
Analysis and Modeling of Temporal Features in
Data Streams from Multiple Wearable Devices

著者 Xu Tongtong
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 13
page range 1-6
year 2017-03-31
URL http://doi.org/10.15002/00021517



Analysis and Modeling of Temporal Features in Data 

Streams from Multiple Wearable Devices 

Tongtong Xu 

Graduate School of Computer and Information Sciences  

Hosei University 

Tokyo 184-8584, Japan 

tongtong.xu.66@stu.hosei.ac.jp 

 

 
Abstract—Time is a vitally important issue in the coordination 

of multiple wearable devices. Theoretically, wearable applications 

should require data streams to be synchronized with the necessary 

degree of precision. However, in the available applications, this 

critical issue has not been well considered. Actually, time 

discrepancies exist among data streams, resulting in certain 

decrease of data analysis and fusion accuracy. The study of time 

discrepancy is rarely found in the literature, and there is no 

specific model to describe temporal features. In this dissertation, 

we first analyze several temporal issues in multi-wearable system 

and the source of time discrepancy. Then, by taking into account 

temporal features, we propose two typical models, which provide 

statistical methods for describing time discrepancy and its 

distribution. Furthermore, the accuracy of the models is verified 

by a set of experiments. Finally, we demonstrate the application of 

the proposed models through a case study, in which the adaptive 

frequency strategy is adopted. Experimental results show that the 

strategy can not only guarantee the completeness of the data, but 

also reduce redundancy compared with the static frequency 

method. Our models and experiments of time discrepancy can be 

a basis for further research on the time synchronization of data 

from multiple wearable devices. 

Keywords—time discrepancy; temporal features; statistical 

model; synchronization; wearable device 

I.  INTRODUCTION 

Recent technological advances in wearable computing, low-

power integrated circuits, and wireless communications have 

enabled the design of low cost, miniature, lightweight, and 

intelligent sensors. These sensors, capable of sensing, 

processing, and communicating, can be used to detect user’s 

location [1] and daily activity, and can even be incorporated 

into ambience to monitor the environment status. In addition, 

some wearable devices containing biosensors such as heart rate 

sensor, electrocardiogram (ECG) sensor, and blood pressure 

sensor have been developed. One or more vital signs from these 

wearable devices can be seamlessly integrated into wearable 

applications and further can provide users with health status 

such as nutrition, stress, relaxation, heartbeat and sleep quality. 

The design and development of wearable biosensor systems 

for health monitoring [2] have gained much attention in the 

academic community and the industry. Over the last years, 

various healthcare applications have been developed in several 

research activities [3], following an integral approach in human 

physiology and focusing on the continuous detection of the 

health status.  

In these applications, coordinating multiple devices to 

achieve the health monitoring target requires data fusion from 

various devices. Therefore, to improve the accuracy of the 

monitoring, many studies have focused on high-level multi-

device fusions [4]. But in the process of data fusions, one aspect 

that cannot be ignored is that given a multitude of devices, 

combining data to derive valuable information requires them to 

work together with minimal time discrepancy. Especially in a 

multi-wearable system, such as [5], where the number and 

status of wearable devices are dynamically changed. 

Theoretically, applications should require data streams to be 

synchronized with necessary degrees of precision. However, 

traditional applications directly deal with original data, 

regardless of whether there are discrepancies, resulting in 

insufficient reliability of the analysis results.  

To the best of our knowledge, there are only few relevant 

studies on the time discrepancy of the data from multiple 

wearable devices, and there is no specific model to describe 

temporal features. This dissertation strives to analyze the source 

of time discrepancy and find the temporal features of the data 

streams from multiple wearable devices. Based on temporal 

features, we propose two typical models, which provide 

statistical methods for describing time discrepancy of data 

streams from multiple wearable devices. In addition, we 

experimentally demonstrate the effectiveness of the proposed 

models in improving the quality of data. Our study of time 

discrepancy will provide a theoretical and experimental basis 

for further research on personal data collection [6] and time 

synchronization of data from multiple wearable devices. 

The rest of this dissertation is organized as follows. In the 

next section, several related studies found in the literature are 

reviewed. In Section III we give an overview of temporal issues 

in multi-wearable system as well as the sources of time 

discrepancy. In Section IV, two temporal models are proposed 

based on the temporal features in data streams from multiple 

wearable devices. The accuracy and usability of the proposed 

models are demonstrated through the case study in Section V. 

Finally, Section VI summarizes our research achievements and 

briefly describes the future research issues. 

