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and natt(n) be numbers of active CPUs, cores, and threads
of a server st where n computation processes are per-
formed. Processes are fairly allocated with CPUs, cores,
and threads in a scheduling algorithm like round-robin al-
gorithm [20]. Hence, we can assume napt(n) = n if
n ≤ npt, else npt. nact(n) = n if n ≤ ncpt, else ncpt.
natt(n) = n if n ≤ ntt, else ntt. The electric energy con-
sumption CEt(n) of a server st to perform n processes is
given as follows:

CEt(n) = minEt + napt(n) · bEt

+nact(n) · cEt + natt(n) · tEt. (1)

The maximum electric power consumption CEt(n) is
maxCEt [W] = minEt + npt · bEt + ncpt · cEt + ntt ·
tEt where n ≥ ntt.

Next, we consider general processes which read data in
a file while doing the computation for simplicity. CPt(τ)
is a set of processes which use CPU at time τ . RPt(τ ) is a
set of processes which read data in storages on a server st
at time τ . If a process pi uses both CPU and storage at time
τ , pi ∈ CPt(τ) and pi ∈ RPt(τ). PPt(τ) is a set of all
processes performed on a server st at time τ , i.e. PPt(τ) =
CPt(τ) ∪ RPt(τ). The electric power computation Et(τ)
[W] of a server st to perform general processes at time τ
is given in the MLPCMG (MLPCM for General processes)
model [27] as follows;

Et(τ) = CEt(|CPt(τ)|) + δt(τ) ·REt

where δt(τ) = 1 if |RPt(τ)| > 0, else 0. (2)

The maximum electric power consumption maxEt of
a server st is maxCEt + REt where |CPt(τ)| (≥ ntt)
processes use CPU and at least one process accesses to
storages.

We measure the electric power consumed by a pair of
servers, DSLab (Two Intel Xeon CPUs, 128GB memory,
4.8TB storage) sD and Atria (Intel Core i7 CPU, 16GB
memory, 2.0TB storage) sA in our laboratory. The DSLab
server sD supports thirty two threads and the Atria server
sA supports eight threads. Figure 1 shows the electric
power consumption of the servers sD and sA to perform n
general processes and computation processes. Each gen-
eral process uses both CPU and reads data of 1 [GB] in a
file. C + R shows that n general processes are performed
and C means only n computation processes are performed.
As shown in Figure 1, minED = 126.1, bED = 30, cED

= 5.6, tED = 0.8, and maxCED = 301.1 [W] for the
DSLab server sD and minEA = 41.3, bEA = 15, cEA =
4.7, tEA = 1.1, and maxCEA = 89.5 [W] for the Atria
server sA. RED = 21 and maxED = 322.1 [W] for the
DSLab server sD and REA = 2 and maxEA = 91.5 [W]
for the Atria server sA.
2.2 MLCMG model

Each general processes pi is composed of read opera-
tions as storage operations in addition to computation op-
erations. Let cpi and spi denote subsequences of compu-
tation and storage operations of a process pi, respectively.

A process pi is at a time performed on a thread of a
server st in a cluster S of m (≥ 1) servers s1, . . . , sm.

Figure1: Electric power consumption.

minCTti shows the minimum execution time of compu-
tation operations, i.e. cpi of a process pi on a thread of
a server st, where only the process pi is performed on a
thread without any other process. minCTi indicates the
minimum one of the minimum execution time minCT1i,
· · · , minCTmi on the servers s1, . . . , sm, respectively. A
thread of a server sf is fastest in a cluster S if minCTi

= minCTfi for every process pi. Here, the server sf is
referred to as fastest in a cluster S. We assume one vir-
tual computation step is performed on a thread of a fastest
server sf for one time unit [time unit (tu)]. That is, the
thread computation rate CRTf of a fastest server sf is
one [vs/tu]. The thread computation rate CRT of a clus-
ter S is CRTf of the fastest server sf (CRT = CRTf =
1). A server st supports the thread computation rate CRTt

= (minCTi / minCTti) · CRT = minCTi / minCTti

[vs/tu] (≤ CRT = 1). If the computation operations cpi
of a process pi are performed on a fastest server sf with-
out any other process, it takes minCTfi = minCTi [tu].
Hence, the amount V Ci of computation of a process pi is
defined to be minCTi [tu] · CRTf [vs / tu] = minCTi

[vs]. Thus, minCTi shows the total number V Ci of vir-
tual computation steps.

