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Abstract

Transaction costs play a significant role in financial markets, and many
studies have been conducted on this topic to date. Research on this topic
may be divided into two categories. The first category of studies examines
the optimal trading strategy of the investor who has to pay transaction costs.
The second group investigates the optimal transaction costs that ensure the
market operates as smoothly as possible, while retaining the profits of the
market maker. We consider simultaneous optimization by the investors and
the market maker, and analyse the impact of market parameters on the opti-
mized transaction costs.

1 Introduction
Transaction costs play a significant role in financial markets, in the sense that
they give agents, such as investment bankers, incentives to make a market. The
activities of such agents may improve market liquidity. At the same time, the
existence of transaction costs makes it difficult for investors to determine a unique,
optimal trading strategy because of the lack of a unique no-arbitrage price; i.e.,
the difference in the sell and buy price resulting from transaction costs breaks the
law of one price.
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of Business Administration, Hokkai-Gakuen University. Yamazaki is supported by the financial
support of JSPS KAKENHI Grant Number 26380402 and the Research Institute for Innovation
Management at Hosei University. Yoshikawa is supported by a grant-in-aid from JSPS KAKENHI
Grant Number 15K03546, Seimeikai Foundation and Kampo Foundation.
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This paper focuses on deriving optimal transaction costs, in the sense of being
optimal not only for a market maker, but also for an investor. To address this
significant issue, we have separated our analysis into three parts.

First, we propose a new method to derive optimal transaction costs. Second,
we provide an explicit form of the investor trading strategy in the model with
transaction costs. Third, we illustrate the intuitive features of our model using
numerical examples. We consider that this approach facilitates a comprehensive
understanding of the role of transaction costs in the market. In this introductory
section, we discuss the three components of our approach in more detail.

Let us consider the first point. To make a larger profit, the market maker’s pref-
erence is that the transaction costs paid for each transaction are larger. However,
if the transaction costs are too large, this decreases the amount of transactions,
which may lead to a reduction in the market maker’s profit. Further, this creates
a lack of liquidity in the market. With insufficient liquidity, the market maker’s
inventory may not be cleared for a long time, which is an unfavourable situation
for market makers. Therefore, the main purpose of the market maker is to max-
imize his/her profit, while also keeping the market running smoothly (providing
liquidity) and minimizing inventory costs.

Discussions of this problem have a long history in the economic and finan-
cial literature; for example, we can date the earliest discussions back to Ami-
hud and Mendelson (1980) and Bradfield (1982). Recently, the discussion has
been reignited in the context of the progress of high-frequency trading (see Pham
(2014)).

However, many studies establish an investors’ order that is too simplistic. For
instance, Bradfield (1982) defined the investors’ order as the linear function of
transaction costs. Chevalier et al. (2017) and Mildenstein and Schleef (1983)
considered the investors’ order as given by the point process, where the jump
intensity depends on the bid–ask spread. Although these set-ups are interesting,
they do not lead to interaction between the investors’ order and the market maker’s
quote.

Thus, in this paper, we derive the optimal transaction costs that maximize the
market maker’s profit, taking into account the optimization of investors. This is
our first contribution.

To derive the optimal transaction costs, we first need to derive the investor’s
trading strategy in the presence of transaction costs. There is a great deal of infor-
mative research on the problem of deriving the investor’s optimal trading strategy.
The earliest papers discussing this topic include Davis and Norman (1990) and
Jouini (1995). Since these early papers, there has been a vigorous discussion of
transaction costs conducted by many researchers. One of the turning points in the
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literature was the study by Kabanov and Last (2002), who suggested the concept
of the transaction matrix. A longstanding issue in this field has been how to clearly
describe transactions if investors hold several assets in markets with transaction
costs, as these costs make the status of investors’ wealth unclear. The transac-
tion matrix makes it possible to describe transactions of multiple assets even if
transaction costs are charged for each transaction.

Further important progress in the research on models with transaction costs
was made when Bouchard (2002, 2000); Bouchard et al. (2001) developed a liq-
uidity function that makes it simpler and easier to derive an optimal trading strat-
egy for each investor even if the model includes transaction costs.

The results of both Kabanov and Bouchard have been extended by others.
For instance, Schachermayer (2004) considered a model where transaction costs
stochastically change and showed how the optimal trading strategy should be de-
rived. This problem was later positively solved by Campi and Owen (2011) and
Benedetti et al. (2013).

Another method for dealing with the optimization problem in models with
transaction costs is to introduce the idea of shadow price, as developed by Kallsen
and Muhle-Karbe (2010), Kallsen and Muhle-Karbe (2011), Guasoni and Muhle-
Karbe (2013), Kallsen and Muhle-Karbe (2017), Gerhold et al. (2014) and others.
The shadow price is a hypothetical price process that maintains consistency with
the utility maximization problem of the investor. By regarding the shadow price
process as the underlying asset process, we can deal with the optimization prob-
lem in models with transaction costs as a frictionless optimization problem. To
derive the optimal trading strategy, we apply the results of Kallsen and Muhle-
Karbe (2010) and Gerhold et al. (2014) to our problem. Under the assumption of
the log-utility type of investor, Kallsen and Muhle-Karbe (2010) showed the exis-
tence of the shadow price process, that is, the existence of a solution to the utility
maximization problem. We further manipulate the underlying asset as a discount
price process. Then, we can derive the explicit form of the value function of the
investor, which makes it very simple to deal with the investor’s activity. This is
our second contribution in this paper.

In addition, we illustrate the intuitive features of the model using numerical
examples.

First, we show the consistency of our model with transaction costs with the
frictionless model. That is, the model with infinitely small transaction costs is
equivalent to the smooth market model. In addition to theoretically proving this
consistency, we show it numerically.

Further, we show that a larger appreciation rate and lower volatility decreases
the optimal transaction cost. This is intuitive because the investor’s risky weight
may imply their willingness to undertake transactions. Here, note that the risky
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weight of investors increases roughly with the larger appreciation rate and smaller
volatility.

We also demonstrate the stability of the market maker’s profit. If the market
maker performs the optimization well, his/her profit should remain stable in the
face of the market fluctuations, in this case, a change in the appreciation rate
and volatility. Indeed, using the numerical examples, we can demonstrate that
the market maker’s profit is stable when the appreciation rate and the volatility
change.

Finally, building on the existing empirical research, we demonstrate how to
examine the validity of the model. Although using the numerical examples indi-
cates that models such as ours with log-utility types of investors and a risk-neutral
market maker have limitations, this examination clearly points to directions for
making the model setting more sophisticated. This is our third contribution.

The remainder of the paper is structured as follows. We establish the mar-
ket model and define the problem in Section 2. In Section 3, we provide the
main results, including the optimal strategies of the market maker and the investor.
Section 4 demonstrates the model’s implications using numerical examples. The
detailed procedures for deriving the main results are described in the Appendices.

2 Model
Let us define the behaviour of a single market maker, who quotes the bid and ask
prices of a single stock.1 For the market maker, the time for conducting business
is finite. That is, let (Ω,F ,F, P) be a filtered probability space, where we consider
the time interval [0,T ] and fix FT = F and F0 = {∅,Ω}.

The prices offered to the investor are given as follows:

S a
t := (1 + ε)S t

S b
t := (1 − ε)S t,

where S = {S t; t ∈ [0,T ]} is given as follows:2

dS t

S t
= µdt + σdWt,

1The issue of the bid and ask prices when there are several market makers is considered else-
where; for instance, see Ho and Stoll (1980).

2Ho and Stoll (1981) took into account the possibility that the market maker does not know
the true price of the stock. In this case, the quotation by the market maker makes the price deviate
from the equilibrium price of the stock, which is considered to be the ‘true’ price. Then, the true
price will be revealed by transactions.
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with constant µ, σ > 0, ε ∈ [0, 1). Further, we assume that the risk-free asset B is
constant; i.e., Bt ≡ 1 for t ∈ [0,T ]. In other words, we regard the process S as the
discounted price process.

