θ1:d)

= d(1− u)d−1
{
1 + θ1:d(−2 + 2(1− u)d + (1 + d)u)

}
. (A.1)

Here, θ1:d has the following relationship.

θ1:d ∈ {θ | c1:d(u; θ) ≥ 0, 0 ≤ u ≤ 1}

⇔ θ1:d ∈ {θ | min
0≤u≤1

[c1:d(u; θ)] ≥ 0}. (A.2)

That is, the problem is equivalent to finding θ1:d such that the minimum value of

c1:d(u; θ1:d) is non-negative. Since d(1 − u)d−1 ≥ 0 for 0 ≤ u ≤ 1 and d ≥ 2, we

have

θ1:d ∈ {θ | min
0≤u≤1

[c̃1:d(u; θ)] ≥ 0}, (A.3)
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where

c̃1:d(u; θ1:d) =
1

d(1− u)d−1
c1:d(u; θ1:d). (A.4)

Hence, we can verify the Theorem 2.2 by solving the minimization problem of

Eq. (A.3). In order to solve this problem, we define the first and second derivatives

with respect to u of c̃1:d(u; θ1:d) as follows.

c̃′1:d(u; θ1:d)
def
=

d

du
c̃1:d(u; θ1:d)

= θ1:d(−2d(1− u)d−1 + 1 + d), (A.5)

c̃′′1:d(u; θ1:d)
def
=

d2

du2
c̃1:d(u; θ1:d)

= θ1:d(d− 1)d(1− u)d−2. (A.6)

Let u∗
d be an critical point of c̃1:d (i.e., c̃′1:d(u

∗
d; θ1:d) = 0). Then, u∗

d uniquely exists

on the interval [0, 1], and it is easy to see that u∗
d = 1−

(
1+d
2d

) 1
d−1 .

Consider θ1:d ≥ 0. In this case, for 0 ≤ u ≤ 1, c̃1:d(u; θ1:d) is a convex function

because c̃′′1:d(u; θ1:d) ≥ 0. Thus, c̃1:d(u
∗
d; θ1:d) is the absolute minimum value. Hence,

we have θ1:d ∈ {θ | c̃1:d(u∗
d; θ) ≥ 0}. This yields

θ1:d ≤
1

2− 2(1− u∗
d)

d − (1 + d)u∗
d

, (A.7)

where 1/(2− 2(1− u∗
d)

d − (1 + d)u∗
d) gives the upper bound of θ1:d.

Consider θ1:d < 0. In this case, c̃1:d(u; θ1:d) is a concave function that takes the

minimum value if and only if u = 1. Thus, we have θ1:d ∈ {θ | c̃1:d(1; θ) ≥ 0}. This
implies

− 1

d− 1
≤ θ1:d, (A.8)

where −1/(d− 1) gives the lower bound of θ1:d. Hence, the proof is complete. □

Proof of Corollary 2.1: By Theorem 2.2, the upper bound of θ1:d is given by

1/(2 − 2(1 − u∗
d)

d − (1 + d)u∗
d). Thus as d → ∞, the upper bound of θ1:d can be

written by

lim
d→∞

1

2− 2(1+d
2d

)
d

d−1 − (1 + d)(1− 1+d
2d

)
1

d−1

. (A.9)
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Note that u∗
d is replaced by Eq. (2.22). By considering its Taylor series, Eq. (A.9)

equals to

lim
d→∞

1

2− (1 +O(1
d
))− (log 2 +O(1

d
))

=
1

1− log 2
, (A.10)

where O(·) denotes Landau’s symbol.

Moreover, for the lower bound, we have

lim
d→∞

− 1

d− 1
= 0. (A.11)

Hence, the proof is complete. □

We would like to omit the proofs of Theorem 2.3 and Corollary 2.2 because

they can be shown in the same way as those of Theorem 2.2 and Corollary 2.1.

Proofs in Chapter 4

Before we prove Theorem 4.1 and Theorem 4.2, we introduce an important

lemma and theorem as follows.

Lemma A.1. Let (X1, X2, X3) be a random vector of the trivariate FGM copula.

Then, E [s(X1, X2, X3;η0)] = 0 and E[ ∂
∂η log h3(X1, X2, X3; ·) = 0.

