
A Software Tool to Support Scenario-Based
Formal Specification for Error Prevention

著者 Li Siyuan
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 13
page range 1-6
year 2017-03-31
URL http://doi.org/10.15002/00021516

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/223208566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Software Tool to Support Scenario-Based Formal

Specification for Error Prevention

Li Siyuan

Graduate School of Computer and Information Sciences

Hosei University

3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

E-mail: siyuan.li.83@stu.hosei.ac.jp

Abstract—Formal specification can be an error-prone process

for complex systems and how to efficiently write correct

specifications is still a challenge for practitioners in industry. This

paper presents a software tool to support the scenario-based

formal specification approach developed in the SOFL formal

engineering method. Using the tool, some suggestion of the further

contents of the specification may be automatically predicated to

facilitate the user in completing the specification. To improve the

readability of the formal specification, the tool can also

automatically translate the textual format of the specification into

a comprehensible tabular format. Both of these functions can be

helpful to prevent errors during the construction of the

specification. We discuss each of the functions by first presenting

its principle and then illustrating it with examples. We present a

case study to show how the tool supports the scenario-based

specification approach. Finally, we conclude the paper and suggest

topics for future research.

Keywords—SOFL; Formal specification; Verification; Error

prevention

I. INTRODUCTION

As a formal engineering method for practical software
development, SOFL has provided a method for functional
scenario-based inspection and testing of programs, respectively
[1]. The same concept has also been found to be effective in
helping construct formal specifications in practice [2] and verify
their properties such as consistency [3] and completeness [4].

However, writing a formal specification for a complex
system tends to be error-prone. This problem can be attributed
to three factors. The first is that the practitioner who writes the
formal specification may lack competence of commanding the
formal notation. The second is that the habit of writing code may
affect the practitioner in keeping the logical consistency and
completing the definition of the functionality. For example,
when defining an update of a composite object, only some fields
of the object are defined in the post-condition while the other
fields are undefined. This style may have no problem for
programming but usually results in incomplete definition of the
functionality in the specification. The final factor has something
to do with inappropriate input or output variables and their types.

Choosing inappropriate variables and types may lead to errors in
specification in most cases.

To deal with the above challenge, we believe that
dynamically checking the consistency of the current version of
the specification and predicating the further necessary contents
of the specification as it is being constructed are an efficient way
to build correct formal specifications. To realize this goal,
obviously a software tool needs to be developed to support the
process of constructing a specification. In our work, we build
some principles to support the functional scenario-based formal
specification approach based on the SOFL specification
language. Specifically, the supporting tool includes following
specific functions: (1) automatically checking and predicating
necessary contents for the specification, and (2) automatically
translating the textual format of the specification into a
comprehensible tabular format. We have also developed a tool
to implement the principles. All of these can be helpful to
prevent errors during the construction of the specification. The
result of this research is expected to make the SOFL method
more effective and practical in industry where the current SOFL
technology has been tested or applied in realistic systems
development.

II. INTRODUCTION TO SCENARIO-BASED FORMAL

SPECIFICATION

In this section, we briefly introduce the essential idea of the
scenario-based formal specification for a process using the
SOFL specification language [5]. To this end, we first need to
explain the concepts of process and functional scenario, and then
illustrate the scenario-based approach to formal specification
with an example.

A. Process

A process is the essential component of a module in a SOFL
formal specification. Its specification is composed of the
signature, pre- and post-conditions. The signature shows the
process name, input variables, output variables, and external
variables. The pre-condition sets a restriction on the input of the
process while the post-condition defines the relation between the
input and the output that must be satisfied after the execution of
the process. Below shows the general structure of a process
specification.

Supervisor: Shaoying Liu

process Operate(x:real) message:string
ext wr y:real
pre true
post x > 0 and y = 1 and message = “result1” or
 x = 0 and y = 0 and message = “result2” or
 x < 0 and y = -1 and message = “result3”
end_process

All of the types used to declare the input, output, and external
variables in the process must be clearly defined in the type
section of the related module. A module is a mechanism for
defining a sub-system by describing its architecture using a
condition data flow diagram (CDFD) and specifying the
functionality of every process occurring in the CDFD. It also
allows necessary constant identifiers, type identifiers, store
variables, type and store invariants to be defined properly, which
can be used in process specifications.