For these assets, we summarize the trading code as follows: the market maker
and the investor do not need to pay transaction costs on risk-free assets, but the
investor is required to pay the transaction costs for trading risky assets. More
precisely, the ask price of risky assets is given by (1 + ε)S t and the bid price is
(1−ε)S t; i.e., the market maker buys one unit of the risky asset by paying (1−ε)S t

and sells one unit of the risky asset by receiving (1+ε)S t. Conversely, the investor
can buy one unit of the risky asset by paying (1+ε)S t and sell one unit of the risky
asset by receiving (1 − ε)S t at time t.

Using the trading code described above, we summarize the evolution of the
investor’s and the market maker’s wealth as follows:

Cash position Market cash is accumulated when the agent sells the stock and
paid out when the agent purchases the stock. This logic is common to any type of
agent, that is, it applies to both the market maker and the investor. Any balance
in the cash amount earns (or pays) the risk-free rate of the bond B. However, in
this paper, we assume that B is constant. Thus, the value of the cash amount XM

(where the superscript M denotes the market maker) is given as follows:

dXM
t := (1 + ε)S tdϕa

t − (1 − ε)S tdϕb
t , (1)

where dϕa
t is the market maker’s sales (the investor’s purchases) and dϕb

t is the
market maker’s purchases (the investor’s sales) at t. Thus, the position of the
market maker is given by ϕM

t = ϕ
M
0 −

∫ t

0
dϕa

t +
∫ t

0
dϕb

t , where ϕM
0 is the initial risky

position of the market maker. Then, the cash amount XI (where the superscript I
denotes the investor) is given as follows:

dXI
t := −(1 + ε)S tdϕa

t + (1 − ε)S tdϕb
t ,

and the position of the investor is given by ϕI
t = ϕ

I
0 +

∫ t

0
dϕa

t −
∫ t

0
dϕb

t , where ϕI
0

is the initial risky position of the investor. Hereafter, for simplicity, we denote
ϕ = ϕI . Further, note that ϕM

t = ϕ
M
0 − (ϕI

t − ϕ
I
0).

Inventory The market maker’s inventory (risky position) consists of shares of
the one stock in which he/she makes a market. The change in the value of the
inventory account, Y M, is:

dY M
t : = −S tdϕa

t + S tdϕb
t + Y M

t
dS t

S t
(2)

= −S tdϕa
t + S tdϕb

t + Y M
t µdt + Y M

t σdWt,
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where the first and second terms reflects the transaction with the investor and the
remaining terms reflect the fluctuation of the current risky position.

Likewise, the investor’s inventory Y I is defined as follows:

dY I
t : = S tdϕa

t − S tdϕb
t + Y I

t
dS t

S t

= S tdϕa
t − S tdϕb

t + Y I
t µdt + Y I

t σdWt.

The total wealth of the market maker is AM = XM+Y M and that of the investor
is AI = XI + Y I .

For the market maker, the world ends at T̄ ≤ T when the market maker is as-
sumed to liquidate his/her inventory and base wealth at their market values with-
out transaction costs.3 We assume that the end of the world for the investor is T ,
which is longer than T̄ ; i.e., the investor can continue his/her trading even if the
market maker leaves the market, assuming that another market maker will appear.
We have two optimization problems: one is of the market maker, and the other one
is of the investor. We seek the optimal strategy of the market maker for choosing
the optimal transaction costs ε to maximize the market maker’s profit. The benefit
arises from the fee the market maker is able to charge for the service of immediate
trading. As the model assumes a single market maker in the stock market, that
market maker has the ability to earn monopoly profits. Conversely, the optimal
strategy of the investor for choosing the values ϕa, ϕb that maximize the investor’s
preference function. The benefit is defined by his/her terminal wealth, AI

T̄ , where
T̄ ≤ T ≤ ∞.

Essentially, this paper assumes that the market maker places the limit orders
and the investor places the market orders. In such a model, we consider the market
making of the market maker.

Now, let us describe our optimization problems. We consider the optimization
problem of the market maker:

uM(x, y) := max
ε>0
E[UM(XM

T̄ + Y M
T̄ )], (3)

where we assume a profit-maximizing market maker. This implies a linear util-
ity function, UM(x) = x. We assume that the trading prices controlled by the
market maker, i.e., the bid–ask spread ε, are only determined at the initial time
t = 0. This is a reasonable assumption as it avoids creating confusion in regard
to the investor’s transactions. Thus, in the above utility maximization problem,
the argument does not include t and the expected value on the right hand side is

3This assumption may be relaxed, as in Bichuch and Sircar (2015), but we adopt it for simplic-
ity.
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evaluated at F0. That is, we do not address dynamic programming and we only
need to consider the optimization problem at t = 0.

Next, we set the optimization problem of the investor. Let U I(z) := ln z be
the utility function of the investor. Consider the value function of the investor’s
preference such that, for a given x = XI

t , y = Y I
t , we have:

uI(t, x, y) := sup
ϕa,ϕb

{
E[U I(XI

T + Y I
T )|Ft]

}
. (4)

Addressing this issue is not straightforward. Before attempting to address it, we
begin by discussing the utility maximization problem in the frictionless case.

Frictionless case In the frictionless case, the transaction cost ε is zero. Note
that this case is consistent with the Black–Scholes model.

When ε = 0, the dynamics of the cash amount XI and the risky inventory Y I is
given as follows:

dXI
t = −S tdϕt

dY I
t = S tdϕt + Y I

t (µdt + σdWt).

From the above, the evolution of the total wealth AI is given by:

dAI
t = dXI

t + dY I
t = Y I

t (µdt + σdWt).

Consider the following utility maximization problem:

u(t, x, y) ≡ u(t, a) = sup
AI∈A

E
[
U I(AI

T )|Ft

]
,

whereA is the set of total assets with all admissible strategies.
Then, the value function is explicitly given as follows:

u(t, x, y) = ln(x + y) +
1
2
µ2

σ2 (T − t), (5)

and the optimal risky weight πt = Y I
t /A

I
t is given by:

πt = −
µua

σ2uaaAI
t
=
µ

σ2 .

The deduction of the above results is not excessively complicated (see, for exam-
ple, Chapter 14.5 of Back (2017)), and they form the benchmark of the frictional
model.
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3 Main results
Here, the main purpose is to derive the solution of the market maker’s optimization
problem, taking into account the optimal strategy of the investor. Thus, first, we
need to clarify the investor’s activity in the frictional case, that is, we need to
clarify the value function and the trading volume of the investor.

Optimal investment strategy Here, we assume that:

0 < µ/σ2 < 1.

This assumption excludes short selling or leveraging the risky asset.4

Then, we can derive the value function (4); i.e., it holds that the value function
is given by:

uI(t, x, y) = ln(x + y) +
1
2
µ2

σ2

(
σ2

µ
− 2

)2 ∫ T

t

(
1 + 2λ (1 − π̃s)−1

)2
ds, (6)

The first term (6) is the intrinsic value and the second term is the time value, as in
the frictionless case. Note that the intrinsic value is the same as in the frictionless
case and that only the time value is different. Thus, we need to discuss the time
value.

As described later, λ drives the effect of the transaction costs on the investor’s
trading strategy. The process π̃t is interpreted as the risky weight in light of the
shadow price, which is a hypothetical price process that corrects the original risky
asset price S and maintains the consistency of the utility maximization problem
in the frictionless and frictional cases. A more rigorous definition of the shadow
price is given later (see Definition A.1). The form of π̃ is given by:

dπ̃t = − (1 − π̃t + 2λ)
(
1 −

2µ
σ2

)
σdWt + π̃t(1 − π̃t)dΦt − π̃t(1 − π̃t)dΨt,

where Φ and Ψ increase only on {π̃t = π̃+} and {π̃t = π̃−}, respectively. The

4According to the Merton problem, (µ − r)/γσ2 is the optimal ratio for the risky asset. As
we set r = 0 and adopt the log utility (γ = 1), this ratio is µ/σ2. Hence, the assumption that
0 < µ/σ2 < 1 means that short selling and leveraging are excluded. Even if the Merton problem is
discussed in the context of a smooth market, according to Davis and Norman (1990), see Theorem
5.1 and Remark 5.2, the condition 0 < µ/σ2 < 1 ensures that investors cannot short sell or leverage
in models with transaction costs.
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definitions of π̃+ and π̃− are given as follows:

π̃− =
µ

σ2 +
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
, (7)

π̃+ =
µ

σ2 −
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
. (8)

Recall that µ/σ2 is the risky weight in the frictionless case. The second term
in both (7) and (8) can be considered the regulation term resulting from the trans-
action costs. Thus, the process π̃t is, indeed, a similar process to the risky weight
in the frictionless case.

