
A Software Tool Support for “Vibration”
Testing

著者 Zhao Pan
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 13
page range 1-6
year 2017-03-31
URL http://doi.org/10.15002/00021515

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/223208565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Software Tool Support for “Vibration” Testing

Pan Zhao

Graduate School of Computer and Information Sciences

Hosei University

3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

E-mail: pan.zhao.78@stu.hosei.ac.jp

Abstract—“Vibration” testing presents a strategy for

generating test cases from an atomic predicate with the aim of

achieving full coverage of the paths in the program that

implements the function defined by the predicate in the

specification. However, how to efficiently generate adequate test

cases using the strategy from the same predicate to quickly

traverse all of the related paths in the program is still an open

problem. In this paper, we describe a prototype software tool we

have built recently that supports the test case generation based

on the principle of the “Vibration” testing and present an

experiment to evaluate the effectiveness of the tool supported—

“Vibration” testing.

Keywords—specification; vibration; test case

I. INTRODUCTION

Test cases are essential for software testing, and how to use
minimum manpower, resources, and time to generate adequate
test cases to ensure software quality is a goal that many
software companies pursue. Each software product and
development project needs a set of effective test plans and
methods. Software testing is an unstable work because there
are many factors affecting software testing, such as the
complexity of software, the ability of developers, and the
execution of test methods. Because of this feature, testing work
needs a set of appropriate test cases in order to improve the
stability of software testing. Thus, regardless of whoever
performing the software testing work, what he or she only
needs to do is referring the test cases to implement this work.
Minimizing the impacts of human factors, the efficiency of
testing work can be guaranteed. Therefore, designing and
generating a set of adequate test data is an important process.

Likewise, automatically generating test cases should be
attached importance. The process of test case designing
accounts for 60% of the whole testing process. If the test case
designing work is done only by humans, it is not only
inefficient, but also difficult to guarantee the effectiveness of
the test cases. To solve this problem, there is a large body of
research on specification-based testing [10]. Many projects
have worked out techniques for automated test case generation
from specifications, such as Z specifications [3], UML
statecharts [4], or ADL specifications. But for these methods,
they all need to be asked, whether they can detect all defects in
a program. Obviously this is extremely difficult to realize. This
situation has motivated us to carry out the research presented in
this thesis.

 In this thesis, our research focuses on how to automatically
generate test cases from formal specifications to traverse as
many representative paths in a program as possible by the
“Vibration” method proposed by Liu in [1]. To realize the
“Vibration” method, Liu has also developed an algorithm to
implement the method. The basic idea of the algorithm is to
repeatedly generate test cases from the same atomic predicate
(a relation) by properly changing the “distance” between the
two expressions in the atomic predicate. Our contributions in
this thesis include:

 Developing a software tool to support the flexible use
of the algorithm by freely adjusting the “distance” to
generate test cases from a SOFL atomic predicate.

 Conducting experiments to evaluate the effectiveness
of the tool supported “Vibration” method in terms of
the relation between the number of the generated test
cases and the path coverage in the program
implementing the predicate.

 Applying the SOFL three-step formal specification
approach to develop the supporting tool in order to
ensure the reliability of the tool.

 From the next section, we will first introduce the SOFL
specification and the functional scenario-based test case
generation method, and then discuss the essential idea of the
“Vibration” method. After that, we will explain about the tool
we have built and describe several experiments for the
evaluation of the tool supported “Vibration” testing.

II. SOFL SPECIFICATION AND FUNCTIONAL SCENARIO-BASED

TESTING

 Formal methods for developing software are used for
formal specifications and for program verification based on
formal language [2]. SOFL(Structured Object-Oriented Formal
Language) is one of the Formal engineering methods for
industrial software development. As a model-based formal
engineering method, it integrates the advantages of Data Flow
Diagrams, Petri nets, and VDM-SL(Vienna Development
Method-Specification Language) [2]. Furthermore, it extends
the traditional Data Flow Diagram, and uses Petri net to
provide operational semantics for DFD, which forms CDFD
(Condition Data Flow Diagrams). The CDFD and its associated
modules are organized in a hierarchy, so that decompose the
complex process into a number of well organized sub-CDFDs,
and then, VDM-SL is used in describing the components of the
CDFD, known as Module Specification. In order to describe a