B. Functional Scenario in Process Specification

As mentioned in the Introduction, a process specification can
be effectively constructed by building the disjunction of
functional scenarios. A functional scenario is a conjunction of
the pre-condition, a guard condition, and a defining condition.
The guard condition is defined as part of the post-condition and
is characterized by including merely input variables. The
defining condition is also part of the post-condition but for
defining output variables in terms of their relation with input
variables.

For example, below shows a process Test:

process Test(x:bool, y:real) z:string
ext rd w:bool
pre w = true
post x = true and y < 0 and z = “output_1” or
x = true and y = 0 and z = “output_2” or
x = true and y > 0 and z = “output_3” or
x = false and y < 0 and z = “output_4” or
x = false and y = 0 and z = “output_5” or
x = false and y > 0 and z = “output_6”
end_process

In this specification, the post-condition is given as a
disjunction of six “functional scenarios”. Note that by
“functional scenario” here, we actually mean the conjunction of
the guard condition and the defining condition, omitting the pre-
condition of the process in the original concept of functional
scenario, because it applies to every such a conjunction in the
post-condition. For example, x=true and y<0 and z=output_1 is
a “functional scenarios” whose guard condition is x=true and
y<0 and defining condition is z=output_1. The original
functional scenario should be w = true and x=true and y<0 and
z=output_1. By scenario-based formal specification, we mean
that the post-condition of a process should be written by
gradually adding functional scenarios one by one. The above
process Test can be completely by gradually adding more
functional scenarios [10].

III. PRINCIPLES

A. Basic Principles

The set of scenarios is the base of our work. Based on the
experience of research and the using of SOFL in the past, when
we deal with the process part, it will spend some time and
generate some errors. It’s one of the reasons why we focus on
the scenarios of the process. Based on the scenario, we can
further analyze the process. We set each scenario as the most
basic unit. In this rule, each value of each condition will lead to
a different scenario. For example, a process named Process_vars
includes three variables, var_a, var_b and var_c. At here we
assume all of them are a part of guard conditions in scenarios.
We can divide all variables into three types. Every type represent
a kind of method to deal with relevant variables [6]. After we
make sure their definition, we can further make assumptions.

There is a variable var_a that can be used to constitute guard
condition. We can denote this guard condition as gc_a, and this
guard condition only includes one predicate. Generally, the
expression of this predicate only has one result. But it will lead
to a potential problem. This expression has the possibility of
failure. So, the guard condition gc_a has two different values in
fact. They are success (denote as true) and failure (denote as
false). Now, we can denote this type variable like var_a as
potential boolean variable. Accordingly, there are potential
boolean guard condition and potential boolean guard condition
predicate.

Variable var_b is a boolean type (A kind of basic data types
in SOFL) variable, it has two value: true and false. Of course,
the guard condition gc_b (only includes one predicate) made by
var_b have two results: true and false. We can denote var_b as
boolean variable. Accordingly, there are boolean guard
condition and boolean guard condition predicate.

Variable var_c is a non-boolean variable. For example, var_c
is an integer. By mathematics, the number of values of integer
var_c is infinite. But when people design the software or write
codes, the number of values of var_c is finite. For example, there
is a function. It used to judge whether a divisor is 0. Actually,
we just need to know whether it is equal to 0. It is same that this
divisor is equal to 1 or 2 or other values for this function. So,
var_c is denoted as finite-value-non-boolean variable.
Accordingly, there are finite-value-non-boolean guard condition
and finite-value non-boolean guard condition predicate.

Through the previous discussion, we can adopt a appropriate
method to get necessary information, then we can build the set
of scenarios. The set of scenarios is a crucial gist of the
applicable development. The number of variables and the value
range of variable will directly affect the set of scenarios.

For the convenience of writing and reading, SOFL provides
many methods to simplify the writing of post-condition. Using
the writing rules of SOFL reasonably, when people write the
process, many scenarios will not be written as their original
expression. In this way, many context can be simplified. Usually,
a statement block can replace many scenarios. But in our
analysis, we should analyze all original scenarios and list them
all. The different writing method does not change the actual
quantity. And for this work, we can use the past research results.
So there is no more statements about this content.

