
Computational Complexity from Learners'
Perspective in College Mathematics

著者 MORI Yuki
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 11
page range 1-6
year 2016-03-24
URL http://hdl.handle.net/10114/12238

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/223199959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computational Complexity from Learners’
Perspective in College Mathematics

Yuki Mori
Graduate School of Computer and

Information Sciences,
Hosei University,

Tokyo, Japan
Email: yuuki.mori.72@stu.hosei.ac.jp

Abstract—Suitably complex exercises motivate students and
facilitates a deeper understanding. Manually constructing such
problems consumes time that teachers can otherwise use to
mentor students. Many software tools and services for automatic
generation of mathematics problems are available on the web, but
they provide only materials up to high school level. In addition,
no standardized methods are provided to evaluate and control the
computational complexity of generated problems. In this paper,
we proposed a framework for evaluating computational complex-
ity from the learners’ perspective, aiming to apply our framework
to the automatic generation of college-level mathematics problems
with controlled computational complexity. Our framework helps
teachers prepare learning materials and thereby save time for
mentoring students.

I. I NTRODUCTION

We propose a framework for evaluating the computational
complexity of college-level mathematics problems, with the
aim of applying our framework to automatic generation of such
problems controlled computational complexity.

Providing students with suitably complex practice problems
is crucial for motivating them and facilitating deeper un-
derstanding. Manually constructing such problems consumes
time, which mathematics teachers can otherwise use to mentor
students.

Many software tools and services for automatic generation
of mathematics problems are available on the web, but they
provide only materials up to high-school level. In addition, no
standardized methods are provided to evaluate and control the
computational complexity of the generated problems. Among
the popular web sites and services, we list some examples.
Wolfram Problem GeneratorTM [1] and Davitily Math Prob-
lem GeneratorTM [2] deal with mathematics problems for
high-school students. SuperKids Math Worksheet CreatorTM

[3] deals with arithmetic problems for children attending
elementary schools. However, our framework is new as it deals
with math at the college level and introduces suitable methods
for evaluating computational complexity from the learners’
perspective.

Eigenvalue problems and differential equations are usually
taught in linear algebra and calculus courses at engineering
departments. Since most textbooks do not provide sufficient
practice problems, teachers must make additional problems to

0Supervisor: Prof. Shuichi YUKITA

be used in classes, assignments, and exams. We took this two
topics as a case study to develop our framework.

The system let the user select parameters such as the alge-
braic number field used in the calculation, the number of the
calculation steps, and the matrix dimension, which determine
the outline of the problems. The user then selects the problem
category and provides the required parameters that control the
computational complexity. To further reduce the burden for
busy users, predefined sets of recommended parameters are
also stored in the system, which eases the parameter selection
process. Problems with the required complexity along with
model answers are generated.

In this paper, we present automatic problem generators
for differential equations and diagonalization problems for
Hermitian matrices to illustrate the relevance of our proposed
framework.

II. COMPLEXITY FROM LEARNERS’ PERSPECTIVE

General concepts of complexity are available in various
forms in standard textbooks such as [5]. We deal with a
different variety of complexity, subjective complexity, where
complexity is measured by the difficulty from learners’ per-
spective.

Designing practice problems that are sufficiently but not
excessively complex is crucial for keeping a learner motivated.
We propose a new framework for estimating such computa-
tional complexity and demonstrate its relevance by developing
a system for automatic generation of complexity-controlled
practice problems. Our framework enables us to

1) control the number of the calculation steps,
2) limit the height of rational numbers involved in a

calculation, and
3) deal with algebraic numbers.

The computational complexity of generated problems is mainly
determined by the sum of the heights of the rational numbers
(the maximum ratio of the absolute values of the denominator
and numerator) appearing in its model solution. In the hope
of extending our work to other mathematics areas, we incor-
porated controls over algebraic number fields in our system.
The user can select the calculation field from the rational
number field and other algebraic fields extended by irrational
numbers, especially, quadratic irrational numbers, and fourth-
power irrational numbers.

A. Automatic Generation of Linear Equations

This subsection is a summary of our early work on the
linear equation problems aiming to control the complexity
from the learners’ perspective. Solving linear equations is
a part of eigenvalue problems. The system generates linear
equations as the elementary row operations problems and
model answers. The row operations are classified as follows.

1) Row switching (A row within the matrix can be
switched with another row.)

2) Row multiplication (Each element in a row can be
multiplied by a non-zero constant.)

3) Row addition (A row can be replaced by the sum of
that row and a multiple of another row.)