Supervisor: Shaoying Liu

software system, SOFL method consists of two parts:
CDFD(Condition Data Flow Diagrams) shows the relationship
between processes, and specification expresses the definition of
each process. In this section, we just focus on the introduction
of SOFL specification. An example is as follows:

process A (x: int) y: int

pre x > 0

post x <= 10 and y = 1 / x or

 x > 10 and y = x * 5

end_process

As shown above, we can write a specification as S(Siv,
Sov)[Spre, Spost], where Siv is the set of input variables and Sov
is the set of output variables, and the pre- and post- conditions
define the functionality of the operation. In a previous research
[5], a concept of functional scenario was proposed. A set of
functional scenarios can be derived from the specification, each
defining an independent function in terms of input - output
relation. Let
Spost = (G1 D1) (G2 D2) (Gn Dn),
where Gi is a guard condition and Di is a defining condition,
and i = 1,…, n. Then, a functional scenario form (FSF) [5] of S
is:
(Spre G1 D1) (Spre G2 D2) (Spre Gn Dn),
where Spre Gi Di is called functional scenario. The
functional scenarios of the above example are the following
three:

 x > 0 x <= 10 y = 1 / x

 x > 0 x > 10 y= x * 5

 x <= 0 Anything

A scenario-based testing method has been presented in [8,
9], and this method indicates the functional independence of
each functional scenario. The central idea of this testing
method is: generate test case for each functional scenario at
least once by satisfying each atomic predicate of pre-conditions
and guard conditions (Spre Gi) in a scenario. There are
already some algorithms for the automatic test data generation
based on an atomic predicate [8], but for these algorithms, they
only can produce one test case each time, moreover, a
functional scenario is usually refined into a collection of
program paths and it is also extremely difficult to establish any
theory that tells how test cases can be generated to ensure that
all of the paths can be traversed. On the basis of the scenario-
based testing, in order to produce sufficient test cases based on
an atomic predicate, a “Vibration” testing method was put
forward in [1].

III. INTRODUCTION TO “VIBRATION” TESTING METHOD

A. Principle of “Vibration” Method

The purpose of the “Vibration” method is to generate an
appropriate test set automatically from a predicate relational
expression, so that all of the representative paths in a program
can be traversed at least once. In this part, we will introduce the
principle of the method. Firstly, there is an atomic predicate
that is a relation E1(x1, x2, … , xn) R E2(x1, x2, … , xn) from a
functional scenario, where R is a relational operator, such as > ,
< , >= , or <=, and E1 and E2 are expressions that contain all the
input variables x1, x2, … , xn. Secondly, if the input variables

are numerical type, there is a “distance” between E1 and E2
defined as the absolute value of E1-E2. The distance vibrates
(change repeatedly) in a regular way between the initial value
and the maximum value. Finally, according to the vibrating
distance, repeatedly produce the values for all input variables
from the relational expression, so that the test cases are able to
be generated automatically.

B. Test Case Generation

After a brief introduction to the principle of the “Vibration”
method, we will discuss how it works specifically. In this paper,
two important points are mentioned above: an atomic predicate
and the “distance” between the two expressions in the relation.
The “Vibration” method is mainly used to generate test cases
by the “distance” vibration. First of all, we have a relation
E1(x1, x2, … , xn) R E2(x1, x2, … , xn) (e.g. , x + 5 > y, where “x
+ 5” is like E1(x1, x2, … , xn), “>” is like R, and “y” is like
E2(x1, x2, … , xn)) which contains all input variables from a
functional scenario (e.g. x + 5 > y z = x + y, where pre-
condition is “true”, guard condition is “x + 5 > y”, and defining
condition is “z = x + y”) in SOFL specification. This scenario
is the basis for generating test cases. To begin with, the user
should defines an initial value for distance (e.g., distance = 8) ,
as well for the range of distance increase and decrease and the
number of test cases, increasing value should be greater than
the reducing value, write as distance_up and distance_down,
(e.g., distance_up=8, distance_down=5). These initial variables
should be appropriate based on different applications. Next,
according to the initial distance, the program first produces
values randomly for all input variables, at the same time, two
conditions must be satisfied that the relation between the two
expressions still hold, and the absolute value of the two
expressions is equal to the initial distance (e.g., x + 5 - y = 8,
let, x = 5, y = 2) . In this way, the first test data is generated.
And then, the distance increases by adding distance_up, a new
distance is obtained (e.g., distance = 8 + 8 = 16). Likewise,
generate the corresponding condition satisfying test data for the
new distance. And then distance decreases, the same as the
previous steps to generate test data. All in all, the distance
increases and decreases regularly, and each time a distance
change is made, a test data is generated, until the end command
is issued. Finally, a test set is generated, which test efficiency is
proved as the number of being covered paths, and it depends on
the value of the initial variables defined by users, in another
word, it depends on the distance vibration.

