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SUMMARY 

 

For survival, organisms adapt to environmental changes by switch the gene expression. Simple unicellular 

organisms that possess only thousands of genes such as bacteria shows the amazing adaptation ability against 

a variety of environment. Therefore, in bacteria, limited gene regulation mechanism may forms the 

transduction network with others for multiply the gene regulation pathway. 

Two component system which is the major signal transduction pathway employed in wide varieties of 

bacteria, is generally composed of the sensor kinase (SK) that monitors an external signal(s) and the response 

regulator (RR) that controls physiological activities for response against external signals. A total of about 30 

unique TCS pairs of SK and RR have been identified in E. coli based on the gene organization and the further 

genetic and/or biochemical data. In addition to these, there is the several RRs which pairing partner SK are 

not found and its function are unkown in E.coli. The process of TCS signal transduction generally show a 

high level of specificity, while a certain level of cross-regulation has been identified at the signal transduction 

pathways in E. coli: cross talk in recognition of signals by the sensor SK (stage 1); cross talk in 

phosphorylation of RRs by SKs (stage 2); and cross talk in recognition of regulation target promoters between 

RRs (stage 3). Cross talk between TCS pairs has been established at three stages of the signal transduction 

pathways. 

Network formation between the TCSs may contribute for the bacterial adaptation to various environment. 

However, the perspective of the TCS network does not yet become clear. Especially, there are few reports for 

the cross recognition of the promoter by RRs. And E. coli possesses function unknown orphan RRs. In this 

study, for the elucidation of the entire signal transduction network of E. coli, I performed the comprehensive 

analysis of the stage 3 cross talk among RRs. And I investigated the role and activation mechanism of 

uncharacterized orphan RR.  

The study of the stage 3 cross talk between NarL-family RRs is described in the chapter 2. In the same line 

study, the cross talk between OmpR family RRs were also analyzed and described in chapter 3. The chapter 

4 focuses on the uncharacterized RR YgeK. Taking all the chapter together, my thesis presents the specific 

and complicated promoter recognition by RRs and function of atypical RR YgeK that plays the role of growth 

in acetate medium and biofilm formation. These findings provide the insight into the perspective of TCS 

signal transduction network and contribute for understanding the mechanism how bacteria adapt and survive 

againt to environment change. 
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CHAPTER1 

 

INTRODUCTION 

 

1-1. Control of gene expression suitable for environment in bacteria 

For survival, organisms adapt to environmental changes by switch the gene expression. Simple unicellular 

organisms that possess only thousands of genes such as bacteria shows the amazing adaptation ability against 

a variety of environment. That is, in bacteria, limited gene regulation mechanism may forms the transduction 

network with others for multiply the gene regulation pathway. 

Escherichia coli (E. coli) contains a total of 4,453 protein-coding sequences on its genome. The selection 

of genes for transcription is determined by controlling the distribution of the limited number of RNA 

polymerase molecules on the genome (Ishihama, 2000; 2012). In E. coli, the promoter selectivity of RNA 

polymerase is determined after interaction with 7 species of the sigma subunit with the promoter recognition 

activity (Ishihama, 2000; 2012). The promoter selectivity of each holoenzyme is further modulated after 

interaction with a total of about 300 species of transcription factor (TF) (Ishihama, 2010; 2012; Yamamoto, 

2014), of which about 10% are organized into the two-component system (TCS)  (Mizuno, 1997; Yamamoto 

et al. 2005). 

 

1-2. Two-component system (TCS) 

TCS which is the major signal transduction pathway employed in wide varieties of bacteria (Egger et al. 

1997), is generally composed of the sensor kinase (SK) that monitors an external signal(s) and the response 

regulator (RR) that controls physiological activities for response against external signals (Stock et al. 2000; 

Szurmant et al. 2007) (Fig. 1).  

In the periplasmic region, SK senses extracellular or intracellular signals with amino-terminal sensory 

domain. Then, in the cytoplasmic region, carboxyl terminal CA (catalytic and ATP binding) domain 

phosphorylates conserved His residue on the DHp (dimerization and histidine phosphotransfer) domain. The 

His-bound phosphoryl group is then transferred onto a specific Asp residue on the cognate RRs. However, 

some histidine sensor kinases, known as hybrid sensor kinases, have a more complex type of phosphorelay 

consisting of two additional domains: a receiver domain containing a conserved Asp residue and a histidine-

containing phosphotransmitter (HPt) domain. In such cases, signals are transmitted to RR through a His-Asp-

His-Asp phosphorelay.  

In the most of cases RR comprises a receiver domain and an effector domain whose activity is controlled 

by the phosphorylation state of the receiver. The receiver domain of RR consists of a five stranded parallel 

β-sheet surrounded by five amphipathic -helices. Typically, the receiver domain possess the phosphate-

accepting active pocket structure composed of the highly conserved Asp residue located at the end of 3 

strand, two other acidic amino acids (Asp/Glu) within the 1- 1 loop, an invariant Lys residue at the end of 
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the 5 strand and a metal ion (usually Mg2+) that are coordinated through hydrogen bonding (Gao & Stock, 

2009). The phosphorylation of Asp residue commonly followed the reorientation of a highly conserved 

Thr/Ser residue at the end of 4 strand and a highly conserved Phe/Tyr residue in the middle of 5 strand 

toward the phosphorylated Asp residue which allows the formation of active dimer (Gao & Stock, 2009; 

Barbieri et al. 2013). The activated RRs in turn control not only transcription but also a variety of cellular 

processes including post-transcriptional or post-translational levels (Galperin, 2010). In a significant fraction 

of RRs, effector domains are enzymes that themselves participate in signal transduction: methylesterases, 

adenylate or diguanylate cyclases, c-di-GMP-specific phosphodiesterases, histidine kinases, serine/threonine 

protein kinases and protein phosphatases.  

 

Fig. 1. Signal transduction of two-component system. 

 

 

1-3. TCSs conserved in Eschirichia coli 

  The genes encoding SK and RR pairs are typically organized adjacently on the E. coli genome, forming 

single operons, and thus the interacting SK-RR pair can be predicted based on the gene organization 

(Yamamoto et al. 2005) (Fig. 2). Although some SKs and RRs does not forms operon with cognate RRs or 

SKs, a total of about 30 unique TCS pairs of SK and RR have been identified in E. coli based on the further 

genetic and/or biochemical data (Laub & Goulian, 2007; Mizuno, 1997; Szurmant & Hoch, 2010; Yamamoto 

et al. 2005): ArcA-ArcB regulates the respiratory and fermentative metabolism in response to anaerobic 

condition (Gunsalus & Park, 1994; Malpica et al. 2006; Alvarez & Georgellis, 2010); BaeS-BaeR regulates 

the drug resistance and protein folding in response to envelop stress (Baranova & Nikaido, 2002; Nagakubo 

et al. 2002; Raffa & Raivio, 2002; Hirakawa et al. 2005; Nishino et al. 2005; Yamamoto et al. 2008); BasS-

BasR prevent excessive Fe (III) binding in response to elevated levels of Fe (III) (Nagasawa et al. 1993; 

Chamnongpol et al. 2002; Yamamoto et al. 2005; Hagiwara et al. 2004); CpxA-CpxR regulates the various 

cell functions in response to envelop stress (Dorel et al. 2006; Snyder et al. 1995; Otto & Silhavy, 2002; 

Gupta et al. 1995; McEwen & Silverman, 1980; Lau-Wong et al. 2008; Dorel et al. 2006; Yamamoto & 

Ishihama, 2006); CreC-CreB regulates catabolic regulation in response to unknown catabolite (Avison et al.  
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Fig. 2. Two-component systems conserved in Eschirichia coli K-12 strain genome. Organization and position of TCS genes on the E. coli K-

12 genome are shown.  

 

2001; Kakuda et al. 1994; Duun et al. 1999; Richet 1996; Sprenger, 1995; Saveson & Lovett, 1999); CusS-

CusR regulates the copper and silver efflux system in response to copper or silver ion (Outten et al. 2001; 

Munson et al. 2000; Franke et al. 2001); KdpA-KdpE regulates K+ uptake system in response to K+ limitation 

(Voelkner et al. 1993; Altendorf et al. 1994; Jung et al. 2000; Jung & Altendorf, 2002; Ballal et al. 2007); 

EnvZ-OmpR regulates outer membrane porin in response to osmotic stress (Garrett et al. 1985; Nara et al. 

1986; Mizuno & Mizushima, 1987; Csonka & Hanson, 1991; Maeda et al. 1991; Kanamaru & Mizuno, 1992; 

Huang & Igo, 1996; Cai & Inouye, 2002; Yoshida et al. 2006); PhoR-PhoB regulates phosphorus uptake and 

metabolism in response to phosphate limitation (Wanner, 1993; VanBogelen et al. 1996; Baek & Lee, 2006); 

PhoQ-PhoP regulates Mg2+ homeostasis in response to Mg2+ limitation (Groisman et al. 1992; Kasahara et 

al. 1992; Kato et al. 1999); QseC-QseB (PmrB-PmrA) regulates flagella and motility in response to bacterial 

hormone (Sperandio et al. 2002); RstB-RstA regulates genes involed in various biological processes in 

response to low pH (Ogasawara et al. 2007; Yamamoto et al. 2005); TorS-TorR regulates TMAO induction 

in response to TMAO (Pascal et al. 1991; Simon et al. 1994); YedV-YedW regulates the copper and silver 

efflux systems in response to H2O2 (Urano et al. 2015); EvgS-EvgA regulates the acid and multidrug 

resistance in response to low pH and high concentration of alkali metal (Eguchi et al. 2003; Itou et al. 2009; 

Johnson et al. 2014); NarX-NarL regulates genes involved in anaerobic electron transport and fermentation 

in response to high-level nitrate and nitrite (Stewart 1994; Unden & Bongaerts 1997); NarQ-NarP also 

regulates genes involved in anaerobic electron transport and fermentation in response to low-level nitrate and 
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nitrite (Stewart 1994; Unden & Bongaerts 1997); RcsC-RcsD-RcsB regulates the biofilm formation and acid 

resistance in response to membrane perturbation (Huang et al. 2006; Clarke 2010); UhpB-UhpA regulates 

glucose hexose phosphate uptake in response to extracellular glucose hexose phosphate (Kadner & Shattuck-

Eldens 1983; Weston & Kadner 1988); BarA-UvrY regulates the various cell processes such as carbon storage, 

biofilm formation, virulence and motility response for short-chain fatty acid (Pernestig et al. 2001); AtoS-

AtoC regulates the metabolism of short-chain fatty acids, poly-(R)-3-hydroxybutyrate (cPHB) biosynthesis 

and flagellar synthesis in response to acetoacetate (Kyriakidis & Tiligada 2009); NtrB-NtrC (GlnL-GlnG) 

regulates the genes involved in the assimilation of nitrogen in response to nitrogen limitation (Burkovski 

2003); GlrK-GlrR (YfhK-YfhA) upreulates glmY which is involved in synthesis of glucosamine-6-phosphate 

synthase when cells enter the stationary growth phase (Reichenbach et al. 2009); ZraS-ZraR (HydH-HydG) 

regulates zinc and lead efflux system response to high zinc or lead concentrate ions; CitA-CitB (DpiB-DpiA) 

regulates anaerobic citrate catabolism in response to citrate and anaerobic conditions (Bott 1997); DcuS-

DcuR regulates C4-dicarboxylate metabolism in response to C4-dicarboxylates such as fumarate or succinate 

(Witan et al. 2012); YehU-YehT is considered that be involved in nutrient selection at the onset of stationary 

phase during growth in media containing peptides and amino acids as carbon source (Behr et al. 2014); 

YpdA-YpdB are also considered that be involved in nutrient selection at the onset of stationary phase response 

to extracellular pyruvate (Behr et al. 2014); CheA-CheY regulates the flagellar switch complex response to 

the changes in extracellular chemical concentrations (Lukat & Stock 1993). 

On the other hand, pairing partner SK is not found for RR FimZ which function is unkown in E.coli and 

for RR RssB which involed in RpoS degradation. In addition to these, two ophan RR candidates YgeK and 

YhjB, both of these contain the conserved helix-turn-helix (HTH) motif of the RR family, were identified 

after detailed analysis of the E. coli K-12 genome sequence (Yamamoto et al. 2005). In vitro assay shows 

that RssB is phosphorylated by three SKs, ArcB, CheA and UhpB and YgeK is phosphorylated by two SKs, 

BarA and UhpB (Yamamoto et al. 2005). 

 

1-4. RRs act as transcription factor in E. coli 

Thirty-one of thirty-four RRs in E.coli is transcription factor containing HTH domain. These are classified 

to five family, OmpR (ArcA, BaeR, BasR, CpxR, CreB, CusR, KdpE, OmpR, PhoB, PhoP, QseB, RstA, TorR 

and YedW), NarL (EvgA, FimZ, NarL, NarP, RcsB, UhpA, UvrY, YgeK and YhjB), NtrC (AtoC, GlrR, NtrC 

and ZraR), CriR (CitB and DcuR) and LytT (YehT and YpdB), according to their HTH homology (Ishihama 

2010, 2012; Yamamoto et al. 2005) (Table 1). Recognition DNA sequences of most of RRs had been reported 

up to the present. Those are very specific between RRs except for between NarL and NarP and between CusR 

and YedW which likely arose through gene duplication. However, recognition sequences are characteristic 

between RR families: OmpR-family RRs, exclude CusR and YedW, recognize directed repeat, NarL-family 

RRs recognize inverted repeat, NtrC-family RRs recognize inverted repeat, CriR-family RRs recognize 

directed repeat and LytT-family RRs recognize directed repeat.  
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Table 1. RR recognition sequence 

------------------------------------------------------------------------------------------------------------------------------ 
Respose regulator    Recognition sequence 
------------------------------------------------------------------------------------------------------------------------------ 
ArcA OmpR-family   Directed repeat  GTTA ATTAAAT GTTA   Liu & De Wulf (2004) 

BaeR OmpR-family   Directed repeat  TCTNCANAA (N)1 TCTNCANAA  Yamamoto et al. (2008) 

BasR OmpR-family   Directed repeat  TTAANNTT (N)1-2 TTAANNTT  Ogasawara et al. (2012) 

CpxR OmpR-family   Directed repeat  GTAAA (N) 4-8 GTAAA   Yamamoto et al. (2006) 

CreB OmpR-family   Directed repeat  TTCAC (N)6 TTCAC   Cariss et al. (2008) 

CusR OmpR-family   Inverted repeat  AAAATGACAA (T/A) (T/A) TTGTCATTTT Yamamoto et al. (2005) 

KdpE OmpR-family   Directed repeat  TTTTTA(T/C)AC (N)2 TTTTTA(T/C)AC  Sugiura et al. (1992) 

OmpR OmpR-family   Directed repeat  TTTACTTTTT GNAACATNTT  Harlocker et al. (1995) 

PhoB OmpR-family   Directed repeat  CTGTCATA(T/A)A (T/A) CTGTCACA(T/A)(T/A)  Blanco et al. (2002) 

PhoP OmpR-family   Directed repeat  (T/G)(G/A)TT(T/G)A (N)5 (T/G)(G/A)TT(T/G)A Yamamoto et al. (2002) 

