### 法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

# WTAスイッチングを有する並列化昇圧コンバータの 安定性解析

| 著者  | 村田 康臣                             |
|-----|-----------------------------------|
| 出版者 | 法政大学大学院理工学・工学研究科                  |
| 雑誌名 | 法政大学大学院紀要.理工学・工学研究科編              |
| 巻   | 58                                |
| 発行年 | 2017-03-31                        |
| URL | http://hdl.handle.net/10114/13552 |

## WTA スイッチングを有する並列化昇圧コンバータの安定性解析

Stability analysis of Paralleled Boost Converters

#### 村田 康臣

Yasuo MURATA

#### 指導教員 斎藤利通

#### 法政大学大学院理工学研究科電気電子工学専攻修士課程

This paper studies stability analysis of paralleled boost converters with WTA switching. We analyze basic dynamics of paralleled boost converters coupled by N boost converters through witch N pieces of input voltage sources are applied to a load. We use Winner-Take-All(WTA) switching rule for switching of paralleled boost converters. So N converters are coupled. If some converter is broken, the other converters can preserve the operation. Simplifying the system into a piecewise linear model. Using piecewise linear model, we analyze stability of N phase synchronization and ripple characteristics exactly.

Key Words : Boost converter, WTA switching, Stability, Ripple

DC-DC コンバータは直流電圧を別の直流電圧に変換す ることのできる重要なエネルギー供給系であるため、広く研 究 [1]-[4] が行われている。並列化 DC-DC コンバータは複 数の DC-DC コンバータを並列に接続して電力変換を行う ため、Current Sharing により信頼性・故障耐性の向上を実 現することが可能である。一方、高次元の非線形スイッチ力 学系であるため、これが呈する同期現象や分岐を解析するこ とは極めて重要な基本問題である。DC-DC コンバータの代 表例の1つに昇圧コンバータがある。これは出力電圧が入 力電圧よりも大きくなる回路である。この回路は入力電圧を 光電入力とする Maximum Power Point Tracking(MPPT) 技術や効率信頼性、入力の変化に対しての応答の速さの向上 [5][6] などに関連している。

本論文では、並列化 DC-DC コンバータの一例として N 個の昇圧コンバータを並列に結合した系について考察を行う [7]。昇圧コンバータの研究は光電入力系の基礎となる。ま ず、位相制御に Winner-Take-All(WTA) スイッチングルー ル [4] を適用する。このスイッチングにより、N 相同期状態 (N-SYN) を自動的に実現できる。解析にはコンバータの負 荷を定電圧源に置き換えた区分線形モデルを用いる。そのた め、精密な数値解析が可能となる。そして並列化コンバータ が何らかの原因で故障したときの N 個から (N-1) 個に変 わるときの電流波形の変化について解析 [8] する。より詳細 に解析するために入力電圧に対する安定性とリップルの変化 についても調べる。

#### 1. 並列化昇圧コンバータの基本動作

N = 3の並列化昇圧コンバータの区分線形回路モデルを 図 1 に示す。 $RC \gg T$  と仮定し、RC 負荷を定電圧源  $V_{oj}$  と 置き換えて解析を行う。ただし j はコンバータの引数であり  $j = 1 \sim N$  とする。 $S_j = ON$  かつ  $D_j = OFF$  の状態を State A、 $S_j = OFF$  かつ  $D_j = ON$  の状態を State B と定義する。 各コンバータはいずれかの状態をとるものとする。続いてス



図 1 並列化昇圧コンバータ (N = 3) の区分線形回路モデル.

イッチングルールについて定義する (図 2 参照)。j 番目のコ ンバータの状態が State B であるとする。その際インダクタ 電流  $i_j$  は減少する。 $i_j$  が下しきい値  $J_-(>0)$  に達した時、 状態を State A に切り替えて、 $i_j$  は増加する。State A から State B へは Winner-Take-All(WTA) スイッチングに基づ く。WTA は周期的に電流値が最大であるコンバータを選択 し、スイッチングを行う。各コンバータの電流は、クロック 周期 T ごとに WTA によって比較が行われる。そして、イ ンダクタ電流が最大となるコンバータを Winner とし、対応 するコンバータの状態を State B に切り替える。WTA によ り、3つのコンバータは結合される。

$$SW \begin{cases} State A \to State B & \text{if } i_j \text{ is } MAX \text{ at } t = nT \\ State B \to State A & \text{if } i_j = J_- \end{cases}$$
(1)