Fig. 1. Functional scenario paths

In the second section of this paper refers to that a functional
scenario usually contains multiple paths, for traversing these
paths as quickly as possible, the “Vibration” method is
necessary and effective. Here we use the example that is

mentioned above to prove the necessity and efficiency of using
“Vibration” method. The functional scenario is “x + 5 > y z
= x + y”, where “x” and “y” are input variables, “z” is output
variable. In this scenario, there are three paths as showing in
Fig.1. If the initial distance is 8, distance_up is 8,
distance_down is 5, the relation is “x + 5 > y”, then generate
the test data: 1) x = 33, y = 30; 2) x = 66, y = 55; 3) x = -46, y
= -52. After calculation, these test cases are able to cover all of
the scenario paths. So using “Vibration” testing method, we
can quickly cover the program paths and the efficiency of this
method also can be guaranteed.

Obviously, using non-automatic “Vibration” method to
generate test data by a person is complex and cumbersome,
hence building a supporting tool to efficiently use this method
is necessary.

IV. SUPPORTING TOOL FOR “VIBRATION” METHOD

A prototype tool has been built by us, called “Vibration”
Testing Tool (VTT). Its main role is to support the V-Method,
the user only needs to input the necessary initial values, click
the button, and then the tool can automatically generate test
cases by using vibration method. The algorithm for the
“Vibration” method has been published in [1]. We have used
Visual Studio 2015 to complete the development of the tool
with C# language, and used SOFL three steps method to
develop the tool.

A. Functions

Fig. 2 is the CDFD of the tool functions, which has been
drawn using the SOFL Tool. As the CDFD shows, the tool
performs four main functions:

Fig. 2. CDFD of VTT

1) Produce “distance” values: Produce corresponding

number of “distance” based on the relative input variables,

which will be used for test data generation. The relative input

variables are “Distance”, “Distance up”, “Distance down” and

“Number”. By the method of vibration, the “distance”

increases or decreases regularly from the initial value. Finally,

a set of “distance” values are generated, which number is

determined by users.

2) Generate test data: In this process, except receiving the

output results from the first process, there is an atomic

predicate just like “ax + b > y” (linear relation), where “a” and

“b” are constant parameters, “x” and “y” are input variables, is

also received by this function. Under the condition that the

atomic predicate is kept constant, based on the previously

produced “distance”, generating the requested number of test

cases for each input variable. In addition, the incorrect input

will cause that the tool displays a row of error message to

remind users to pay attention to the correctness of the input

values. There are two rules for input values: 1. The relation

symbol must be selected from the drop-down menu; 2. The “if”

statement in C# language for returning error messages is: if

(d < 0 || up <= down || ((s == “ < > ” || s == “ > ” || s ==

“ < ”) && d == 0)) , where “d” is distance, “s” is the relation

symbol.

3) Specific inputting: In the process of testing work,

testers usually want to assign the specific test data what they

want to test. Our VTT provides this function. Users can input

the specific data they want to test based on the “distance”

values they specify. In other words, the purpose of this

function is that turn the automatically generation testing into

artificial generation testing, meanwhile the characteristics of

the V-Method are still retained. Fig.3 shows an example of

the specific inputting function which were presented in

Sect.III.B. Users input the “distance” satisfying values for

each input variable and then the VTT can not only generate

the group of test data one by one, but also check the

availability of the input values.

Fig. 3. Specific inputting function

4) Save the result: Save the generated test data to an excel

file for checking in the future.