QseB OmpR-family   Directed repeat  A(A/T)T(A/T) (N)2 A(A/T)T(A/T)  Clarke & Sperandio (2005) 

RstA OmpR-family   Directed repeat  TACA TNTNGT TACA   Ogasawara et al. (2007) 

TorR OmpR-family   Directed repeat  CTGTTCAT (N)2-14 CTGTTCAT  Simon et al. (1995) 

YedW OmpR-family   Inverted repeat  AAAATGACAA (T/A)(T/A) TTGTCATTTT Urano et al. (2015) 

 

EvgA NarL-family    Inverted repeat  TTC(C/T)TACA (N)2 TGTA(A/G)GAA  Masuda & Chruch (2003) 

FimZ  NarL-family    Unknown      Unknown    - 

NarL  NarL-family    Inverted repeat  TAC(C/T)(C/T)(A/C)T (N)2 A(G/T)(A/G)(A/G)GTA Stewart & Bledsoe (2003) 

NarP  NarL-family    Inverted repeat  TAC(C/T)(C/T)(A/C)T (N)2 A(G/T)(A/G)(A/G)GTA Stewart & Bledsoe (2003) 

RcsB  NarL-family    Inverted repeat  TAGGATT AATCCTA   Yamamoto et al. (Unpablished) 

UhpA  NarL-family    Inverted repeat  (A/G)CCTG(A/G)(A/G) (N)6 (C/T)(C/T)CAGG(C/T) Olekhnovich & Kadner (2002) 

UvrY  NarL-family    Inverted repeat  TGTAAGAGA TCTCTTACA  Martínez et al. (2014) 

YgeK  NarL-family    Unknown      Unknown    - 

YhjB  NarL-family    Unknown      Unknown    - 

 

AtoC NtrC-family    Inverted repeat  G(G/T)TAT(C/A)(G/C)ATCCG N 

CGGAT(G/C)(T/G)ATA(A/C)C  Matta et al. (2007) 

GlrR NtrC-family    Inverted repeat  TGTC (N)10 GACA   Reichenbach et al. (2009) 

NtrC NtrC-family    Inverted repeat  TGCACC (N)5 GGTGCA   Porter et al. (1993) 

ZraR NtrC-family    Inverted repeat  GAGTAAAAATGACTCGC (N)12  

GCGAGTCATTTTTACT    Leomhartsberger et al. (2001) 

 

CitB CriR-family   Directed repeat  TTTA (N)4-5 TTTA   Yamamoto et al. (2009) 

DcuR CriR-family   Directed repeat  (T/A)(A/T)(T/C)(A/T)AA (N)1-4 

 (T/A)(A/T)(T/C)(A/T)AA Abo-Amer et al. (2004) 

 

YehT LytT-family  Directed repeat  ACC(G/A)CT(C/T)A (N)13 ACC(G/A)CT(C/T)A Kraxenberger et al. (2012) 

YpdB LytT-family  Directed repeat  GGCATTTCAT N(11) GGCATTTCAT  Fried et al. (2012) 

------------------------------------------------------------------------------------------------------------------------------- 

 

 

1-5. Cross talk of bacterial two-component systems 

Signal transduction network in eukaryotes display extensive cross talk with individual kinase acting on 

large number of targets (Ptacek et al. 2005). On the other hand, in bacteria, the process of TCS signal 

transduction generally show a high level of specificity; HK usually act on a single target (Laub & Gourian, 

2007; Capra & Laub, 2012). But a certain level of cross-regulation has been identified at the signal 

transduction pathways in E. coli : cross talk in recognition of signals by the sensor SK (stage 1); cross talk in 

phosphorylation of RRs by SKs (stage 2); and cross talk in recognition of regulation target promoters between 

RRs (stage 3). Cross talk between TCS pairs has been established at three stages of the signal transduction 

pathways (Fig. 3).  
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Fig. 3. Overview of signal transduction by two-component systems. 

 

As to the stage 1, one well-characterized cross talk is the recognition of metals with metal-sensing SKs 

(Yamamoto 2014). Besides highly reactive soft metals such as Na and K, bacteria require trace amounts of 

some transition metals, heavy metals, and metalloids, but these metals are usually toxic in excess. In E. coli, 

the intracellular level of metal is controlled by the export of excess and/or the transport of limit metal ion 

(Hobman et al. 2007; Yamamoto 2014). In E. coli, a total of 13 species of the metal-specific regulators have 

been identified, which are involved in recognition of metals in environment and in transcription regulation 

of the genes encoding the cellular systems for metal homeostasis (Yamamoto 2014). The metal elements (Na, 

Mn, Ni, Cu, Zn, Fe, and Mo) are directly recognized by the DNA-binding TFs (NhaR, MntR, NikR, CueR, 

ZntR/Zur, Fur, and ModE, respectively). Other metals (K, Mg, Cu, Zn, and Fe) are recognized by TCSs 

(KdpDE, PhoQP, CusSR, ZraSR, and BasSR, respectively), but between these metal-sensing SKs, high levels 

of the cross-recognition of noncognate metals have been identified (Hobman et al. 2007; Yamamoto 2014).  

As to the cross talk at the stage 2 of signal transduction, a systematic and comprehensive analysis of the 

activity and specificity of self-phosphorylation in vitro of SK and transphosphorylation in vitro of RR by 

phosphorylated SK for all possible combinations between SKs and RRs purified from over-expressed E. coli 

had been carried out. Result of these experiment, cross talks in E. coli TCS was observed for the 21 (3.0%) 

combination out of a total of 692 non-cognate pairs examined (Yamamoto et al. 2005). For the in vivo assay, 

cross talk at the phosphotransfer also have been reported in E.coli: NarX and NarQ cross-phosphorylate NarL 

and NarP (Tyson et al. 1994); CreC phosphorylate PhoB in the absence of PhoR (Kim et al. 1996); PhoB 

phosphorylated by acetylphosphate via EnvZ in the absence of PhoR (Kim et al. 1996).; ArcB phosphorylate 

OmpR under the anaerobic condition (Matsubara et al. 2000); CpxA phosphorylate OmpR in the absence of 

EnvZ and CpxR, vice versa EnvZ phosphorylate CpxR in the absence of CpxA and OmpR (Siryaporn & 
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Goulian, 2008); PmrB (BasS) phosphorylates QseB in response to Fe3+ in the absence of QseC (Guckes et 

al. 2013). When one RR is phosphorylated by multiple species of SK, the target genes under the control of 

this particular RR become responsible to various stresses. Likewise, some SKs are able to phosphorylate 

multiple RRs, ultimately resulting in the expansion of regulation targets. The HK–RR interactions underlying 

this stage 2 cross talk may provide an efficient starting point for the evolution of new signaling circuits for 

adaptation under varieties of environment. 

The stage 3 cross talk involves a target gene promoter with multiple RR-recognition sequences. 

Considering the specificity of recognition sequences, most RRs are expected to bind to different positions in 

the promoter region, whilst limited sets of RRs, including NarL/NarP and CusR/YedW (Darwin et al. 1997; 

Urano et al. 2015), can recognize the same nucleotide sequence. In spite of such strict specificity, recognition 

sequences of different RRs often shares a common motif. Subtle differences in the recognition sequences 

may prevent RRs from unnecessary cross-regulation. For instance, PhoB also binds to the CusR and YedW 

binding position on the cusR and cusC promoter responds to phosphate limitation although consensus 

sequence of PhoB and CusR/YedW are different (Yang et al. 2012) (Table 1). On the ompF promoter, four 

CpxR and four OmpR binding site are present and only three of those site is recognized by CpxR and OmpR 

to overlap each other. On the csgD promoter, has twelve CpxR binding site, BasR recognizes the one of CpxR 

binding site and OmpR/RstA recognize the other one to overlap with CpxR (Batchelor et al. 2005; Yoshida 

et al. 2006; Ogasawara et al. 2010), although consensus sequences of CpxR, OmpR, RstA and BasR are 

diffent (Table 1). In addition to these, according to the charactristics of recognition sequences between 

RR families, directed repeat or inverted repeat, cross-recognition may happen between RRs belongs to same 

family. In any case, overview of cross talk at the stage 3 has not been revealed. Therefore it has not been 

understood that how frequency RRs bind to same sequence.  

  

1-6. Object of this study 

Formation of signal transduction network among the TCSs is considered that contribute for the bacterial 

adaptation ability for various environment. However, the perspective of the TCS network does not yet 

become clear. Especially, there are few reports for the cross recognition of the same sequence by RRs. In this 

study, for the elucidation of the entire signal transduction network of E. coli, I performed comprehensive 

analysis of the stage 3 cross talk between RRs belongs to same family. In addition to this, E. coli possess 

function unknown RRs. Therefore, I also analyzed the function and activation mechanism of function 

unknown RR.  
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CHAPTER2 

 

CROSS TALK IN PROMOTER RECOGNITION BETWEEN SIX-NARL FAMILY RESPONSE 

REGULATORS OF ESCHERICHIA COLI TWO-COMPONENT SYSTEM 

 

2-1. Introduction 

NarL and NarP which are belong to NarL-family with similar HTH domain had been known that recognize 

the same sequence. Recent study shows that CusR and YedW which are belong to OmpR-family, these are 

also possess very similar DNA binding domain, recognize the same sequence (Urano et al. 2015). In addition 

to these cross recognition, there are report that OmpR-family RR PhoB also bind to CusR and YedW binding 

position (Yang et al. 2012) and that OmpR-family RR BasR and CpxR or CpxR, OmpR and RstA bind to 

same sequence to overlap each other. To determine whether such a thing occurs between other similar RRs 

or not and how much frequency dose it occurs, I analyzed in this study the stage 3 cross talk in the recognition 

of promoters between different RRs belong to same family.  

As a model system, I analyzed the cross-regulation between six members of the NarL-family RRs: EvgA 

(E.coli homologous of Bordetella BvgA: Bordetella virulence gene; regulator for acid resistance), NarL 

(nitrate/nitrite response regulator L), NarP (nitrate/nitrite response regulator P), RcsB (regulator capsule 

synthesis B), UhpA (regulator for uptake of hexose phosphates), and UvrY (ultraviolet response regulator). 

For each of these six NarL-family RRs, a representative promoter were selected and the recognition in vitro 

and in vivo of noncognate promoters were examined. 

 

2-2. Materials and Methods 

 

2-2-1. E. coli strains and growth conditions 

Escherichia coli strains used in this study are summarized in Table 1. E. coli W3110 type-A was used for 

preparation of the expression clones of RRs, and of the regulation target promoters. E. coli BL21 (DE3) was 

used for expression and purification of RRs. E. coli BW25113 was used for the reporter assays of promoters 

under the control of test TFs. Cells were cultured in LB medium or M9-0.4% glycerol medium at 37°C. When 

necessary, 100 g/mL ampicillin, 25 g/mL kanamycin, or 20 g/mL chloramphenicol was added into the 

medium. Cell growth was monitored by measuring the optical density at 600 nm. 

 

2-2-2. Construction of arabinose-inducible expression system of RRs 

The coding sequences of six species of NarL-family RR (EvgA, NarL, NarP, RcsB, UhpA, and UvrY) 

were PCR amplified using 5’-proximal and 3’-proximal primers of each open reading frame (for the sequence, 

see Table 2). Into all the 5’-primer sequence, the typical ribosome recognition sequence (SD sequence) was 

added. In addition, all the 3’-primers included a FLAG-tag sequence so as to be expressed as fusion with 

RRs. The PCR-amplified FLAG-tagged RR-coding sequences were inserted into EcoRI and HindⅢ treated 

pBAD33 to construct the arabinose-inducible expression plasmids of FLAG-tagged RRs by In-Fusion HD 

(Clontech). The plasmid construct was confirmed by DNA sequencing (Table 3). 
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Table 1. Bacterial strains, bacteriophage 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Bacterial strains 

Escherichia coli W3110 type-A F- IN(rrnD-rrnE) rph-1        Jishage & Ishihama (1996) 

Escherichia coli DH5  F- endA1 supE44 thiE1 recA1 gyrA96 deoR481 phoA8  

φ80ΔlacZ(M15) ΔhsdR17 (rK- mK+) Δ(argF-lac)169 

Escherichia coli MC4100  F- araD139 Δ(argF-lac)169 flhD5301 thiA1 relA1 rpsL150  

ptsF25 rbsR22 deoC1Δ(fimB-fimE)       Casadaban (1976) 

Escherichia coli BW25113 F- rrnB3ΔlacZ4787 hsdR514Δ(arabAD)567Δ(rhaBAD)568 rph-1    Datsenko et al. (2000) 

Escherichia coli MY0901  BW25113 λydeP-lacZ        This study 

Escherichia coli MY06131 BW25113 λnirB-lacZ         This study 

Escherichia coli MY06133 BW25113 λuhpT-lacZ        This study 

Escherichia coli MY06134 BW25113 λwza-lacZ        This study 

Escherichia coli MY0702  BW25113 λcsrB-lacZ        This study 

 

Bacteriophages 

λRS45   bla-lacZ imm21 ind        Simons et al. (1987) 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

2-2-3. Expression and purification of His-tagged RR proteins 

Expression of His-tagged RR proteins was carried out essentially according to the standard procedure 

(Yamamoto et al. 2005; Ishihama et al. 2014). For construction of plasmid for expression of His-tagged RRs, 

the RR-coding sequences were amplified by PCR using E. coli W3110 genome DNA as a template and a pair 

of primers, which were designed so as to hybridize upstream or downstream of the RR-coding sequence (for 

the sequence, see Table 2). After digestion with BamHI and NotI (note that the restriction enzyme sites were 

included within the primer sequences), PCR products were cloned into pET21a (+) (Novagen) between 

BamHI and NotI sites. The plasmid construct was confirmed by DNA sequencing (Table 3). Purification of 

His-tagged RRs was carried out essentially according to Yamamoto et al. (2005). 

 

2-2-4. Gel mobility shift assay 

Gel mobility shift assay was carried out as described previously (Nakano et al. 2014; Yamanaka et al. 

2014). A set of 5’-fluorescein isothiocyanate (FITC)-labeled primers were prepared as described in Table S1 

(Supporting Information). For gel shift assays, each of the FITC-labeled probes was incubated at 37°C for 

30 min with various amounts of protein in a transcription buffer consisting of 50 mM Tris-HCl, pH 7.8 at 

4°C, 3 mM Mg acetate, 0.1 mM EDTA, 0.1 mM DTT, 0.025 mg/mL BSA and 50 mM NaCl and 10 mM 

acetyl phosphate. Sonicated and denatured salmon testes DNA (Nacalai) was added to absorb nonspecific 

DNA-binding proteins. After the addition of a DNA dye solution, the mixture was directly subjected to 6% 

PAGE. Fluorescent-labeled DNA in gels was detected using LAS-4000 CCD camera (Fujifilm). 

