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Warped model

Izumi FURUOYA and Kazuhiro OZAWA

Abstract

By representing the absorption of a particle into the warped potential by the complex warped potential, it is shown that as a 

result of the warp, together with periodicity of the complex potential, the generations for fermions are born. We propose a semi-

empirical mass formula for leptons, up quarks and down ones. It is shown that our mass formula, which is based on our warped 

model, may reproduce the overall aspects of approximate linear rises of the logarithmic experimental mass values versus the 

generation number. This gives the evidence that the physical space is warped. Further, it is also shown that our warped model is 

able to explain the origin of non-existence of Ro  and Lo  (C-P violation) in nature.

1. Introduction

The warped model has been widely used to solve the hierarchy problems in the elementary particle physics. Many of such 

theories have been based on the gravitational ones.1)~6) We concerned with in this paper the hierarchy structure for the fermion 

mass and the C-P violation in the standard model in the framework of our warped model. We set up the five-dimensional warped 

space with a constant curvature and consider the physics in it.

In section 2, the basic equation needed for our later discussion is derived. In section 3, the semi-empirical mass formula is 

derived by using the complex warped potential. In section 4, the hierarchy structure for fermion mass is discussed. In section 5, 

the origin of C-P violation is given in our warped model. 

2.　Warped space

We set up our model space as follows. We here consider the simplest model space. Consider a five dimensional hyper surface 

with which an infinitesimal line element 

 ( ) ,ds e dx dx d( / )a i2 2 02 2 2p= - -p-  (1)
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is equipped, where x0  is time coordinate , , , , ,x i 1 2 3i =  space ones and p is an extra coordinate newly introduced in our 

model space and 1/a is a constant curvature of our model space. 

We identify the hyper surface with our model space, namely, our physical space. Hence, the fundamental metric tensor of our 

model space is

 ( )g

e

e

e

e
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( / )

( / )

( / )
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a
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2

2

2
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p
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p
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We define  

 / ,q dx ds0 0n=   / ,q dx dsi in=   , , ,i 1 2 3=   and  / ,q d dsn p=p  (3)

where n is a mass of a particle, hence we assume .0>n  They are the energy- momentum which forms a five-vector in our model. 

One obtains from Eq.(1) and Eq.(3)

Fig.1. Warped space embedded, for illustrative purpose, in a three dimensional reduced Euclidean space. In the case of constant 

curvature ( / )a1 2- , an infinitesimal line element in the space is

( ) ,ds e dX dX d( / )a2 2 02 12 2p= + +p-

where ( )dX dX0 1  are the components of ad i in the ( )X X0 1  plane.12)
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 ( ) ,e q q q( / )a i2 2 02 2 2n = - -p p-  (4)

where q0 is the energy, , , , ,q i 1 2 3i =  three momentums and ,qp  the momentum in p - direction of the particle (see Appendix A).

Since our model space is five dimensional, the charge-current density have five components which will be denoted by 

( , , )j j ji0 t= p  1, 2, 3.i= When the coordinate system changes, the value of t changes, hence, it will be more convenient 

for our discussion to rewrite t in an invariant form irrespective of the coordinate system (recall proper time in special theory of 

relativity). Hence, we adopt “relativistic” invariant form 

 , , , , , , ,g j j A B 0 1 2 3AB
A B2t p= =  (5)

as our charge density where ( )gAB  is the metric tensor given by Eq.(2).

In Eq.(5), if one makes the coordinate transformation ( ) ( ),x xA A
" l  one has 

 .g j j g j jAB
A B

A B
A B2t = = l l
l l  (6)

For an example, for up quarks, if ( )vA  is a velocity of the particle and ( )qA , the corresponding momentum of the particle, 

since / ,e2 3t=  then one has 

 ( ) (( / ) ) ( / )( / )e v e qj 2 3 2 3A A A
un= =     and    ( ) (( / ) ) ( / )( / ),j e v e q2 3 2 3A A A

un= =l l l  (7)

where we put ,un n=  for up quarks. If one substitutes Eq.(7) in Eq.(6), one has

 ,g q q g q qu AB
A B

A B
A B2

n = = l l
l l  (8)

which is rewritten from Eq.(2) as

 ( ) ( ) .e q q q e q q q( / ) ( / )
u

a i a i2 2 02 2 2 2 0 2 2 2n = - - = - -p p p p- - l l l l  (9)

Similarly one has the invariant forms, 

for down quarks  ( ) ,e q q q( / )
d

a i2 2 02 2 2n = - -p p-  (10)

and   for leptons  ( ) .e q q q( / )a i2 2 02 2 2
1n = - -p p-  (11)

3. Semi-empirical mass formula

In our following discussion, we take the simplified physical picture in the classical mechanics in order to make the underlying 

essential points in our physics clearer though mathematical strictness somewhat fails.