B. Tool development process——SOFL three-step method

When developers use SOFL to write specifications, this
work consists of three steps: from informal specification to
semi-formal specification, and then to formal specification [2].
 1) Informal specification: In order to achieve a well
organized informal specification, the following three aspects
need to be considered as being presented in Fig.4.

2) Semi-formal specification: The overall architecture of
the specification has been formed in the semi-formal
specification, but some conditions still are described in natural
language. A part of semi-formal is given below:

function Distance_Vibration (distance: real, distance_up: real,
distance_down: real, number: nat, command: bool) : seq of
distance
pre The input values are available
post On the basis of the previous distance value, the
operation is added or reduced to get a new distance value, and
each distance value is stored in a sequence
end_function

Fig. 4. Informal specification of VTT

3) Formal specification: It eliminates the natural language
description of the document to provide a full SOFL formal
document. A part of formal specification of VTT is:

function Distance_Vibration (distance: real, distance_up: real,
distance_down: real, number: nat, command: bool) : seq of
distance
pre distance >= 0 and distance_up > distance_down
post if command = true then change_value = distance_up
and command = false
 else change_value = -distance_down and command = true
 if distance = distance + number div 2 * distance_up -
(number - 1) div 2 * distance_down /*The last “distance”
value calculation formula.*/
 then Distance_Vibration = [distance]
 else
 Distance_Vibration=conc(distance,Distance_Vibration
(distance+change_value, distance_up, distance_down, number,
command)
end_function

V. EXPERIMENT

Three case studies and a comparison for the test results
between “Vibration” method and “Pairwise testing” methods
are given in this section. The reason we use “Pairwise testing”
method for the comparison is that it is a popular technique for
test case generation [6], often used in industry [7], and suitable
for automation [1]. The following gives descriptions of these
cases, which are all derived from our life. Using VTT to
generate test data for them, comparing the test results with
“Pairwise testing” method. The aim of this section is proving
the practicability, feasibility, and effectiveness of “Vibration”
method.

A. BMI (Body Mass Index) calculation

BMI is a commonly used measure standard for measuring
the degree of obesity (5 levels) and whether a person is healthy
or not, and it is a relatively objective parameter by body weight
and stature. The formal specification of the BMI calculated
process and the reference standard (divided into five paths) are:

process adult_BMI_calculation(stature:real,weight: real) BMI:
real
pre stature>140 and stature<220 and weight>35 and
weight<150
post weight > 0. 63 * stature - 66.15 and BMI = weight /
(stature * stature / 10000)
end_process

TABLE I. BMI REFERENCE STANDARD

1 BMI < 18.5 Underweight

2 18.5 <= BMI < 23 Normal

3 23 <= BMI < 25 Overweight

4 25 <= BMI < 30 Obese

5 BMI >= 30 Clinically Obese

Fig. 5. Test data generation for BMI calculation

 In this case, the guard condition “weight > 0. 63 * stature -
66. 15” is the atomic predicate which will be used in generating
test cases. This relation is figured out by the body weight
standard formula and actual situation, as a matter of fact, the
weight of a human body cannot be below a certain value.
Based on the pre- and post- conditions and after several tries,
we infer the appropriate input variables respectively, which are:
distance = 13, distance up = 15, distance down = 3, number = 5.
Using these input values, VTT generates only five test cases,
and covering all of the paths in this specification! That is to say,
each vibration of “distance” makes the test case covering a new
path. The UI of this case is shown in Fig. 5. The input variable
“x” is stature, “y” is weight, and for this example, we add two
variables “z” and “path” in the tool to show the results of the
vibration method more intuitively, where “z” is the calculated

BMI, “path” visualize the traversed path number of the
corresponding test case.

B. Balance ratio calculation

Balance ratio refers to the ratio of the balance and income
of a family in a certain period. It reflects the ability and saving
awareness of the family to control spending, and is the basis for
future investment and financing. The SOFL specification is:

process balance_ratio_calculation(income: real, expenditure:
real) balance_ratio: real
pre income>1000 and income<20000 and expenditure>0
post income>=expenditure and balance_ratio = (income -
expenditure) / income
end_process

Income and expenditure are the input variables, balance
ratio is output variable. Average dividing 10 parts from 0% to
100% for the only functional scenario. Setting the atomic
predict relation is “income >= expenditure”. Then, make the
same attempt as the first case to generate test data. Fig.6 shows
the relevant data that generates the test case, where “x”, “y”,
“z”, and “path” respectively are “income”, “expenditure”,
“balance ratio” and “the covered path number”.