 

2-2-5. Zn2+Phos-tag SDS-PAGE 

  Zn2+Phos-tag SDS-PAGE was carried out as described previously (Kinoshita et al. 2014). The separating 

gel is consisted of 10% w/v polyacrylamide and 357mM 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)  
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Table 2. Oligonucleotide 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Used for reporter plasmid 

YDEP-P-LF   GGGTGGAATTCTAATGCGTAATGGAAAAAT      This study 

YDEP-P-LR   GCCATGGATCCCCCGGACAGTCAAAGCCCT      This study 

NIRB-P-LF   TACCAGAATTCTCACCCTGGGTTCACAGCA      This study 

NIRB-P-LR   GAGAGGGATCCGACGAGAGGTGTACGCGGT      This study 

WZA-P-LF   AATAAGAATTCATTTAAGAAATATCGCATG      This study 

WZA-P-LR   GCGGAGGATCCTTCACCATTTTGTCGAGAT      This study 

UHPT-P-LF   GCAACGAATTCCCGATGAATTTGATTTTCG      This study 

UHPT-P-LR   CGTTCGGATCCATGTTAAAGTTCTTGCGAA      This study 

CSRB-P-LF   GACTCGAATTCCCGGGGATATGCACGCGCA      This study 

CSRB-P-LR   GTGTGGGATCCAGAAGTGTCATCATCCTGA      This study 

UHPT_LR_F1  TCGTCTTCACCTCGACTTTTTGAACGCCCAGACACCGCGC  This study 

UHPT_LR_R1  ACTAACTAGAGGATCAGCCAGCATGGGTTACTCCTGAAAT   This study 

Used for RR expression plasmid 

EVGAF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGAACGCAAT 

AATTATTGA        This study 

EVGAR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCGCCGATTTTGTTACGTTGTG       This study 

NARLF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGAGTAATCA 

GGAACCGGC        This study 

NARLR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCGAAAATGCGCTCCTGATGCA       This study 

NARPF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGCCTGAAGC 

AACACCTTTTCA        This study 

NARPR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCTTGTGCCCCGCGTTGTTGCA       This study 

RCSBF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGAACAATATG 

AACGTAATTAT        This study 

RCSBR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCGTCTTTATCTGCCGGACTTA       This study 

UHPAF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGATCACCGT 

TGCCCTTATAGA        This study 

UHPAR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCCCAGCCATCAAACATGCGGC       This study 

UVRYF-1   TTGGGCTAGCGAATTAGGAGGAATTCACCATGATCAACGT 

TCTACTTGTTGA        This study 

UVRYR-1   TACCGAGCTCGAATTTTACTATTTATCGTCGTCATCTTTGTA 

GTCCTGACTTGATAATGTCTCCG       This study 

Used for Protein purification 

EVGAF   CAAAGGGAAGGATCCATGAACGCAATAATT    Yamamoto, K et al. 2005 

EVGAR   AAAAACTTCAGCGGCCGCGCCGATTTTGTT    Yamamoto, K et al. 2005 

NARLF   TCCAAGGAGGGATCCATGAGTAATCAGGAA    Yamamoto, K et al. 2005 

NARLR    GCTGGGAACGCGGCCGCGAAAATGCGCTCC    Yamamoto, K et al. 2005 

NARPF   CCTCAGGAGGGATCCATGCCTGAAGCAACA    Yamamoto, K et al. 2005 

NARPR   CCATCGGGCGCGGCCGCTTGTGCCCCGCGT    Yamamoto, K et al. 2005 

RSCBF   CAAGGTAGCCGGATCCATGAACAATATGAA    Yamamoto, K et al. 2005 

RSCBR   TATCTGGCCTACAGCGGCCGCGTCTTTATC    Yamamoto, K et al. 2005 

UHPAF   CGCCAGGACGGATCCATGATCACCGTTGCC    Yamamoto, K et al. 2005 

UHPAR   GAACAACGTGCGGCCGCCCAGCCATCAAAC     Yamamoto, K et al. 2005 

UVRYF   ATTTCTGGAGATGGATCCTTGATCAACGTT      Yamamoto, K et al. 2005 

UVRYR   CGTCAAACTGGCGGCCGCCTGACTTGATAA      Yamamoto, K et al. 2005  

 

Used for Gel mobility shift assay  

lac30R   GCTGCAAGGCGATTAAGTT       Kurata, T et al. 2013 

FITC_lac   AGGGTTTTCCCAGTCACGACGTTGTAAAAC      Kurata, T et al. 2013 
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Table 3. Plasmids 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

pRS552   promoter-less lacZ, Apr    Simons et al. (1987) 

pBAD33   pACYC184 derived, PBAD Cmr   Guzman et al. (1995) 

pKH57-21   pET21a(+) (evgA)    Yamamoto et al. (2005) 

pKH10-2   pET21a(+) (narL)    Yamamoto et al. (2005) 

pKH26-2   pET21a(+) (narP)    Yamamoto et al. (2005) 

pKH28-1   pET21a(+) (rcsB)    Yamamoto et al. (2005) 

pKH46-3   pET21a(+) (uhpA)    Yamamoto et al. (2005) 

pKH18-2    pET21a(+) (uvrY)    Yamamoto et al. (2005) 

pYDEPP   pRS552 (ydeP-lacZ)    This study  

pNIRB   pRS552 (nirB-lacZ)    This study 

pWZA   pRS522 (wza-lacZ)    This study 

pUHPT   pRS522 (uhpT-lacZ)    This study 

pCSRB   pRS522 (csrB-lacZ)    This study 

puhpT-luxL1   pLUX (uhpT-lux)    This study 

pBADEvgA-FLAG   pBAD33, FLAG-tagged EvgA at C-terminus  This study 

pBADNarL-FLAG  pBAD33, FLAG-tagged NarL at C-terminus  This study 

pBADNarP-FLAG  pBAD33, FLAG-tagged NarP at C-terminus   This study 

pBADRcsB-FLAG  pBAD33, FLAG-tagged RcsB at C-terminus   This study 

pBADUhpA-FLAG  pBAD33, FLAG-tagged UhpA at C-terminus   This study 

pBADUvrY-FLAG  pBAD33, FLAG-tagged UvrY at C-terminus   This study 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol–HCl (pH 6.8). 0.1 mM Phos-tag 

Acrylamide and 0.2 mM of ZnCl2 were added to the separating gel before polymerization. An acrylamide 

stock solution was prepared containing a 29:1 mixture of acrylamide to N’, N’-methylenebisacrylamide. The 

running buffer is consisted of 0.1M Tris and 0.1M MOPS containing 0.10% w/v SDS and 5.0 mM NaHSO3. 

The NaHSO3 was dissolved immediately before use. Electrophoresis was performed at 30mA/gel at 4oC until 

the BPB dye reached the bottom of the separating gel. 

 

2-2-6. Western blot analysis 

Expression and purification of His-tagged RRs were determined by Western blot system (Jishage & 

Ishihama, 1996) using anti-RR antibodies that were raised in rabbits using purified RRs, whereas the 

expression level of FLAG-tagged RRs was determined by Western blot analysis using anti-FLAG antibody. 

After SDS-PAGE, proteins were transferred onto PVDF membrane using iBlot gel transfer system 

(Invitrogen). Membranes were washed with skim milk in TBS buffer and then treated with anti-RR or anti-

FLAG antibodies. The antibodies bound were detected using HRP (horseradish peroxidase)-linked anti-

mouse IgG antibody as the secondary antibody. The chemiluminescence was measured using LAS-4000 CCD 

camera (Fujifilm). 

 

2-2-7. Reporter assay: LacZ system 

For detection of the regulatory roles of six test RRs, a set of reporter assay strains were constructed. In 

brief, approximately 650-bp-long sequence between -500 and +150 with respect to the initiation codon of 

each regulation target gene was PCR-amplified using a pair of the primers (for the primer sequences, see 
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Table 2). After digestion with EcoRI and BamHI, the promoter fragment was inserted into EcoRI- and 

BamHI-treated pRS552 (Simons et al. 1987), leading to construct a set of promoter assay vector (Table 3). 

For construction of the single-copy LacZ vector, these plasmids were transformed into E. coli MC4100, into 

which λRS45 was infected. Resultant lysogenic phages were transfected into E. coli BW25113, and their 

lysogens, each carrying a single copy of test promoter-lacZ fusion, were used for the LacZ reporter assay. 

The assay of -galactosidase activity was carried out using the standard procedure (Simons et al. 1987). In 

brief, an aliquot of cell culture was mixed with a reaction mixture (Z-buffer plus SDS and chloroform) and 

then treated with ONPG (Yamamoto et al. 2011). The yellow color developed from ONPG was measured at 

420 nm. The activity was expressed as the Miller unit. 

 

2-2-8. Reporter assay: Lux system 

All five RR-dependent promoters-lux (luciferase) fusions were inserted into pLUX vector (Table 3) 

(Blouin et al. 1996; Burton et al. 2010). The construction of resulting plasmids was confirmed by DNA 

sequencing. Transformants carrying one of these plasmids were grown at 37°C with shaking in LB 

medium. At the middle of exponential phase, the culture was transferred to a microtiter plate (96-well 

microtiter) to start monitoring the luciferase activity with an automated plate reader MTP-880 (Corona). 

 

 

2-3. Results 

 

2-3-1. Test systems of the stage 3 cross talk of E. coli NarL-family RRs 

As an initial attempt of search for the cross talk at the stage 3 of TCS signal transduction, an attempt was 

made to examine the promoter recognition properties of six NarL-family RRs: NarL, NarP, EvgA, UhpA, 

RcsB, and UvrY (Table 4-A). NarL and NarP are transcriptional regulators of a number of anaerobic electron 

transport and fermentation-related genes (Stewart 1994; Unden & Bongaerts 1997). NarL functions as the 

superior activator at high concentrations of nitrite, whereas NarP plays an activation role at low nitrite 

concentration. EvgA is activated by EvgS SK cascade and regulates the genes involved in acid resistance and 

multidrug resistance (Eguchi et al. 2003; Itou et al. 2009; Johnson et al. 2014). RcsB RR is activated by the 

RcsC/RcsD cascade (Huang et al. 2006; Clarke 2010) and controls colanic acid production for biofilm 

formation (Stout 1994). UhpA also forms a three-component system with UhpB SK and UhpC accessory 

protein (Kadner & Shattuck-Eldens 1983; Weston & Kadner 1988). UvrY was considered to be an orphan 

RR, but later found to be phosphorylated for activation by BarA SK (Pernestig et al. 2001), which senses 

short-chain fatty acid. As a model promoter for each of these six RRs, I selected one representative gene from 

a set of the genes that have so far been identified as the regulation targets by each RR: ydeP for EvgA (Masuda 

& Church 2003; Johnson et al. 2014); nirB for NarL and NarP (Wang & Gunsalus 2000); uhpT for UhpA 

(Ambudkar et al. 1986; Weston & Kadner 1988); wza for RcsB (Drummelsmith & Whitfield 1999); and csrB 

for UvrY (Liu et al. 1997; Suzuki et al. 2002) (Table 4–B). 
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2-3-2. Activation and controlled expression of six NarL-family RRs 

Previously, the intracellular concentrations and the expression levels of TFs at various phases of E. coli 

growth are both determined (Ishihama et al. 2014; Yamamoto et al. 2014). The levels are different between 

the RRs in both exponential growth and stationary phases. I then set up two different culture systems for 

control of the intracellular level of test RRs: (i) enhancement of the intracellular level and/or activity of RRs 

upon exposure to the hitherto identified induction conditions; and (ii) artificial over-expression of the test 

RRs using the arabinose-dependent protein expression vector. The level of activated RR was examined using 

the reporter systems. Activation of EvgA could be achieved upon exposure to an acidic condition (Eguchi & 

Utsumi 2014), whereas UhpA was activated after the addition of inducer glucose-6-phosphate (Weston & 

Kadner 1988). For other RRs, however, high-level activation was not observed using the known induction 

conditions: the addition of nitrate for NarL and NarP (Constantindou et al. 2006); the addition of ZnCl2 at 

20oC for RcsB (Hagiwara et al. 2003); and the addition of formate at pH5.0 for UvrY (Chavez et al. 2010).    

In these cases, as yet unidentified factors or conditions might be needed for activation. Then, a controlled 

expression system for the test RR proteins were established. For detection of the expression level, the RR 

genes were tagged with FLAG-tag sequence at 3’-terminus and then inserted into an arabinose-inducible 

expression vector. The arabinose concentration-dependent expression of FLAG-tagged RRs was confirmed 

by immunoblotting with use of anti-FLAG antibody (Fig. 1-A). The maximum level of expression was 

observed for all test RRs after the addition of arabinose as low as 0.002%. For all of RRs, induction of cognate 

promoter expression was achieved in this condition. For EvgA and UhpA, however, those were more 

activated upon exposure to the hitherto identified induction conditions than RR artificial over-expression. 

  Using the best condition to give the highest promoter activity for each RR, the cross-recognition of  

 

 

Table 4. NarL-family RRs and their Promoters 

A) Test response regulator 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

SK RR Regulatory roles   Regulation target operons 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

EvgS EvgA Regulator for acid and multidrug resistance gadE-mdtEF, acrD, evgAS, emrKV, ydeP, safA-ydeO (9) 

NarX NarL Regulator against high-level nitrate and nitrite citCDEFXG, dpiBA, nirBDC, hyaABCDEF, narGHJI (33) 

NarQ NarP Regulator against low-level nitrate and nitrite  hyaABCDEF, napFDAGHEC, nirBDC, nrfABCDEFG (11) 

RcsCD RcsB Regulator of colanic acid in biofilm formation leuO, bglGFB, yidL, sfsB, ynbABCD, yecT, ykiA (35) 

UhpBC UhpA Regulator of hexose phosphate uptake  uhpT (1) 

BarA UvrY Regulator of carbon storage system   csrB, csrC (2) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

B) Test promoter 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

RR Test promoter Gene product   Protein function   

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

EvgA ydeP  AraC family transcription factor  regulation of acid resistance genes  

NarL nirB  nitrite reductase enzyme   reduction of nitrite to ammonia 

NarP nirB  nitrite reductase enzyme   reduction of nitrite to ammonia 

RcsB wza  outer membrane lipoprotein  capsular polysaccharide translocation 

UhpA uhpT  Major Facilitator Superfamily (MFS) transporter hexose-6-phosphate:phosphate antiporter 

UvrY csrB  small regulatory RNA (sRNA)  regulatory sRNA for carbon storage  

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Fig. 1. Artificial expression of RRs. The coding sequences of six NarL-family RRs with FLAG-tag sequence at 3’-termini were inserted into 

the arabinose-inducible expression vector pBAD33. A) The induction level of each RR after addition of the indicated concentration of arabinose 

was measured by immuno-blotting using anti-FLAG tag antibody. High-level induction of all six RRs was observed in the presence of 0.002% 

arabinose. B) In this condition, phosphorylation state of NarL, NarP, RcsB and UvrY was observed by Zn2+Phos-tag SDS-PAGE and immuno-

blotting using anti-FLAG tag antibody. White and Black arrow indicate non-phosphorylaed and phosphorylated state respectively. 