The server computation rate NSRt(τ) [vs/tu] of a
server st at time τ is att(τ) · CRTt where att(τ) (≤ ntt)
is the number of active threads and ntt is the total num-
ber of threads. As discussed in papers [16]-[19], the max-
imum computation rate maxCRt of a server st is ntt ·
CRTt. maxCR shows the maximum one of maximum
computation rates maxCR1, . . . , maxCRm of the servers
s1, . . . , sm. Computation resources are assumed to be
uniformly allocated to each process on a server st in the
round-robin (RR) algorithm [20]. The server computation
rate NSRt(n) of a server st where n (= |CPt(τ)|) pro-
cesses are performed is given as follows:

NSRt(n) =

{
n · CRTt if n ≤ ntt.
ntt · CRTt(= maxCRt) if n > 0.

(3)

We assume each process pi is fairly allocated with compu-
tation resources. The process computation rate NPRti(n)
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of a process pi performed concurrently with (n - 1) pro-
cesses on a server st is NPRti(n) = NSRt(n) / n.

For simplicity, we assume each process pi only reads
data in a file fi different from every other process pj (fi ̸=
fj). Here, bi shows the size [B] of a file fi. Let maxRRt

indicate the maximum read rate [B/tu] of a server st. Sup-
pose only storage operations spi of a process pi are per-
formed to just read data in a file fi of the server st. It takes
RTti time units [tu] for the process pi to read every data
in a file fi. The minimum read time minRTti of a pro-
cess pi to read every data in a file fi is bi / maxRRt [tu]
where only the process pi is performed without any other
process on a server st. The read rate NRRt(n) [B/tu] of
a server sf where n processes reading data in storages are
performed is given as follows:

NRRt(n) = maxRRt. (4)

Each process pi reads data in a file fi at the rate NRRti(n)
where n processes read data in the storages:

NRRti(n) = NRRt(n)/n. (5)

The more number of processes read data, the smaller read
rate of each of the processes.

In this paper, we take a fastest server sf as a canonical
server in a cluster S. The canonical read time cRTi [tu] of
a process pi is defined to be minRTfi on the fastest server
sf . We assume one virtual computation step is performed
on the canonical server sf to read data of size maxRRf

[B] for one time unit [tu]. That is, the canonical virtual
read rate cRR is defined to be one [vs/tu]. Hence, cRR
[vs/tu] · cRTi [tu] (= cRTi) virtual computation steps [vs]
are performed to read every data in a file fi on the fastest
server sf . The number V Ri of virtual computation steps
of a process pi to read every data in a file fi is cRR [vs/tu]
· cRTi [tu] = cRTi =minRTfi [vs]. The virtual read rate
V RRt [vs/tu] of a server st is defined as follows;

V RRt = cRR ·maxRRt/maxRRf

= maxRRt/maxRRf . (6)

The virtual read rate V RRf is assumed to be cRR (= 1)
for the fastest server sf . Even if a server st is slower than
the fastest server sf , i.e. CRTt < CRTf , the virtual read
rate V RRt may be larger than V RRf depending on the
read rates maxRRt and maxRRf of the storage drives.
The virtual read rate V RRti(n) of a process pi on a server
st where n (≤ 1) read processes are performed is V RRt /
n.

The canonical execution time cTi [tu] of a process pi in
terms of minimum computation time minCTi and canon-
ical read time CRTi is defined as follows;

cTi = minCTi + cRTi(= minRTfi). (7)

It takes cTi [tu] to perform the process pi on the fastest
server sf . The amount V Pi of virtual computation steps
of a process pi is defined to be V Ci + V Ri (= minCTi +
cRTi) [vs].

The computation ratio cri and the read ratio rri of a
process pi are V Ci / V Pi and V Ri / V Pi, respectively.
Here, cri + rri = 1. In this paper, we assume the ratios of
the numbers of virtual computation steps and virtual read
steps of a process pi performed for each time unit are in-
variant cri and rri, respectively. Let ncpt be the number
|CPt(τ)| of processes which do the computation and nrpt
be the number |RPt(τ)| processes which read data in stor-
ages. We assume virtual computation operations and vir-
tual storage operations are uniformly distributed in a se-
quence of operations of each process. We define the vir-
tual computation rate V CRti(τ) [vs/tu] and virtual read
rate V RRti(τ) [vs/tu] of a process pi as follows:

[Virtual computation (VC) and read (VR) rates]

V CRti(ncpt) =

{
cri · CRTt if ncpt ≤ ntt.
cri ·maxCRt/ncpt if ncpt > ntt.