Supervisor: Prof. Jianhua Ma       



 

II. RELATED WORK 

Time issues in wireless sensor networks (WSN) and 

multimedia have been studied deeply in the past few years, and 

various protocols and schemes have been proposed and 

experimentally evaluated to achieve time synchronization 

between data streams. These time synchronization schemes are 

devised to adjust the local time of network nodes to the same 

reference value, thus ensuring that there is no time discrepancy 

between the node data.  

A survey of time synchronization mechanisms can be found 

in [7], from which we can find several factors that affect the 

time issues. The Network Time Protocol (NTP) proposed by 

Mills is a traditional approach to synchronize the time of nodes 

in networks [8]. Elson et al. proposed a novel approach called 

Reference Broadcast Synchronization (RBS) for sensor 

networks [9], in which the general idea is to use a “third party” 

for synchronization, rather than directly synchronizing between 

the sender and a receiver. Ganeriwal et al. proposed a time 

synchronization protocol called Timing-Sync Protocol for 

Sensor Networks (TPSN) based on traditional sender-receiver 

synchronization methods, which can realize synchronization in 

the whole networks [10]. A number of techniques for higher 

synchronization accuracy have been proposed in the literature, 

while a novel approach put forward by Greunen and Rabaey 

was aimed at minimizing the complexity of the synchronization 

[11]. Maróti et al. proposed a similar TPSN protocol known as 

the Flooded Time Sync Protocol (FTSP) for large-scale multi-

hop networks [12]. 

The classical example of multimedia synchronization is the 

synchronization between the audio stream and the associated lip 

movements in a speech, which is called lip-synchronization or 

lip-sync [13]. While in a distributed multimedia presentation 

(DMP) system, which integrates multiple media streams, e.g., 

audio, video, image, and text media, and possesses timeliness 

requirement of media units with respect to the presentation. It 

is necessary to ensure flexibility and good quality of service 

(QoS) for multimedia data presentation. To realize flexible and 

satisfactory presentation of multimedia data, a collaboration 

between sources, networks and receivers must be carefully 

designed to transfer the data to receivers. A comparison of time 

synchronization mechanisms in the multimedia can be found in 

[14], in which the concepts of intra-stream and inter-stream are 

illustrated in detail.  

This dissertation strives to provide an overview of temporal 

issues in multi-wearable system and analyze the source of time 

discrepancy, and in this context, find the temporal features of 

the data streams from multiple wearable devices. Based on 

temporal features, we propose two typical models, which 

provide statistical methods for describing time discrepancy and 

its distribution. In addition, we experimentally demonstrate the 

effectiveness of the proposed models in model matching and 

data quality improvement. Our study of time discrepancy will 

provide theoretical and experimental basis for further research 

on personal data collection and time synchronization of data 

from multiple wearable devices. 

III. TEMPORAL ISSUES IN MULTI-WEARABLE SYSTEM 

Our research is mainly based on the multi-wearable system, 

as shown in Fig. 1, the basic structure consists of three layers. 

In the wearable layer, a variety of devices such as bracelets, 

smart watches, rings and other intelligent items are used to 

collect the user’s activity data, which are then fused when they 

reach the gateway layer. The specific application installed on 

the gateway will calculate and exhibit personal characteristics, 

e.g., steps, energy burn, sleep status to the user. These types of 

information will be uploaded to the cloud layer as historical 

data and can be shared with others based on the user’s settings. 

 However, different levels of factors, such as clock drift, 

processing delay and network latency can be found, which will 

result in time discrepancies, i.e. the timestamps of data for 

different devices are inconsistent even if they are collected at 

the same time. 

 

Fig. 1. Temporal issues in multi-wearable system 

With these above-mentioned factors in our system, time 

discrepancies can be manifested in the data streams from 

multiple wearable devices in two ways, namely intra-stream 

and inter-stream. The temporal relationship between data 

streams is illustrated in Fig. 2, where the time of the left data 

item is the real time when the raw data is generated, and the 

right side is the actual stamp time. From this diagram, we can 

see that, assuming the data transmission time from the 

wearables to the gateway is the same, even if the data items are 

generated simultaneously, they will also obtain a variety of 

timestamps, where the time discrepancy varies depending on 

intra-stream or inter-stream.  