As for the number of variables and the value range of
variables, we can calculate the number of scenarios directly.
Let’s discuss the above example again. We denote a predicate of
guard condition that made by var_a as gcp_a (same as var_b and
var_c). At here, we can know gcp_a has one value (if we don’t
consider the failure of gcp_a), gcp_b has two value, and we rule
gcp_c has three value. According to the principle of
mathematical, the number of scenarios should be 1*2*3 = 6.
Generally, 6 is the biggest number of scenarios as usual. Then,
we can get the biggest set of scenarios. In this method, we do not
consider the pre-condition in the set of scenarios. Because in a
given process, every scenario acquiescently includes the pre-
condition [7].

But, this set isn’t the final set. For finite-value-non-boolean
guard condition (or finite-value non-boolean guard condition
predicate), the difficulty is how to set the number of values.
There is a solution, we can build the set of scenarios dynamically.
Following is the building process of the set of scenarios. First,
when we get a variable that be used to build a finite-value-non-
boolean guard condition, we set it has only one value
temporarily. Second, we build the set of scenarios based on this
variable and others temporarily. Third, when the user inputs
conditions about this variable, if the user inputs a new value, we
can expand the set of scenarios based on the change of the
number of values. In this way, we can expand it clearly.

There is an example. At first, we only have 2 variables x and
y. x is a boolean type variable (x has two different value), y is a
real type variable. If we don’t give the value range of y. In this
case, y only have one type of value. The number of scenarios is
2 * 1 = 2. Then the user write an expression of predicate y < 0.
It means y has two type of value. In other words, there are two
value ranges of y, y < 0 and y >= 0. Then we can get the number
of scenarios again. It is 2 * 2 = 4 scenarios.

From above analysis process, some additional information
can be gotten. We can know the classification of variables and
the value range of variables. These variables must be converted
to guard conditions or defining conditions. Based on whether the
value of these conditions will affect the building of scenarios,
we can further divide or merge scenarios. Finally, through all
these work, we can build a set of scenarios. It can be used in the
realization of the major functions of this tool.

B. Automatic checking the internal consistency

When we get some conditions, we can check the errors of
grammar easily. But for the logical errors, it’s difficult. The main
reason is the cause of the previous method that has no gist of the
whole process. But now, the set of scenarios can clearly reflect
it. When the user inputs a logical wrong condition, it will be
checked based on the set of scenarios. According to different
situations, there is a general statement to explain it for errors.

In this process, we can meet following situations.

Case 1. If an error exists in a guard condition. A guard
condition predicate must be inconsistent with any guard
condition predicates of the scenario. For a guard condition that
is composed of different types of variable, we must analyze them
respectively.

1) Potential boolean variables. According to the previous
discussion, when we build the set of scenarios, the predicate that
represent the failure of this expression of a potential boolean
variable will not be generated. If a mismatching appear at here,
we will build a new scenario for this situation. Then add it into
the set of scenarios.

2) Boolean variables. This situation will not happen. Because
according to analysis process above, we can cover any situation
of a boolean variable.

3) Finite-value-non-boolean variables. The error is caused by
the value range. For one variable, two value ranges might be
overlap in different expressions.

 a) Value ranges are same. This situation will not
happen. Because it must accord with one scenario.

 b) For one variable, different predicates’ value range
have same overlapping part. Based on the rule of division about
the value range of this type variable, we can divide it again to
make it more accurate. It means the number of scenarios will be
bigger.

Case 2. If an error exists in a defining condition. It must be
self-contradiction. For example, there is a statement, x<0 and
x>0. In fact, we cannot find any value of x satisfies both x<0 and
x>0.

Case 3. If an error exists in a scenario, especially this error
will affect the logic between many scenarios. And this error will
appear in guard condition and defining condition for a scenario.

1) If it appear in guard condition. The statement is above.

2) If it appear in defining condition. It means different
scenarios have the same input and the different output. Actually,
it isn’t an error, because this situation is allowed in SOFL.