 

 

noncognate promoters examined: characteristic induction condition for EvgA and UhpA; over-expression for 

NarL, NarP, RcsB and UvrY. However, NarL, NarP, RcsB and UvrY overexpression under these condition is 

not clear whether be phosphorylated or not. Zn2+Phos-tag SDS-PAGE permits the separation of 

phosphoproteins from their nonphosphorylated counterparts, therefore radiolabel-free profiling of protein 

phosphorylation is possible (Kinoshita et al. 2014). This methodology is frequently used for recent study of 

TCS phosphorylation. Using Zn2+Phos-tag SDS PAGE and western blotting by anti-FLAG antibody, rate of 

phosphorylated forms of the FLAG-tagged NarL, NarP, RcsB and UvrY to their all forms in vivo were 

determined; NarL is 49.6%, while NarP is 0%, RcsB is 4% and UvrY is 2.3% (Fig. 1-B). Unphosphorylated 

RRs are, however, generally able to bind to target DNA and activate transcription if they are present at high 

concentrations. For example, overexpressed wild-type UhpA or UhpA mutant with the mutation on the 

conserved Asp residue activate cognate uhpT promoter with or without G6P signal (Webber & Kadner, 1997). 

 

2-3-3. Reporter assay of NarL-family RR-dependent promoters 

As an attempt to detect possible cross talk in vivo at stage 3 of the signal transduction of E. coli TCSs, an 

effort was made in this study to test the cross-recognition between NarL-family RRs and their target 

promoters. For detection of the promoter activity, we applied two reporter assay systems using LacZ (-

galactosidase) and Lux (luciferase). For construction of the single-copy LacZ reporter assay system, all the 

test promoters were fused to the lacZ coding frame within the transfer plasmid, and the promoter-lacZ fusion 

was then inserted into the E. coli genome via lambda phage (Simons et al. 1987). As the activity of uhpT-

lacZ translational fusion protein was low, we also used the Lux reporter system. RR-dependent promoter-lux 

transcription fusions were inserted into the pLUX vector using In-Fusion HD cloning kit (Clontech) (see 

Table 3). Using these two reporter systems, the activity of test promoters was examined under two different 

expression conditions of RRs. 
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2-3-4. Cross talk in vivo in promoter recognition between six NarL-family RRs 

The stage 3 cross talk in vivo was examined for a total of 30 combinations between six RRs and five 

representative promoters [note that NarL and NarP recognize the same nirB promoter] under the induction 

condition characteristic to each RR or in the presence and absence of over-expressed RRs. The expression of 

reporter LacZ was observed for the authentic combination of EvgA-ydeP promoter (Fig. 2A, lane 1), NarL-

nirB promoter (Fig. 2B, lane2), NarP-nirB promoter (Fig. 2C, lane 2), RcsB-wza promoter (Fig. 2D, lane 3), 

and UvrY-csrB promoter (Fig. 2F, lane 5). The expression of uhpT-lacZ translational fusion was, however, 

not observed in the presence of all six RRs including UhpA. With the use of uhpT-lux transcription fusion, 

UhpA-dependent expression of the uhpT promoter was detected at a significant level (Fig. 2E, lane 4).  

 

 

Fig. 2. Detection of RR-dependent expression of the regulation target promoter. For all six NarL-family RRs, one representative regulation 

target gene was selected. The promoter activity was measured using the reporter assay system of either LacZ or Lux reporter as indicted on 

right side. The increased level of RRs was achieved by either external signal-dependent induction or by artificial over-expression using the 

arabinose-inducible expression vector as indicated on right side. Promoter activity shows that the activity ratio with signal/ without signal or 

RR expression plasmid/vector). The reporter activity was detected for some non-cognate combinations of test RR and the promoter. Black and 

grey bar shows promoter activation by known and unkown combination, respectively. 

 

 

Table 5. Cross-talk Identified by Reporter Assay 

 EvgA NarL NarP RcsB UhpA UvrY 

ydeP + + - + - + 

nirB - + + - - - 

wza - - - + - - 

uhpT - - - - + +/- 

csrB - - - - - + 
 

Transcription activation of five test promoters, shown on left-side column, by six NarL-family RRs, shown on top line, was examined 

by using the reporter assay with use of two reporters, LacZ (-galactosidase) and Lux (luciferase). Gray shows cognate and hitherto 

identified combination of RR and promoter. 
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The highest level of reporter expression was always observed when the reporter was under the control of 

each cognate RR. The recognition of noncognate promoters was observed only for a limited combination 

between six NarL-family TFs and five promoters. NarL recognizes not only its cognate promoter nirB but 

also a noncognate promoter ydeP (Fig. 2B). Likewise, RcsB recognizes not only its cognate promoter wza 

but also a noncognate promoter ydeP (Fig. 2D). Between the six RRs, the wide spectrum of promoter 

recognition was observed with UvrY, recognizing ydeP and uhpT besides its cognate promoter csrB (Fig. 2F). 

Among the total of 30 combinations of RR-promoter interplay, the cross talk was significantly detected for 

four cases (Table 5), among which the ydeP promoter is unique, because it is recognized by not only its 

cognate RR EvgA but also three non-cognate RRs (NarL, RcsB, and UvrY) (Fig. 2). Therefore, the expression 

of YdeP might be induced in response to varieties of the environmental signal such as an acidic condition 

(through EvgSA), in the presence of nitrate/nitrite (through NarXQ-NarL and NarXQ-NarP) or in the 

presence of carboxylic acid, etc. formate and acetate (through BarA-UvrY). EvgSA constitutes a complex 

activation cascade including a number of downstream TFs (Eguchi & Utsumi 2014), but the constitutive 

resistance to acid pH is established after expression of only the acid resistance protein YdeP with 

oxidoreductase domain (Johnson et al. 2014).  

The transporter protein UhpT is needed to acquire phosphorylated sugars from the environment for 

utilization as carbon and/or energy sources, and its expression depends on the UhpABC system (Kadner et 

al. 1994). The uhpT promoter was activated by not only its cognate UhpA but also a noncognate UvrY (see 

Table 2). BarA and UvrY are known to form a TCS pair (Pernestig et al. 2001), which is induced by the 

metabolic end products formate and acetate (Chavez et al. 2010). 

 

 

 

Fig. 3. Detection of the promoter-RR complex formation in vitro between cognate combinations. The promoter-binding activity of all six NarL-

family RRs to the respective cognate promoters was examined using the gel shift assay. The RR-promoter complex formation was observed 

for all six combinations. In the presence of acetyl phosphate for in vitro phsphorylation of RRs, the promoter-binding affinity was significantly 

enhanced for EvgA, NarL, UhpA, and UvrY. 
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2-3-5. Cross talk in vitro in promoter recognition between six NarL-family RRs 

  The promoters that exhibited the cross talk should carry the recognition sequence recognized by each of 

the noncognate RRs. To confirm the observed cross talk between NarL-family RRs and the test promoters, 

we next tested the binding in vitro of six RRs to each of five representative promoters. For this purpose, all 

six RRs were over-expressed as His-tagged forms using the respective expression plasmids and affinity-

purified apparently to homogeneity according to the standard procedure (Yamamoto et al. 2005). The binding 

of purified RRs to DNA probes, each including the cognate promoter, in the presence and absence of acetyl 

phosphate (AcP) for RR activation was examined by the gel shift assay. All RRs formed slowly migrating 

probe-protein complexes upon increase of protein concentration in the presence and absence of AcP (Fig. 3). 

In the presence of AcP, however, the binding affinity to the cognate promoters significantly increased for 

EvgA, NarL, UhpA and UvrY, but little enhancement was observed for NarP and RcsB. The observed 

difference in the minimum amount of RR needed for effective DNA binding might be due to the difference 

in affinity to the promoter or the difference in the level of functional RR form. In the case of RcsB, the 

 

 

 

Fig. 4. Detection of the promoter-RR complex formation in vitro between non-cognate combinations. The promoter-binding activity of all six 

NarL-family RRs to the non-cognate promoters was examined using the gel shift assay. Among the total of 24 combinations (6 RRs versus 4 

promoters), the formation of RR-promoter complex was identified for 5 cases: NarL-ydeP promoter; NarP-ydeP promoter; RcsB-ydeP 

promoter; UvrY-ydeP promoter; and UvrY-uhpT promoter. 
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activity level in vivo is controlled under the multicomponent RcsF/RcsC/RcsD/RcsB-RcsB phosphorelay 

(Majdalani & Gottesman 2005; Castanie-Cornet et al. 2007), and thus, the phosphorylation by AcP alone 

might not be enough for effective activation of its binding to the target promoter. Indeed, phosphorylation of 

RcsB by AcP in vivo requires RcsD in Salmonella enterica (Pescaretti et al. 2013).  

Using these sets of RRs and promoters, I then tested cross talk in promoter binding for all 30 combinations 

between six RRs and five promoters. Except for the binding to the cognate target promoters, clear cross talk 

was observed for five combinations: NarL-ydeP promoter; NarP-ydeP promoter; RcsB-ydeP promoter; 

UvrY-ydeP promoter; and UvrY-uhpT promoter. The concentrations of RRs needed for effective binding to 

noncognate promoters were generally higher than those to the cognate promoters (compare Figs 3, 4), 

indicating that the binding affinity to noncognate promoters is lower than that to the cognate promoters. NarL 

and NarP recognize same sequence, although NarP had no effect on the ydeP activity in vivo, while NarL 

activated ydeP. NarP may needs a condition differ from this study for the ydeP activation. 

The binding of NarL to ydeP promoter was significantly enhanced in the presence of AcP, but the 

enhancing role of AcP was not so significant for other four combinations. In vivo assay, also significant 

phosphorylation of RcsB and UvrY was not observed, while phosphorylation of NarL was observed. 

Therefore, NarP, RcsB and UvrY might activate ydeP independent to their phosphorylation. The 

combinations of cross talk in RR-promoter complex formation in vitro are in good agreement with the cross 

talk detected in vivo using the reporter assay (see Table 5). 

 

 

 

Fig 5. Cross-talks between NarL-family in the three stages of signal transduction. Cross talks at stage-1 was predicted using the hitherto 

published induction factors to each TCS while the cross-talks at stage-2 are decribed in Tyson et al. (1994) and Yamamoto et al. (2005). In this 

study, 4 cases of the stage-3 cross-talk for six NarL-family RRs is identified. 
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2-4. Discussion 

 

2-4-1. Multifactor promoters 

  Among the NarL-family RR-dependent promoters analyzed in this study, the ydeP promoter was found to 

be activated by four RRs, EvgA, NarL, RcsB, and UvrY (Fig. 5A). These findings suggested the presence of 

recognition sequences on this ydeP promoter by these four RRs. In fact, the recognition sequences of not 

only EvgA but also NarL/NarP, RcsB and UvrY were identified (Fig. 6A). In addition, the general silencer 

H-NS-binding site was identified in the ydeP promoter region (Shimada et al. 2011), and NagC- and PhoP-

binding sequences are known to exist in the ydeP promoter region (RegulonDB).  

Increased numbers of the promoter have been identified to be under the control of multiple TFs. The genes 

encoding the global regulators generally carry the ‘multifactor promoters’ such as csgD encoding the master 

regulator of biofilm formation (Ogasawara et al. 2010, 2011; Ishihama 2012), sdiA coding for the key 

regulator of cell division (Shimada et al. 2013), and flhDC encoding the master regulator of flagella formation 

(Clarke & Sperandio 2005; Ogasawara et al. 2011) which are under the control of multiple transcription 

factors. For instance, more than 20 regulators are involved in the regulation of the csgD promoter (Ishihama 

2012). Along this line, the ydeP promoter could be classified into the group of multifactor promoters. 

YdeP is putative formate dehydrogenase oxidoreductase alpha (molybdopterin) subunit. Formate 

dehydrogenase plays an important role for anaerobic respiration. NarX-NarL respond to high-level nitrate 

and nitrite and then regulates genes involved in anaerobic electron transport and fermentation. YdeP might 

be needed for anaerobic respiration respond for high-level nitrate and nitrite. YdeP is also known to be 

necessary for E. coli acid resistance (Johnson et al. 2014). BarA-UvrY responds to short-chain fatty acid, 

such as formate and aceate, and regulates the various cell processes such as carbon storage, biofilm formation, 

virulence and motility. During the log phase, environment become acidic due to E. coli consume the sugar 

and dissimilate acetate. Therefore, in response to acetae, UvrY up-regulate ydeP expression for acid 

resistance and acts for coassimilate both acetate and the remaining sugar before the sugar is exhausted. In 

addition to these, RcsC-RcsD-RcsB responds to membrane perturbation and regulates the biofilm formation 

and acid resistance. Not only by phosphorylation, but also RcsB act as heterodimer with various TF regardless 

for its phosphorylation (Pannen et al. 2016). RcsB is suggested that forms heterodimer with several NarL-

family TFs containing EvgA, NarL, UvrY (Pannen et al. 2016). Through the regulation by RcsB, YdeP may 

be able to response to the multiple signal.  

Moreover, TF YdeO expressed from downstream promoter of ydeP, also participate to regulation both of 

acid resistance and anaerobic respiration (Yamanaka et al. 2014). In this study, ydeO is revealed that also 

regulated by not only cognate RR EvgA but also NarL, RcsB and UvrY (data is not shown). Take all result 

together, cross-regulation of ydeP and ydeO promoter by EvgA, NarL, RcsB and UvrY plays the important 

role for acid resistance and anaerobic respiration. 

 

2-4-2. Cross talk at TCS stage 3 

Using NarL-family as model systems, I established that the stage 3 cross talk takes place for limited 
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combinations of RRs and their regulation target promoters. In the Zn2+ Phos-tag SDS-PAGE experiment, 

overexpressed RcsB and UvrY that activated ydeP promoter in vivo appeared to be not phospholylated. 

Binding of RcsB and UvrY to ydeP promoer in vitro were also not affected by acetylphosphate. It is suggested 

that unphosphorylated RcsB and UvrY recognize ydeP promoter. Previous report shows that, in Salmonella, 

over-expession of RcsB D56Q mutant which is comfirmed that is not able to be phosphorylated induces csgD 

expression (Latasa et al. 2012). Moreover, over-expression of UhpA mutant which possesses mutation on the 

conserved Asp residue had been also reported that induce cognate uhpT promoter expression (Webber & 

Kadner, 1997). Some of RRs might function as unphosphorylated form under the over-expressed condition. 

Recent study shows that necessity of phosphorylation and dimerization of RR for binding to promoter is 

different between the promoters with different affinity (Katsir et al. 2015).  

Under in vivo situations, a set of RRs is activated directly by AcP but independent of HK–RR pathway 

(McCleary & Stock 1994; Pruss & Wolfe 1994). For instance, sugar-phosphate transporter UhpT is expressed 

in the absence of extracellular glucose-6-phosphate and in the absence of UhpBC (Verhamme et al. 2002a, 

b). This constitutive expression of UhpT is attributable to activation of UhpA by AcP. The intracellular 

concentration of AcP is strongly dependent on the metabolic state of the cell, as well as on growth phase,  

carbon source, pH, and temperature (McCleary & Stock 1994; Pruss & Wolfe 1994). Therefore, the 

concentration of cytoplasmic AcP can be regarded as a physiologically relevant signal, feeding into the signal 

transduction systems of E. coli. Transcription of uhpT was dependent on the growth phase of the cells, 

because the intracellular AcP concentration is growth phase dependent (McCleary & Stock 1994; Pruss & 

Wolfe 1994). The growth on pyruvate possibly results in high intracellular levels of AcP. This metabolite 

readily phosphorylates several RRs in vitro and in vivo (McCleary et al. 1993; McCleary & Stock 1994).  