Finally, we need to discuss λ, which is given a constant such that λ ∈
[
−

(1−µ/σ2)2

2(1−2µ/σ2) ,−
1
2

]
for µ/σ2 < 1/2 and λ ∈

[
0,− (1−µ/σ2)2

2(1−2µ/σ2)

]
for µ/σ2 ≥ 1/2. The precise form of λ

satisfies the following:

1 − ε
1 + ε

=

4λ
(
1 − 2µ

σ2

)
+

(
1 − 2µ

σ2

)
+ 1 +

√((
1 − 2µ

σ2

)
+ 1

)2
+ 8λ

(
1 − 2µ

σ2

)
4λ

(
1 − 2µ

σ2

)
+

(
1 − 2µ

σ2

)
+ 1 −

√((
1 − 2µ

σ2

)
+ 1

)2
+ 8λ

(
1 − 2µ

σ2

)


×

4λ +
(
1 − 2µ

σ2

)
+ 1 +

√((
1 − 2µ

σ2

)
+ 1

)2
+ 8λ

(
1 − 2µ

σ2

)
4λ +

(
1 − 2µ

σ2

)
+ 1 −

√((
1 − 2µ

σ2

)
+ 1

)2
+ 8λ

(
1 − 2µ

σ2

)


1

1− 2µ
σ2

. (9)

This shows that when ε is zero, λ = − (1−µ/σ2)2

2(1−2µ/σ2) . However, according to (7) and
(8), this implies that π̃− = π̃+ = µ/σ2. It confirms the fact that π̃ is the corrected
risky weight of the frictionless risky weight π, such that π̃ converges to π when ε
approaches zero. Indeed, we can confirm that the case ε = 0 reduces to uI(t, x, y) =
u(t, x, y) by (6) and this confirms the consistency with the frictionless case.

Further, let us consider that ε approaches one, which is the maximum level of
transaction costs. Then, λ tends towards −1/2 when µ/σ2 < 1/2. This implies
that π̃− = 0 and π̃+ = 2µ/σ2. That is, if ε is approaching one, the boundary that the
risky weight π̃ can take, this widens to (0, 2µ/σ2) when µ/σ2 < 1/2. Conversely,
if ε approaches one, then λ tends to zero when µ/σ2 ≥ 1/2. This implies that
π̃− = 1 and π̃+ = 2µ/σ2 − 1. That is, if ε is approaching one, the boundary that
the risky weight π̃ can take widens to (1, 2µ/σ2 − 1). The former case implies
that the frictionless risky weight π = µ/σ2 < 0.5 and the latter case implies that
the frictionless risky weight π > 0.5. Thus, the range of widened boundaries in
the former case is, roughly, less than the range in the latter case. In summary,
when the transaction costs ε become close to one, the boundary (π̃+, π̃−) widens
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because λ works to translate the effect of the transaction costs into the optimal
trading strategy.

Further, the dynamics of the trading strategy are as follows:

dϕt

ϕt
=(1 − π̃−)dΦt − (1 − π̃+)dΨt. (10)

This implies that the trading volume is given by:

d‖ϕt‖

ϕt
=(1 − π̃−)dΦt + (1 − π̃+)dΨt. (11)

For dϕ/ϕ and d‖ϕ‖/ϕ, we define the average position of risky assets and the
average trading volume such that:

r̄ := lim
t→∞

1
t

∫ t

0

dϕt

ϕt
,

R̄ := lim
t→∞

1
t

∫ t

0

d‖ϕt‖

ϕt
.

The details for deriving the above are discussed in Appendices A.1 and A.2.

Optimal market making strategy Next, we discuss the optimization of the
market maker. To maximize profit, the market maker takes into account the strat-
egy of the investor. From this game theoretic point of view, we replace (x, y) from
the value function (3) with (xM, yM, yI), where xM and yM denote the initial safe
and risky positions of the market maker, respectively, and yI denotes the initial
risky position of the investor. Then, we can solve (3); i.e., the value function of
the market maker is given by:

uM(xM, yM, yI) =xM + yMeµT̄ + yI

(
eµT̄ − 1 −

εR∗ − µ
r∗ + µ

(
e(r∗+µ)T̄ − 1

))
, (12)

where ε∗ maximizes: (
−µ + εR̄

) 1
r̄ + µ

(
e(r̄+µ)T − 1

)
, (13)

and R∗ and r∗ are given by substituting ε∗ into the average rate of the trading vol-
ume R̄ and the average rate of the trading strategy r̄. A comparison the investor’s
value function (6) indicates that the value function (12) is not clearly divided into
the time and the intrinsic value. Instead, this value function shows the strong de-
pendency of the investor’s activity, through terms such as yI , R∗ and r∗. It also
shows the intersection of the investor and the market maker.
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Further, we note that R̄ and r̄ give the approximate solutions for (10) and (11),
as follows:

ϕt ≈ ϕ0er̄t,

where:

r̄ = −λσ2
(
1 − 2

µ

σ2

)
,

and

‖ϕt‖ ≈ ϕ0eR̄t,

where:

R̄ = −
λµ

(
1 − 2 µ

σ2

)
2
√(

1 − µ

σ2

)2
+ 2λ

(
1 − 2 µ

σ2

) .
Note that the average trading volume R̄ and the average position r̄ are the

strategies of the investor, but the market maker affects them by regulating the
transaction costs ε via λ. In other words, the market maker cannot directly maxi-
mize his/her profit, but he/she can indirectly maximize it by affecting the investor’s
strategy. This is the game theoretic solution and the transaction cost ε∗ is the opti-
mizer of the interaction between the investor’s and the market maker’s strategies.

The interaction between the market maker and the investor may not be suf-
ficiently clear from the mathematical formulation. Therefore, we illustrate its
implications using the numerical examples in the following section.

4 Numerical Examples and Model Implications
In this section, we provide numerical examples to demonstrate the implications
of our model. First, we need to confirm the consistency of our model with the
standard model that excludes transaction costs. If the consistency with the stan-
dard model holds, the value function of our model given by (6) converges to the
standard one given by (5). We calculate (6) by using the upper and lower bounds
of π̃ ∈ [π̃−, π̃+] and show the results in Figure 1. The common parameters used
are: S 0 = 100, T = 1, x + y = 100, σ = 0.16. In the left panel, the parameter
is µ = 0.01 and in the right panel, it is µ = 0.02. In the figures, the dashed line
represents the value function of the standard model given by (5). This implies
that the value functions will coincide with each other when the transaction costs
approach zero.
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Figure 1: Convergence of the value function of the model with transaction costs
to the value function of the standard model. The bold lines represent the upper
and lower bounds of the value functions of the model with transaction costs. The
dashed line is the value function of the standard model. The left panel is calculated
on the condition that µ/σ2 < 0.5 and the right panel on the condition that µ/σ2 ≥

0.5.

The reason that we divided Figure 1 into two panels is that we need to consider
two cases, µ/σ2 < 0.5 and µ/σ2 ≥ 0.5. As we discussed in the previous section,
the region of the parameter λ is given by λ ∈

[
−

(1−µ/σ2)2

2(1−2µ/σ2) ,−
1
2

]
when µ/σ2 < 1/2

and λ ∈
[
0,− (1−µ/σ2)2

2(1−2µ/σ2)

]
when µ/σ2 ≥ 1/2, although the form of λ is commonly

given by (9). Thus, the region of π̃ is divided into two. We consider two cases of
convergence of the value function.