It is commonly practiced that the matrix representation of
the problem is reversely constructed from the solution space.
Teachers do such reverse-row operations by their hands, con-
trolling the level of difficulty at every step of the transformation
by their naive concept of complexity. Our system does all these
things automatically and controls perfectly the computational
complexity as specified by the user.

The system controls the number of the calculation steps by
limiting the number of the reverse-row operations steps, and
limits the heights of rationals in the row multiplication and
row addition.

In the following sections, we will show an application of
our framework to college mathematics problems and discuss
the computational complexity from learners’ perspective.

III. C OMPLEXITY IN EIGENVALUE PROBLEMS

In this section, we discuss complexity of linear algebra
problems from learners’ perspective.

Eigenvalue problems are usually taught in linear algebra
courses at engineering departments. Eigenvalue problems ap-
pear in two forms: diagonalization of Hermitian forms and
Jordan canonicalization of linear endomorphisms. In this paper,
we deal with diagonalization of Hermitian matrices. The pro-
cess of generating complexity-controlled eigenvalue problems
includes

1) creating a pool of nice looking matrices,
2) generating eigenvalues with specified multiplicities,
3) generating a set of candidate Hermitian matrices, and
4) filtering out those matrices that are not suitable for

exercises with some criteria.

We explain each step in detail. First, we generate nearly the
entire set of tractable unitary matrices and classify them by
algebraic number fields. We define an utility function that can
extract all of the irrational numbers appearing in the entries
of a tentatively generated matrix. For example, this function
returns the list[

√
−1,

√
2,
√
3,
√
5], where(√

−5
√
2

1√
3

7

)
(1)

is entered as a primary material that is later subject to Gram-
Schmidt orthonormalization. Diagonalizing a given Hermitian
matrix requires

1) calculating eigenvalues,
2) selecting mutually orthogonal eigenspaces each of

which corresponds to an eigenvalues, and
3) constructing a unitary matrix using these eigenvec-

tors.

In the requirement 2, selecting an eigenspace is either giving
an eigenvector or giving a set of eigenvectors. In the latter
case, the eigenvalue has multiplicity greater than 1. Note that
the choice of eigenvectors in degenerate cases does not affect
the final result. Hence, the number of calculation steps does not
vary once all the multiplicities are specified. General Hermitian
matrices can be generated from a diagonal matrixD and a
unitary matrixU as

H = UDU† (2)

whereU† is the conjugate transpose matrix ofU . Equation (2)
is rewritten asD = U†HU . The most difficult part is gener-
ating a unitary matrix with the specified properties. However,
the number of matrices suitable for this purpose is relatively
small because the entries of those matrices must be obtained
from a given algebraic number field, and the heights of the
involved rationals must be restricted, furthermore, all of the
column vectors must form an orthonormal system. Therefore
it is possible to predefine almost entire sets of unitary matrices
that can be used to generate Hermitian matrices that can
be diagonalized with specified complexity. This stage can be
skipped once the pool is created. However, we may recreate
another pool with slightly different parameters.

A. Generation of Unitary Matrices

This section describes the generation of3 × 3 unitary
matrices through examples. The procedure for generating a
matrix comprises four major steps:

1) generating a unit column vector,
2) verifying that all the entries belong to the given

number field,
3) constructing an orthonormal basis from two other

linearly independent column vectors using the Gram-
Schmidt procedure, and

4) verifying again that all of the entries of those basis
vectors belong to the given number field.

In step 1, we generate various unit vectors that are the form
in Eq. (3).

e1
t = (± i

j
√
k
,± l

m
√
n
,±

√
1− ((

i

j
√
k
)2 + (

l

m
√
n
)2)),

(3)
where i, j, l, and m are rational integers, andk and n are
2, 3, 5, 7, or 1. In step 2, all of the irrational numbers such
as

√
2,
√
3, and

√
−1 are extracted from the vector and

matrix. We select the vectors whose entries belong to the
specified number field. In step 3,e1 and two other vectors are
orthogonalized. Only an additional two vectors are required
to form a linearly independent triple together withe1. Hence,
for easy calculations, we can take them from sparse matrices,
where only the positions of nonzero entries are important.
Figure 1 indicates that the field may possibly be extended after
orthogonalization.

Fig. 1. Example of orthogonalization. The upper part shows failure in
retaining the number field after orthogonalization in the case in which
(1, 0, 0)t and (0, 0, 1)t are appended. The other shows success in retaining
the field, when(0, 0, 1)t and (0, 0, 1)t are appended.