The rates of phosphorylation and dephosphorylation of RRs by cognate HKs are different between RR species 

(Yamamoto et al. 2005), and thus, the metabolic stability of phosphorylated RRs might be different between 

RR species. Accordingly, the content of phosphorylated form in purified RR preparations is different between 

different RRs as detected using Phos-tag assay (Barbieri & Stock 2008).  

On the basis of the observations herein described, I propose that the cross talk takes place at all three stages 

in the TCS signal transduction pathway. Exploiting the large number of sequenced bacterial genomes and an 

operon structure which packages many pairs of interacting TCS proteins together, a computational approach 

was developed to extract a molecular interaction, as many as 15–25% of the TCS proteins have been proposed 

to participate in out-of-operon cross talks (Procaccini et al. 2011). For the stage 2 in the TCS signal 

transduction, however, mathematical models shows that introducing cross talk always decreases system 

performance (Rowland & Deeds, 2014). It have been also considered that to avoid deleterious cross talk, 

selective pressure influence the evolution of the protein interaction interfaces immediately post duplication 

(Capra et al. 2012). Most of stage 2 cross talk that had been reported hitherto, indeed, observed only under 

the cognate SK deleted situation. In these cases, it is appears that cross talk in vivo is prevented by 

phosphatase activity of cognate or other SK, or preferential phosphate transfer to the cognate RR. For the 

cross talk at the stage 3, perhaps, recognition of the same sequence ambiguously between different RRs is 

also harmful to the cells. In this study, however, stage 3 cross talk are observed in limited combinations and 
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those seems to be specific. If the cross talk is specific, it may be especially important as a way of directly 

linking different regulation systems in a network to coordinate cell growth and metabolism. 

 

 

 

Fig 6. Location of TF-binding sites on the ydeP promoter. 
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CHAPTER3 

 

CROSS TALK IN PROMOTER RECOGNITION BETWEEN FOURTEEN-OMPR FAMILY 

RESPONSE REGULATORS OF ESCHERICHIA COLI TWO-COMPONENT SYSTEM 

 

3-1. Introduction 

I proposed that the cross talk takes place at stage 3 in the TCS signal transduction pathway using six NarL-

family RRs as a model system. In the same way, to determine how much frequency stage 3 cross talk occurs 

between OmpR-family RRs, I also analyze the cross-regulation between fourteen members of the OmpR-

family RRs: ArcA (aerobic respiratory control), BaeR (bacterial adaptive response), BasR (bacterial adaptive 

response) also called PmrA (polymyxin-resistant), CpxR (conjugative plasmid gene expression), CreB 

(carbon source response), CusR (Cu-sensing regulator), KdpE (deleted in the K-dependent mutant), OmpR 

(outer membrane protein regulator), PhoB (phosphorus uptake and metabolism regulator), PhoP (response to 

low extracellular levels of divalent cation), QseB (quorum-sensing E. coli regulator B), RstA (regulator 

involved in different biological processes), TorR (TMAO reductase structural gene), YedW (Response for 

H2O2). For each of these fourteen OmpR-family RRs, the cross recognition in vivo of noncognate promoters 

were examined. 

 

 

3-2. Materials and Methods 

 

3-2-1. E. coli strains and growth conditions 

Escherichia coli strains used in this study are summarized in Table 1. E. coli W3110 type-A was used for 

preparation of the expression clones of RRs, and of the regulation target promoters. E. coli BW25113 was 

used for the reporter assays of promoters under the control of test TFs. Cells were cultured in LB medium at 

37°C. When necessary, 100 g/mL ampicillin, 25 g/mL kanamycin, or 20 g/mL chloramphenicol was 

added into the medium. Cell growth was monitored by measuring the optical density at 600 nm. 

 

3-2-2. Construction of arabinose-inducible expression system of RRs 

The coding sequences of OmpR-family RR (ArcA, BaeR, BasR, CpxR, CreB, CusR, KdpE, OmpR, PhoB, 

PhoB, QseB, RstA, TorR and YedW) were PCR amplified using 5’-proximal and 3’-proximal primers of each 

open reading frame (for the sequence, see Table 2). Into all the 5’-primer sequence, the typical ribosome 

recognition sequence (SD sequence) was added. In addition, all the 3’-primers included a FLAG-tag sequence 

so as to be expressed as fusion with RRs. The PCR-amplified FLAG-tagged RR-coding sequences were 

inserted into SacⅠ and HindⅢ treated pBAD33 to construct the arabinose-inducible expression plasmids 

of FLAG-tagged RRs by In-Fusion HD (Clontech). The plasmid construct was confirmed by DNA 

sequencing (Table 3). 
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Table 1. Bacterial strains, bacteriophage 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Bacterial strains 

Escherichia coli W3110 type-A F- IN(rrnD-rrnE) rph-1        Jishage & Ishihama (1996) 

Escherichia coli DH5  F- endA1 supE44 thiE1 recA1 gyrA96 deoR481 phoA8  

φ80ΔlacZ(M15) ΔhsdR17 (rK- mK+) Δ(argF-lac)169 

Escherichia coli MC4100  F- araD139 Δ(argF-lac)169 flhD5301 thiA1 relA1 rpsL150  

ptsF25 rbsR22 deoC1Δ(fimB-fimE)       Casadaban (1976) 

Escherichia coli BW25113 F- rrnB3ΔlacZ4787 hsdR514Δ(arabAD)567Δ(rhaBAD)568 rph-1    Datsenko et al. (2000) 

Escherichia coli TAICD  BW25113 λicd-lacZ        This study 

Escherichia coli KBW1035 BW25113 λspy-lacZ        Yamamoto et al. (2008) 

Escherichia coli TON1645 BW25113 λais-lacZ        Provided by H. Ogasawara 

Escherichia coli TON1640 BW25113 λyibD-lacZ        Privided by H. Ogasawara 

Escherichia coli TACPXP BW25113 λcpxP-lacZ        This study 

Escherichia coli BW25113/cusC-lacZ BW25113 λcusC-lacZ        Provided by T. Oshima 

Escherichia coli TAKDPA BW25113 λkdpA-lacZ        This study 

Escherichia coli TAOMPC BW25113 λompC-lacZ        This study 

Escherichia coli TAPHOA BW25113 λphoA-lacZ        This study 

Escherichia coli KM4001  BW25113 λmgtA-lacZ        This study 

Escherichia coli YY0304  BW25113 λygiW-lacZ        This study 

Escherichia coli BW φasr-lacZ BW25113 λasr-lacZ        Ogasawara et al. 2007 

Escherichia coli YK0913  BW25113 λtorC-lacZ        This study 

Escherichia coli BW25113/yedX-lacZ BW25113 λyedX-lacZ        Provided by T. Oshima 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Bacteriophages 

λRS45   bla-lacZ imm21 ind        Simons et al. (1987) 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

Table 2. Oligonucleotide 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Used for reporter plasmid 

ICD-P-LF   GGGATGAATTCTTTTAATGTTTTGCGTCCG      This study 

ICD-P-LR   TCTCGGGATCCGCGTCGACCACTTTCAGCA      This study 

CPXP-P-LF   CTCCAGAATTCACGGCGCAGGATCGCGCGA      This study 

CPXP-P-LR   GATGTGGATCCAAACTTATGCCGTCGAACA      This study 

KDPA-P-LF   GCGCGGAATTCCCAGAAAAGCATGAAAGGC        This study 

KDPA-P-LR   GGTCAGGATCCCCAAGTGCGCGAAAAAGTA      This study 

OMPC-P-LF   ATGTTGAATTCTTGTGAAATAGTTAACAAG      This study 

OMPC-P-LR  TCTGGGGATCCTCTACATCTTTGTTGTCAG      This study 

PHOA-P-LF   TATTTGAATTCGAGAAACGTTTCGCTGGTA      This study 

PHOA-P-LR   GAGCGGGATCCTGATCACCCGTTAAACGGC      This study 

YGIW-P-LF   AGTAAGAATTCTTGTAACGCGCTCTGTACA    This study 

YGIW-P-LR   CGCGCGGATCCACCCAGGTGTCGTCACGCAGGG   This study 

TORC-P-LF   GCATAGGATCCCAACTGACACAAAATTCGG      This study 

TORC-P-LR   GTTGAGAATTCCGCGCGAGGTCGATTCGCC      This study 

UHPT_LR_F1  TCGTCTTCACCTCGACTTTTTGAACGCCCAGACACCGCGC  This study 

UHPT_LR_R1  ACTAACTAGAGGATCAGCCAGCATGGGTTACTCCTGAAAT   This study 

 

Used for RR expression plasmid 

ARCAF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCAGACCCC 

GCACATTCTTAT      This study 

ARCAR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCATCTTCCAGATCACCGCAGA    This study 

BAERF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGAAGTTCTG 

GCGACCCGGTAT      This study 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 2. Continued 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

BAERR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCTACTTCTCTCTGTAAATCCC     This study 

BASRF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGAAAATTCT 

GATTGTTGAAGA      This study 

BASRR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCGTTTTCCTCATTCGCGACCA    This study 

CPXRF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGAATAAAAT 

CCTGTTAGTTGA      This study 

CPXRR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCTGAAGCAGAAACCATCAGA    This study 

CREBF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCAACGGGA 

AACGGTCTG      This study 

CREBR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCCAGGCCCCTCAGGCTATATC    This study 

CUSRF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGAAACTGTT 

GATTGTCGAAGA      This study 

CUSRR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGTA 

GTCCTGACCATCCGGCACCTCAA     This study 

KDPEF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGACAAACGT 

TCTGATTGT      This study 

KDPER-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCAAGCATAAACCGATAGCC     This study 

OMPRF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCAAGAGAA 

CTACAAGATTCT      This study 

OMPRR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGTA 

GTCTGCTTTAGAGCCGTCCGGTA     This study 

PHOBF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGGCGAGACG 

TATTCTGGT      This study 

PHOBR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCAAAGCGGCTTGAAAAACGAT    This study 

PHOPF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCGCGTACT 

GGTTGTTGA      This study 

PHOPR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCGCGCAATTCGAACAGATAGC    This study 

QSEBF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCGAATTTT 

ACTGATAGA      This study 

QSEBR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCTTTCTCACCTAATGTGTAAC      This study 

RSTAF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCGTGAATGTTAT 

GAACACTAT      This study 

RSTAR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCATTCCCATGCATGAGGCGCAA     This study 

TORRF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGCCACATCA 

CATTGTTAT      This study 

TORRR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCGCACACATCAGCGCTAAGA      This study 

YEDWF-1   TAGCGAATTCGAGCTAGGAGGAATTCACCATGAAGATTCT 

ACTTATTGA      This study 

YEDWR-1   CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGT 

AGTCTTTTTTTACCGCTACGAATG      This study 
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Table 3. Plasmids 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

pRS552   promoter-less lacZ, Apr    Simons et al. (1987) 

pBAD33   pACYC184 derived, PBAD Cmr   Guzman et al. (1995) 

pICD   pRS552 (icd-lacZ)    This study  

pCPXP   pRS552 (cpxP-lacZ)    This study 

pKDPA   pRS522 (kdpA-lacZ)    This study 

pOMPC   pRS522 (ompC-lacZ)    This study 

pPHOA   pRS552 (phoA-lacZ)    This study  

pYGIW   pRS522 (ygiW-lacZ)    This study 

pTORC   pRS522 (torC-lacZ)    This study 

puhpT-luxL1   pLUX (uhpT-lux)    This study 

pUB6070   creB-lacZ     Cariss et al. 2008 

pBADArcA-FLAG   pBAD33, FLAG-tagged ArcA at C-terminus  This study 

pBADBaeR-FLAG  pBAD33, FLAG-tagged NarL at C-terminus  This study 

pBADBasR-FLAG  pBAD33, FLAG-tagged NarP at C-terminus   This study 

pBADCpxR-FLAG  pBAD33, FLAG-tagged RcsB at C-terminus   This study 

pBADCreB-FLAG  pBAD33, FLAG-tagged UhpA at C-terminus   This study 

pBADCusR-FLAG  pBAD33, FLAG-tagged UvrY at C-terminus   This study 

pBADKdpE-FLAG   pBAD33, FLAG-tagged EvgA at C-terminus  This study 

pBADOmpR-FLAG  pBAD33, FLAG-tagged NarL at C-terminus  This study 

pBADPhoB-FLAG  pBAD33, FLAG-tagged NarP at C-terminus   This study 

pBADPhoP-FLAG  pBAD33, FLAG-tagged RcsB at C-terminus   This study 

pBADQseB-FLAG  pBAD33, FLAG-tagged UhpA at C-terminus   This study 

pBADRstA-FLAG  pBAD33, FLAG-tagged UvrY at C-terminus   This study 

pBADTorR-FLAG  pBAD33, FLAG-tagged UhpA at C-terminus   This study 

pBADYedW-FLAG  pBAD33, FLAG-tagged UvrY at C-terminus   This study 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

3-2-3. Western blot analysis 

Expression and purification of His-tagged RRs were determined by Western blot system (Jishage & 

Ishihama 1995) using anti-RR antibodies that were raised in rabbits using purified RRs, whereas the 

expression level of FLAG-tagged RRs was determined by Western blot analysis using anti-FLAG antibody. 

After SDS-PAGE, proteins were transferred onto PVDF membrane using iBlot gel transfer system 

(Invitrogen). Membranes were washed with skim milk in TBS buffer and then treated with anti-RR or anti-

FLAG antibodies. The antibodies bound were detected using HRP (horseradish peroxidase)-linked anti-

mouse IgG antibody as the secondary antibody. The chemiluminescence was measured using LAS-4000 CCD 

camera (Fujifilm). 

 

3-2-4. Reporter assay: LacZ system 

For detection of the regulatory roles of six test RRs, a set of reporter assay strains were constructed. In 

brief, approximately 650-bp-long sequence between -500 and +150 with respect to the initiation codon of 

each regulation target gene was PCR-amplified using a pair of the primers (for the primer sequences, see 

Table 2). After digestion with EcoRI and BamHI, the promoter fragment was inserted into EcoRI- and 

BamHI-treated pRS552 (Simons et al. 1987), leading to construct a set of promoter assay vector (Table 3). 

For construction of the single-copy LacZ vector, these plasmids were transformed into E. coli MC4100, into 

which λRS45 was infected. Resultant lysogenic phages were transfected into E. coli BW25113, and their 

lysogens, each carrying a single copy of test promoter-lacZ fusion, were used for the LacZ reporter assay. 
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The assay of -galactosidase activity was carried out using the standard procedure (Simons et al. 1987). In 

brief, an aliquot of cell culture was mixed with a reaction mixture (Z-buffer plus SDS and chloroform) and 

then treated with ONPG (Yamamoto et al. 2011). The yellow color developed from ONPG was measured at 

420 nm. The activity was expressed as the Miller unit. 