Proof of Lemma A.1: With Eq. (4.24), we prove that each element of E [s(·;η0)]

is 0, that is,

E

[
∂

∂δj
log fj(Xj; ·)

]
= E

[
∂

∂θjk
log h2(Xj, Xk; ·)

]
= E

[
∂

∂θ123
log h3(X1, X2, X3; ·)

]
= 0, (A.12)
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for 1 ≤ j < k ≤ 3. First, we have

E

[
∂

∂δj
log fj(Xj; ·)

]
=

∫ ∞

−∞
fj(xj; ·)

∂

∂δj
log fj(xj; ·)dxj

=

∫ ∞

−∞

∂

∂δj
fj(xj; ·)dxj

=
∂

∂δj

∫ ∞

−∞
fj(xj; ·)dxj = 0, (A.13)

where we change the order of the differentiation and integration in the third step.

In the same fashion,

E

[
∂

∂θjk
log h2(Xj, Xk; ·)

]
=

∫ ∞

−∞

∫ ∞

−∞
hjk(xj, xk; ·)

∂

∂θjk
log h2(xj, xk; ·)dxjdxk

=

∫ ∞

−∞

∫ ∞

−∞

∂

∂θjk
h2(xj, xk; ·)dxjdxk

=
∂

∂θjk

∫ ∞

−∞

∫ ∞

−∞
h2(xj, xk; ·)dxjdxk = 0, (A.14)

and

E

[
∂

∂θ123
log h3(X1, X2, X3; ·)

]
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(x1, x2, x3; ·)

∂

∂θ123
log h3(x1, x2, x3; ·)dx1dx2dx3

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∂

∂θ123
h3(x1, x2, x3; ·)dx1dx2dx3

=
∂

∂θ123

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h3(x1, x2, x3; ·)dx1dx2dx3 = 0. (A.15)

Therefore, E [s(·;η0)] = 0. Also, E[ ∂
∂η log h3(X1, X2, X3; ·) = 0 holds in the same

way. Hence, the proof is complete. □

Definition A.1. Let {Yn} be a sequence of random variables. Let c be a real

number. We say that {Yn} is convergent in probability to c, shown by Yn
p→ c, if

lim
n→∞

Pr[|Yn − c| < ε] = 1, (A.16)
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for any ε > 0.

Definition A.2. Let {Yn} be a sequence of random variables, and {Fn} be their

CDFs. Let Y be a random variable, and F be the CDF of Y . We say that {Yn} is

convergent in distribution to Y , shown by Yn
D→ Y , if

lim
n→∞

Fn(y) = F (y). (A.17)

Theorem A.1. (Slutsky’s theorem). This theorem is about the convergence in

probability and distribution (see e.g., [7], p. 254). Let {Yn}, {Zn} be sequences of

random variables. Let Z be a random variable. If Yn
p→ c ∈ R and Zn

D→ Z, then

YnZn
D→ cZ.

Proof of Theorem 4.1: We provide the sketch of the proof of Theorem 4.1.

Suppose Y ,Y1, . . . ,Yn be i.i.d. random vectors of the d-variate FGM copula.

Applying the mean value theorem for the maximum log likelihood function at η0,

we have

0 =
∂ℓ(η;Y1, . . . ,Yn)

∂η

∣∣∣∣
η=η̂

(A.18)

=
∂ℓ(η;Y1, . . . ,Yn)

∂η

∣∣∣∣
η=η0

+K(η)(η̂ − η0), (A.19)

where K(η) is a matrix as

K(η) =
∂2ℓ(η;Y1, . . . ,Yn)

∂η∂ηT

∣∣∣∣
η=η

, (A.20)

and η ≡ diag(α1, . . . , α7)η̂ + diag(1 − α1, . . . , 1 − α7)η0 for (α1, . . . , α7) ∈ [0, 1]7

(N.B., diag(a1, . . . , a7) is a diagonal matrix whose elements starting in the upper

left corner are a1, . . . , a7). From Eq. (A.19), we have

√
n(η̂ − η0) = −

[
1

n
K(η)

]−1
1√
n

∂ℓ(η;Y1, . . . ,Yn)