図1の無次元化方程式は以下のようになる。

$$\frac{dx_j}{d\tau} = \begin{cases} -\gamma x_j + a & \text{for State A} \\ -\gamma x_j - b_j & \text{for State B} \end{cases}$$
(2)

無次元化変数とパラメータ式(3)に示す。



図 2 Winner-Take-All(WTA) スイッチングルール.

$$a = \frac{TV_{in}}{LJ}, \ b_j = \frac{T(V_{oj} - V_{in})}{LJ}, \ \gamma = \frac{Tr_L}{L}$$
  
$$\tau = \frac{t}{T}, \ x_j = \frac{i_j}{J}, \ X_- = \frac{J_-}{J}$$
(3)

ただし*T*はクロック周期, J(>0)はダイナミックレンジを決める基準電流である.本研究ではパラメータ $b_1 = b_2 = \cdots = b_j \equiv b$ とし、パラメータ*a*を変化させコンバータの電流波形の変化について見ていく。その他のパラメータb = 0.3,  $\gamma = 0.3$ ,  $X_- = 0.05$ と固定する。式(5)に示した無次元化方程式より初期値( $\tau, x$ ) = ( $\tau_0, x_0$ )に対する区分線形厳密解は以下のようになる。

$$x_j(\tau) = \begin{cases} (x(0) - \frac{a}{\gamma})e^{-\gamma\tau} + \frac{a}{\gamma} & \text{for State A}\\ (x(0) + \frac{b}{\gamma})e^{-\gamma\tau} - \frac{b}{\gamma} & \text{for State B} \end{cases}$$
(4)

図 4 に図 1 の回路が呈する電流波形の典型例を 2 つ示す。図 4(a),(b) はともに安定な 3 相同期である。それぞれの電流波 形における同期の安定性 (|Df|) については後に述べる。無 次元化入力電流  $x_i \equiv x_1 + x_2 + x_3$  である。 $x_i$  のリップル  $R_p$  を以下のように定義する。

$$R_p = \max(x_o(\tau)) - \min(x_o(\tau)) \quad \text{for } 0 \le \tau < N \tag{5}$$

図 4(a),(b) を比較すると、パラメータ a を変化させること によりリップル  $R_p$  が変化することがわかる。

#### 2. 多相同期の安定性について

多相同期の安定性について定義を行う(図3参照)。N-SYN となる各コンバータの状態の集合を $x_N = (x_{zN}, \cdots, x_{NN})$ とする。 $x_{(\tau)}$ が、微小な摂動  $\in$  (0)を含む初期値  $x(0) = x_N(0) + \in$  (0)に対して、時間が経過すると $x_N(\tau)$ に収束する。このときに N-SYN は初期値に対して局所的に 安定であるという。このとき、N-SYN に対応する不動点は



図 3 安定性の定義 ( $\delta \rightarrow 0$ の場合に安定).

式 6 の条件を満たすときに安定となる。|Df| > 1の場合に は不安定となる。



図 4 並列化昇圧コンバータの電流波形例 (N = 3,  $b = 0.3, \gamma = 0.3, J_{-} = 0.05$ ). (a) 安定な 3-SYN (a = 0.3,  $|Df| \approx 0.37, R_p \approx 0.06$ ). (b) 安定な 3-SYN (a = 0.6,  $|Df| \approx 0.76, R_p \approx 0.21$ ).

$$|Df| \equiv \left| \begin{array}{c} \frac{X_{-} - P_1}{X_{-} + P_2} e^{-\gamma N} \right| < 1 \tag{6}$$

ただし、 $P_1 \equiv a/\gamma > 0$ ,  $P_2 \equiv b/\gamma > 0$ ,  $0 < X_- < P_1$ を満 たすと仮定する。式 6 より、図 4 に示した電流波形 (a),(b) はともに |Df| < 1 であるため安定な 3 相同期 (3-SYN) で あることがわかる。