In the conventional 4-dim gravitational theory the fundamental metric tensor ( ), , , , , ,g 0 1 2 3m n=mn  plays the equivalent 

roles as the gravitational potential in Newtonian mechanical theory. This can be proved by comparing the equation of the geodesic 

curve which is the equation of motion of a free particle in the gravitational theory, with the equation of the motion of the particle 
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in the gravitational potential in Newtonian mechanical theory.7) 

For above reason, we regard the metric tensor e ( / )a2p  given in Eq.(2) as the potential in our warped model space. 

Our scenario is the following; A particle which has already acquired mass n through the coupling to Higgs particle, propagates 

in the extra dimension and is absorbed into the potential e ( / )ap ( we do not discuss about the mechanism of the mass generation of 

the particle). We use the complex potential, i.e. the complex warp factor to represent the absorption of a particle into the potential. 

This is an analogy to the optical model in nuclear reaction theory.8) Hence we assume that whatever the matter is, distributes 

uniformly in the warped potential corresponding to an average single-particle potential in the nuclear theory. Furthermore, our 

warped potential is not a microscopic object and huge compared with one used in the nuclear theory so that the energy levels 

of the particle in the warped potential will be narrow and dense. Hence, one will need not necessarily to apply the quantum 

mechanics to discuss our problem. Moreover, since we are not dealing with high speed particle, it will be sufficient for our 

qualitative discussion here to use the elementary Newtonian mechanics. 

In our case, the complex warped potential becomes the periodical one so that one may expect that the generation patterns in the 

elementary particle physics appear.    

We assume that the curvature 1/a  of our model space is a complex number.

 / , , ,a i1 t v t v= +  real numbers.  (12)

The complex potential is defined by

 ,W e W iW( / )a
R I= = +p  (13)

where  cosW e /
R

< > K= t v K     and    sinW e /
I

< > K= t v K     with ( ) .v pK=   (14)

At rest frame, namely, , , , ,q i0 1 2 3i= =   and ,q 0=p  the energy of the particle is, from Eq.(4)

 .q W0 n=  (15)

It should be noticed that q0  is a complex number. A particle absorbed into the potential due to the attractive part, . .i e the 

negative parts of ,WR  falls down toward lower energy region and acquires the equal amount of energy used to drop down. 

Hence the particle gains the maximal energy at the bottom of the valleys of WR . These positions on ξ-axis are determined by 

the solutions of the following equations

 W 0R2 =K     and    ,W 0>R22 K  (16)

from which one obtains

 ( ) , , , , ,n n2 1 1 2 3 gr dK= - + =  (17)

where  ./sin 2 2d t t v= +
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If one substitutes K given by Eq.(17) in WR  given by Eq.(14), one obtains the minimal values of ,WR  

 ( ) , , , , ,W e n 1 2 3/ ( )
R

n2 1< > gC= - =t v r-  (18)

where  .cose /< > dC= t v d  

Since the bottom of the valleys of WR  are the most stable places for particle to stay, we identify the energy of the particle 

situated at that place with the “physical mass” . Hence, the magnitudes of the physical mass are given by 

 , , , , .m W e n 1 2 3/ ( )
n R

n2 1< > gn nC= = =t v r-  (19)

(see Appendix B)

Taking logarithm of both sides of Eq.(19), one obtains  

 ( ) / ( ) , , , , .log logm n n2 1 1 2 3< >e n e gn t v rC= + - =  (20)

In the theory of 1)~ 6), the physical mass mphys  is derived from the mass eigen value m of Kaluza-Klein reduction equation, 

by rescaling due to the warped factor, i.e. the metric of the form e ( ( ))k s si-  where s is a location of an observer and si , a singularity 

in the extra dimension,. Thus one has 

,m e m( ( ))phys k s si= -

where k is a curvature and si  is an arbitrary parameter of the model.

Fig.2. mc is estimated from the experimental values of mu  and mt  by using the simplified mass formula ( )T 1-  in Table.