 
Fig. 2. Time discrepancy of data streams  



 

According to the analysis results from 12 kinds of data, 

different wearable devices transfer data with different strategies, 

which can be divided into two categories, i.e., static frequency 

and dynamic frequency. When we try to use statistic methods to 

analyze these data, we find that although the device data is 

given at a static or dynamic frequency, but in fact they follow 

certain rules. The features of data streams can be described from 

the perspective of intra-stream and inter-stream. However, 

even with the features, we still cannot reduce the impact of time 

discrepancy. In such context, we present two typical temporal 

statistical models based on the time features of data streams 

from multiple wearable devices.  

IV. TEMPORAL STATISTICAL MODELS 

In this section, we propose two typical statistical models 
based on time interval features, which provide mathematical 
methods for describing time discrepancy and its distribution. 

A. Single-Modal Normal Distribution (SMND)  

In our experiment, 491 heartbeat data items were gathered 
from Polar H6. Ideally, the data should be transmitted at a static 
frequency and the time interval of the adjacent data should be 1 
second if the time accuracy is required to second. However, 
when we consider time accuracy as milliseconds, only a small 
fraction of the data fit the expected static frequency. As shown 
in TABLE I, the time interval of the adjacent data varies from 
993 milliseconds to 1002 milliseconds. We can find from the 
table, the 998 milliseconds time interval account for the largest 
proportion, with its distribution centered at 997 milliseconds and 
998 milliseconds, and then exhibits a decreasing trend to both 
sides. 

TABLE I.  TIME DISTRIBUTION OF HEARTBEAT DATA (POLAR H6) 

Time-interval 

(milliseconds) 
Count Proportion 

Model 

probability 

density 

 

Model error 

993 5 1.02% 0.25% -0.77% 

994 14 2.85% 1.65% -1.20% 

995 34 6.92% 6.68% -0.24% 

996 77 15.68% 16.80% 1.12% 

997 105 21.38% 26.28% 4.90% 

998 125 25.46% 25.54% 0.08% 

999 70 14.26% 15.42% 1.16% 

1000 28 5.70% 5.79% 0.09% 

1001 10 2.04% 1.35% -0.69% 

1002 7 1.43% 0.20% -1.23% 

 

Factors that influence the time discrepancy have been 
discussed before, and it is these elements that lead to such a 
distribution of time interval. In probability theory, the central 
limit theorem (CLT) establishes that, for the most commonly 
studied scenarios, when independent random variables are added, 
their sum tends toward a normal distribution even if the original 
variables themselves are not normally distributed. Based on this, 
normal distribution model can be used to describe the 
distribution features of time interval.  

As in (1), T stands for the time interval of the adjacent 
heartbeat data, and its distribution features follow the Single-

modal normal distribution. μ  is the mean and   σ2  is the 
variance of the collected data. 

T ~ N (μ,   σ2)                  (1) 

Equation (2) is the probability density function (PDF) of the 
time interval distribution and is used to specify the probability 
of the time interval falling within a particular range of values. 

           f(t) =  
1

𝜎√2𝜋
 exp (- 

(𝑡−𝜇)2

2𝜎2 )          (2) 

The cumulative distribution function (CDF) as in (3) is used 
to describe the probability distribution of time interval, which is 
the integral of the probability density function. 

    F(t; 𝜇,  𝜎) = 
1

𝜎√2𝜋
∫ 𝑒𝑥𝑝 (-

(𝑡−𝜇)2)

2𝜎2 ) 𝑑𝑡
𝑡

−∞
         (3) 

When we use the existing model to estimate the experimental 
data, the confidence interval with a significance level of 𝛼 can 
be calculated by (4), where   𝑍𝛼 2⁄  is the bilateral quantile of 

normal distribution. 

[�̅� −
𝜎

√𝑛
𝑍𝛼 2⁄ , �̅� +

𝜎

√𝑛
𝑍𝛼 2⁄ ]                (4) 

The degree of fitting of the model to the actual data 
distribution can be reflected by the correlation coefficient. As in 
(5), where R represents raw data from the wearable device and 
M means model data. Cov(R, M) is the covariance of R and M, 
Var[R] is the variance of R, and Var[M] is the variance of M. 

r(R, M) = 
𝐶𝑜𝑣(𝑅, 𝑀)

√𝑉𝑎𝑟[𝑅]𝑉𝑎𝑟[𝑀]
           (5) 

Using the single-modal normal distribution model, we can 
combine Polar H6’s heartbeat data to calculate the parameters 
and the corresponding values as listed in TABLE II. In addition, 
the probability density corresponding to each time interval can 
also be computed, as shown in the fourth column of TABLE I. 
In the Fifth column, the model error is the difference between 
the probability calculated by (2) and the actual proportion, which 
can initially reflect the degree of fit between the model and the 
actual data. 