 

 

3-3. Results 

 

3-3-1. Test systems of the stage 3 cross talk of E. coli OmpR-family RRs 

  Specific stage 3 cross talk was observed between six NarL-family RRs. As an extension of this line 

research, I analyzed in this study the stage 3 cross talk between fourteen OmpR-family RRs: ArcB, BaeR, 

BasR, CpxR, CreB, CusR, KdpE, OmpR, PhoB, PhoP, QseB, RstA, TorR and YedW (Table 4-A).  

ArcA functions for the response to changing respiratory conditions of growth. Under anaerobiosis, ArcA 

regulates a great number of operons involved in respiratory and fermentative metabolism, while aerobiosis 

oxidised forms of quinone electron inhibits ArcA acivity (Gunsalus & Park 1994; Malpica et al. 2006; 

Alvarez & Georgellis, 2010). BaeR responds to alterations of the bacterial envelope (Bury-Mone et al. 2009) 

and regulates the genes involved in drug resistance and protein folding (Baranova & Nikaido, 2002; 

Nagakubo et al. 2002; Raffa & Raivio, 2002; Hirakawa et al. 2005; Nishino et al. 2005; Yamamoto et al. 

2008). BasR response to elevated levels of Fe (III) which can permeabilize the outer membrane and result in 

cell death, leading to the transcriptional expression of several genes involved in modification of 

lipopolysaccharide to prevent excessive Fe (III) binding (Nagasawa et al. 1993; Chamnongpol et al. 2002; 

Yamamoto et al. 2005; Hagiwara et al. 2004). CpxR responds to multiple stimuli, such as alkaline pH, altered 

membrane lipid composition, interaction with hydrophobic surfaces, and high osmolarity, over-expression of 

outer membrane lipoprotein NlpE, adherence to hydrophobic surfaces and external copper ions (Dorel et al. 

2006; Snyder et al. 1995; Otto & Silhavy, 2002; Gupta et al. 1995). CpxR regulates the expression of a grate 

number of operons involved in the various cell functions, such as "conjugative plasmid gene expression" 

(cpx) (McEwen & Silverman, 1980; Lau-Wong et al. 2008), the envelope stress response system, pilus 

assembly, secretion, motility and chemotaxis, adherence, biofilm development, multidrug resistance and 

efflux (Dorel et al. 2006), and the copper-responsive regulatory system (Yamamoto & Ishihama, 2006). CpxR 

sometimes acts to modulate the action of the main activators or repressors of some promoters (Dorel et al. 

2006). CreB responds to fermenting glycolytic carbon sources (Avison et al. 2001) and regulates the 

expression of genes involved in acetate, ribose and maltose metabolism, pentose phosphate pathway and 

repair DNA damage associated with the replication fork (Kakuda et al. 1994; Duun et al. 1999;Richet 1996; 

Sprenger, 1995; Saveson & Lovett, 1999). CusR is activated in anaerobic condition or extreme copper stress 

in aerobic condition (Outten et al. 2001) and regulates genes related to the copper and silver efflux systems 

(Munson et al. 2000; Franke et al. 2001). KdpE regulates the genes involved in a high-affinity potassium 

(K+) uptake system P-type ATPase KdpFABC under K+-limiting conditions or under osmotic stress imposed 

by a salt (Voelkner et al. 1993; Altendorf et al. 1994; Jung et al. 2000; Jung & Altendorf, 2002; Ballal et al.  
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Table 4. OmpR-family RRs and their Promoters 

A) Test response regulator 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

SK RR Regulatory roles   Regulation target operons 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

ArcB ArcA Regulator for respiration and fermentation aceBAK, ackA-pta, appCBXA, cydAB, fnr, glpABC, icd (77) 

BaeS BaeR Regulator for drug registans and protein folding acrD, mdtABCD-baeSR, spy, ycaC (4) 

BasS BasR Regulator for prevent excessive Fe (III) binding ais, csgDEFG, cspI, dgkA, fimB, putA, qseBC, tomB-hha, yibD (12) 

CpxA CpxR Regulator for the various cell functions  acrD, cpxP,csgDEFG, degP, mdtABCD-baeSR, motAB-cheAW,  

      ompC, ompF, rdoA-dsbA, rpoE-rseABC, rpoH, rprA, spy (38) 

CreC CreB Regulator for catabolic regulation  creABCD, malEFG, nudF-yqiB-cpdA-yqiA-parE, talA-tktB (8) 

CusS CusR Regulator for the copper and silver efflux systems cusCFBA, cusRS (2) 

KdpD KdpE Regulator for K+ uptake system  kdpFABC (1) 

EnvZ OmpR Regulator for outer membrane porin  bdm-sra, bolA, csgDEFG, fadL, flhDC, ompC, ompF (12) 

PhoR PhoB Regulator for phosphorus uptake and metabolism  adiC, amn, argP, asr, cra, cusCFBA, cusRS, phoA-psiF (32) 

PhoQ PhoP Regulator for Mg2+ homeostasis   acrAB, argD, borD, cysB, dcuD, envY-ompT, fadL,mgtLA (36) 

QseC QseB Regulator for flagella and motility  flhDC, qseBC, ygiW (3) 

RstB RstA Regulator for different biological processes  asr, csgDEFG, narGHJI, ompF (4) 

TorS TorR Regulator for TMAO induction  gadAXW, hdeAB-yhiD, tnaCAB, torCAD, torR (5) 

YedV YedW Regulator for the copper and silver efflux systems cusCFBA, cusSR, cyoABCDE, hiuH, yedVW (5) 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

B) Test promoter 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

RR       Test promoter  Gene product   Protein function   

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

ArcA icd   Isocitrate dehydrogenase  Shift between TCA and glyoxalate pathways 

BaeR spy   ATP-independent periplasmic chaperone Prevent protein aggregation and assists protein refolding 

BasR ais   LPS core heptose(II)-phosphate phosphatase Modification of the lipopolysaccharide 

BasR yibD   Glucuronic acid transferase  Modification of the core oligosaccharide 

CpxR cpxP   Periplasmic adaptor protein  Inhibits the cpx response 

CreB creD   Inner membrane protein  Colicin-related functions 

CusR cusC   Copper/silver efflux system  Drug/analog sensitivity 

KdpE kdpA   Potassium translocating ATPase, subunit A ATP-driven potassium ion transport 

OmpR ompC   Outer membrane porin protein C  Outer membrane constituents 

PhoB phoA   Bacterial alkaline phosphatase  Hydrolysis and transphosphorylation of phosphate monoesters 

PhoP mgtA   Magnesium transporter   Uptake of magnesium ion 

QseB ygiW   Periplasmic protein      Resistance for hydrogen peroxide and cadmium stress 

RstA asr   Acid shock-inducible periplasmic protein   Acid resistance 

TorR torC   Trimethylamine N-oxide (TMAO) reductase I Cytochrome c-type subunit, anaerobic respiration 

YedW yedX   Hydroxyisourate hydrolase     Purine catabolism 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

2007). OmpR responds to changes in extracellular osmolarity and regulates the expression of several genes 

involved in major outer membrane porins OmpC and OmpF (Garrett et al. 1985; Nara et al. 1986; Mizuno 

& Mizushima, 1987; Csonka & Hanson, 1991; Maeda et al. 1991; Kanamaru & Mizuno, 1992; Huang & Igo, 

1996; Cai & Inouye, 2002; Yoshida et al. 2006), flagella (Shin & Park, 1995), biofilm formation (Prigent-

Combaret et al. 2001), curli (Vidal et al. 1998, Jubelin et al. 2005) and drug exporter genes (Hirakawa et al. 

2003). PhoB is activated under the phosphate limitation conditions and then regulates genes involved in 

phosphorus uptake and metabolism (Wanner, 1993; VanBogelen et al. 1996; Baek & Lee, 2006). PhoP is 

activated in response to low extracellular levels of divalent cations such as magnesium or calcium (Groisman 

et al. 1992; Kasahara et al. 1992; Kato et al. 1999). PhoP activates expression of various genes involved in 

different biological processes, such as Mg2+ homeostasis, resistance to antimicrobial peptides, acid resistance, 
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and LPS modification (Kato et al. 1999; Minagawa et al. 2003; Miyashiro & Goulian, 2007). QseB responds 

to quorum-sensing, and then regulates transcription of genes involved in flagella and motility (Sperandio et 

al. 2002). RstA appears to be stimulated by low pH (Ogasawara et al. 2007; Yamamoto et al. 2005) and 

involved in different biological processes, such as acid tolerance, curli fimbria formation, and anaerobic 

respiration (Ogasawara et al. 2007). TorR is phosphorylated in the presence of TMAO (trimethylamine N-

oxide) and then activates the genes related to TMAO induction (Pascal et al. 1991; Simon et al. 1994) and 

the enzymes of tryptophan metabolism and represses the genes of glutamate decarboxylase genes (Bordi et 

al. 2003). YedW responds to H2O2 and then regulates the same set of CusR target genes and promoters (Urano 

et al. 2015). It is considered that evolutionary origin of YedW and CusR is probably common (Bouzat & 

Hoostal, 2013). 

As a model promoter for each of these fourteen RRs, I selected one representative gene from a set of the 

genes that have so far been identified as the regulation targets by each RR: icd for ArcA (Salmon et al. 2005; 

Park & Kiley, 2014); spy for BaeR (Raffa & Raivio, 2002; Yamamoto et al. 2008) [note that spy promoter is 

also regulated by CpxR through recognition different sequence (Yamamoto et al. 2006; Raivio et al. 2013)]; 

ais and yibD for BasR (Ogasawara et al. 2012; Froelich et al. 2006) [note that yibD promoter is also regulated 

by PhoB through recognition different sequence (Baek & Lee, 2006)]; cpxP for CpxR (Yamamoto et al. 2006; 

Raivio et al. 2013); creD for CreB (Avison et al. 2001; Cariss et al. 2008); cusC for CusR (Munson et al. 

2000; Yamamoto & Ishihama, 2005) [note that cusC promoter is also recognized by PhoB and YedW with 

same sequence (Yang et al. 2012; Urano et al. 2015)]; kdpA for KdpE (Sugiura et al. 1992; Narayanan et al. 

2012); ompC for OmpR (Mattison et al. 2002; Yoshida et al. 2006) [note that ompC promoter is also regulated 

by CpxR through recognition different sequence]; phoA for PhoB (Makino et al. 1986; Marzan et al. 2013); 

mgtA for PhoP (Minagawa et al. 2003); ygiW for QseB (Clarke & Sperandio, 2005) [note that ygiW promoter 

is also regulated by BasR through recognition different sequence (Guckes et al. 2013)]; asr for RstA 

(Ogasawara et al. 2007) [note that asr promoter is also regulated by PhoB through recognition different 

sequence (Suziedeliene et al. 1999)]; torC for TorR; and yedX for YedW (Urano et al. 2015) [note that yedX 

promoter is also regulated by CusR through recognition same sequence with YedW (Urano et al. 2015)] 

(Table 4–B). 

 

3-3-2. Controll of the intracelluer level of fourteen OmpR-family RRs 

For some of NarL-family RRs, high-level activation was not observed using the known induction 

conditions (refer to 2-3-1-2). In these cases, as yet unidentified factors or conditions might be needed for 

activation. On the other hand, overexpression of RR always induced cognate promoter expression regardless 

of their phosphorylation. Therefore, artificial over-expression of the test RRs were selected as the easily 

control system of the intracellular level of RRs. For the detection of the expression level, same to the NarL-

family RRs, the RR genes were tagged with FLAG-tag sequence at 3’-terminus and then inserted into an 

arabinose-inducible expression vector. The arabinose concentration-dependent expression of FLAG-tagged 

RRs was confirmed by immunoblotting with use of anti-FLAG antibody (Fig. 1). The maximum level of 

expression was observed for all test RRs after the addition of 0.002% or 0.02% arabinose. Over-expression 
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of the test RRs were performed under the arabinose concentration that RR expression was induced with 

maximam level. 

 

 

 

Fig. 1. Artificial expression of RRs. The coding sequences of fourteen OmpR-family RRs with FLAG-tag sequence at 3’-termini were inserted 

into the arabinose-inducible expression vector pBAD33. The induction level of each RR after addition of the indicated concentration of 

arabinose was measured by immuno-blotting using anti-FLAG tag antibody. High-level induction of RRs were observed in the presence of 

0.002% or 0.02% arabinose.  

  

 

3-3-3. Cross talk in vivo in promoter recognition between fourteen OmpR-family RRs 

The stage 3 cross talk between OmpR-family RRs in vivo were examined for a total of 210 combinations 

between fourteen RRs and fifteen representative promoters in the presence and absence of over-expressed 

RRs. The expression of reporter LacZ was observed for the authentic combination of BaeR-spy promoter 

(Fig. 2B, lane 2), BasR-ais promoter (Fig. 2C, lane 3), BasR-yibD promoter (Fig. 2C, lane 4), CreB-creD 

promoter (Fig. 2E, lane 6), CusR-cusC promoter (Fig. 2F, lane 7), kdpE-kdpA promoter (Fig. 2G, lane 8), 

PhoB-phoA promoter (Fig. 2I, lane 10), PhoP-mgtA promoter (Fig. 2J, lane 11), RstA-asr promoter (Fig. 2L, 

lane 13) and YedW-yedV promoter (Fig. 2N, lane 15). The expression of icd-lacZ, cpxP-lacZ, ompC-lacZ, 

ygiW-lacZ and torC-lacZ were, however, not observed in the presence of all fourteen RRs (Fig. 2A, D, H, J, 

K, M). Although icd promoter is known to be repressed by ArcA, this repression could not be observbed 

because icd activity was not detected at all. Because all of these reporter genes were constructed to 

translational fusion, LacZ might failed to be localized at cytoplasm due to locality of phused protein: CpxP 

is periplasmic protein; OmpC is outer membrane protein; YgiW is periplasmic protein and TorC is inner 

membrane protein. However, these promoter expression might be observed as transcriptional fusion likely to 

UhpA cognate promorter uhpT. UhpT is also inner memberane protein. 

 The recognition of noncognate promoters was observed only for a limited combination between fourteen 

OmpR-family TFs and 15 promoters, but the wide spectrum of promoter recognition was observed with 

many of OmpR-family RRs; ArcA, BaeR, CpxR, OmpR, QseB and YedW. ArcA activates noncognate  
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Fig. 2. Detection of RR-dependent expression of the regulation target promoter. For fourteen OmpR-family RRs, one representative regulation 

target gene was selected. The promoter activity was measured using the reporter assay system of either LacZ reporter as indicted on right side. 