Up quark mass 
6

4

2

0

-2

-4

-6

5π Λ3ππ

B

log e m (GeV) C
t〈173〉
(173) 

experiment〈   〉

theory (   ) 

u(0.0023)

A 〈0.0023〉

A 1st generation 

B 2nd generation 

C 3d generation 

c〈1.27〉
(0.629) 
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The numerical calculation of ,WR  for example, for down quarks will be given in Fig.5, where the comparison of the predicted 

mass values with the experimental ones is made. 

If one identifies the n with generation number and plots the logarithmic mass values against n , the logarithmic mass values must 

lie on a straight line.

Fig.3. ms  is estimated from md  and mb  by using the simplified mass formula ( )T 1-  in Table.

Down quark mass

0 Λ

log e m (GeV) b (4.18) 
 〈4.18〉

C

B

r 3r 5r

-2

-4

-6

A

theory〈   〉
experiment (   )

s(0.141)
〈0.095〉

d(0.0048) 
〈0.0048〉

Fig.4. mn  is estimated from me  and mx  by using the simplified mass formula ( )T 1-  in Table.

Lepton mass 

theory〈   〉
experiment (   )

loge m (MeV) C

8

6

4

2

0

-2

B

x〈1777〉
 (1777) 

e〈0.511〉
A  (0.511)

5r Λ3rr

μ〈105〉
(30.1)
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These are shown in Fig.2, Fig.3 and Fig.4 and the values of parameters used are listed in Table. In the case of the leptons 

( , , )e n x  except for the neutrinos, the deviation of the predicted value of n (particle) from the experimental one is considerably 

large. The deviation of the experimental mass value of n from the straight line of Eq.(20) implies the break of the invariance of 

Eq.(11) (or Eq.(6)); the energy difference between e and x is about 1777 eV whereas the deviation of the experimental mass 

value of n from our predicted one is about 75 eV , hence the ratio 75/1777 ~ 0.04 and from this result, one may say that the 

break of the invariance of Eq.(11) is about 0.04. Similarly, for the down quark, the break is about 0.01 and for up quark, about 

0.001.

4. Hierarchy for the fermion masses 

-----the interpretation of its structure in terms of our warped model-----

Our model has the space-time structure in which a charge density is unchanged under the coordinate transformation in our 

model space. In the space-time with such symmetry, law of physics are the same to all observers living in it and in particular, the 

form of fundamental equation must not be changed under the transformation which connects any two points in the model space.

For example, we here restrict to the case of the down quarks. In Fig.1, one denotes by ( ), , , ,q q q i 1 2 3i0 =p the energy-

momentum of a particle at ( )O 0p=  and by ( ), , , ,q q q i 1 2 3i0 =pl l l  those at ( ) .P 0p=Y  One assumes that q 0=p  at 

( )O 0p=  and q 0=pl  at ( )P 0p=Y , that is, the particle is at rest at both points on the p coordinate axis . Under the above 

restriction, one can write from the invariance of Eq.(10)  

Fig.5.  Warped potential cosW e /
R

< > K= t v K  with ( )vpK=  and the parameters used are . GeV0 0008838n=  and 

/ . .0 5389< >t v =  The , ,d s and b quarks are situated at bottoms (with negative sign) of the valleys of the Warped potential.

Experimental mass value

Predition by our mass formula

〈     〉

(      ) (Eq.(19))

A B K

C
-4

-3

-2

-1

0

1

0.0r 1.0r 2.0r 3.0r 4.0r 5.0r 6.0r
d〈0.0048〉

(0.00545)
s〈0.095〉

(0.151)

b〈4.18〉
(4.28)

q0

( )W GeVRn
m W ,minRn=

“Physical mass” for down quark 
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 ( ),q q e q q( / )i a i02 2 2 0 2 2- = -p- l l  (21)

which, with an appropriate choice of our coordinate axes, reduces to the rescaling

　　　　　　　　　　　　　　　　　　　　 ,q e q( / )a 00= p- l  (22)
　　　　　　　　　　　　　　　　　　　　 , , , .q e q i 1 2 3( / )i a i= =p- l  (23)

The basic equation of a fermion at ( )O 0p=  is written as (see Eq.(32))

 ( ) ( ) ,q q x 0i i
d

0 0c c n z- - =  (24)

If one substitutes Eq.(22) and Eq.(23) in Eq.(24),one obtains the equation of the particle at ( )P 0p=Y

 ( ) ( ) .q q e x 0( / )i i
d

a0 0c c n z- - =pl l  (25)