∂η

∣∣∣∣
η=η0

(A.21)

= −
[
1

n
K(η)

]−1
1√
n

n∑
i=1

∂

∂η
log h3(Yi;η)

∣∣∣∣
η=η0

(A.22)

79



Here, the first factor of the right-hand side of Eq. (A.22) can be applied to the

low of large numbers because it is divided by the sample size n. Since η̃
p→ η0 for

n → ∞, η
p→ η0 also holds for n → ∞ . Recalling Eq. (4.19), we obtain

1

n
K(η)

p→ −E

[
∂2 log h3(Y ; ·)

∂η∂ηT

∣∣∣∣
η=η0

]
= I. (A.23)

The second factor can be applied to the multivariate central limit theorem because

it is divided by
√
n. From Lemma A.1 and Eq. (A.23), We obtain

1√
n

n∑
i=1

∂

∂η
log h3(Yi;η)

∣∣∣∣
η=η0

D→ N(0, I). (A.24)

Therefore, by applying Theorem A.1 to Eqs. (A.23) and (A.24), the following

equation holds.
√
n(η̂ − η0)

D→ N(0, I−1). (A.25)

Hence, the proof is complete. □

Proof of Theorem 4.2: By the same analogy with the proof of Theorem 4.1,

we provide the sketch of the proof of Theorem 4.2. Suppose Y ,Y1, . . . ,Yn be

i.i.d. random vectors of the d-variate FGM copula. Let us define g(Y1, . . . ,Yn;η)

as follows.

g(Y1, . . . ,Yn;η) = (
∂ℓ1
∂δ1

,
∂ℓ2
∂δ2

,
∂ℓ3
∂δ3

,
∂ℓ12
∂θ12

,
∂ℓ13
∂θ13

,
∂ℓ23
∂θ23

,
∂ℓ

∂θ123
)T . (A.26)

Note that g(·; η̃) = 0 holds because η̃ is defined as the solution of g(·;η) = 0. By

using the mean value theorem for g(·; η̃) at η0, we have

0 = g(Y1, . . . ,Yn; η̃) = g(Y1, . . . ,Yn;η0) + J(η)(η̃ − η0), (A.27)

where

J(η) =
∂g(Y1, . . . ,Yn;η)

∂η

∣∣∣∣
η=η

, (A.28)

and η ≡ diag(α1, . . . , α7)η̃ + diag(1 − α1, . . . , 1 − α7)η0 for (α1, . . . , α7) ∈ [0, 1]7.
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From Eq. (A.27), we have J(η)(η̃ − η0) = −g(Y1, . . . ,Yn;η0). Thus,

√
n(η̃ − η0) = −

[
1

n
J(η)

]−1
1√
n
g(·;η0). (A.29)

Here, the first factor of the right-hand side of Eq. (A.29) can be applied to the

low of large numbers because it is divided by the sample size n. Since η̃
p→ η0 for

n → ∞, η
p→ η0 also holds for n → ∞ . Recalling Eq. (4.22), we obtain

1

n
J(η)

p→ E

[
∂s(Y ;η)

∂η

∣∣∣∣
η=η0

]
= D. (A.30)

The second factor can be applied to the multivariate central limit theorem because

it is divided by
√
n. From Lemma A.1 and Eq. (4.23), we obtain

1√
n
g(Y1, . . . ,Yn;η0)

D→ N(0,M). (A.31)

Therefore, by applying Theorem A.1 to Eqs. (A.30) and (A.31), the following

equation holds.
√
n(η̃ − η0)

D→ N(0, D−1M(D−1)T ). (A.32)

Hence, the proof is complete. □
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[15] A. Z. Górski and J. Szmigielski, “On pairs of difference operators satisfying:

[D,X]=Id”, Journal of Mathematical Physics, Vol. 39, pp. 545-568, 1998.

[16] E. J. Gumbel, “Bivariate exponential distributions”, Journal of the American

Statistical Association, Vol. 55, No. 292, pp. 698-707, 1960.

[17] E. Hashorva, “Asymptotic results for FGM random sequences”, Statistics &

Probability Letters, Vol. 54, Issue 4, pp. 417-425, 2001.
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