The increased level of RRs was achieved by artificial over-expression using the arabinose-inducible expression vector as indicated on right 

side. Promoter activity shows that the activity ratio with signal/ without signal or RR expression plasmid/vector. The reporter activity was 

detected for some non-cognate combinations of test RR and the promoter. Black, grey and white bar shows promoter activation by combination 

of known, unkown and cascated through cognate RR expression, respectively. 
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Table 5. Cross-talk Identified by Reporter Assay 

 ArcA BaeR BasR CpxR CreB CusR KdpE OmpR PboB PhoP QseB RstA TorR YedW 

icd - - - - - - - - - - - - - - 

spy - + - + - - - + - - - - - + 

ais - - + - - - - - - - - - - - 

yibD - - + - - - - - - - + - - - 

cpxP - - - - - - - - - - - - - - 

creD + + - - + - - - - - - - - - 

cusC - - - - - + - + - - - - - + 

kdpA + +/- - + - - + + - - - - - + 

ompC - - - - - - - - - - - - - - 

phoA - - - - - - - - + - + - - - 

mgtA - - - - - - - - - + - - - - 

ygiW - - - - - - - - - - - - - - 

asr - - - - - - - - - + - + - - 

torC - - - - - - - - - - - - - - 

yedX - - - - - - - - - - - - - + 
Transcription activation of fifteen test promoters, shown on left-side column, by fourteen OmpR-family RRs, shown on top 

line, was examined by using the reporter assay with use of two reporters, LacZ (-galactosidase). Gray shows cognate and 

hitherto identified combination of RR and promoter. Black shows cascade regulation via regulation of cognate RR gene 

expression. 

 

promoter creD and kdpA while repression of cognate icd promoter was not observed (Fig. 2A). BaeR activates 

not only its cognate promoter spy but also a noncognate promoter creD, kdpA (Fig. 2B). CpxR activates 

noncognate promoter spy and kdpA while activation of cognate cpxP promoter was not observed (Fig. 2D). 

OmpR activates noncognate promoter spy, cusC and kdpA while activation of cognate ompC promoter was 

not observed (Fig. 2H). PhoP activates not only its cognate promoter mgtA but also a noncognate promoter 

asr (Fig. 2J). This activation, however, is known to be a cascade through induction of RstA expression. QseB 

activates noncognate promoter yibB and phoA while activation of cognate ygiW promoter was not observed 

(Fig. 2K). YedW activates not only its cognate promoter yedX but also spy, cusC and kdpA (Fig. 2N). However, 

although previous report shows that PhoB activates BasR cognate promoter yibD (Baek & Lee, 2006), CusR 

cognate promoter cusC (Yang et al. 2012), RstA cognate promoter asr (Suziedeliene et al. 1999) and YedW 

cognate promoter yedX (Yang et al. 2012), these cross talk by PhoB could not observed in this study. In these 

cases, phosphorylation of PhoB by phosphorus limitation is might needed.  

Among the total of 210 combinations of RR-promoter interplay, the cross talk was significantly detected 

for 15 cases, 11 of them are the novel (Table 5). Among which the creD, kdpA, spy and cusC promoter are 

unique; creD recognized by not only its cognate RR CreB but also two non-cognate RRs, ArcA and BaeR; 

kdpA recognized by not only its cognate RR KdpE but also four non-cognate RRs, ArcA, CpxR, OmpR and 

YedW; spy recognized by not only its cognate RR BaeR but also three non-cognate RRs, CpxR, OmpR and 
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YedW; cusC recognized by not only its cognate RR CusR but also two non-cognate RRs, OmpR and YegW 

(Fig. 2).  

Therefore, the expression of CreD might be induced in response to varieties of the environmental signal 

such as fermenting glycolytic carbon sources (through CreBC), under the anaerobic condition (through 

ArcAB) or envelop stress (through BaeSR). CreD over-expression induces tolerance to colicin E2 through 

CbrC overexpression (Drury & Buxton, 1988; Cariss et al. 2010). A high-affinity potassium (K+) uptake 

system P-type ATPase KdpFABC is required for uptake of K+ under K+-limiting conditions or under osmotic 

stress imposed by a salt, and its expression depends on the KdpDE system (Voelkner et al. 1993; Altendorf 

et al. 1994; Jung et al. 2000; Jung & Altendorf, 2002; Ballal et al. 2007). The kdpFABC promoter was 

activated by not only its cognate KdpE but also a noncognate BaeR, CpxR, OmpR and YedW (see Table 7). 

KdpFABC might be induced in response to envelop stress (through BaeSR and CpxAR), osmotic stress 

(through EnvZ-OmpR) and H2O2 stress (through YedVW). Spy prevent protein aggregation and assists 

protein refolding response to envelop stress (through BaeSR and CpxAR). Spy also may response to osmotic 

stress (through EnvZ-OmpR) and H2O2 stress (through YedVW). The expression of cusC, encodes 

copper/silver efflux system, suggested that responds to not only copper or silver ion (through CusSR), but 

also osmotic stress (through EnvZ-OmpR) and H2O2 stress (through YedVW). 

  Expression of glucuronic acid transferase YibD induced by alterations of the envelope (through BasSR) is 

might also induced by quorum-sensing (through QseCB). Expression of alkarine phosphatase PhoA induced 

by phosphorus limitation (through PhoRB) is might also induced by quorum-sensing (through QseCB). 

 

 

3-4. Discussion 

 

3-4-1. Multifactor promoters 

  Through the analysis of stage 3 cross talk between NarL-family, the ydeP promoter considered that be 

classified into the group of multifactor promoters. In this line, the kdpA and spy promoter also could be called 

to multifactor promoters. 

  Among the OmpR-family RR-dependent promoters analyzed in this study, the kdpA promoter was found 

to be activated by six RRs, ArcA, BaeR, CpxR, KdpE, OmpR and YedW, and the spy promoter was found to 

be activated by four RRs, BaeR, CpxR, OmpR and YedW (Fig. 3). On the kdpA promoter, the recognition 

sequences of not only KdpE but also ArcA, BaeR, CpxR, OmpR and YedW were identified (Fig. 4A). Also 

on the spy promoter, the recognition sequences of not only BaeR and CpxR but also OmpR and YedW were 

identified (Fig. 4B). For the kdpA promoter, identified recognition sequence of BaeR and one of three OmpR 

are contained in KdpE recognition sequence. In addition, some of ArcA and CpxR sequence are also 

overlapped. For the spy promoter, OmpR sequence is overlapped with BaeR binding site only partially. 

Recognition sequences of almost RRs are various but specific. According to slight differences of sequence, 

it is might be determine whether RRs recognize the sequence or not. However, it is necessary to confirm 

whether RRs bind to these sequences in fact. 
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Fig 3. Cross-talks in the three stages of signal transduction between OmpR-family. Cross talks at stage-1 was predicted using the hitherto 

published induction factors to each TCS while the cross-talks at stage-2 are decribed in Wanner (1995), Kim et al. (1996), Matsubara et al. 

(2000), Yamamoto et al. (2005), Siryaporn & Goulian (2008) and Guckes et al. (2013). In this study, 15 cases of the stage-3 cross-talk for 

fourteen OmpR-family RRs is identified. 

 

A high-affinity potassium (K+) uptake system P-type ATPase KdpFABC is required for uptake of K+ under 

K+-limiting conditions or under osmotic stress imposed by a salt. In other word, this system needs regulation 

respond to K+-limiting conditions or osmotic stress. And that may be realized through the kdpA promoter 

regulation by its cognate KdpDE (for K+-limiting conditions), noncognate EnvZ-OmpR (for osmotic stress), 

BaeSR, CpxAR and YedVW (for membrane perturbation including H2O2 stress which related to osmotic 

stress). Spy prevent protein aggregation and assists protein refolding response to envelop stress through 

BaeSR and CpxAR. It is also presumed that osmotic stress and H2O2 cause a membrane destruction. 

Therefore, Spy is also needed under such conditions and regulated by EnvZ-OmpR and YedVW. 
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3-4-2. Cross talk at TCS stage 3 

Using OmpR-family RRs as model systems, I confirmed that the stage 3 cross talk takes place for limited 

combinations of RRs and their regulation target promoters. For OmpR-family RRs, stage 3 seem to be 

specific, although some of overlapped recognition between OmpR-family RRs (KdpE-OmpR-BaeR and 

ArcA-CpxR) are also expected differ from NarL-family RRs. That is, they shares a common motif. In the 

most case, however, ambiguous sequence recognition between RRs is not be presumed. In any case, stage 3 

cross talk is suggested that specific and precise event which make TCS signal transduction complicated. 

Phosphorylation is also involved in RR sequence recognition. Some of RRs might function as 

unphosphorylated form under the over-expressed condition. However, in this study, transciprion activation 

of yibD, cusC, asr and yedX by PhoB which had been reported previously could not be observed by artificial 

over-expression of PhoB, although overexpression of PhoB induced cognate promoter phoA expression. 

Recent study shows that necessity of phosphorylation and dimerization of RR for binding to promoter is 

different between the promoters with different affinity (Katsir et al. 2015). For the activation of yibD, cusC, 

asr and yedX promoter, phosphorylation of PhoB by phosphorus limitation stimulus might be needed.  

 

 

 

Fig 4. Location of TF-binding sites on the kdpA (A) and spy (B) promoter. 
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CHAPTER4 

 

FUNCTION UNKOWN RESPONSE REGULATOR YGEK  

 

4-1. Introduction 

E. coli possess function unknown orphan RRs. YgeK, one of these RRs, belongs to NarL-family according 

to HTH domain homology. And its function and cognate SK are not revealed. Previous in vitro study shows 

that E. coli K-12 YgeK is phosphorylated by TCS SKs BarA and UhpB, although K-12 YgeK dose not 

possess the receiver domain (Yamamoto et al. 2005). Therefore, K-12 YgeK considered that be 

phosphorylated by different mechanism from typical RRs.  

 BarA and UhpB regulates carbon metabolism respectively in E. coli. UhpB responds to Glucose-6-

Phosphate, then UhpB phosphorylates cognate RR UhpA. Phosphorylated UhpA activates expression of uhpT 

which codes G6P transporter. In regard to BarA, it had been reported that repress the CsrA activity which 

activates pathogenisity, motility, quorum sensing and represses biofilm formation through the 

phosphorylation of cognate RR UvrY and csrB expression in the various bacteria. In E.coli, BarA-UvrY-

csrB-CsrA system is also involved in the regulation of glycolysis, acetate metabolism, glycogen 

biosynthesis/catabolism and gluconeogenesis. However, there is no report likely these in other bacteria. 

(Lapouge et al. 2008). In this study, for the elucidation of the entire signal transduction network of E. coli, I 

analyzed the function of YgeK and its relation to the SK BarA and UhpB. 

 

 

4-2. Materials and Methods 

4-2-1. E. coli strains and growth conditions 

E. coli W3110 type-A and E. coli O157:H7 Sakai was used for preparation of the expression clones of 

YgeK. E. coli BW25113 was used for monitor of Cell growth. Cells were cultured in LB medium, M9-0.4% 

glucose, M9-0.4% glycerol medium or M9-acetate supplemented with or without 0.2% Casamino acid at 

37°C or 28°C. When necessary, 20 g/mL chloramphenicol was added into the medium. Cell growth was 

monitored by measuring the optical density at 600 nm. To test biofilm formation, bacteria were inoculated 

on LB, M9-0.4% glycerol medium or M9-acetate agar plates containing 1.2% wt/vol of Agarose and 0.004％ 

wt/vol of Congo red (Wako). 

 

 

4-3. Results 

 

4-3-1. Difference of YgeK between E. coli subspecies 

 For the investigate the YgeK conservation among the bacteria species, available DNA sequences which 

has homology to E. coli K-12 ygeK sequences were downloaded from the KEGG (Kyoto Encyclopedia of 

Genes and Genomes) database (www.genome.jp/kegg). ygeK revealed that conserved only in Escherichia 

http://www.genome.jp/kegg


36 

 

genus. Furthermore, YgeK is conserved for two types: full length such as O157:H7 Sakai YgeK and short 

length which has not receiver domain such as K-12 YgeK (Fig. 1A, B). Full length YgeK is conserved in 

pathogenic Escherichia genus, Escherichia albertii, human and bird enteric pathogen, isolated from a stool 

sample from a 1-year-old child with acute diarrhea, Escherichia coli O44:H18 042, prototypical member of 

the enteroaggregative E. coli (EAEC) which shows multidrug resistant, isolated from a child with diarrhea 

in the course of an epidemiologic study in Lima, Peru in 1983, E. coli O7:K1 CE10 isolated from the 

cerebrospinal fluid (CSF) of a neonate with meningitis, E. coli O17:K52:H18 UMN026, extraintestinal 

pathogenic E.coli (ExPEC), isolated from a woman with uncomplicated acute cystitis in 1999 in the USA, E. 

coli O157:H7 Sakai, enterohemorrhagic E. coli (EHEC), isolated from the 1996 outbreak in primary schools 

of Sakai, Japan, E. coli O157:H7 EC4115 (EHEC) collected at the time of the 2006 spinach outbreak, E. coli 

O157:H7 TW14359 (EHEC) isolated from a patient of 2006 spinach-associated outbreak in the USA and E. 

coli O157:H7 Xuzhou21 (EHEC) isolated from an hemolytic uremic syndrome patient from the 1999 Xuzhou 

outbreak (Referred to KEGG) (Fig. 1A). On the other hand, short length YgeK is conserved in both 

pathogenic and non-pathogenic E. coli, O157:H7 EDL933 (EHEC) isolated from Michigan ground beef 

linked to the outbreak in 1982 involving contaminated hamburgers, O26:H11 11368 (EHEC) isolated in Japan 

in 2001 from a patient with diarrhea during a diffuse outbreak, O111:H-11128 (EHEC) isolated in Japan in 

2001 from a patient with a sporadic case of diarrhea, O103:H2 12009 (EHEC) isolated in Japan in 2001 from 

a patient with a sporadic case of bloody stool, O104:H4 2009EL-2071 (EHEC)/O104:H4 2009EL-2050 

(EHEC), shows multidrug-resistant, isolated from stool of patients in the Republic of Georgia, O104:H4 

2011C-3493 (EHEC), shows multidrug-resistant, isolated from stool of a US patient with a history of travel 

to Germany in May 2011, E24377A, enterotoxigenic E. coli (ETEC), isolate from Maj. Carl Brinkley (Walter 

Reed Army Institute of Research), O78:H11:K80 H10407 (ETEC) isolated from an adult with cholera-like 

symptoms in the course of an epidemiologic study in Dacca, Bangladesh, prior to 1973, 55989 (EAEC) 

isolated from the diarrheagenic stools of an HIV-positive adult suffering from persistent watery diarrhea in 

Central African Republic, APEC O78 isolated from the lung of a turkey clinically diagnosed with 

colibacillosis, P12b (O15:H17) used in laboratory as a wild-type strain, O9 HS/ O152:H28 SE11/ O8 IAI1 

isolated from a healthy human, UMNK88 isolated in 2007 from a farm in Minnesota, W（ATCC8739, 

KO11FL, LY180）isolated from the soil of a cemetery near Rutgers University around 1943 and K-12 (W3110, 

MG1655, MDS42, DH10B, DH1), laboratory strain (Referred to KEGG) (Fig. 1A). 

In almost of short length ygeK gene, mutation at the Cytosin 154 to the Thymine results in the substitution 

of the 52th Gln to the Stop codon except for K-12 MDS42 ygeK which first half of receiver domain coding 

sequence is completely missing (Fig. 1B). This site is followed by SD-like sequence (AGGAGA) and short 

length YgeK is translated from Met 64 which just says in full length YgeK (Fig. 1C). Full length YgeK has 

the receiver domain, however not has the phosphor-Asp residue. This residue is replaced to Gly (Fig. 1B). 