The comparison of Eq.(24) with Eq.(25) shows that an observer at ( )P 0p=Y  measures the mass dn  at ( )O 0p=  as .e ( / )d
an p

Fig.5 shows the phenomenological warped potential for down quarks, The mass of dn  at 0p=  is 0.0008838 GeV . An 

observer at A (1st generation) measures dn  as .e GeV0 0054.
d

x0 5324n =r , an observer at B (2nd generation) measures dn  

as .e GeV0 150.
d

x0 5324 3n =r  and an observer at C (3d generation) measures dn  as ..e GeV4 28.
d

x0 5324 5n =r

According to the standard model of electroweak theory, a fermion acquires its mass through Yukawa coupling to Higgs 

particle.9)

For down quarks, for example, the masses of the fermions are given by         

 / , , , ,m g v or g m v h d s bh h h h= = =  (26)

where gh  are the respective coupling constants of particle h to Higgs one and v is a vacuum expectation value of the Higgs field. 

In our model, from Eq.(19), one has

 , , ,m ge v m ge v m ge v/ / /
d s b

3 5< > < > < >= = =t v r t v r t v r  (27)

where /g vd dn C=  is a coupling constant.

These consequences seem to suggest a universality of coupling constant. 

The particle μ is not present in the standard model. This is somewhat defective and so we give the somewhat modified 

scenario to remedy this. Here, we restrict to the case for the down quarks. New scenario is that, as for the masses ( , , ),m m md s b  

firstly, the mass of the down quark md  ( instead of n ) is generated through Yukawa coupling to Higgs particle and next, the 

remaining two masses ( , )m ms b  are enlarged from md  due to the respective rescaling factors.

Various other possibilities to remedy this will be considered.    
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5. The origin of non-existence of a particle with positive helicity and an antiparticle with negative one

In the conventional theory, for the specific representation of c -matrices

 , , , ,,
I

I
i

0

0

0

0
1 2 3i

i

i
0c c

v

v
= = =

-
 (28)

where , , , ,i 1 2 3iv =  are Pauli matrices and I, unit 2x2 matrix, the massless Dirac equation takes forms

 ( ( )) ,E p u 0v- =  (29)
 ( ( )) ,E p v 0v =+  (30)

where u represents a particle with positive helicity or an antiparticle with negative one and v represents a particle with negative 

helicity or an antiparticle with positive one.

Since Eq.(29) and Eq.(30) are independent of each other, if the equation of motion are invariant under space reflection, both 

solutions of ,u v0 0= =Y  and ,u 0=  v 0=Y  must exist. However, it is known from the phenomenology of neutrino physics 

that the invariance under space reflection breaks down. It is likely that nature needs only solution ,u 0=  v 0=Y  but not ,u 0=Y  

.v 0=

We discuss this in our warped model. For that purpose, one has to derive Dirac equation in our model space. However, for 

simplicity, we assume that the curve is loose, i.e. 1/a ≪ 1 so that the spin connection can be ignored and the covariant derivative 

may be replaced by the ordinary one. (see Appendix A and Appendix C). One writes Eq.(4) in the squared form of linear 

combination of , , , ,q q i 1 2 3i0 = and qp

 
( )

( ( ) ) .

e q q q

e q q q

( / )

( / )

a i

a i i

2 2 02 2 2

0 0 2

n

c c c

= - -

= - -

p p

p p p

-

-
 (31)

For simplicity, in derivation of Eq.(31), the approximation [ , ]q e 0( / )a =p p  is made.

Thus one obtains Dirac equation in our model space

 ( ) ( ) ,q q e q e x x 0( / ) ( / )i i a a i0 0 0c c c n p{- - - =p p p p  (32)

where ( )x xi0{ p  is the wave function.

In Eq.(31), cp  is newly introduced c -matrix in our model space and , , , ,i 1 2 3i0c c =  and cp  must satisfy ant-

commutation relations

 , , , , , , ,2 0 1 2 3c c h a b p= =a b ab" ,  (33)

where ( ) , , , , ,0 1 2 3h a b p=ab is metric tensor with signature ( )+----  in five dimensional Minkowski space. In 

the following discussion, we use the explicit representations of c -matrices given by Eq.(28), As for cp , one has to seek a 4x4 

traceless matrix satisfying anti-commutation relation given by Eq.(33). It is well known that i5 1 2 3 0c c c c c=-  is such a matrix. 
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However one cannot use it as our cp -matrix because in order that q0  be energy cp  must be anti-hermitian.  Hence, one may put