(8)

V RRti(nrpt) = rri · V RRt/nrpt. (9)

The variables vci and vri show the virtual computation
laxity and virtual read laxity of a process pi, respectively.
That is, vci and vri virtual computation steps of a process
pi have to be still performed now. At time τ a process
pi starts on a server st, vci = V Ci (= minCTi) and vri
= V Ri (= cRTi) [vs]. At each time τ , vci and vri are
decremented by the virtual computation rate V CRti(ncpt)
and virtual read rate V RRti(nrpt) [vs/tu], respectively. If
both the laxities vci and vri are equal to or smaller than
zero, the process pi terminates at time τ .

Initially, a variable PPt = ϕ for each server st. PPt

shows a set of processes performed on a server st.

[Virtual computation (VC) model]
at each time τ ,

for each server st in a cluster S, {
/* PPt show PPt(τ) */

for every new process pi to be started on st, {
PPt = PPt ∪ {pi};
vci = V Ci;
vri = V Ri;

}; /* for process pi end */
for each process pi in PPt, { /* decrement laxity */

vci = vci − V CRti(τ);
vri = vri − V RRti(τ);

if vci ≤ 0 and vri ≤ 0, /* pi terminates */
PPt = PPt − {pi};

}; /* for process pi end */
}; /* for server st end */

2.3 Estimation model
We discuss how to estimate at time τ the electric energy

consumption of a server st to perform all the current pro-
cesses and the termination time of each current process. In
the estimation models discussed by previous studies [26]
- [24], it takes time to calculate the expected termination
time of each process and the laxity of each process has to
be collected on a server. In this paper, we consider a model
to simply estimate the termination time of each process on
a server. We assume each current process pi on a server
st finishes the half V Ci/2 of the virtual computation steps
and V Ri/2 of virtual read steps at time τ .
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Suppose a set NPt(τ) of nnt (≥ 0) processes are newly
issued to a server st where a set PPt(τ) of current pro-
cesses are performed by using CPU resources at time τ .
Let nt, ncpt, and nrpt be the numbers |PPt(τ)|, |CPt(τ)|,
and |RPt(τ)| of processes, respectively. Here, ncpt ≤
nt, nrpt ≤ nt and nt ≤ ncpt + nrpt ≤ 2 · nt. The
total number V SCt [vs] of virtual computation steps to
be performed by all the current processes and new pro-
cesses is

∑
pj∈CPt(τ)

V Cj/2 +
∑

pj∈NPt(τ)
V Cj on a

server st. The computation rate of a server st to per-
form ncpt current processes and nnt new processes is
NSCt(ncpt + nnt) [vs/tu]. The expected execution time
ECTt of a server st to perform every computation oper-
ation is V SCt / NSt(ncpt + nnt) [tu]. The total num-
ber V SRt of virtual manipulation steps to be performed
by all the current and new processes is on a server st∑

pj∈RPt(τ)
V Rj/2 +

∑
pj∈NPt(τ)

V Rj [vs] which are
performed at rate NRRt(ntt + nnt) (= maxRRt) [vs/tu].
Here, the expected execution time ERTt to perform all
the storage operations is V SRt / NRRt(nrpt + nnt) [tu].
Thus, the expected termination time ECTt and ERTt

of computation operations and storage operations of ev-
ery current process in PPt(τ) and every new process in
NPt(τ) are given as follows:

ECTt = (
∑

pj∈CPt(τ)
V Cj/2 +

∑
pj∈NPt(τ)

V Cj )

/NSRt(ncpt + nnt).

(10)

ERTt = (
∑

pj∈RPt(τ)
V Rj/2 +

∑
pj∈NPt(τ)

V Rj )

/NRRt(nrpt + nnt).