#### 3. 故障耐性について

並列化昇圧コンバータがある原因から1つのコンバータ が故障したと仮定し、N 個から (N-1) 個に変わる状況に ついて考える。本論文では簡単のため N = 4 の故障につい て数値実験を行う。図 5 には故障により安定な 4-SYN から 安定な 3-SYN へと変化する電流波形の典型例を 2 つ示す。 図 5(a)(a') は故障の前後のリップルが減少している例であ る。つまり、故障後に効率が良くなることがわかる。また図 5(b)(b')の例ではリップルが増加している。故障後に効率が 悪くなることがわかる。どちらの場合においても故障後でも 正常に動作し続けることがわかる。続いて図6には故障によ り安定な 4-SYN から不安定な 3-SYN に変化する例を示す。 故障すると動作をつつけることができなくなる。図 6(a)(a') は故障後に不安定な 3-SYN を呈するが、リップルが減少し ている例である。この不安定な3-SYNを安定にすること ができれば、高効率化につながると考えられ、今後の課題で ある。図7には故障前後の安定性特性を示す。

#### 4. まとめ

本稿では並列化昇圧コンバータの故障耐性について考察 を行った。安定な 4-SYN から安定な 3-SYN、安定な 4-SYN から不安定な 3-SYN が存在することがわかり、安定性の特 性からも確認できる。安定性の特性とリップルの特性を示す ことにより、より詳細に解析することができた。

今後の課題には広い値での詳細な解析、分岐現象、工学的 応用の模索等を検討している。また回路実験についても検討 を行っている。



図 5 故障耐性 (安定 安定)  $(b = 0.3, \gamma = 0.3, X_{-} = 0.05)$ . (a) 安定な 4-SYN  $(b = 0.26, |Df| \approx 0.23, R_p \approx 0.09)$ . (a') 安定な 3-SYN  $(b = 0.26, |Df| \approx 0.32, R_p \approx 0.00)$ ; (b) 安 定な 4-SYN  $(b = 0.50, |Df| \approx 0.46, R_p \approx 0.11)$ . (b') 安定 な 3-SYN  $(b = 0.50, |Df| \approx 0.63, R_p \approx 0.20)$ .

#### 参考文献

- V. J. Thottuvelil and G. C. Verghese, Analysis of control design of paralleled DC/DC converters with current sharing, IEEE Trans. Power Electron, 13, 4, pp.635-644 1998.
- R. Giral, L. Martinez-Salamero and S. Singer, Interleaved converters operation based on CMC, IEEE Trans. Power Electron, 14, 4, pp.643-652 1999.
- S. Banerjee and G. C. Verghese, eds., Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, IEEE Press, 2001.
- 4) T. Ohata and T. Saito, Stability Analysis of Multi-Phase Synchronization in Paralleled Buck Converters with Winner-Take-All and Loser-Take-All Switching Rules, IEEE J. Emerg. Sel. Topics Circuits Syst., 5, 3, pp. 345-353 (2015)
- 5) H. S.-H. CHung, K. K. Tse, S. Y. Ron Hui, C. M. Mok and M. T. Ho, A Novel Maximum Power Point



図 6 故障耐性 (安定 不安定) $(b = 0.3, \gamma = 0.3, X_{-} = 0.05)$ . (a) 安定な 4-SYN (b = 0.80,  $|Df| \approx 0.75$ ,  $R_p \approx 0.23$ ).(a') 不安定な 3-SYN (b = 0.80,  $|Df| \approx 1.01$ ,  $R_p \approx 0.14$ ).



図 7 安定性 (|Df|) 特性 ( $a = 0.3, \gamma = 0.3, X_{-} = 0.05$ ). (a) 故障前 (N = 4). (b) 故障後 (N = 3).

Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter, IEEE Trans. Power Electron., 18, 3, pp. 717-724, 2003.

- 6) K. Kobayashi, H. Matsuo and Y. Sekine, Novel solarcell power supply system using a multiple-Input dc-dc converter, IEEE Trans. Ind. Electron., 53, 1, pp.281-286, 2006
- Y. Murata and T. Saito, Hyperchaos and synchronization in paralleled power converters, Proc. of 23nd Nonlinear Dynamics of Electronics Systems (NDES2015), Abstract booklet, p.13, 2015.
- 8) Y. Murata and T. Saito, Stability of Paralleled Boost Converters with WTA Switching, Proc. of 2016 International Symposium on Nonlinear Theory and Its Applications (NOLTA2016), pp. 671-674, 2016.