 ,i 5c c=p  (34)

and adopt it as our cp - matrix. Using the representations given by Eq.(28),from Eq.(34), one obtains the explicit representation 

of cp -matrix

 .
iI

iI0

0
c =

-

p  (35)

If one uses the explicit representation of Eq.(28) and Eq.(35),one obtains from Eq.(32)

 
( )

( )

( )

( )
( ) .

e iq

q q

q q

e iq
x x 0

( / )

( / )

a

a

i

0

0
0

n

v

v

n
{ p

- +

-

+

- -
=

p p

p p
 (36) 

 

After quantization , namely, making the following replacements in Eq.(36)

 , , , , ,q i q i i 1 2 3i i0 0
" "2 2- =  and ,iq " 2-p p  (37)

if one puts

 ( ) ( ( ) ( )),expx x
u

u
i q x q xi

A

B

i i0 0 0{ p z p= - -  (38)

where uA  and uB  are the spin states of the particle, and substitutes Eq.(38) in the resultant equation, one obtains from Eq.(36)

 ( ) ( ) ( ( )) ( ) ,u e q uq( / )
A

a
B

02n z p v z p+ = +p p-  (39)

 ( ) ( ) ( ( )) ( ) ,u e q uq( / )
B

a
A

02n z p v z p- = -p p-  (40)

We examine asymptotic behavior of ( )z p  for large p . Since wave function must be ,1Ez  and since the right hand 

side of Eq.(39) (and Eq.(40)) approaches to zero due to presence of e ( / )ap-  when p goes to infinity, as for Eq.(39), from 

( ) ( ) 02n z p+ =p  in the left hand side of Eq.(39), one obtains ( ) Ae ( )z p = np-  which remains finite for large p . On the other 

hand, as for Eq.(40), from ( ) ( ) ,02n z p- =p  one obtains ( ) Be ( )z p = np  and hence ,in this case, the wave function ( )z p  goes 

to infinity as p increases . This is not physically acceptable. Hence, Eq.(40) is excluded. To say more precisely, in the case of 

( ) ,Be ( )z p = np the normalization of z is given by

 ,g d B e d( / )a2 2 2 2z p p= n p-# #  (41)

where .eg ( / )a4= p-   Hence, if / ,a2>n  the normalization of the wave function is impossible.
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In conclusion, if a fermion has a mass, then the fermion obeying Eq.(40) which corresponds to Eq.(29), are not allowed to 

exist.

It should be noticed that the helicity for a massive particle is not the relativistic invariant concept which makes the above 

conclusion obscure.   

In the case of cc =-p p  satisfying the same anti-commutation relation (Eq.(33)) as ,cp  if one puts ,p p=-l  one has 

e e( / ) ( / )a a2 2c c=p p
p

p p
p

- l l
l and ,e e( / ) ( / )a an n=p p- l l  thus, in addition to "2 2-p pl ʼ the metric changes from e ( / )ap-  to 

e ( / )apl  in Eq.(39) and in Eq.(40).

Recently It has been confirmed that a neutrino has small mass.10) As a consequence a neutrino has only Lo  and Ro  states.
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Appendix　A

The equation for scalar field   ( )x x0z p

Action is

 ,I g dv L= #  (A-1)

where ,dv dx dxd g e ( / )a0 4p= = p-  and L is the Lagrangean density for scalar field

 ( / )( ( )( ) ) .L g1 2 AB
A B 2 22 2z z n z= -  (A-2)

The variation of I with respect to z under the assumption 0dz=  at the boundary in the partial differentiation, yields the 

equation for the scalar field

 ( ) .( )g g 0B
AB

A 2n zz2 2 + =  (A-3)
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For the explicit representation of Eq.(2), Eq.(A-3) becomes

 ( ( )) ( ) ,e x x 0( / )i a i2 2 2 2 002
42 2 n z p- - - + =p p  (A-4)

where    ( / ) .a42
4 2 2= -p p p  (A-5)

If one makes the separation of variables, ( ) ( ) ( ) ( )x x x x0 0z p z z z p=  and puts it into Eq.(A-4), one obtains

 ( ) ( ) ,q x 0q
02 02 0

02 z+ =  (A-6)
 ( ) ( ) , , , ,q x i0 1 2 3q

ii i2 2
i2 z+ = =  (A-7)

and         ( ( )) ( ) .e q q 0( / )a i2 2 2 02 2
4 n z p- + - =p p-   (A-8)

If one makes the following approximation and subsequent replacement in Eq.(A-8)

 ( / )a42 2
"4 2 2 2= -p p p p  and ( ) ( ),expN iq{ p p= - p  (A-9)

one obtains Eq.(4).   