Fig. 2. Example of expansion of the orthogonalization to imaginary matrices.

We generated three patterns of unitary matrices by chang-
ing the position of the non-zero element of each vector. If the
user wants a complex number field, then

√
−1 must be added

in some entry of an initial vector (see Fig. 2). In step 4, the
number field of the components is verified again. This step
is necessary because Gram-Schmidt orthogonalization takes
square roots which may cause further algebraic extension of
fields. We select matrices all of whose entries have rationals
of low heights in their subexpressions. These forms the basic
set of tractable unitary matrices. Of the 500,000 generated
unitary matrices in a preliminary stage, the filter selects 681
matrices according to the criterion described in later sections.
The number of predefined matrices are listed in Tabs. I and
II. Though the basic set is relatively small (681), we can
generate other tractable matrices by multiplying them among
themselves and by taking direct sums as follows: given two

TABLE I. PREDEFINED ORTHOGONAL MATRICES

````````Field
Dimension

2 × 2 3 × 3 4 × 4

Q 65 20 4245
Q(

√
2) 27 33 2503

Q(
√
3) 12 10 930

Q(
√
5) 20 25 1714

Q(
√
7) 12 3 927

TABLE II. PREDEFINED UNITARY MATRICES

````````Field
Dimension

2 × 2 3 × 3 4 × 4

Q(
√
−1) 129 20 25066

Q(
√
2,

√
−1) 65 33 8488

Q(
√
3,

√
−1) 30 11 2862

Q(
√
5,

√
−1) 68 26 9068

Q(
√
7,

√
−1) 24 5 2142

matrices of the same dimension

U1 andU2 ∈ U(n), (4)

we obtain
U1U2 ∈ U(n). (5)

Given two matrices of possibly different dimensions

U1 ∈ U(m) andU2 ∈ U(n), (6)

we obtain
U1

⊕
U2 ∈ U(m+ n). (7)

Note that the number field involved is preserved under both
multiplication and direct sum operations. For example,(

−1 1
1 0

)
and

(√
−1 0
0 1

)
. (8)

Using such methods, we can obtain sufficient unitary matrices,
as presented in Tabs. I and II.

IV. COMPLEXITY IN DIFFERENTIAL EQUATIONS

In this section, we discuss complexity of differential equa-
tion problems from learners’ perspective.

Differential equations are usually taught in linear algebra
courses at senior classes. The types of differential equations
we treat here are:

1) separable
2) homogeneous
3) total, and
4) linear.

Compared with eigenvalue problems, the number of the cal-
culation steps is quite important to evaluate the complexity of
differential equations. This is because a differential equation
includes various types of integration, and also the most tedious
work is to solve integration of the problem. In our framework,
the calculation steps of basic types of integration are prede-
fined. For exanple, in the case of integration of1/ sinx, the
solution includes:

1) multiplying sinx to both the denominator and the
numerator,

2) rewriting the denominator as1− cos2 x,
3) parting the fraction into sum of(1/2){sinx/(1 −

cosx)) + (sinx/(1 + cosx)}, and
4) integrating each separated fraction.

Therefore, the number of the calculation steps is 4 to integrate
1/ sinx. We predefined the numbers of the calculation steps
of basic types of integration. See Tab. III.

TABLE III. NUMBERS OF THE CALCULATION STEPS OF SIMPLE TYPES

OF INTEGRATION

Function Integration Steps∫
adx ax + C 1∫

xadx xa+1

a+1 1∫
x−1dx log x 1∫

dx
1−x2 arcsin x 4∫
dx

1+x2 arctan x 4∫
exdx ex + C 1∫
axdx ax

log a 1∫
log xdx x(log x − 1) 3∫
sin xdx − cos x 1∫
cos xdx sin x 1∫
tan xdx − log cos x 2∫
csc xdx 1

2 log | 1−cos x
1+cos x | 4∫

sec xdx 1
2 log | 1+sin x

1−sin x | 4∫
cot xdx log | sin x| 2∫
sin2 xdx 1

2 (x − sin x cos x) 4∫
cos2 xdx 1

2 (x + sin x cos x) 4∫
tan2 xdx tanx − x 3∫
cot2 xdx − cotx − x 3∫

sin ax sin bxdx
sin(a−b)x
2(a−b)

− sin(a+b)x
2(ab)

6∫
sin ax cos bxdx

cos(a−b)x
2(a−b)

− cos(a+b)x
2(a+b)

6∫
cos ax cos bxdx

sin(a−b)x
2(a−b)