(11)

The expected electric energy consumption EEt [W · tu]
of a server st is given as follows:

EEt = ECTt · CEt(ncpt + nnt) + ERTt ·REt. (12)

In order to make the estimation easier, we assume cri is
a constant cr = α (≤ 1), rri = rr = 1 - α for each process
pi. We also assume V Ci = V C = α, and V Ri = V R = 1
- α for every process pi. The expected termination time
of computation and read operations of a server st where n
(= |PPt(τ)|) processes are concurrently performed and k
(= |NPt(τ)|) new processes are issued to the server st are
given as follows:

MECTt(nt, k) = α · (nt/2 + k)/NCRt(nt + k). (13)

MERTt(nt, k) = (1− α) · (nt/2 + k)/NRRt(nt + k).
(14)

The expected electric energy consumption
MEEt(nt, k) [W · tu] of a server st is summation

of electric energy MECTt(nt, k) to be consumed by
performing computation operations and electric energy
MERTt(nt, k) to be consumed by performing storage
operations is given as follows:

MEEt(nt, k) = MECTt(nt, k) +MERTt(nt, k).
(15)

A server st gets idle if every computation operation
and manipulation operation of every processes finishes.
Hence, the expected termination time METt(nt, k) [tu]
of a server st is given as follows:

METt(nt, k) = max(MECTt(nt, k), MERTt(nt, k)).
(16)

3 Server Selection Algorithms
A client issues a process pi to a cluster S of servers s1,

. . . , sm (m ≥ 1). Then, one host server st is selected for
performing the process pi. The expected electric energy
consumption EEt and expected termination time ETt of
the server st are calculated by the simple estimation pro-
cedures MEEt(|PPt(τ)|, 1) and METt(|PPt(τ)|, 1), re-
spectively.

First, in the SLEAG (Simple Locally-Energy-Aware for
General processes) selection algorithm [5], a host server st
is selected in the cluster S, whose expected electric energy
consumption EEt to perform not only the new process pi
but also every current process in the set PPt(τ) is mini-
mum as follows:

[SLEAG algorithm]
for each server su in a cluster S,

EEu = MEEu(|PPu(τ)|, 1);
select a host server st where EEt is minimum in S;
perform a process pi on st;

As discussed in papers [18], [19], another server su (̸=
st) where a new process pi is not performed also consumes
the electric energy while the process pi is performed on the
host server st. Even if the server su is idle, i.e. no process
is performed, the server su just consumes the minimum
electric power minEt. We propose an SGEAG (Simple
Globally-Energy-Aware for General processes) al-
gorithm to select a host server st to perform a new process
pi. Here, we take into account the total electric energy
consumption of not only a host server st of a new process
pi but also the other servers in a cluster S. For a process
pi, a host server st is selected in the SGEAG algorithm as
follows:

[SGEAG algorithm]
for each server st in a cluster S, {
/* not only every current process but also a new process pi
to be performed on st */

NTt = METt(|PPt(τ)|, 1); /* execution time */
NEt = MEEt(|PPt(τ)|, 1); /* energy */

/* only every current process to be performed on st*/
ETt = METt(|PPt(τ)|, 0); /* execution time */
EEt = MEEt(|PPt(τ)|, 0); /* energy */

}; /* for st end */
for each server st in S, {
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for each server su ( ̸= st) in S, {
if ETu < NTt, /* su terminates before NTt */

NEEu = EEu + minEu · (NTt − ETu)
else NEEu = EEu · NTt / ETu;

}; /* for su end */
GEt = NEt +

∑
sv∈S−{st} NEEv;

} /* for st end */
select a server st where GEt is minimum in S;
perform a process pi on st;

First, we obtain the expected electric energy NEt to be
consumed by each server st to perform not only every cur-
rent process but also a new process pi by the procedures
NTt = METt(|PPt(τ)|, 1) and NEt = MEEt(|PPt(τ)|,
1). In addition, we obtain the expected electric energy con-
sumption EEt of each server st to perform only every cur-
rent process by the procedures ETt = METt(|PPt(τ)|, 0)
and EEt = MEEt(|PPt(τ)|, 0). For each host server st,
we obtain the expected electric energy NEEu to be con-
sumed by each other server su until time NTt when every
process terminates on the server st. An idle server su, i.e.
ETu = 0 consumes the electric energy NEEu = minEu

· NTt. If every current process terminates on a server st
before time NTt, i.e. ETu <NTt, the server st consumes
the electric energy minEt · (NTt − ETu) after every cur-
rent process terminates. Hence, the server su consumes the
electric energy NEEu = EEu + minEu · (NTt - ETu).
If ETu ≤ NTt, NEEu = EEu · NTt / ETu. If a pro-
cess pi is to be performed on a server st, all the servers in
the cluster S are expected to totally consume the electric
energy GEt = NEt +

∑
su (̸=st)∈S NEEu. A server st

where the expected total electric energy consumption GEt

is minimum is selected as a host server of a process pi.