In brief, there are three logical error or checking point, (1)
the failure of expression of a potential boolean condition
variable. (2) For one variable, different predicates’ value range
have same overlapping part. (3) The self-contradiction in
defining condition. The generation of logical error is mismatch
between the text and the set of scenarios. As long as we modify
them, the mistake will be solved. And in some situations, it also
can be used in update the set of scenarios.

According to above discussion, these result can be used in
checking errors. The tool can give the user feedback message
when the user writes an error at the appropriate time. It is the
way that we check the internal consistency.

C. Automatic Predicating Specification Contents

When user writes scenarios, the expectation can be shown to
users. The information of expectation comes from the set of
scenarios. We can follow this method. When the user writes
conditions for a given scenario, the shown information is the rest
part of this scenario. When the user has finished a scenario, the
information of other scenarios will be shown to the user from the
set of scenarios. The tool only need to give the user appropriate
part of the set of scenarios.

D. Automatic Translating Textual Specification to Tabular

Form

The construction of tabular form is scenario-based. It is a
new expression of text. One tabular form represent at least one
scenario. Table I is an example of the tabular form of a scenario.
This tabular form developed by the decision table. It includes 2
parts mainly, guard condition part and defining condition part.
In this tabular form, these row represent GC and DC are contents
of guard condition and contents of defining condition
respectively. And if two different guard conditions have one
same defining condition. It means this tabular form includes two
basal scenario from the set of scenarios.

TABLE I. THE TABULAR FORM OF SCENARIO

Functional Scenario

GC
x = true ✔

y = 0 ✔

DC z = 1 ✔

There are several steps to build tabular forms from the text
representation of scenarios. It also includes some actions about
the feedback message.

Step1,

(1) Get all related information of variables.

(2) Build the set of scenarios.

Step2,

(1) Divide scenarios and conditions based on keywords, such
as “and”, “or”.

(2) Find all guard conditions and all defining conditions in
each scenario.

(3) Find the map between scenarios that the user write and
the set of scenario. If the map can be found successfully, it means
the set of scenarios includes it. As for other scenarios that has no
map, it must need to be modified. Then we record necessary
information that can be used in expand the set of scenario. Like
the new value of a variable. By the way, the scenario that only
have different express method (like “not x=true” and “x=false”),
don’t modify it to keep consistent with the scenario that belongs
to the set of scenarios. The difference should be recorded.

Step3,

1) Draw tabular forms based on all marked scenarios. And
show tabular forms to the user.

2) Finally, give the feedback message to the user.

IV. SOFTWARE TOOL

We have developed a prototype tool to support the scenario-
based formal specification approach. In this section [9], we will
discuss these functions from the principles at first, then the tool
will be introduced.

A. Implementation Structure

The techniques for realizing the important functions have
been implemented to certain extent in our tool. The name of this

tool is Scenario-based SOFL Writing Supported Tool. Fig. 1
shows the main GUI of this tool. This tool also includes
conventional functions. Such as open file, save file, edit text and
so on. It mainly includes three area, the management area (left
part), the operating area (middle part) the feedback area (right
part). The management area can show the structure of a module
and the content of a module. The user can select a process, then
it will be shown at the operating area. At operating area, the user
can edit the process. At feedback area. The user can select shown
information. Such as the set of scenarios, the feedback message
of the process. Tabular forms also can be shown at this area.

Fig. 1. The UI of the tool.

Fig. 2. The CDFD of whole core analysis process.

Fig. 3. The CDFD of main analysis.

Both Fig. 3 and Fig. 4 give the CDFD of the core code of the
tool to illustrate its overall functions. We can clearly see the
process of two core analysis for the functions. From the
workflow of the whole process, we can see the set of scenarios
is very important. It is the prerequisite of the main analysis for
checking and expectation. And it also can be used in the building

of the tabular form to verify it. The analysis process mainly
includes four steps below.

Step1. The tool will get necessary information to build initial
the set of scenarios. This information only refers to variable
information.

Step2. The tool read original text, then analyze it. Next, it
will be converted to classified scenarios that can be used more
easily.