Fig. 6. Test data generation for Balance ratio calculation

C. Train fare system

Train fare system is used to calculate the cost for
passengers based on their starting station and arrival station. In
this case, we use the train which has the most number of
stations (57 stations) in China. After calculation based on
starting station number and arrival station number, it contains
1596 paths in this case. Here is the specification of the system:

module train_fare_system
type starting = nat;
 arrival = nat;
 fare = real;
 Fare_schedule = map starting and arrival to fare;
process train_fare_calculation (starting: real, arrival) fare:
real
ext rd fare_schedule_file: Fare_schedule
pre starting < arrival

post arrival - starting <=56 and fare = fare_schedule_file
(starting, arrival)
end_process

Starting and arrival are the input variables and fare is output
variable. In post condition, for veracity of this experiment, it
actually be separated 5 functional scenarios. The reason of it is
the shorter the distance between arrival and departure stations,
the more the paths to be traversed. Thus for the veracity of the
test, separating generate test data is much better. As above
cases, Fig.7 presents the UI of using VTT to generate test cases,
where “x” and “y” are input variables “starting” and “arrival”.

Fig. 7. Test data generation for train fare system

D. Experiment results and analysis

In line with the principle of covering all possible paths in a
program, test data number should equal to or greater than path
number of the program because each test data can only cover
one path in the program. For above three experiments, the
number of test data is determined by the minimum number that
can make one of the testing methods path coverage rate reach
up to 100%. But for large-scale program such as the third case,
path coverage rate is almost impossible to reach 100%,
therefore the select principle is that through several attempts to
determine the number of test data which path coverage rate is
the biggest. Because that if there is enough test data, no new
paths will be traversed as the number of test data increases.
Table.II lists the path coverage rate of each testing method for
these three cases:

TABLE II. PATH COVERAGE RATE RESULTS

Programs (number of paths,

number of test cases)

Pairwise

testing

Vibration

testing

BMI calculation (5, 5) 80% 100%

Balance ratio calculation (10, 12) 50% 100%

Train toll system (1596, 2000) 61% 83%

 Table.II shows the results of the case studies. For the first
case, the path coverage rates by using “Pairwise testing” and
“Vibration testing” respectively are 80% and 100%, and for the

second case, the path coverage rates are 50% and 100%. This
two cases both have fewer paths. The third is a large-scale case,
the path coverage rates are 62% and 83% respectively. The
table reflects 3 features: 1)The efficiency of test data coverage
path generated by “Vibration” method is better than that by “P”
method; 2)For small paths scale programs, the “Vibration”
method can traverse all paths in the case of generating as few
test cases as possible (even the same number as program paths).
3)For big scale program like the third case, the “Vibration”
method does not guarantee that all paths can be covered. In the
second case, we generate 3*4 numbers test cases, that is two
input variables are produced 3 values and 4 values respectively
in their domain, and they are evenly distributed in the domain,
and then pairwise combine. Since there is a lack of definition
of the relation between input variables in the second case,
“Pairwise testing” producing test cases always ineffective to
test the program, which can reflect the limitations of this
method.

The experimental results show that the “Vibration” method
generates more adequate test data through the specific
predicates confirmation and several attempts for “distance”
vibration, which makes the generated test cases covering paths
in program as much as possible, meanwhile, all of the input
variables should satisfy the constraints of the program. Besides,
the distance vibration makes test data more randomness and
more wide coverage. Actually, using “P” method usually
generate some ineffective test data because it cannot define the
relation between the input variables, in this case, the “Vibration”
method shows its superiority.