As discussed in the previous section, we obtain the optimal transaction costs
by numerically solving (13). The left panel of Figure 2 shows that when the
appreciation rate µ increases, the optimal transaction costs decrease, for a fixed
stock price S 0 = 100 (dollars), maturity T = 1 (Year), and volatility levelσ = 0.16
(=16%). In contrast, as the right panel of Figure 2 shows, if there is increasing
volatility σ, the optimal transaction costs increase, for a fixed appreciation rate
µ = 0.02 (=2%), when the stock price and maturity are also fixed at S 0 = 100 and
T = 1, respectively.

There are two key points to discuss in relation to the response of the optimal
transaction costs to changes in the appreciation rate and volatility. First, it is
important to consider why the optimal transaction costs respond in the opposite
direction to changes in the appreciation rate compared with changes in volatility.
Second, we need to discuss the amount of transaction costs, shown in Figure 2.
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Figure 2: Increasing appreciation rate decreases the optimal transaction costs (left
panel). Conversely, increasing volatility increases the optimal transaction costs
(right panel).

First, we discuss why the response of the optimal transaction costs is reversed
for a change of the appreciation rate compared with a change of volatility. The
first explanation is simple: A large appreciation rate and a low level of volatility
imply a large risky weight (see the first term of both (7) and (8)). This implies that
the investor is confident in holding much amounts of the risky asset and may be
induced to willingly trade the risky assets. Hence, low transaction costs may be
sufficient to ensure the market maker’s profit. This means the optimal transaction
costs will be small when there is a higher appreciation rate and lower volatility.

From another perspective, the above conjecture is confirmed by a numerical
example. Figure 3 shows that when the frictionless risky weight π increases, the
spread between boundaries π̃+ − π̃− decreases. As π = µ/σ2 increases when the
appreciation rate µ increases and the volatility σ decreases, increasing µ and de-
creasingσ leads to a trading opportunity via the narrowing spread π̃+−π̃−. Further,
by changing µ andσ, the transaction cost ε is optimized. Thus, the reduction of the
width between boundaries π̃+ and π̃− is accelerated (see the right panel of Figure
3). This shows that transactions may easily occur. Indeed, because of the increase
of the frictional risky position π̃t, the possibility of π̃t touching the boundaries π̃+
and π̃− is increased. This allows for the low transaction costs.

Although transactions increase, this has no benefit to the market maker if
his/her total profit is reduced by the small transaction costs. Thus, we need to
confirm that the market maker is able to regulate the transactions costs to ensure
that his/her total profit is stable for an increasing appreciation rate and decreasing

13
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Figure 3: When the frictionless risky weight π increases, the spread between
boundaries π̃+ − π̃− decreases. The left panel shows the difference of boundaries
π̃+ and π̃− and the right panel shows each of the boundaries.

volatility. That is, we calculate the total profit
∫ T

0
ϕM

t dS t + ε
∫ T

0
S td‖ϕ‖t. We set

yM = yI = 100 and T̄ = 1 and show the result in Figure 4.
Indeed, as Figure 4 shows, even if the appreciation rate and volatility increase,

the total profit of the market maker appears to be stable. This implies that the
regulation of the transaction costs is optimally conducted by the market maker,
although the transaction costs decrease or increase.

Now, we proceed to the second point, the amount of transaction costs. It is
well known that transaction costs are not necessarily observed in the real market.
One reason for this is that there are several market makers, so that one market
maker cannot determine transaction costs in isolation. Another reason is that the
transaction costs (represented by the bid–ask spread) are not perfectly controlled
by a market maker, but experience fluctuations owing to random limit orders. This
feature provides additional support for our idea that the transaction costs are game
theoretically determined.

Based on these features of transaction costs, several methods have been sug-
gested to empirically measure the real transaction costs; see, for instance, Roll
(1984), Lesmond et al. (1999), Corwin and Schultz (2012) and Abdi and Ranaldo
(2017). The estimated transaction costs vary depending on the methods used and
the time periods in which they are measured. In general, however, transaction
costs on small stocks are larger than those on large stocks. For instance, Lesmond
et al. (1999) found that transaction costs varied within a range from 1.2% 10.3%,
with the former applying to large stocks and the latter to small stocks. Further,
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Figure 4: Total profit of the market maker when the appreciation rate and volatility
increase.

Corwin and Schultz (2012) reported that the transaction costs on small stocks
jumped to over 55% during the Great Depression. 5

This phenomena makes intuitive sense because strong recessions, such as the
Great Depression and the Lehman crisis, are characterized by very low apprecia-
tion rates and very high volatility. In such periods, even market makers may pre-
fer to alleviate their inventory risks and thus may set excessively high transaction
costs to avoid trading orders. From this viewpoint, excessively high transaction
costs may be optimal in such situations, although it should be noted that even very
high transaction costs could not prevent the fire sales during the Lehman crisis.

We can observe the corresponding parameters for these estimations of trans-
action costs using Figure 2. For instance, transaction costs of 10%, which apply
to small stocks, correspond to appreciation rates of around 0.225 and volatility
rates of 0.15. This implies a risky weight of around 85%. Further, transaction
costs of 50%, which occurred during the Great Depression, correspond to an ap-
preciation rate of around 0.15 and volatility of around 0.185. This implies that
the risky weight moved to around 60% at this time. Although the correspond-
ing risky weight may appear too high, our model simply gives the corresponding
values of µ and σ for the empirically possible transaction costs. The reason that
such high risky weights occur in our model may be the assumption of log utility,
under which risk tolerance is fixed to one. If we relax this assumption and allow
investors to adopt more risk-tolerant preferences, we may determine more reason-
able risky weights for market estimates of transaction costs. This is a project for

5This report may be excessive as Abdi and Ranaldo (2017) reported more moderate estimates.
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future research. The same procedure that we have employed in this paper could
be applied to such a future project. This will enable us to test the efficiency of the
extended model and provide economic interpretations.

In this regard, we note the range of µ and σ in Figure 2 and Figure 4. Com-
pared with volatility of around 15%, the appreciation is very small (around 2%).
This is because, to avoid leverage, we made the assumption that 0 < π = µ/σ2 <
1. To examine the cases where µ and σ take values within a wider range, we have
two options: First, we could relax the leverage condition. Second, we could in-
troduce a power utility investor with a risk aversion γ > 1, which would relax the
assumption such that 0 < µ/σ2 < γ, or we could introduce a more risk-tolerant
market maker.

A Results in the frictional case
The structure of this section is as follows: First, we discuss the value function (4).
Second, we derive the trading volume (11) of the investor by using the result of
the first step. Finally, we show the value function of the market maker; i.e., the
solution of (3), based on the first and second steps.

A.1 The value function in the frictional case
For deriving the value function (4), it is convenient to use the shadow price ap-
proach. The shadow price is given by Definition A.1.

Definition A.1. (Gerhold et al. (2014)) A shadow price is a frictionless price pro-
cess S̃ t evolving within the bid-ask spread, such that there is an optimal strategy
for S̃ t which is of finite variation generating same expected value with the fric-
tional case and entails buying only when the shadow price S̃ t equals the ask price
(1 + ε)S t, and selling only when S̃ t equals the bid price (1 − ε)S t.

By definition of shadow price, the cash and risky position in terms of shadow
price is given as follows:

dX̃I
t = −S̃ tdϕt,

dỸ I
t = S̃ tdϕt + Ỹ I

t
dS̃ t

S̃ t
.

Note that we don’t need to consider the effect of transaction costs in view of
shadow price processes. Thus, the wealth process ÃI

t = X̃I
t + Ỹ I

t in terms of shadow
price is given by

dÃI
t = Ỹ I dS̃ t

S̃ t
.
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According to Theorem 2.10, 2.12, and 3.2 of Czichowsky (2017), there ex-
ists the above shadow prices. Further, Theorem 2.5 of Czichowsky et al. (2018)
implies that the shadow price process is given by

dS̃ t

S̃ t
= µ̃tdt + σ̃tdWt, (14)

where (µ̃t)t∈[0,T ] and (σ̃t)t∈[0,T ] are predictable processes such that the solution to
(14) is well-defined in the sense of Itô integration. Note that Czichowsky et al.
(2018) discusses the fractional Brownian motion drives the risky asset S . How-
ever, the standard Brownian motion is in a subset of fractional Brownian motion.
Thus, the result is consistent with our case.