TABLE II.  THE PARAMETERS AND VALUES OF SMND 

Parameter Symbol Value 

Data quantity n 491 

Mean μ 997.44 

Variance  σ2 2.10 

Standard deviation σ 1.45 

Significance level 𝛼 0.05 

Confidence level 1-𝛼 0.95 

Sampling average error 𝜎 √𝑛⁄  0.07 

Bilateral quantile   𝑍𝛼 2⁄  1.96 

Allowable error 𝜎 √𝑛⁄  *  𝑍𝛼 2⁄  0.14 

Lower confidence limit �̅� − 𝜎 √𝑛⁄  *  𝑍𝛼 2⁄  997.30 

Upper confidence limit �̅� + 𝜎 √𝑛⁄  *  𝑍𝛼 2⁄  997.58 



 

We can use the model to fit the actual time interval 

distribution, as the results shown in Fig. 3. The horizontal axis 

represents the time interval between adjacent data items, and 

the vertical axis shows the corresponding probability or 

proportion. The blue histogram represents the distribution of the 

actual time interval, and the red solid line reflects the fitting 

curve of the model. The correlation coefficient can be used to 

judge the correlation between the model data and the raw data. 

In this case, the correlation coefficient obtained by (5) is 0.9938, 

which means that the model data is in agreement with the 

original data. 

 

Fig. 3. Time interval distribution and model fitting curve of heartbeat data 

In this section, we propose a model called single-modal 

normal distribution based on the temporal features to describe 

the time interval distribution of heartbeat data. Through the 

above analysis, we can draw the conclusion that the proposed 

model can accurately reflect the actual distribution. It should be 

noted that this model is constructed based on the time interval 

features of heartbeat but not limited to this kind of data. Among 

the wearable devices we analyzed, if the data features exhibit a 

single peak distribution, the model can be used to describe it, 

but for the different cases, the model parameters need to be 

adjusted. In addition, with this statistical model, the existence 

of time discrepancy and the its size can be determined. More 

details about how to calculate the time discrepancy and how to 

improve the data quality will be illustrated in the case study. 

B. Multi-Modal Normal Distribution (MMND) 

We collected 3694 step data from Apple Watch, and the time 
interval between each adjacent data seemed to be different. 
Theoretically, the step data of the Apple Watch changes as the 
user’s status changes, so the data will be generated at a dynamic 
frequency. However, when statistics are made on the frequency 
of each time interval, we find that even if the frequency changes 
dynamically, it follows a certain law. As shown in TABLE III, 
part of the time interval distribution of step data. According to 
the definition of a small probability event, we will no longer 
consider such time intervals whose probability of occurrence is 
less than 1%. Depicted from the TABLE III, the time interval of 
the adjacent data is changed from 0 minutes to 12 minutes, and 
the count and proportion represent the corresponding amount 
and percentage of overall data. The features of the time interval 
distribution can be extracted, and the curve of the data shows 
bimodal structure. The distribution centered at 1 minutes and 10 
minutes, and then exhibits a decreasing trend to both sides. 

TABLE III.  TIME DISTRIBUTION OF STEP DATA (APPLE WATCH) 

Time-interval 

(minutes) 
Count Proportion 

Model 

probability 

density 

 

Model 

error 

0 35 0.70% 4.39% 3.69% 

1 2939 59.08% 59.37% 0.29% 

2 468 9.41% 10.46% 1.05% 

3 252 5.07% 0.02% -5.04% 

4 160 3.22% 0.01% -3.21% 

5 116 2.33% 0.08% -2.26% 

6 102 2.05% 0.39% -1.66% 

7 81 1.63% 1.38% -0.25% 

8 77 1.55% 3.36% 1.81% 

9 88 1.77% 5.65% 3.88% 

10 355 7.14% 6.56% -0.58% 

11 97 1.95% 5.24% 3.30% 

12 57 1.15% 2.89% 1.75% 

 

It is obvious that the previously proposed model called 
single-modal normal distribution is no longer suitable to 
describe the time interval distribution of step data because there 
are two salient points. Further analysis shows that the data 
distribution is centered at each salient point and subject to a 
normal distribution respectively. Based on above analysis, we 
propose a new model called multi-modal normal distribution, as 
described in (6), where 𝜇𝑖  and 𝜎𝑖

2 represent the mean and 
variance of each normal distribution. The value of parameter i 
can be 1 and 2 since there are two peaks in this case. 