4 Evaluation
4.1 Environments

A cluster S is composed of m (≥ 1) real servers s1,
. . . , sm where n (≥ 1) processes p1, . . . , pn are per-
formed. In the evaluation, we consider four real servers
s1, . . . , s4 in our laboratory. A pair of the servers s1 and
s4 are equipped with two and one Intel Xeon E5-2667 v2
CPU, respectively. A pair of the equipped with one Intel
Corei7-6700K and Intel Xeon E5-2620 CPU, respectively.
The performance parameters like thread computation rate
CRTt and electric energy parameters like the minimum
electric power minEt of each server st are shown in Ta-
ble 1. The threads of the servers s1 and s4 are the fastest,
CRT1 = CRT2 = 1 [vs/tu]. The maximum computa-
tion rate maxCR4 of the server s4 is 32 · 1 = 32 [vs/tu]
since thirty two threads are supported. On the other hands,
maxCR1 = 16 since the server s1 supports sixteen threads.
The server s2 supports the thread computation rate CRT2

= 0.7 and the maximum computation rate maxCR2 = 5.6
since eight threads are equipped. The server s3 is the slow-
est where CRT3 = 0.5 and maxCR3 = 0.5 · 12 = 6.0 since
twelve threads are supported. The server s4 is taken as a
canonical server where virtual read rate V RR1 = 1 since
the server s4 is the fastest.

The number n (> 1) of processes p1, . . . , pn are per-
formed on the servers s1, . . . , s4. The parameters of the
processes are shown in Table 2. The starting time stimei

of each process pi is randomly taken from 0 to xtime - 1
[tu]. In the evaluation, xtime is 1,000 [tu], i.e. 100 [sec].
The minimum computation time minCTi of each process
pi is randomly taken from mT (= 5) to xT (= 20) [tu]. The
total number V Ci [vs] of virtual computation steps of each
process pi is minCTi. The canonical read time cRTi [tu]
is α · minCTi. In the evaluation, α = 0.025. The mini-
mum execution time minTi of a process pi is minCTi +
cRTi = (1 + α) ·minCTi = 1.025 ·minCTi [tu]. The total
amount V Ri of virtual read steps of a process pi is cRTi

· cRR = cRTi. At time τ a process pi starts, the virtual
computation laxity vci is V Ci (= minCTi) and the virtual
read laxity vri is V Ri (= cRTi) [vs]. At each time τ , the
laxity vci and vri are decremented by the rates V CRti(τ)
and V RRti(τ), respectively. In the simulation, the elec-
tric energy consumption EEt [W · tu] and active time ATt

[tu] of each server st are obtained. The active time ATt is
time when the server st is active, i.e. at least one process
is performed. The total electric energy consumption TEE
of servers is EE1 + · · · + EE4 and the total active time
TAT is AT1 + · · ·+AT4. In the simulation, the termina-
tion time etimei of each process pi is obtained. Here, the
execution time eti of the process pi is etimei − stimei +
1. The average execution time AET of n processes is (et1
+ · · · + etn / n.

The random (RD), round-robin (RR), and SGEAG algo-
rithms are performed on the same pair of a server configu-
ration and a process configuration. In the RD algorithm, a
server st is randomly selected for each new process pi. In
the RR algorithm, after a server st is selected for a previ-
ous process, a server st+1 is selected for a next process. In
the SGEAG algorithm, one host server st is selected where
the total electric energy GEt of all the servers s1, . . . , sm
is minimum. Then, the electric energy consumption EEt

and active time ATt of each server st and the execution
time eti of each process pi are obtained for each server st
in each process configuration in the simulation for each al-
gorithm. etime is time when the simulation ends, i.e. a
maximum one of etime1, · · · , etimen.
4.2 Evaluation results

Figure 2 shows the total electric energy consumption
TEE [W · tu] of the four servers s1, . . . , s4 for number
n of processes in each algorithm. The total electric energy
consumption TEE of the servers s1, . . . , s4 is EE1 +
· · · + EE4 where EEt is the electric energy consumption
of each server st. The total electric energy consumption
TEE of the SGEAG algorithm is minimum in the algo-
rithms. For example, the total electric energy consumption
TEE of the SGEAG algorithm is 8% and 11% smaller
than the RD and RR algorithms for n = 1,000 and n =
2,000, respectively. As shown here, the total electric en-
ergy consumption TEE of the servers can be reduced in
the SGEAG algorithm compared with the RD and RR al-
gorithms.