Let the value function in terms of shadow price be ũI such that

uI(t, x, y) = ũI(t, a) = sup
ÃI∈A

E
[
U I(ÃI

T )|Ft

]
.

Since µ̃ and σ̃ are well-defined, via the similar procedure to derive the value func-
tion discussed in the frictionless case of Section 2, we may approach the following
value function;

ũI(t, a) = ln(x + y) +
1
2

∫ T

t

µ̃2
s

σ̃2
s
ds.

Further, the optimal risky weight π̃t is given by

π̃t = −
µ̃tũI

a

σ̃2
t ũI

aaÃI
t

(15)

However, we have not yet known the explicit form of µ̃t and σ̃t. To clarify
them, we need to explicitly derive the shadow price processes (14).

By the definition of shadow price, if the investor changes the position of risky
asset by ν, then the value of the investor’s safe position changes from XI

t to XI
t−νS̃ t,

while her risky position changes from Y I
t to Y I

t + νS t. Note that ν can be positive
and negative, i.e., we consider selling and buying of risky asset, here. Thus, the
following inequality holds,

uI(t, x − νS̃ t, y + νS t) ≤ uI(t, x, y).

By a Taylor expansion on ν, the left hand side is uI(t, x−νS̃ t, y+νS t) = uI(t, x, y)−(
uI

xS̃ t − uI
yS t

)
ν+

(
1
2uI

xxS̃
2
t − uI

xyS̃ tS t +
1
2uI

yyS
2
t

)
ν2+· · · = uI(t, x, y)−

(
uI

xS̃ t − uI
yS t

)
ν+

o(ν). Thus, for sufficiently small ν, it follows

uI
yνS t ≤ uI

xνS̃ t.

17



This holds independently of the sign of ν, we have the equality of the above:

S̃ t =
uI

y

uI
x
S t.

This implies that the shadow price can be parametrized by a process C which is
valued in [C−,C+] such that

S̃ t = S t exp(C), (16)

where

C− := ln(1 − ε), C+ := ln(1 + ε)

due to the definition of the shadow price; i.e., S̃ ∈ [(1 − ε)S , (1 + ε)S ]. Formally,
we write the process C as

dCt = µ̃
C
t dt + σ̃C

t dWt,

with adapted processes µ̃C, σ̃C. By (16), it holds that

dS̃ t

S̃ t
−

1
2

d〈S̃ 〉
S̃ 2
=

dS t

S t
−

1
2

d〈S 〉
S 2 + dC

↔

(
µ̃t −

1
2
σ̃2

t

)
dt + σ̃tdWt =

(
µ −

1
2
σ2

)
dt + σdWt + µ̃

C
t dt + σ̃C

t dWt.

That is, it follows that

µ̃t =µ + µ̃
C
t −

1
2

(
σ2 − (σ̃t)2

)
= µ + µ̃C

t +
1
2

(
σ + σ̃C

t

)2
−

1
2
σ2

σ̃t =σ + σ̃
C
t .

According to (15), we have to note that the optimal risky weight π̃ is given as
follows;

π̃ =
µ̃t/ÃI

t

σ̃2
t ÃI

t/(ÃI
t )2
=
µ̃t

σ̃2
t
=
µ + µ̃C − 1

2σ
2

(σ + σ̃C)2 +
1
2
. (17)

By assumption of short selling constraint, π̃ > 0. We define a process

β := ln
(
π̃

1 − π̃

)
. (18)

Note that the optimal strategy trades the shadow price process only when it coin-
cides with bid or ask price. Thus, risky position ϕt and safe position ϕ0

t must be
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constant on (0, τ) with τ := inf{t > 0 : Ct ∈ [C−,C+]}. Therefore, it follows that,
on [0, τ],6

dβt = d lnϕt + d ln S̃ t − d lnϕ0
t (19)

= d ln S̃ t =

(
µ −
σ2

2
+ µ̃C

t

)
dt +

(
σ + σ̃C

t

)
dWt (20)

On the other hand, since π̃ is dependent on the process C, β is also dependent on
the process C. That is, for some function f , it holds β = f (C). By Itô’s lemma,
this implies that

dβt =

(
f ′(Ct)µ̃C

t + f ′′(Ct)
(σ̃C

t )2

2

)
dt + f ′(Ct)σ̃C

t dWt. (21)

From (17), (20) and (21), it holds that

1
1 + e− f =

µ + µ̃C − σ2/2
(σ + σ̃C)2 +

1
2
, (22)

µ −
σ2

2
+ µ̃C = f ′µ̃C + f ′′

(σ̃C)2

2
, (23)

σ + σ̃C = f ′σ̃C. (24)

(22) and (24) yields

σ̃C =
σ

f ′ − 1
, (25)

µ̃C = −µ +
1
2
σ2 +

1
2
σ2

(
f ′

f ′ − 1

)2 1 − e− f

1 + e− f . (26)

Inserting them into (23), we obtain the following ODE;

f ′′(x) =
(
2µ
σ2 − 1

)
f ′(x) +

(
2 −

4µ
σ2 +

1 − e− f (x)

1 + e− f (x)

)
( f ′(x))2 +

(
2
µ

σ2 − 1 −
1 − e− f (x)

1 + e− f (x)

)
( f ′(x))3.

(27)

The boundary condition is given by the boundaries C− = ln(1 − ε) and C+ =
ln(1 + ε).

6Of course, if we consider the time interval [0,T ] in general, then ϕt fluctuates and (20) may
be written as

dβt = d ln S̃ t + dΦt − dΨt

for processes Φ and Ψ which only increase when β touches β+ = f (C−) and touches β− = f (C+),
as later discussed.
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According to the logic discussed in pp.1347 of Kallsen and Muhle-Karbe
(2010), for keeping the arbitrage free condition, it is necessary that Itô process
representation of C to hold even when C reaches the boundaries C− and C+. This
requires that f cannot be a C2-function on the closed interval [C−,C+]; i.e., it fol-
lows that f ′(C−) = f ′(C+) = −∞. This is boundary conditions of the ODE on
f , but this is not easy to treat. Then, we consider the inverse function g := f −1.7

Then, since f ′ = 1/g′ and f ′′ = −g′′/(g′)3, the ODE (27) is reduced to

−
g′′(y)

(g′(y))3 =

(
2µ
σ2 − 1

)
1

g′(y)
+

(
2 −

4µ
σ2 +

1 − e−y

1 + e−y

)
1

(g′(y))2 +

(
2
µ

σ2 − 1 −
1 − e−y

1 + e−y

)
1

(g′(y))3

↔ g′′(y) =
(
1 −

2µ
σ2 +

1 − e−y

1 + e−y

)
+

(
4µ
σ2 − 2 −

1 − e−y

1 + e−y

)
g′(y) +

(
1 −

2µ
σ2

)
(g′(y))2

=(1 − g′(y))
((

1 −
2µ
σ2

)
(1 − g′(y)) +

1 − e−y

1 + e−y

)
, (28)

on the a priori unknown interval [β−, β+] := [ f (C+), f (C−)], with boundary (and
smooth pasting) conditions such that

g(β−) = C+, g(β+) = C−, g′(β−) = 0, g′(β+) = 0. (29)

According to Proposition 4.2 of Kallsen and Muhle-Karbe (2010),8 there exist
β− < β+ and a strictly decreasing mapping g : [β−, β+] → [C−,C+] satisfying
the free boundary problem (28) and (29). Thus, the problem is how to derive the
explicit form of the function g(·). Indeed, we do it as follows.

By (28), it holds that

g′′(y)
(1 − g′(y))

=

(
1 −

2µ
σ2

)
(1 − g′(y)) +

1 − e−y

1 + e−y

↔ −
d ln(1 − g′(y))

dx
=

(
1 −

2µ
σ2

)
(1 − g′(y)) +

1 − e−y

1 + e−y .

Define h(y) := ln(1− g′(y)) and A :=
(
1 − 2µ

σ2

)
and rewrite the above equation; i.e.,

−h′(y) = Aeh(y) +
1 − e−y

1 + e−y .