 T ~ N (𝜇𝑖,  𝜎𝑖
2) (i = 1,  2)          (6) 

Equation (7) is the probability density function (PDF) of the 
time interval distribution, where 𝑘𝑖 represents the weight of the 
i-th normal distribution and the constraint relation is expressed 

as ∑ 𝑘𝑖 = 12
𝑖=1 .  

  f(t) =  ∑
𝑘𝑖

𝜎𝑖√2𝜋

2
𝑖=1  exp (- 

(𝑡−𝜇𝑖)2

2𝜎𝑖
2 )       (7) 

The cumulative distribution function (CDF) as in (8) is used 
to describe the probability distribution of time interval, which is 
the integral of the probability density function. 

 F(t; 𝜇𝑖, 𝜎𝑖) = ∑
𝑘𝑖

𝜎𝑖√2𝜋

2
𝑖=1 ∫ exp (- 

(𝑡−𝜇𝑖)2

2𝜎𝑖
2 ) 𝑑𝑡

𝑡

−∞
   (8) 

Using the multi-modal normal distribution model, combined 
with Apple Watch’s step data we can calculate the parameters 
and the corresponding values, as listed in TABLE IV. The 
weights of the two normal distributions are 0.73 and 0.27 
respectively. In order to be able to use the existing model to 
estimate the experimental data, the confidence intervals 
calculated by (4) with a significance level of 0.05 are also listed. 
In addition, the probabilities corresponding to each time interval 
are computed, as shown in the fourth column of TABLE III. In 
the Fifth column, the model error is the difference between the 
probability calculated by (7) and the actual proportion, which 
can initially reflect the degree of fit between the model and the 
actual data. 



 

TABLE IV.  THE PARAMETERS AND VALUES OF MMND 

Parameter Symbol Value 

ID i 1 2 

Data quantity 𝑛𝑖 2697 997 

Weight coefficient 𝑘𝑖 0.73 0.27 

Mean 𝜇𝑖 1.10 9.90 

Variance  𝜎𝑖
2 0.23 2.69 

Standard deviation 𝜎𝑖 0.48 1.64 

Significance level 𝛼 0.05 0.05 

Confidence level 1-𝛼 0.95 0.95 

Sampling average error 𝜎𝑖 √𝑛𝑖⁄  0.01 0.05 

Bilateral quantile   𝑍𝛼 2⁄  1.96 1.96 

Allowable error 𝜎𝑖 √𝑛𝑖⁄  *  𝑍𝛼 2⁄  0.02 0.10 

Lower confidence limit �̅� − 𝜎𝑖 √𝑛𝑖⁄  *  𝑍𝛼 2⁄  1.08 9.80 

Upper confidence limit �̅� + 𝜎𝑖 √𝑛𝑖⁄  *  𝑍𝛼 2⁄  1.02 10.00 

  

In this section, we propose a model called multi-modal 

normal distribution based on the time interval distribution of 

step data from Apple Watch. The fitting result is shown in Fig. 

4. In this case, the correlation coefficient obtained by (5) is 

0.9852, which means that the model data is highly consistent 

with the original data. We can draw the conclusion that the 

proposed model is applicable to data that is subject to multiple 

normal distribution. The model can well reflect the distribution 

of the actual time interval by adjusting the weight coefficients 

of each normal distribution. 

 

Fig. 4. Time interval distribution and model fitting curve of step data 

V. EVALUATION AND CASE STUDY 

To evaluate the performance of our proposed model, a 

series of experiments have been conducted to test its accuracy 

and usability. 

A. Evaluation of Model Accuracy 

3250 step data items were gathered from iPhone and the 

temporal features are shown in TABLE V. The time interval of 

the adjacent data varies from 0 minutes to 11 minutes, but is 

mainly distributed in 1 minute, 5 minutes and 10 minutes, 

accounting for 47.32%, 15.97% and 11.26% of the total 

respectively. The distribution of time interval can be described 

as the blue histogram in Fig. 5, from which we can see three 

peaks correspond to the three salient points. 

TABLE V.  TIME DISTRIBUTION OF STEP DATA (IPHONE6) 

Time-interval 

(minutes) 
Count Proportion 

Model 

probability 

density 

 

Model 

error 

0 12 0.37% 4.95% 4.59% 

1 1538 47.32% 47.33% 0.01% 

2 177 5.45% 5.89% 0.45% 

3 99 3.05% 0.08% -2.97% 

4 84 2.58% 3.83% 1.25% 

5 519 15.97% 16.03% 0.06% 

6 121 3.72% 4.97% 1.25% 

7 57 1.75% 0.11% -1.64% 

8 61 1.88% 0.08% -1.80% 

9 100 3.08% 3.89% 0.81% 

10 366 11.26% 11.80% 0.54% 

11 42 1.29% 2.23% 0.94% 

 

We can find that the features of normal distribution are 

presented around each salient point, so it is more appropriate to 

use a multi-modal normal distribution to fit the raw data. 