Step3. Based on the initial set of scenarios, analyze classified
scenarios. Then give the user necessary feedback message. It
includes the checking message and expectation message. And
we can also base on it to update the set of scenarios.

Step4. According to classified scenarios, the tool can show
the tabular forms to the user.

B. Case Study

There is a general case, we will use the tool to write a process.
Most of situation that might be appeared in the writing will be
shown. And the performance of the major functions will clearly
reflect how the tool works [8, 10].

Now, let’s see this process:

process Test(var1:string, var2:bool) var4:string
ext rd var3:real
pre true
post
end_process

TABLE II. VARIABLES

Variable

Name

Variable

Type
Part Type

Condition

Type

var1 string
potential boolean

variable

Guard

Condition

var2 bool boolean variable
Guard

Condition

var3 real
finite-value-non-

boolean variable

Guard

Condition

var4 string output variable
Defining

Condition

In this example, it includes 4 variables: var1, var2, var3, var4.
From the first line and second line, we can see var1 and var2 are
input variables, var3 is external variable (At here, var3 is also an
input variable). var4 is output variable. As shown in Table II.

Before the user write the post of the process, the tool can get
all information of variables, and build the set of scenarios.
Generally, it only be used by the tool itself. There are some table
to show how the tool works.

From the Table III, we can see at the right side of the table,
every scenario has been shown to the user. At first, the tool can
only determine the value of potential boolean variables and
boolean variables. As for finite-value-non-boolean variable, we
set it only have one value originally. So only 2 scenarios can be
shown. And it’s a simplified expression, By the way, every
scenario must contain the pre-condition. So, there is no need to

add the pre-condition into scenarios. In this table, C (var) means
a condition satisfied by var. Then, the tool can modify the set of
scenarios dynamically, and based on it to give the necessary
feedback messages to the user for error prevention.

TABLE III. BEFORE THE USER WRITE THE POST-CONDITION

Existing Information The Set of Scenarios

Name Type Scenario 1:

GC: C(var1), var2=true,

C(var3)

DC: C(var4)

Scenario 2:

GC: C(var1), var2=false,

C(var3)

DC: C(var4)

var1 string

var2 bool

var3 real

var4 string

We do not change variables. If the user writes a condition
with logical errors, it can be checked, then the feedback message
also can be shown. Through above research, there are three
logical errors or checking point. At here, we can write wrong
post-condition temporarily to show the first error or checking
point, as shown in Table IV. When the var1=“GCcontent” is
failure, the tool will update the set of scenarios. It only add a new
scenario that includes the failure of var1=“GCcontent”.

TABLE IV. THE FAILURE OF POTENTIAL BOOLEAN GUARD CONDITIONS

Item The Set of Scenarios

Pre-

condi

tion

true Scenario 1:

 GC: var1="GCcontent",

var2=true, C(var3)

 DC: C(var4)

Scenario 2:

 GC: not var1="GCcontent",

var2=false, C(var3)

 DC: C(var4)

Scenario 3:

 GC: var1="GCcontent",

var2=false, C(var3)

 DC: C(var4)

Post-

condi

tion

not

var1="GCcontent

" and var2=true

The second error is the different value range in finite-value-
non-boolean condition predicates. We don’t specify the value of
var3 at the beginning. So when the user adds a condition about
var3 and set the value of var3, it means a new value has been
generated, and a mismatching appear. So we need to modify the
set of scenarios. The new set of scenarios as shown in Table V.

The third error, the self-contradiction of defining condition.
The tool will not build new scenario in the set of scenarios.
Because, the defining condition can’t affect the structure of the
set of scenario. It only represents the result of a scenario. So, we
only need to check the correction, then modify it.

TABLE V. THE CHANGE OF VALUE RANGE

Post-

condition

var1="GCcontent" and var2=true and

var3<=0

The Set of

Scenarios

Scenario 1:

 GC: var1="GCcontent", var2=true,

var3<=0

 DC: C(var4)

Scenario 2:

 GC: var1="GCcontent", var2=true, var3>0

 DC: C(var4)

Scenario 3:

 GC: var1="GCcontent", var2=false,

var3<=0

 DC: C(var4)

Scenario 4:

 GC: var1="GCcontent", var2=false, var3>0

 DC: C(var4)

There is a fallible situation, different scenarios have the same
input and the different output. It is a logical contradiction. Only
need to tell the user the relevant feedback message. Then the
user decides how to modify the output.