This has the general solution such that

h(y) = ln
(
−

ey

A(1 + ey)(1 + 2λ + 2λey)

)
,

7According to Proposition 4.4 of Kallsen and Muhle-Karbe (2010), the monotonicity of g and
f is assured.

8Although coefficients are slightly different from the problem discussed in Kallsen and Muhle-
Karbe (2010), the logic is essentially same to this paper. Thus, the result of Proposition 4.2 of
Kallsen and Muhle-Karbe (2010) is applicable for our discussion.
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where λ is a constant. Hence, the general form of g′(y) and g(y) are given as
follows:

g′(y) =1 +
ey

A(1 + ey)(1 + 2λ + 2λey)
, (30)

g(y) =y +
ln(1 + ey) − ln(1 + 2λ + 2λey)

A
+ Λ, (31)

where Λ is an integral constant. From the above and the boundary conditions, we
can specify λ, Λ, β− and β+. Indeed, by (30) and g′(β−) = g′(β+) = 0 and noting
that β− < β+, it follows that, if λA > 0, then

β− = ln

−1 −
A + 1 +

√
(A + 1)2 + 8λA
4λA

 , (32)

β+ = ln

−1 −
A + 1 −

√
(A + 1)2 + 8λA
4λA

 , (33)

else if λA ≤ 0, then

β− = ln

−1 −
A + 1 −

√
(A + 1)2 + 8λA
4λA

 , β+ = ln

−1 −
A + 1 +

√
(A + 1)2 + 8λA
4λA

 .
Since g(β−) = C+ = ln(1 + ε) and g(β+) = C− = ln(1 − ε) and (31), it also

follows that

ln
(
1 − ε
1 + ε

)
= β+ − β− +

1
A

(
ln

(
1 + eβ+

1 + eβ−

)
− ln

(
1 + 2λ + 2λeβ+

1 + 2λ + 2λeβ−

))
.

Substituting (32) and (33) into the above, if λA > 0, then we have

ln
(
1 − ε
1 + ε

)
= ln

−4λA − A − 1 +
√

(A + 1)2 + 8λA

−4λA − A − 1 −
√

(A + 1)2 + 8λA


+

1
A

ln −(A + 1) +
√

(A + 1)2 + 8λA

−(A + 1) −
√

(A + 1)2 + 8λA

 − ln

A − 1 +
√

(A + 1)2 + 8λA

A − 1 −
√

(A + 1)2 + 8λA

 .
This can be simplified as follows:

1 − ε
1 + ε

=

−4λA − A − 1 +
√

(A + 1)2 + 8λA

−4λA − A − 1 −
√

(A + 1)2 + 8λA


×


(
−(A + 1) +

√
(A + 1)2 + 8λA

)(
−(A + 1) −

√
(A + 1)2 + 8λA

) (A − 1 −
√

(A + 1)2 + 8λA
)(

A − 1 +
√

(A + 1)2 + 8λA
)

1/A

=

4λA + A + 1 −
√

(A + 1)2 + 8λA

4λA + A + 1 +
√

(A + 1)2 + 8λA

 4λ + A + 1 −
√

(A + 1)2 + 8λA

4λ + A + 1 +
√

(A + 1)2 + 8λA

1/A

.

(34)
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Similarly, if λA ≤ 0, then if follows that

1 − ε
1 + ε

=

4λA + A + 1 +
√

(A + 1)2 + 8λA

4λA + A + 1 −
√

(A + 1)2 + 8λA

 4λ + A + 1 +
√

(A + 1)2 + 8λA

4λ + A + 1 −
√

(A + 1)2 + 8λA

1/A

.

(35)

Solving the above, λ is determined and substituting λ into (32) and (33), we
have β− and β+. We also have Λ by using g(β−) = C+ or g(β+) = C−.

Using (25) and (26), the process β is given on (0,T ) by non-decreasing adapted
processesΦ,Ψwhich increase only on the set {β = β−} and {β = β+}, respectively9,
as follows:

dβt = a(βt)dt + b(βt)dWt + dΦt − dΨt, (36)
β0 ∈ [β−, β+], (37)

for functions a, b defined by

a(y) :=
1
2
σ2

(
1

1 − g′(y)

)2 1 − e−y

1 + e−y , b(y) :=
σ

1 − g′(y)
. (38)

Since β ∈ [β−, β+], it holds that

βt = β0 +

∫ t

0
a(βs)ds +

∫ t

0
b(βs)dWs + Φt − Ψt. (39)

Note that the definition β = f (C); i.e., it follows C = g(β). And now, we have
β. Thus, we attain the explicit form of the process C, as follows:

dCt =

(
g′(βt)a(βt) +

1
2

g′′(βt)b(βt)2
)

dt + g′(βt)b(βt)dWt

=

(
−µ +

1
2
σ2 +

1
2
σ2 1 − e−y

1 + e−y

1
(1 − g′(y))2

)
dt + σ

g′(βt)
1 − g′(βt)

dWt,

where we used that

g′(βt)a(βt) +
1
2

g′′(βt)b(βt)2

=g′(βt)
1

2
σ2

(
1

1 − g′(y)

)2 1 − e−y

1 + e−y


+

1
2

(1 − g′(y))
((

1 −
2µ
σ2

)
(1 − g′(y)) +

1 − e−y

1 + e−y

) (
σ

1 − g′(y)

)2

= − µ +
1
2
σ2 +

1
2
σ2 1 − e−y

1 + e−y

1
(1 − g′(y))2 .

9See Lemma 4.3 of Kallsen and Muhle-Karbe (2010) and Skorokhod (1961) for more details.
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The above is derived by using (38) and (28).
This is consistent with the definition of Ct. Indeed, by using (25) and (26), it

follows that

σ̃C =
g′

1 − g′
σ,

µ̃C = − µ +
1
2
σ2 +

1
2
σ2

(
1

1 − g′

)2 1 − e−βt

1 + e−βt
.

Further, we specify the coefficients of the shadow price S̃ t; i.e., it follows that

σ̃t =σ + σ̃
C
t =

1
1 − g′

σ,

µ̃ =µ + µ̃C −
1
2

(σ2 − σ̃2) =
1

(1 − g′)2

σ2

1 + e−βt
.

Summarizing the above, the value function is given by

uI(t, x, y) = ln(x + y) +
1
2

∫ T

t

µ̃2
s

σ̃2
s
ds

= ln(x + y) +
σ2

2

∫ T

t

1
(1 − g′(βs))2(1 + e−βs)2 ds

= ln(x + y) +
σ2

2

∫ T

t
A2(1 + 2λ + 2λeβs)2ds

Substituting g′(·) of (30) into the above, (6) is derived.

Remark A.1. The definition of the shadow price also implies that the shadow
price process S̃ coincide with the original risky asset price process S when ε → 0;
i.e., it means that µ̃→ µ and σ̃→ σ.

Indeed, the above holds, because the monotonicity of g(·) and β− < β+ implies
that g′(βt) = 0 for all βt, when ε → 0. Further, when the transaction cost ε → 0,
the risky weight π̃ coincides with the frictionless case, i.e., π̃ = µ/σ2. This means
that βt → − ln(−1 + σ2/µ) (see (18)). By using them, it follows that, when ε → 0,

µ̃t =
1

(1 − g′)2

σ2

1 + e−βt
→ µ,

σ̃t =
1

1 − g′
σ→ σ.

This implies that the consistency of the shadow price S̃ with S and the con-
sistency of the value function of the frictional case with standard Merton problem
such that, when ε → 0,

uI(t, x, y)→ u(t, x, y).
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Remark A.2. Another way to confirm the consistency with standard Merton prob-
lem is to derive β− and β+ when ε → 0. When λA > 0 and ε → 0 on (34), then the
left hand side is 1. Hence, it holds that λ = −(A + 1)2/8A.

Substituting this into (32) and (33), it follows that

β− → ln
(
−1 +

2
A + 1

)
,

β+ → ln
(
−1 +

2
A + 1

)
.

That is, βt = β− = β+ → ln
(
−1 + 2

A+1

)
.