Consequently, the distribution of time interval can be described 

by (6), where the value of parameter i should be 1, 2 and 3 

corresponding to three peaks. The weights of the three normal 

distributions are 0.57, 0.25 and 0.18 respectively. The 

probability and model errors corresponding to each time 

interval computed by the model are shown in the fourth and 

fifth columns of TABLE V. The model fitting curve of step data 

from iPhone can be drawn as show by the red solid line in Fig. 

5. The correlation coefficient obtained by (5) is 0.9892. 

 

Fig. 5. Time interval distribution and model fitting curve of step data 

B. Case Study of Model Usability 

In this subsection, we attempt to use the proposed model to 

optimize the quality of wearable device data. Assuming in a 

health monitoring application, we need to read step data from 

the user’s iPhone. However, the step data from iPhone is 

calculated by the application called Health Kit, the time interval 

is dynamic changed and subject to a certain distribution. In this 

case, if the application requests to obtain data from the Health 

Kit at a static frequency, it will result in data redundancy. For 

example, we selected a portion of the raw data from the Health 

Kit, as shown in TABLE VI. The data record is the step status 

of the user from 16:33:04 to 16:53:01. During this 20 minutes, 

5 data records are generated. 



 

TABLE VI.  THE ORIGINAL STEP DATA SAMPLES 

No. Start time End time Step 

1 0028-08-29 16:33:04  0028-08-29 16:34:19  62 

2 0028-08-29 16:34:19  0028-08-29 16:39:25  450 

3 0028-08-29 16:39:25  0028-08-29 16:43:28  245 

4 0028-08-29 16:43:28  0028-08-29 16:53:01  618 

5 0028-08-29 16:53:01  0028-08-29 16:57:54  324 

 

If the Health Kit’ step data is requested at a fixed frequency 

such as 5minutes, we can only get 4 data items during this 

period, which means that the completeness of the results cannot 

be guaranteed. However, if we read the data once every 2 

minutes, 10 items will be recorded, resulting in high 

redundancy. An adaptive frequency data acquisition strategy is 

proposed in combination with the above model. After reading 

the first data, we add 1 minute based on the last read time. If the 

time does not exceed the previous time interval, we will add 4 

minutes. If the time exceeds the last time interval, then read the 

next data item, otherwise add another 5 minutes. Follow this 

strategy until all the data is read and we get 8 data records, 

which ensures completeness and low redundancy. 

We selected 6 days’ data to verify the validity of the 

proposed adaptive frequency strategy by comparing the amount 

of step data collected under different approaches. The 

experimental results are shown in Fig. 6. We can see that, 

compared with the static frequency (every 5 minutes), the 

adaptive frequency strategy can reduce data redundancy. 

 

Fig. 6. Comparison of step data records under different strategies 

In this case study, we demonstrate the accuracy and 

usability of the model. Based on the above analysis, we can find 

that when new wearable device data is collected, an appropriate 

model can be used to describe its temporal features. In addition, 

with the model, the adaptive frequency strategy based on the 

features of data can be adopted to collect data which can not 

only guarantee the completeness of the data, but also reduce 

redundancy. 

VI. CONCLUSION AND FUTURE WORK 

In this dissertation, we provide an overview of temporal 

issues in multi-wearable system, and in this context, analyze the 

source of time discrepancy. Our main contributions are (1) to 

analyze the temporal features in data streams from multiple 

wearable devices, and (2) to propose two statistical models of 

temporal discrepancy. By carrying out experiments, it is 

confirmed that the proposed models can accurately fit the actual 

data. In addition, we demonstrate the usability of the proposed 

models though a case study, in which the adaptive frequency 

strategy is adopted. Experimental results show that this strategy 

can not only guarantee the completeness of the data, but also 

reduce redundancy compared with the static frequency method.  

In the future, the proposed temporal statistical models need 

to be further optimized to improve the accuracy of the actual 

data fitting. Moreover, the current models cannot fully describe 

the temporal features of all types of wearable device data, so 

new models should be established. Finally, with these models, 

novel schemes should be proposed to reduce the impact of time 

discrepancy. 
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