− sin(a+b)x
2(a+b)

6∫
x sin xdx sin x − x cos x 3∫
x cos xdx cos x + x sin x 3∫
x2 sin xdx (2 − x2) cos x + 2 sin x 5∫
x2 cos xdx (x2 − 2) sin x + 2x cos x 5∫

sec2 x tan x 1∫
arcsin xdx

√
1 − x2 + x arcsin x 6∫

arccos xdx −
√
1 − x2 + x arccos x 6∫

arctan xdx x arctan x − 1
2 log (1 + x2) 8

Secondary, the number of the calculation steps of differ-
ential equation were predefined. For example, a homogeneous
differential equation requires such calculation steps as follows.
When a given

dy

dx
= g(x, y) (9)

can be written as
dy

dx
= f(

y

x
), (10)

the differential equation is homogeneous. A homogeneous
differential equation can be solved by change of variables.

y = ux, (11)

whereu = y/x. And then

dy

dx
= u′x+ u. (12)

Given equation can be written as follows.

u′x+ u = f(u) (13)

By separating variablesx andu,∫
du

f(u)− u
=

∫
dx

x
. (14)

The right hand side can be integrated, so we get∫
du

f(u)− u
= log x+ C1, (15)

whereC1 is constant. Where integration of1/(f(u) − u) is
F (u) andC2 is constant,

F (u) = log x+ C2. (16)

TABLE IV. NUMBERS OF THE CALCULATION STEPS OF DIFFERENTIAL

EQUATIONS

Equation Steps
y′ = f(x)g(y) N(

∫ dy
g(y)

) + N(
∫
f(x)dx)

y′ = f(ax + by + c) 8 + N(
∫

du
bf(u)+a

)

y′ = f(y
x) 8 + N(

∫
du

f(u)−u
)

P (x, y)dx

+Q(x, y)dy = 0

3 + N(

∫
P (x, y)dx)

+N(

∫
{Q(x, y)

−
∂

∂y

∫
P (x, y)dx}dy)

Fig. 3. Samples of generated Hermitian matrix

Finally, we reverse the change of variablesu = y/x,

y = H(x), (17)

whereH(x) satisfies the given equation. Therefore, a homo-
geneous type takes at least 8 steps. Except the eight steps,
the number of the calculation steps depends on the steps of
integration of1/(f(u)− u). The complexity of homogeneous
equations can be controlled by restricting the difficulty of
integration of1/(f(u)− u).

Table IV indicates the number of the calculation steps of
differential equations.N(

∫
dy/y) means the number of the

calculation steps of
∫
dy/y.

V. DEMONSTRATION AND DISCUSSION

In this section, we demonstrate automatic generations of
eigenvalue problems for Hermitian matrices and differential
equation problems, and then evaluate the complexity of pro-
duced problems.

A. Demonstration of Eigenvalue Problems

Figure 3 presents the results of ten generated Hermi-
tian matrices. The dimension of each matrix, multiplicity of
eigenvalues, algebraic number field, heighth of numerical
calculation, and numbern of problems is 3, 1,

√
−1, 100, and

10, respectively. The system generatesn problems on demand.
Each matrix

1) has a maximum absolute value of involved rationals
less thanh,

2) has entries that belong to specified number field, and

TABLE V. TIME (SEC) FOR GENERATING PROBLEM1

2 × 2 3 × 3 4 × 4
Q 5.33 17.14 1615.72

Q(
√
2) 702.81 1185.03 768.2

Q(
√
3) 702.00 1324.84 810.72

Q(
√
5) 353.91 1677.19 484.39

Q(
√
7) 320.05 3154.67 1684.18

TABLE VI. TIME (SEC) FOR GENERATING PROBLEM2

2 × 2 3 × 3 4 × 4

Q(
√
−1) 110.61 170.72 1712.11

Q(
√
2,

√
−1) 655.34 2175.56 809.42

Q(
√
3,

√
−1) 599.29 4585.61 924.39

Q(
√
5,

√
−1) 691.75 3439.33 500.33

Q(
√
7,

√
−1) 3543.17 22911.11 1821.26

3) differs from already generated matrices.

In this case, generating ten problems took 4.16 seconds.
The time measurements for generating problems are listed in
Tabs. V and VI. The machine’s specification is as follows.
The adopted software is Worflam Mathematica 9.0 (Windows
8.1, 64 bit, Intel(R) Core i5-4300U CPU 1.9 GHz. The main
memory is 8.0 GB.)