Therefore, the value function converges such that

uI(t, x, y)→ ln(x + y) +
1
2
µ2

σ2 (T − t) = u(t, x, y).

A.2 Trading volume
By (18), it holds that π̃t =

1
1+e−βt . Since the process β is given by (39), the process

of the risky weight π̃ is also determined. Using π̃, the wealth Ã in terms of S̃ is
described as follows;

ÃI
t = (XI

0 + Ỹ I
0)E

(∫ ·

0
π̃s

dS̃ s

S̃ s

)
t
= (XI

0 + Ỹ I
0)E

(∫ ·

0

1
1 + e−βs

dS̃ s

S̃ s

)
t

(40)

For given XI
0,Y

I
0, the wealth process Ã is completely defined. Further, the risky

position ϕ is also defined such that

ϕt = π̃t
ÃI

t

S̃ t
.

Using Itô’s lemma, it follows that

dϕt =dπ̃t
ÃI

t

S̃ t
+ π̃t

dÃI
t

S̃ t
− π̃t

ÃI
t

S̃ t

dS̃ t

S̃ t
+ π̃t

ÃI
t

S̃ 3
t

d〈S̃ 〉t +
d〈π̃, ÃI〉t

S̃ t
−

d〈π̃, S̃ 〉t
S̃ 2

t

ÃI
t − π̃t

d〈S̃ , ÃI〉t

S̃ 2
t

=ϕt
dπ̃t

π̃t
+ ϕt

dÃI
t

ÃI
t

− ϕt
dS̃ t

S̃ t
+ ϕt

d〈S̃ 〉t
S̃ 2

t

+ ϕt
d〈π̃, ÃI〉t

π̃tÃI
t

− ϕt
d〈π̃, S̃ 〉t
π̃tS̃ t

− ϕt
d〈ÃI , S̃ 〉t

ÃI
t S̃ t

.

(41)

According to (40), it holds that

dÃI
t

ÃI
t

= π̃t
dS̃ t

S̃ t
.
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Since dβt = d ln S̃ t + dΦt − dΨt by definition, it holds that

dβt =
dS̃ t

S̃ t
−

1
2

d〈S̃ 〉t
S̃ 2

t

+ dΦt − dΨt =
dS̃ t

S̃ t
−

1
2
σ̃2

t dt + dΦt − dΨt,

d〈β〉t =
d〈S̃ 〉t

S̃ 2
t

.

Further, note that 1 − π̃t =
e−βt

1+e−βt . Using them, it follows that

dπ̃t =
e−βt

(1 + e−βt)2 dβt +
1
2

(
−

e−βt

(1 + e−βt)2 + 2
e−2βt

(1 + e−βt)3

)
d〈β〉t

=π̃t(1 − π̃t)dβt −
1
2
π̃t(1 − π̃t) (1 − 2(1 − π̃t)) d〈β〉t

=π̃t(1 − π̃t)
dS̃ t

S̃ t
−

1
2
π̃t(1 − π̃t)

d〈S̃ 〉t
S̃ 2

t

−
1
2
π̃t(1 − π̃t) (1 − 2(1 − π̃t))

d〈S̃ 〉t
S̃ 2

t

+ π̃t(1 − π̃t)dΦt − π̃t(1 − π̃t)dΨt

=π̃t(1 − π̃t)
dS̃ t

S̃ t
− π̃2

t (1 − π̃t)
d〈S̃ 〉t

S̃ 2
t

+ π̃t(1 − π̃t)dΦt − π̃t(1 − π̃t)dΨt.

Thus, it holds that

dπ̃t

π̃t
=(1 − π̃t)

dS̃ t

S̃ t
− π̃t(1 − π̃t)

d〈S̃ 〉t
S̃ 2

t

+ (1 − π̃t)dΦt − (1 − π̃t)dΨt

= − A
1 − π̃t

π̃t

(
1 +

2λ
1 − π̃t

)
σdWt + (1 − π̃t)dΦt − (1 − π̃t)dΨt.

Note that by definition of π̃ and β, it holds that dΦ and dΨ increase only on
{π̃t = π̃−} and {π̃t = π̃+}, respectively, where π− := 1

1+e−β− and π+ := 1
1+e−β+ . More

precisely, we have, if λ
(
1 − 2µ

σ2

)
> 0,

π̃− =
µ

σ2 +
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
,

π̃+ =
µ

σ2 −
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
,
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else if λ
(
1 − 2µ

σ2

)
≤ 0, given by

π̃− =
µ

σ2 −
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
,

π̃+ =
µ

σ2 +
1
2

√((
1 −

2µ
σ2

)
+ 1

)2

+ 8λ
(
1 −

2µ
σ2

)
.

Note that the former case implies that π̃+ < π̃−. However, this means that when
the optimal risky weight π̃ touches boundaries π̃− and π̃+, π̃ exits from the region
covered by these boundaries. This contradicts the optimality of π̃. Indeed, the
model with transaction costs require to keep the position in fixed region to save
the transaction costs. Thus, we can exclude the case λ

(
1 − 2µ

σ2

)
> 0, hereafter.

That is, we focus on the case λ
(
1 − 2µ

σ2

)
≤ 0

Next thing we do is to refine the available range of λ. For this, we write (35)
again here:

1 − ε
1 + ε

=

4λA + A + 1 +
√

(A + 1)2 + 8λA

4λA + A + 1 −
√

(A + 1)2 + 8λA

 4λ + A + 1 +
√

(A + 1)2 + 8λA

4λ + A + 1 −
√

(A + 1)2 + 8λA

1/A

.

(42)

Since the left hand side of (42) is less than 1, it follows that

4λA + A + 1 −
√

(A + 1)2 + 8λA ≤4λA + A + 1 +
√

(A + 1)2 + 8λA ≤ 0,

4λ + A + 1 −
√

(A + 1)2 + 8λA ≤4λ + A + 1 +
√

(A + 1)2 + 8λA ≤ 0.

This implies that λ(1 + 2λ) ≥ 0. Thus, it is necessary that

λ ≤ −
1
2
, 0 ≤ λ.

Further, for
√

(A + 1)2 + 8λA to be real number,

λ ≥ −
(A + 1)2

8A
, if A ≥ 0,

λ ≤ −
(A + 1)2

8A
, otherwise .

Assume A =
(
1 − 2µ

σ2

)
≥ 0. Then, λ ≤ −1/2, since λ(1 − 2µ/σ2) ≤ 0. By

elementary but tedious calculations, we can show that the right hand side of (42)
is monotone decreasing on λ. Further, it holds that the right hand side of (42) is 0
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for λ = −1/2 which is corresponding to the case of ε = 1 and the right hand side
of (42) is 1 for λ = − (A+1)2

8A which is corresponding to ε = 0.
Next, we consider the case A =

(
1 − 2µ

σ2

)
≤ 0. Then, it follows that λ ≥ 0.

We can also show that the right hand side of (42) is monotone increasing. When
λ = − (A+1)2

8A , the right hand side of (42) is 1 and when λ = 0, the right hand side
of (42) is −∞. In summary, λ is given as a mapping such that ε : [0, 1] → λ :
[−(A+1)2/8A,−1/2] when A =

(
1 − 2µ

σ2

)
≥ 0 and ε : [0, 1]→ λ : [0,−(A+1)2/8A]

when A =
(
1 − 2µ

σ2

)
≤ 0.

Using the above results, we can calculate

d〈π̃, ÃI〉t

π̃tÃI
t

=(1 − π̃t)π̃t
d〈S̃ 〉t

S̃ 2
t

d〈π̃, S̃ 〉t
π̃tS̃ t

=(1 − π̃t)
d〈S̃ 〉t

S̃ 2
t

d〈ÃI , S̃ 〉t
ÃI

t S̃ t
=π̃t

d〈S̃ 〉t
S̃ 2

t

.