However, Eq.(4) is not an approximate but correct formula.

Appendix B

Warped potential is defined by  

 
,

,

W e

W iW

( / )a

R I

=

= +

p

    with    / , ,a i1 t t vv= +  real numbers (B-1)

where   cosW e /
R

< > K= t v K     and    sinW e /
I

< > K= t v K     with ( ) .v pK=  (B-2)

The derivatives of WR  and WI  with respect to K are respectively given by

 sinW Ke X/
R

X< >2 =- t v
K     and     ,cosW Ke X/

I
X< >2 = t v

K  (B-3)

where  , /cosX K e /< >d dK= - = t v d     and    .sin 2 2d t t v= +   (B-4)

One obtains from  W 0R2 =K

 , , , , , ,X n n 0 1 2 3 gr= =  (B-5)

which gives 

       maximum values of   , , , , ,W e n 1 2 3/ ( )
R

n2 1< > gC= =t v r-  (B-6) 

and  minimum values of  , , , , ,W e n 1 2 3/ ( )
R

n2 1< > gC=- =t v r-  (B-7) 
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where   .cose /< > dC= t v d  (B-8)

From these consequences, one obtains the physical mass

 , , , , .m e n 1 2 3/ ( )
a a

a n2 1< > gn C= =t v r-  (B-9)

a = lepton, up quark and down one.

 

Appendix C 

The equation of fermion in our model space 

Lagrangean is given by 

 ( ), , , , , .L g i D A 0 1 2 3A
A{ { n{ { pC= - =  (C-1)

The variation of L with respect to z  gives the equation

 ( ) ,i D 0A
A znC - =  (C-2)

where AC  is the c -matrix for our curved space satisfying

 , , , , , , ,g A B2 0 1 2 3A B AB pC C = =" ,  (C-3)

where ( )gAB  is the contravariant metric tensor of our model space and AC  is related to the flat Ac -matrix 

 , , , ,e 0 1 2 3( / )a c nC = =n p n     and    .cC =p p  (C-4)

( )Ac  satisfy the anti-commutation relation

 ,2A B ABc c h=" ,  (C-5)

where ( )ABh  is the metric tensor for five dimensional Minkowsky space with signature ( )+---- .

The spin connection in our model space is given by 6),11)

 ( / ) ( / ), , , ,D e e a1 4 1 2 0 1 2 3( / ) ( / )a a2 22 2 2 n= + = - =n n
p

p
p

n
-     and    .D 2=p p  (C-6) 

Therefore, if one makes the approximation / ,a1 0,  then one has D 2,n n  and .D 2=p p  Applying these results to 

Eq.(C-2), Eq.(39) and Eq.(40) may be obtained from Eq.(C-2) by using the explicit representation of Eq.(28) and Eq.(35).　　
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Table

For simplicity, the simplified mass formula 

 , , , ,m e n 1 2 3/ ( )
a a

a n2 1< >n= =t v r-  (T-1)

a = lepton, up quark and down quark.

is used to obtain the following parameters.

The formula ( )T 1-  is obtained if one puts 0d=  (shift parameter) and hence 1C=  in Eq.(20)(or Eq.(19)).

Experimental mass values

lepton up quark down quark

. ( )m MeV0 510e= . ( )m eVG0 0023=n . ( )m eVG0 0048d=

.m 105 6=n .m 1 275c= .m 0 095s=

m 1776=x m 173t= .m 4 18b=

(Particle Data Group, Phys. Rev.D58. (2012)). 

Parameters

 ,m m e ( / )
e e

e3 < >n = x
r t v-      / ( / ) ( / ) .log m m1 4< > e et v r= x

 ,m m e ( / )
u u

u3 < >n = x
r t v-      / ( / ) ( / ) .log m m1 4< > u t ut v r=

 ,m m e ( / )
d d b

d3 < >n = r t v-      / ( / ) ( / ) .log m m1 4< > d b dt v r=

Numerical values

. ( ),MeV0 06656en = . ( ),GeV0 0001389un = . ( ),GeV0 0008838dn =

/ . ,0 6491< > et v = / . ,0 8939< > ut v = / . . ( ) .0 5389 13< > dt v =