In addition to this site, two other acidic amino acids (Asp/Glu) within the 1- 1 loop which construct the 

phosphate-accepting active pocket structure with the phosphor-Asp residue are Asp and Gln in YgeK, while 

an invariant Lys residue at the end of the 5 strand that helps coordinate the typical active pocket is conserved 

in YgeK. A highly conserved Thr/Ser residue at the end of 4 strand and a highly conserved Phe/Tyr residue  
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Fig. 1. YgeK conserved among Escherichia speices. A) ygeK sequence homoloy between Escherichia speices. B) The conservation of 

important residue for RRs activation on YgeK and other NarL-family RRs. C) Full length ygeK sequence. The bold letters indicates strat codon. 

Under line shows SD-like sequence. 154C (shown with red) is replaced to T in the short length ygeK coding sequence. 
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in the middle of 5 strand which are reorientated and able to the formation of active dimer respond to the 

phosphorylation of Asp residue are substitutied to Val and Cys. The conserved Lys, Val and Cys in full length 

YgeK are also conserved in short length YgeK (Fig. 1B). 

  Reciever domain which dose not possess phosphor-Asp residue is called to Aspartate-Less Receivers 

(ALRs) (Maule et al. 2015). A residue conserved in ALR has law-like charasteristics. All of three acidic 

residue which construct the active pocket structure is not hydrophobic residue. Conserved phospho-Asp is 

generally replaced to Glu, Asn, Ser, Gly and Ala which occupies 26%, 16%, 15%, 11% and 9% of entire 

ALRs respectively (in full length YgeK it is coordinate Gly). One of other acidic residue (acidic triad-1) is 

retained in 65% of ALRs, whereas the acidic triad-2 is retained only in 29% of ALRs (in full length YgeK 

these are Asp and Gln). The well conserved Lys, Thr/Ser residue at the end of 4 and Phe/Tyr residue in the 

middle of 5 are largely conserved in ALRs (70%, 66% and 61% respectively, in YgeK these are Lys, Val 

and Cys). In the ALR which is not conserved the Thr/Ser and Phe/Tyr, these residue are almost replaced 

to hydrophobic residue (Val, Leu, Ile and Ala) but not to a residue has a charge (Maule et al. 2015). Therefore, 

structure of full length YgeK is correspond to that of ALR. Most of ALR is distributed to the bacteria which 

live in extream environment and has a pathogenicity (Maule et al. 2015). Full length YgeK might relate to 

pathogenisity of Escherichia genus and has a different function from short length YgeK which is conserved 

in non-pathogenic E. coli such as K-12 strain. 

 

4-3-2. Influence of YgeK expression on the biofilm formation of E.coli 

  The sequence comparison described above revealed that YgeK homologs are roughly divided into two 

types: full-length and short-length. To ask whether the two types of ygeK have different functions, the coding 

sequences of the ygeK genes of O157: H7 Sakai (full-length) and K-12 W3110 type A (short-length) were 

PCR amplified from their genomes. Into the 5’-primer sequence, the typical ribosome recognition sequence 

(SD sequence) was added. In addition, the 3’-primers included a FLAG-tag sequence so as to be expressed 

as fusion with RRs. The PCR-amplified FLAG-tagged YgeK-coding sequences were inserted into Sac I and 

HindⅢ treated pBAD33 to construct the arabinose-inducible expression plasmids of FLAG-tagged YgeK. 

Using these plasmids, E.coli K-12 BW25113 strain were transformed and cultured with 0.02% arabinose for  

induction of YgeK expression. Sakai YgeK expressed cells in the M9-Glycerol supplemented with Casamino 

acid at 37oC sank in the bottom of test tube and seems to adhere to the test tube when the culture was left at 

rest for a while (Fig. 2A). It is considerd that fimbriae synthesis was activated in the Sakai YgeK expressed 

cells.  

Biofilm (cellulose, other related polysaccharides, fimbriae) has a high affinity to Congo red dye (Olsen et 

al. 2002). If biofilm is formed, bacterial colony observed to red on the Congo red agar. To confirm whether 

Sakai YgeK expressed cells forms biofilm or not, WT, ygeK deletion mutant and K-12 YgeK or Sakai YgeK 

expressed ygeK deletion mutant inoculated on the Congo red agar plate (M9-Glycerol supplemented  

Casamino acid and 0.02% Arabinose agar plate) and color of colony formed at 37oC was observed (Fig. 2B). 

WT and ygeK deletion mutant formed orange colony. When K-12 YgeK was expressed in the ygeK deletion 

mutant colony color became light, while Sakai YgeK expression result in red and rough colony formation. It 
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suggest that both of K-12 YgeK and Sakai YgeK play the role of biofilm formation, however Sakai YgeK 

activates and K-12 YgeK represses that at 37oC. 

 

 
Fig. 2. YgeK function for Biofilm formation. E. coli K-12 BW25113 strain (WT), ygeK deletion mutant (Δygek) and Δygek transformed by K-

12 ygeK expression plasmid (pygeK K-12) or O157:H7 sakai ygeK expression plasmid (pygeK sakai) were cultured in 0.2% Casamino acid 

and 0.02% Arabinose supplemented M9-0.4%Glycerol (A), and inoculated on the 0.004% Congo red, 0.2% Casamino acid and 0.02% 

Arabinose supplemented M9-0.4%Glycerol agar plate (B). 

 

 

4-3-3. Factor influence on YgeK function  

  Previous study shows that YgeK is phosphorylated by BarA and UhpB in vitro (Yamamoto et al. 2005). To 

examine whether BarA and UhpB participate in the YgeK function in vivo, YgeK was expressed in a barA- 

or uhpB-deletion derivative of the standard K12 strain BW25113 and the biofilm formation of the resulting 

strains was observed. However, the expression of Sakai YgeK in either a barA- or uhpB-deletion mutant did 

not significantly affect the colony color regardless of the presence of the chromosomal ygeK gene (Fig. 3B). 

It should be noted that the activity of an RR is regulated not only through phosphotransfer from a 

phosphorylated SK but also through direct phosphorylation by acetylphosphate (AcP) and through 

acetylation using acetyl-CoA (Fig. 3A). Thus, the effect of the YgeK expression on biofilm formation of 

mutants lacking ackA (acetate kinase A), pta (phosphotransacetylase), acs (acetyl-CoA synthetase), yfiQ 

(protein lysine acetyltransferase) or cobB (deacetylase of Acs and CheY) were observed. The expression of 

Sakai YgeK did not significantly affect the colony color or the colony morphology of these deletion mutants. 

These results indicate that biofilm formation function of Sakai YgeK is independent on SKs (BarA and UhpB), 

acetyl phosphate, the acetyltransferase and the deacetylase. 

  Formation of Mat fimbria, highly conserved between different origin E. coli and considerd to be an 

ancestral fimbrial type in E. coli, is regulated by temperature (Lehti et al. 2010). To confirm whether YgeK 

function of biofilm formation is also regulated by temperature, WT, ygeK deletion mutant and K-12 YgeK or 

Sakai YgeK expressed ygeK deletion mutant were inoculated on the Congo red agar plate (M9-Glycerol 

supplemented Casamino acid and 0.02% Arabinose agar plate) and incubate at 28oC (Fig. 3C). K-12 YgeK 

expression at 28℃ didn’t results in light color colony formation, different from 37℃. Sakai YgeK expressed  
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Fig. 3. Factor influence on YgeK biofilm formation function. E. coli K-12 BW25113 strain (WT), ygeK, barA, uhpB, ackA, pta, acs, yfiQ and 

cobB deletion mutant transformed by pBAD33, K-12 ygeK expression plasmid (pygeK K-12) or O157:H7 sakai ygeK expression plasmid 

(pygeK sakai) were inoculated on the 0.004% Congo red, 0.2% Casamino acid and 0.02% Arabinose supplemented M9-0.4%Glycerol agar 

plate. These were incubated at 37oC or 28oC. 
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cell formed a white and slight rough colony at 28℃, while it formed a red and rough colony at 37℃ (Fig. 

3C). It is indicated that a function of YgeK of both K-12 and Sakai are regulated by temperature. Moreover, 

the fact that Sakai YgeK expressed cell forms white and rough colony at 28℃ suggests repression of 

extracellular polysaccharide synthesis in this cell. This function of Sakai YgeK at 28℃ is not observed in 

pta or acs deletion mutatnt, while observed in barA, uhpB, ackA, yfiQ and cobB deletion mutant (Fig. 3D). 

It is inducated that that is depends on Pta and Acs which are needed for acetyl-CoA synthesis (Fig. 3A).  

 

  

 

Fig. 4. Growth of ygeK deletion mutant. E. coli K-12 BW25113 strain (WT), ygeK, barA, uhpB, ackA, pta, acs, yfiQ and cobB deletion mutant 

(Δygek, ΔbarA, ΔuhpB, ΔackA, Δpta, Δacs, ΔyfiQ and ΔcobB respectively) were cultured in M9-0.4% Glucose medium over night at 37Co. 

Over night culture were diluted 100 times with M9-0.4% Glucose, M9-0.4% Glycerol, M9-50 mM Acetate with or with 0.2% Casamino acid 

or LB medium followed by measuring OD 600 nm at 37 Co with shaking. 
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4-3-4. Growth retardation in acetate medium 

  YgeK has a possibility that involeved in the carbon metabolism through the BarA, UhpB and the pyruvate-

acetate pathway. Therefore growth of ygeK deletion E.coli mutant was observed in different nutrient medium 

(Fig. 4A). Growth of ΔygeK mutant in acetate medium withount casamino acid was retarded compared to 

that of WT E.coli strain, while in LB medium, Glucose medium, Glycerol medium and casamino acid 

supplemented medium, ΔygeK mutant grew up as well as WT. These results suggest that YgeK plays the 

important role for the E. coli K-12 growth at the acetate medium. 

Deletion of AckA or Pta, main pathway of acetate metabolism, result to fails to grow in the acetate medium. 

Not only that, pta deletion mutant is unable to grow in other minimum medium without casamino acid (Fig. 

4B). On the other hand, deletion of Acs, another pathway of acetate metabolism, showed growth retardation 

in acetate medium similar to YgeK deletion (Fig. 4B). In addition, deletion of acetyltransferase YfiQ and 

deacetylase CobB also showed growth retardation in acetate medium. Acetylation and deacetylation are 

indicated that also participate to acetate metabolism. Growth of ΔbarA and ΔuhpB mutant were also retarded 

(Fig. 4B). This growth reterdation of ΔbarA and ΔuhpB mutant is only observed in acetate medium, although 

decreased growth of ΔbarA and ΔuhpB mutant were observed in the grycerol medium. YgeK activity for E. 

coli growth in acetate medium might be controlled by BarA and UhpB, and those are act on E. coli acetae 

metabolism together with the pyruvate-acetate pathway. 

 

4-4. Discussion 

 

4-4-1. Difference of YgeK function between K-12 and O157:H7 Sakai 

  Most of ALR is distributed to the bacteria which live in extream environment and has a pathogenicity 

(Maule et al. 2015). Full length YgeK correspond to ALR is conserved in pathogenic E. coli such as O157: 

H7 strain, although in the experimental E. coli strain, short length YgeK is conserved. Bacterial adherence is 

known to important so that bacteria exhibit pathogenisity. Full length YgeK has an ability of biofilm 

formation at 37oC. Therefore full length YgeK might be related to the E. coli adherence to the host.  

Short length YgeK which dose not possess reciever domain is also related to biofilm formation. 

Furthermore, it plays the role for the E. coli K-12 growth at the acetate medium. YgeK possibly maintain the 

necessary function while chainging its form and function adapt to environment. 

 

4-4-2. Signal transduction of YgeK 

Glowth of ygeK deletion mutant was retarded in acetate medium compered to that of WT. In the same way, 

deletion of barA or uhpB result to growth retardation in acetate medium. Previous in vitro study shows that 

K-12 YgeK is phosphorylated by BarA and UhpB. BarA-UvrY reglates various cell processes including 

biofilm formation and acetate metabolism. UhpBA also participate to metabolism through the transport of 

Glucose-6-phospate. In addition, YgeK also regulates biofilm formation. Sakai YgeK function to activate 

biofilm formation is regulated by temperature. Moreover, biofilm repression function of Sakai YgeK is 

depend on pta and acs. In the acetate medium, growth of K-12 deletion mutant of acs, yfiQ, cobB is retarded 
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similar to that of ygeK. Acetate metabolism function of YgeK, perhaps, related to its acetylation. In any case, 

it is indicated that YgeK is regulated by temperature and metabolism and that YgeK is pathway links the 

metabolism and the gene expression. 

In this study, YgeK phenotype were observed. However futher analysis of this mechanism is necessary. At 

present, SELEX analysis for identification of YgeK recognition target promoter is going. 
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CHAPTER 5 

CONCLUSIONS  

 

5-1. Specific and various signal transduction network of TCS 

Analysis of the stage 3 cross talk between NarL-family RRs described in the chapter 2 revealed that stage 

3 cross talk are occurs in limited combinations and those seems to be specific. In the chapter 3, the stage 3 

cross talk between OmpR-family RRs also observed and it seem to be specific and precise event to enable 

TCS signal transduction complicated. Futhermore, the ydeP promoter, the spy promoter and the kdpA 

promoter reveled to multifactor promoters. These genes might play important role for E. coli adaptaion to the 

various encironmental changes. 

Under in vivo situations, SK controlled RR activity by phosphorylation in generally, while a set of RRs is 

also activated directly by AcP but independent of SK–RR pathway (McCleary & Stock 1994; Pruss & Wolfe 

1994). The intracellular concentration of AcP is strongly dependent on the metabolic state of the cell, as well 

as on growth phase, carbon source, pH, and temperature (McCleary & Stock 1994; Pruss & Wolfe 1994). 

Therefore, the concentration of cytoplasmic AcP can be regarded as a physiologically relevant signal, feeding 

into the signal transduction systems of E. coli. In addition to AcP, there is a sevral report that acetylation of 

RR act on the RRs acivity (Barak & Eisenbach, 1996; Thao et al. 2010). Acetylation is also presumed to 

strongly dependent on the metabolic state of the cell, as well as on growth phase, carbon source, pH, and 

temperature. The stage 3 cross talk may be especially important as a way of directly linking different 

regulation systems in a network to coordinate cell growth and metabolism. 

Not only these results but also analysis of YgeK function, described in chapter 4, revealed that atypical 

RR which dose not possess the phospho-Asp or the receiver domain also plays an important role in E. coli. 

Short length K-12 YgeK has a function for E. coli growth in acetate medium and it has also acts on repression 

of biofilm formation at 37oC. On the other hand, full length O157: H7 Sakai YgeK activate a biofilm 

formation at 37oC while repress at 28 oC. Those YgeK function seems to be related to acetylation. YgeK is 

also considered that link the cell growth or metabolism to the gene regulation. 

Taking all the results together, these findings provide the insight into the perspective of TCS signal 

transduction network and contribute for understand the mechanism of the bacterial adaptation and survival 

againt to environment change. 
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