Substituting them into (41), it follows that

dϕt

ϕt
=(1 − π̃t)

dS̃ t

S̃ t
− π̃t(1 − π̃t)

d〈S̃ 〉t
S̃ 2

t

+ (1 − π̃t)dΦt − (1 − π̃t)dΨt + π̃t
dS̃ t

S̃ t

−
dS̃ t

S̃ t
+

d〈S̃ 〉t
S̃ 2

t

+ (1 − π̃t)π̃t
d〈S̃ 〉t

S̃ 2
t

− (1 − π̃t)
d〈S̃ 〉t

S̃ 2
t

− π̃t
d〈S̃ 〉t

S̃ 2
t

=(1 − π̃t)dΦt − (1 − π̃t)dΨt. (43)

This implies that the absolute change of the trading strategy ϕt is given by

d‖ϕt‖

ϕt
=(1 − π̃t)dΦt + (1 − π̃t)dΨt. (44)

Note that Φ and Ψ increase only on {β = β−} and {β = β+}, respectively, it follows
that

d‖ϕt‖

ϕt
=

e−β−

1 + e−β−
dΦt +

e−β+

1 + e−β+
dΨt.

Similarly, it holds that

dϕt

ϕt
=

e−β−

1 + e−β−
dΦt −

e−β+

1 + e−β+
dΨt.
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A.3 Optimal transaction costs
The trading volume given by (44) is important for deriving the optimal transaction
costs of the market maker. However, the local time representation is not good for
tractability. Thus, we consider the long term average of the growth rate of the
trading volume; i.e., define R̄ as follows10,

R̄ := lim
t→∞

1
t

∫ t

0

d‖ϕt‖

ϕt
.

Lemma C.1. of Gerhold et al. (2014) and (36) and (37) imply that

lim
t→∞

∫ t

0
dΦt

t
=

b (β−)2 v (β−)
2

, lim
t→∞

∫ t

0
dΨt

t
=

b (β+)2 v (β+)
2

,

where v(·) is the invariant density of βt.
To derive invariant distribution, we first derive the scale function s(x) (see

(5.42) in Chapter 5 of Karatzas and Shreve (1991)) which is given by

s(x) =
∫ x

c
exp

(
−2

∫ y

c

a(z)
b(z)2 dz

)
dy

=
(1 + ec)2

ec

∫ x

c

ey

(1 + ey)2 dy,

where we can arbitrary choose a constant c ∈ R (see Problem 5.12 in Chapter 5 of
Karatzas and Shreve (1991)).

By using the scale function s(x), the speed measure m(x) is given by (see
(5.51) of Karatzas and Shreve (1991))

m(dx) =1[
β−,β+

] 2dx
b(x)2s′(x)

= 1[
β−,β+

] 2(1 − g′(x))2ec(1 + ex)2dx
σ2(1 + ec)2ex

Since we can arbitrary choose c, we fix c = β− due to the lower bound of y. Thus,
it holds that

m
([
β−, β+

])
=

∫ β+

β−

m(dx) =
2eβ−

σ2(1 + eβ−)2

∫ β+

β−

(1 − g′(x))2(1 + ex)2

ex dx

Since the invariant distribution v(dx) is given by the normalizing the speed mea-
sure (see Remark 6.19 in Chapter 5 of Karatzas and Shreve (1991)), it follows
that

v(dx) =
m(dx)

m
([
β−, β+

]) = (1 − g′(x))2(1 + ex)2

ex
∫ β+
β−

(1−g′(y))2(1+ey)2

ey dy
dx.

10Kallsen and Muhle-Karbe (2017) suggest another approximation of the trading volume. This
may be a good candidate for the application to our model.
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From this, the long term average of the absolute change of the trading volume is
given by

R̄ =
e−β−

1 + e−β−
σ2

2
(1 + eβ−)2

eβ−
∫ β+
β−

(1−g′(y))2(1+ey)2

ey dy
+

e−β+

1 + e−β+
σ2

2
(1 + eβ+)2

eβ+
∫ β+
β−

(1−g′(y))2(1+ey)2

ey dy

=
σ2(1 + e−β−)

2
∫ β+
β−

(1−g′(y))2(1+ey)2

ey dy
+

σ2(1 + e−β+)

2
∫ β+
β−

(1−g′(y))2(1+ey)2

ey dy
. (45)

Note that∫ β+

β−

(1 − g′(y))2(1 + ey)2

ey dy =
∫ β+

β−

ey

A2(1 + 2λ + 2λey)2 dy = −
1
A2

1
2λ(1 + 2λ + 2λey)

∣∣∣∣∣∣β+
β−

= −
1
A2

1
2λ(1 + 2λ + 2λeβ+)

+
1
A2

1
2λ(1 + 2λ + 2λeβ−)

=

√
(A + 1)2 + 8λA
2A2λ(1 + 2λ)

.

Substituting the above into (45), we have the explicit form of R̄; i.e.,

R̄ =
σ2A(A − 1)λ√
(A + 1)2 + 8λA

≥ 0.

By definition of R̄, we have the following approximated formula:

d‖ϕt‖ ≈ ϕtR̄dt.

Similarly, we can consider the average position of risky assets r̄ such that

r̄ := lim
t→∞

1
t

∫ t

0

dϕt

ϕt
.

Noting that (43), it follows that

r̄ = −λAσ2 ≥ 0.

Using r̄, the average position of risky assets up to time t is approximately given
by

ϕt ≈ ϕ0er̄t.
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We can now derive the solution of (3). According to (1) and (2), safe and risky
position of market maker is described as follows:

XM
T = XM

0 + (1 + ε)
∫ T̄

0
S tdϕa

t − (1 − ε)
∫ T̄

0
S tdϕb

t ,

Y M
T = Y M

0 −

∫ T̄

0
S tdϕa

t +

∫ T̄

0
S tdϕb

t +

∫ T̄

0
Y M

t
dS t

S t
.

Thus, the wealth of the market maker is given by

XM
T + Y M

T = XM
0 + Y M

0 +

∫ T̄

0
Y M

t
dS t

S t
+ ε

∫ T̄

0
S tdϕa

t + ε

∫ T̄

0
S tdϕb

t

= XM
0 + Y M

0 +

∫ T̄

0
ϕM

t dS t + ε

∫ T̄

0
S td||ϕI ||t

= XM
0 + Y M

0 + (ϕM
0 + ϕ

I
0)

∫ T̄

0
dS t −

∫ T̄

0
ϕI

t dS t + ε

∫ T̄

0
S td||ϕI ||t

= XM
0 + Y M

0 + ϕ
M
0 S T̄ − ϕ

M
0 S T̄ − Y M

0 − Y I
0 −

∫ T̄

0
ϕI

t dS t + ε

∫ T̄

0
S td||ϕI ||t

Thus, (3) is described as follows:

uM(xM, yM, xI , yI) = max
ε>0
E

xM + yM + (ϕM
0 + ϕ

I
0)S T̄ − yM − yI −

∫ T̄

0
ϕI

t dS t + ε

∫ T̄

0
S td||ϕI ||t


= max
ε>0

xM + yM + (ϕM
0 + ϕ

I
0)S 0eµT̄ − yM − yI − E

−∫ T̄

0
ϕI

t dS t + ε

∫ T̄

0
S td||ϕI ||t


= max
ε>0

xM + (yM + yI)eµT̄ − yI − E

−∫ T̄

0
ϕI

t dS t + ε

∫ T̄

0
S td||ϕI ||t

 .
Extracting the argument dependent on ε, we need to consider

E

−∫ T̄

0
ϕtdS t + ε

∫ T̄

0
S td||ϕI ||t

 ≈ − ∫ T̄

0
ϕI

0µS 0e(r̄+µ)tdt + ε
∫ T̄

0
S 0e(r̄+µ)tϕI

0R̄dt

=ϕI
0S 0

(
−µ + εR̄

) 1
r̄ + µ

(
e(r̄+µ)T̄ − 1

)
.

In summary, our focus is to find the transaction costs maximizing the above
argument. Let ε∗ be such transaction costs and R∗, r∗ are corresponding to the ε∗.
Then, we have the value function of the market maker as follows:

uM(xM, yM, yI) =xM + yMeµT̄ + yI

(
eµT̄ − 1 −

εR∗ − µ
r∗ + µ

(
e(r∗+µ)T̄ − 1

))
,

where we omit the investor’s initial safe wealth xI in arguments of uM(·).
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