For the prediction, when the user write conditions for a given
scenario, the rest part of this scenario will be shown from the set
of scenarios.

Fig. 4. The tabular forms.

At last, tabular forms should be shown to the user. In fact,
the generation of tabular forms is real-time. When a scenarios
has been written, the tool will show all of scenarios with relevant
tabular form to the user. We can see the Fig. 4, it show all of
scenarios to the user. In this method, any scenario will be very
clear.

V. DISCUSSION AND CONCLUSION

This paper describes the development of SOFL in writing
process. We have adopted a new research method -- scenario-
based. Using scenario-based research method has many
advantages. The biggest one is every scenario is the fundamental
functional unit of a process. The detailed study of the scenario is
helpful to catch the structure of the whole of process. In this way,
whatever writing, reading or modifying, we can do them better.
And it is a new research idea on SOFL. We can follow this idea
to make more deeply research on SOFL.

Through the whole paper, we can see all of the results of
research need the set of scenarios. This paper gives a systematic
way to build the set of scenarios dynamically. This is another
innovation. Based on the set of scenarios, we can do others easily.
According to all of research, we can get the target of error
prevention by the improvement of writing method of SOFL.

As for this tool, it shows the main idea of the research, and
realize the writing of SOFL. In the process of writing, this tool
can show the proper feedback message to help the user.
Moreover, it can generate tabular forms of scenario in real-time.
This new expression of scenarios can greatly improve reading
efficiency, then reduce subjective errors. But our tool also have
some shortcomings. Although it can be used in the process of
writing of SOFL, but it haven’t enough functions as a formal
software. Generally speaking, this tool need more improvement.

REFERENCES

[1] Shaoying Liu, Yuting Chen, Fumiko Nagoya, John McDermid, “Formal
Specification-Based Inspection for Verification of Programs”, IEEE
Transactions on Software Engineering, Vol. 35, No. 8, 2012, pp. 1100-
1122.

[2] Juan Luo, Shaoying Liu, Yanqin Wang, Tingliang Zhou, “Applying
SOFL to a Railway Interlocking System in Industry”, Proceedings of the
6th International Workshop on SOFL + MSVL (SOFL+MSVL 2016),
LNCS, Springer, Tokyo, Japan, November 15, 2016.

[3] Shaoying Liu, John McDermid, and Yuting Chen, ``A Rigorous Method
for Inspection of Model-Based Formal Specifications”, IEEE
Transactions on Reliability, IEEE Press, Vol. 59, No. 4, December, 2010,
pp. 667-684.

[4] Shaoying Liu, "Capturing Complete and Accurate Requirements by
Refinement", Proceedings of 8th IEEE International Conference on
Engineering of Complex Computer Systems, IEEE Computer Society
Press, Greenbelt, Maryland, USA, December 2-4, 2002.

[5] Liu, S.: Formal Engineering for Industrial Software Development Using
the SOFL Method. Spinger, Heidelberg(2004).

[6] Martin S., Rudy S., Josep H.: Enhanced Latent Semantic Analysis by
considering mistyped words in automated essay scoring. Informatics and
Computing (ICIC), Mataram, Indonesia (2017).

[7] Senem K., Bahar K., Tank K.: Attribute value-range detection in
identification of paraphrase sentence pairs. Signal Processing and
Communication Application Conference (SIU). Zonguldak, Turkey
(2016).

[8] Liu, S., NaKajima S.: A Decompositional Approach to Automatice Test
Case Generation Based on Formal Specifications. Secure Software
Integration and Reliability Improvement, Singapore (2010).

[9] Chen H., Shen Y., Jiang J.: Extended SOFL features for the modeling of
middleware-based transaction management. Engineering of Complex
Computer Systems (ICECCS), Shanghai, China (2005).

[10] Li M., Liu S.: Automated Functional Scenarios-Based Formal
Specification Animation. Software Engineering Conference (APSEC),
Hong Kong, China (2012)