VI. DISCUSSION AND CONCLUSION

The decision of “distance” is a discussing worthy problem
in the use of “Vibration” method. If the under test program
contains a lot of paths, in another words, the distribution of
program paths is quite dense, then the vibration of “distance”
should be more frequent and its amplitude should be smaller,
so as to ensure that more paths can be covered. On the contrary,
if the paths distribution in program is dispersed, that is the
required distance between input variables is large, then the
“distance” vibration amplitude should be bigger and frequency
should be lower, so that avoid that too many test cases are
generated to cover the same paths. Therefore, the “distance”
needs to be decided according to different programs. The best
testing status is, every time the distance changes, a new path is
covered by the generated test case, under this premise, try to
reduce the vibration amplitude, to find whether there are some
haven't covered paths or not because of the wide vibration of
“distance”, until the number of being able to be traversed paths
reach to maximum by a set of “distance” related values
(“distance up” and “distance down”). The VTT requires users
to attempt several times to decide the most appropriate
“distance”, thus users need to be familiar with the test object,
as well as have the abilities of observation and analysis.

A small discussion about “Pairwise testing” should be
mentioned. In Sect.5.4, we have mentioned the limitations of
the “P” method in the second case. Actually, if we use 1*12
numbers test cases to pairwise test, the path coverage rate will

be 100%. But it’s only a special circumstance and can’t
represent normal situations. Thus the limitations still remain.

In this paper, we have described the VTT for supporting the
“Vibration” testing method. The using of this tool mainly
consists of three steps: 1)determining the predicate relation
from specification scenario; 2)deciding the appropriate initial
values (distance, distance up, distance down, number) based on
the under test program; 3)automatically generating test data. In
addition, the effectiveness of the method is proved by several
experiments, and it also can be widely used in various fields.

VII. FUTURE WORK

At present, VTT is a simple prototype tool that only
provides functions to support the “Vibration” method. The
types of the input variables are also limited to numeric types. In
previous studies, the definitions of “distance” for other data
types such as set types, char types, and enumeration types are
mentioned [1], but none of them has been implemented by a
tool. Thus, one of the future works for “Vibration” method is to
improve the tool that can support more data types. Second, the
definition of “distance” is what we attach importance to. It
seems unreliable and inconvenient that decide the “distance”
only by users, hence we propose a function for the VTT that
supports recommending the value of “distance” for users based
on the previous paths traversal situation. Third, in this tool,
only linear relations can be used in atomic predicates, for more
extensive use, the future work should focus on the other types
of atomic predicates.

REFERENCES

[1] Liu, S., Nakajima, S.: A “Vibration” Method for Automatically
Generating Test Cases Based on Formal Specifications. In: Software
Engineering Conference, 2011 18th Asia Pacific, pp. 73-80, 5-8 Dec.
2011.

[2] Liu, S.: Formal Engineering for Industrial Software Development Using
the SOFL Method. In: Springer, Heidelberg (2004).

[3] Horcher, H.-M.: Improving software tests using Z specifications. In:
Proceeding 9th International Conference of Z Users, The Z Formal
Specification Notation (1995).

[4] Offutt, J., Abdurazik, A.: Generating tests from uml specifications. In:
France, R. B.(ed.) UML 1999. LNCS, vol. 1723, pp. 416-429. Springer,
Heidelberg (1999).

[5] Liu, S., Nagoya, Y., Chen, M., Goya, McDermid, J. A.: An Automated
Approach to Specification-Based Program Inspection. In: Lau, K.K.,
Banach, R., editors, Proceedings of 7th International Conference on
Formal Engineering Methods(ICFEM2005), pp. 421-434, Manchester,
UK, 1-4 Nov. 2005. LNCS 3785, Springer-Verlag.

[6] Tai, K. C., Lei, Y.: A Test Generation Strategy for Pairwise Testing
IEEE Transactions on Software Engineering, 28(1), January 2002.

[7] Czerwonka, J.: Pairwise Testing in Real World. In: proceedings of 24th
pacific Northwest Software Quality Conference, 2006.

[8] Liu, S., Nakajima, S.: A Decompositional Approach to Automatic Test
Cases Generation Based on Formal Specification. In: 4th IEEE
International Conference on Secure Software Integration and Reliability
Improvement, Singapore, pp. 147-155, IEEE CS Press, 9-11 June 2010.

[9] Li,M., Liu, S.: Automated functional scenario- based formal
specification animation. In: 19th Asia-Pacific Software Engineering
Conference, PP. 107-115. IEEE CS Press (2012).

[10] Donat, M.: Automating Formal Specification-Based Testing. In:
Proceedings of TAPSOFT’97, pp. 833-848, Lille, France, April 1997.
Springer-Verlag