Figure 3 shows the total active time TAT of the servers
s1, . . . , s4 for number n of processes. The total active time
TAT is AT1 + · · · + ATn where ATt is the active time of
each server st. The total active time TAT of the SGEAG
algorithm is shorter than the RD and RR algorithms. For
example, the total active time TAT of the SGEAG algo-
rithm is about 50 % of the total active time TAT of the RR
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and RD algorithms for n = 1,500. This meas, the servers
are less loaded in the SGEAG algorithm than the RD and
RR algorithms.

Figure 4 shows the average execution time AET [tu] of
n processes p1, . . . , pn on the four servers s1, . . . , s4. The
average execution time AET of the SGEAG algorithm is
shorter than the RD and RR algorithms. For example, the
average execution time AET of the n processes in SGEAG
algorithms is about 35% shorter than the RD and RR algo-
rithms for n = 2,000. The average execution time AET
of the RD and RR algorithms exponentially increases as
the number n of processes increases. In the SGEAG al-
gorithm, the average execution time AET almost linearly
increases.

As shown in Figures 2, 3, and 4, the total electric en-
ergy consumption TET and total active time TAT of the
servers and the average execution time AET of the pro-
cesses can be more reduced in the SGEAG algorithm than
the RD and RR algorithms.

Table. 1: Parameters of servers.

parameters DSLab1 (s1) Atria (s2) Sunny (s3) DSLab2 (s4)
npt 1 1 1 2
ncpt 8 4 6 8
ntt 16 8 12 32

CRTt [vs/tu] 1.0 0.7 0.5 1.0
maxCRt [vs/tu] 16 5.6 6.0 32
V RRt [vs/tu] 1.0 0.56 0.8 1.0
minEt [W] 126.1 41.3 87.2 126.1
maxEt [W] 222.7 91.5 136.2 322.1
bEt [W] 30 15 16 30
cEt [W] 5.6 4.7 3.6 5.6
tEt [W] 0.8 1.1 0.9 0.8
REt [W] 21 2 5 21

Table. 2: Parameters of processes.

parameters values
n number of processes p1, . . . , pn.
α computation - read ratio factor (α = 0.025).

minCTi [tu] minimum computation time (5 ∼ 20).
cRTi [tu] canonical read time (α · minCTi).
minTi minCTi + cRTi = (1 + α) · minCTi.
V Ci [vs] minCTi [vs].
V Ri [vs] α ·minCTi [vs].
stimei[tu] starting time of pi (0 ≤ sti < xtime - 1) [tu].
xtime[tu] simulation time (= 1000) [tu].

5 Concluding Remarks
In this paper, we newly proposed the improved com-

putation MLCMG model of a server to perform general
processes which use both CPU and storages. In the im-
proved MLCMG model, the expected termination time of
each process is simply estimated by using only the number
of processes performed on each server. Then, we proposed
the SGEAG algorithm to select a host server to perform a
process issued by a client. Here, a host server st is se-

Figure2: Total electric energy (TEE) (α = 0.025, m = 4).

Figure3: Total active time (TAT) (α = 0.025, m = 4).

Figure4: Average execution time (AET ) (α = 0.025, m =
4).
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lected to perform a new process issued by a client so that
the total electric energy to be consumed by the host server
st and the other servers is minimized. We evaluated the
SGEAG algorithm compared with the RD and RR algo-
rithms in the simulation. We showed the total electric en-
ergy consumption and total active time of servers and the
average execution time of processes can be reduced in the
SGEAG algorithm compared with the RD and RR algo-
rithms. The SGEAG algorithm implies the smallest elec-
tric energy consumption of the servers. The average exe-
cution time of the processes is also shorter in the SGEAG
algorithm than the RD and RR algorithms. The SGEAG
algorithm is the best since the electric energy consumption
of the servers and the shortest average execution time of
the processes are smaller than the RD and RR algorithms.
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