Tests were conducted generating 1,000 problems for each
number field. Generating one problem takes 1.18 seconds on
average. As the tables indicate, generation consumes more time
when the number field is complex because the system needs
to decompose all of the matrix entries to check the maximum
height of the rational numbers.

As a preliminary experiment, we asked 10 CS department
students to solve two sets of problems: one set consists of
the problems with controlled complexity, the other consists of
uncontrolled ones. See Tabs. VII and VIII. On average, the
former case, students required 2 min to calculate eigenvalues
and 6 min to construct a unitary matrix, while for the latter
case students required 6 min to calculate eigenvalues and 7
min to form a unitary matrix. In addition, 4 students could not
reach the answers of the uncontrolled problems at first.

B. Discussion of Eigenvalue Problems

In our experiments, some learners felt excessive difficulty
in calculating characteristic equations to get eigenvalues. The
complexity of calculating eigenvalues can be reduced by
restricting unitary matrices to more tractable ones. In other

TABLE VII. THE NUMBER OF THE STUDENTS BELONG TO EACH TIME

(MIN) FOR SOLVING THE GENERATED PROBLEMS.

Eigenvalues Eigenvectors
1s 1 student 4s 3 students
2s 5 students 5s 5 students
3s 4 students 6s 2 students

TABLE VIII. THE NUMBER OF THE STUDENTS BELONG TO EACH TIME

(MIN) FOR SOLVING THE NON-COMPLEXITY-CONTROLLED PROBLEMS.

Eigenvalues Eigenvectors
5s 1 student 6s 1 students
6s 3 students 7s 4 students
7s 6 students 8s 5 students

Fig. 4. Generation of Hermitian matrices from one unitary matrix by changing
eigenvalues

words, some of predefined unitary matrices are not tractable.
We knew that the unitary matrices which generate good Her-
mitian matrices can be used to generate other good Hermitian
matrices by rechoosing eigenvalues.

Some teachers criticized that irrational numbers such as√
5 and

√
7 look ugly as exercise problems. Therefore we

chose only matrices which includeQ, Q(
√
2) and Q(

√
3).

Finally, we got 174 tractable 3-dimensional unitary matrices
after changing some parameters. These predefined unitary
matrices include other variable number field such asQ(

√
10)

andQ(
√
13) because these unitary matrices often generate nice

looking unitary matrices regardless of including such irrational
numbers.

The number of finally obtained matrices is 174. Although
this number seems smaller than what we obtained in our
previous work, we can still get virtually infinite Hermitian
matrices because of virtually infinite assignments of eigenval-
ues to eigenspaces. See Fig. 4. These Hermitian matrices are
generated by using one unitary matrix by changing a target
diagonal matrix.

Learners also felt excessive difficulty because the number
fields varied from ones that we specified. The number field
varied because of procedure of orthogonalization. Learners
should start orthogonalization of vectors in ascending order of
the norms. When they refer to the generated model answers,
they may learn the importance of the procedure of orthogo-
nalization.

Some parts of the automatic generation system of row-
operations problems, our early work, can be reused in the
generation of eigenvalue problems. Calculation of eigenvectors
involves row-operations.

After this refinement, we conducted a second experiment
in which we asked the same CS students to solve the generated
problems again. See a Tab. IX. Students required 2 min
to calculate eigenvalues and 5 min to construct a unitary
matrix. And also, teachers satisfied the complexity-controlled
problems.

TABLE IX. THE NUMBER OF THE STUDENTS BELONG TO EACH TIME

(MIN) FOR SOLVING THE GENERATED PROBLEMS.

Eigenvalues Eigenvectors
1s 1 student 4s 4 students
2s 5 students 5s 4 students
3s 4 students 6s 2 students

TABLE X. THE NUMBER OF THE STUDENTS BELONG TO EACH TIME

(MIN) FOR SOLVING THE GENERATED EQUATIONS.

Equation 19 Equation 20 Equation 21
Student 1 20s 23s 27s
Student 2 25s 28s 33s
Student 3 15s 18s 19s
Student 4 21s 23s 25s
Student 5 22s 25s 31s

C. Demonstration of differential equations

We show some examples of generation of differential
equations.

Here, we focus on the computational complexity of sepa-
rable differential equations.y′ = (ax + xy + c)2 belongs to
separable equations, whereu = ax+ by + c. The ansewer of
the problem is below.

y =
1

b
{
√

a

b
tan (

√
abx+K)− ax− c}, (18)

where K is constant. Therefore, the valuesa and b are
important for controlling the complexity. For example,

y′ = (x+ y − 3)2, (19)

y′ = (9x+ 4y − 1)2,and (20)

y′ = (3x+ 5y + 3)2, (21)

were generated by our system and the parameters of algebraic
number fild are set as follows. Equation 19 belongs toQ and
has 16 calculation steps. Equation 20 belongs toQ and has 18
calculation steps. Equation 21 belongs toQ(

√
3,
√
5) and has

18 calculation steps.

D. Discussion of Differential Equations

We asked 5 CS students to solve the separable equations
which were Eq.19, Eq.20, and Eq.21. The 5 students knew
how to solve such separable equations likey′ = (ax + by +
c)2 which reqire change of variablesu = ax + by + c, but
the time measurements of their solving each equation were
little different. See Tab. X. They took 20 min for Eq. 19, 23
min for Eq. 20, and 27 min for Eq. 21. They told us that
the problem ofQ(

√
3,
√
5) was so much difficult even though

the number of the calcualtion steps of each problem did not
vary. In other words, the integration of1/(5u2 + 3) confused
the learners to solve Eq. 21. The result shows exsitence of
learners’ perspective complexity which takes them much time
to calcualte aside from the true nature of the problems.

These results demonstrate the validity of our proposed
framework. Large-scale verification experiments will be con-
ducted out with the cooperation of university teachers.

VI. CONCLUSION

Constructing problems with sufficient computational com-
plexity is essential for maintaining learners’ motivation. In
this paper, we presented a new framework for evaluating and
controlling computational complexity of mathematics prob-
lems from the learners’ perspective. In addition, we developed
an automatic generation system for eigenvalue problems and
differential equations based on our framework. The automatic
generation of complexity-controlled eigenvalue problems and
differential equations is one of the sample implementations that
validate our framework. Controlling the complexity of mathe-
matics problems involves restricting the number of calculation
steps, the heights of the involved rationals, and the algebraic
number field appearing in a model solution. In small-scale
preliminary experiments, we could decrease the computational
complexity and answering time.

The system can generate virtually an infinite number of
exercise problems. Our framework helps teachers prepare
learning materials and thereby save time for mentoring stu-
dents.

We expect our technique to be applicable to other subjects
in linear algebra and analysis. Our system paves a path to strict
quantitative control on various aspects of complexity from the
learners’ perspective. Future work will include the application
of the row-operations system to the evaluating the complexity
of a constructing a unitary matrix. And also we will apply
our methods to other areas such as number theory. We also
would like to show that this system has a positive effect on
college-level engineering education. Therefore, demonstration
experiments in classroom will be the next step of our research.

REFERENCES

[1] Wolfram Research (2012), Wolfram Problem Generator,
⟨http://www.wolframalpha.com/problem-generator/⟩, (Access:
2013/4/17).

[2] David Pardue and Ly Nguyen (2007), Davitily Math Problem Generator,
⟨http://www.mathproblemgenerator.com/⟩, (Access: 2013/4/17).

[3] Andrew Maisel (1996), SuperKids Math Worksheet Creator,
⟨http://www.superkids.com/aweb/tools/math/⟩, (Access: 2013/4/17).

[4] LLC (2000), Math Fact Cafe,
⟨http://www.mathfactcafe.com/worksheet/buildit/⟩, (Access: 2013/4/17).

[5] Michael Sipser (1997), Introduction to the Theory of Computation, PWS
PUBLISHING COMPANY.

[6] Wolfram Research (2009), Wolfram Mathematica 9 Documentation,
⟨http://reference.wolfram.com/language/⟩, (Access: 2013/4/20).

[7] Geza Schay (2012), A Concise Introduction to Linear Algebra,
Brikhauser; 2012 edition.

[8] Henry Ricardo (2009), A Modern Introduction to Linear Algebra, Chap-
man and Hall/CRC

[9] Paul J.McCarthy (1996), Algebraic Extensions of Fields, Dover Publica-
tions, Inc., New York.

[10] James.H.Wilkinson, (1988), The Algebraic Eigenvalue Problem (Mono-
graph on Numerical Analysis), Oxford University Press; 1 edition

[11] John William and Scott Cassels (2010), Algebraic Number Theory,
London Mathematical Society

[12] Sandy Kemsley (2000), abc teach,
⟨http://www.abcteach.com/⟩, (Access: 2014/6/21).

[13] Ben Taylor Langton (1999), Quick Math,
⟨http://www.quickmath.com/⟩, (Access: 2014/6/21)

