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Abstract—Data classification is an important problem in 

various scientific fields. Data analysis algorithm such as the fuzzy 

c-means algorithm and k-means algorithm are wildly used on 

multidimensional data but still suffers from several drawbacks. To 

get higher classification accuracy, the Ranking Fuzzy Cluster 

(RFC) algorithm which uses the method Dimension Ranking (DR) 

and a new center moving formula is proposed in this paper. The 

method DR is used to calculate the weight of each instance among 

all the data set in each dimension. The new center moving formula 

which uses the non-gradient descent iterative to avoid the local 

minimum problems of FCM. In the experiment, five benchmark 

data sets are used to test the classification accuracy of RFC. The 

fuzzy c-means algorithm and k-means algorithm are also used in 

the experiment comparison. Experimental result shows that the 

RFC has higher classification accuracy than fuzzy c-means and k-

means with multidimensional data. 

Keywords—Fuzzy Cluster; Multidimensional Data; Dimension 

Ranking;  Cluster Center Moving; 

I.  INTRODUCTION  

Cluster analysis becomes an important problem since apes 
exist. What kind of fruit is able to eat, what kind of animal is 
easy to fight. These may be the first and coarsest cluster analysis. 
Thousands years later, the object of cluster analysis change from 
real objects into abstract data, and the one who makes the 
analysis changes from humans to machines. This reduces the 
accuracy of the classification and also to provide the possibility 
to handle large data.  

Cluster analysis aims at identifying groups of similar objects, 
and helps to discover distribution of patterns and interesting 
correlations in large data sets [1]. The development of clustering 
methodology has been a truly interdisciplinary endeavor. 
Taxonomists, social scientists, psychologists, biologists, 
statisticians, mathematicians, engineers, computer scientists, 
medical researchers, and others who collect and process real data 
have all contributed to clustering methodology [2]. Now cluster 
analysis is widely used in machine learning, pattern recognition, 
image analysis, information retrieval, and bioinformatics [3]. 
Decades ago, the term "k-means" was first used by James 
MacQueen in 1967 [4], though the idea goes back to Hugo 
Steinhaus in 1957 [5]. The standard algorithm was first proposed 
by Stuart Lloyd in 1957 as a technique for pulse-code 
modulation, though it wasn't published outside of Bell Labs until 
1982 [6]. In 1965, E.W.Forgy published essentially the same 
method, which is why it is sometimes referred to as Lloyd-Forgy 

[7]. A more efficient version was proposed and published in 
Fortran by Hartigan and Wong in 1975/1979 [8][9]. 

In fuzzy clustering (also called soft clustering), different with 
hard clustering, each element belong to every cluster center and 
a membership level is used to tell the correlation between them. 
These indicate the strength of the association between that data 
element and a particular cluster. Fuzzy clustering is a process of 
assigning these membership levels, and then using them to 
assign data elements to one or more clusters. Fuzzy C-Means 
(FCM) is one of the most widely used fuzzy cluster analysis 
algorithm, it still suffers from several drawbacks, like being very 
sensitive to noise data, great affected by initial value and so on. 
With the advances of technology, it was found that links between 
the data is not absolute. In fuzzy clustering, every point has a 
degree of belonging to clusters, as in fuzzy logic, rather than 
belonging to just one cluster. Thus, points on the edge of a 
cluster, may be in the cluster to a lesser degree than points in the 
center of cluster. An overview and comparison of different fuzzy 
clustering algorithms is available [10]. 

II. RELATED WORK 

A. K-means Algorithm 

K-means clustering is a method of vector quantization, 
originally from signal processing, that is popular for cluster 
analysis in data mining. K-means clustering partitions a data set 
by minimizing a sum-of-squares cost function. A coordinate 
descend method is then used to find local minima [11]. 

The problem is computationally difficult (NP-hard) [12]; 
however, there are efficient heuristic algorithms that are 
commonly employed and converge quickly to a local optimum. 
These are usually similar to the expectation-maximization 
algorithm for mixtures of Gaussian distributions via an iterative 
refinement approach employed by both algorithms. Additionally, 
they both use cluster centers to model the data; however, k-
means clustering tends to find clusters of comparable spatial 
extent, while the expectation-maximization mechanism allows 
clusters to have different shapes. 

K-means clustering has been used as feature learning (or 
dictionary learning) step, in either (semi-)supervised learning or 
unsupervised learning [13]. The basic approach is first to train a 
k-means clustering representation, using the input training data 
(which need not be labelled). Then, to project any input datum 
into the new feature space, we have a choice of "encoding" 



 

functions, but we can use for example the threshold matrix-
product of the datum with the centroid locations, the distance 
from the datum to each centroid, or simply an indicator function 
for the nearest centroid [14], or some smooth transformation of 
the distance [15]. Alternatively, by transforming the sample-
cluster distance through a Gaussian RBF, one effectively obtains 
the hidden layer of a radial basis function network [16]. 

B. Fuzzy C-means 

Fuzzy C-Means (FCM) is an unsupervised clustering 
algorithm has a long history. FCM clustering algorithm 
proposed by Dunn [17] and then extended by Bezdek [18]. FCM 
attempts to find the most characteristic point in each cluster, 
which can be considered as the “centroid” of the cluster and, 
then, the grade of membership for each object in the clusters. 
Such aim is achieved by minimizing the objective function. A 
commonly used objective function is membership weighted 
within cluster error defined as follow: 

        Minimize 𝐽𝑚(𝑈, 𝑉) = ∑ ∑ 𝑢𝑖𝑗
𝑚 ∗ ||𝑥𝑗 − 𝑣𝑖||
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where n is the total number of instances in a given data set and 
c is the number of clusters; X = {x1, x2,...,xn} ⊂ Rs and V = 
{v1,...,vc} ⊂ Rs are the feature data and cluster centroids; and U 
= [uij]c×n is a fuzzy partition matrix composed of the 
membership grade of pattern xj to each cluster i. ||xj − vi|| is the 
Euclidean norm between xj and vi. The weighting exponent m is 
called the fuzzifier which can have influence on the clustering 
performance of FCM. Good choice of m makes the calculating 
accurate and fast. The cluster centroids and the respective 
membership functions that solve the constrained optimization 
problem in (1) are given by the following equations: 

v𝑖 =
∑ (𝑢𝑖𝑗)𝑚 ∗ 𝑥𝑗

𝑛
𝑗=1

∑ (𝑢𝑖𝑗)𝑚𝑛
𝑗=1

                                    (2) 
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Equation (2) and (3) constitute an iterative optimization 

procedure. The goal is to iteratively improve a sequence of sets 

of fuzzy clusters until no further improvement in Jm(U, V) is 

possible. 

FCM is an efficient and accurate algorithm but still suffers 

from several drawbacks [19]. It is very sensitive to noise data 

and the initial value of cluster centers. Yang points out that the 

objective function is a non-linear multimodal function with a 

number of local minima. There is a possibility of getting stuck 

at local minima [20].  

III. PROPOSAL OF RANKING FUZZY CLUSTER 

ALGORITHM 

The Ranking Fuzzy Cluster Algorithm (RFC) is proposed in 
this section. The RFC is an unsupervised clustering algorithm 
which aims at finding the center of each cluster. The optimal 
solution of center makes instances in same class gathered close 
and instances in different classes are spares. Numerical speaking, 

RFC try to find the best cluster centers which make the objective 
function achieve its minimum. The objective function J(U, V) 
defined as follows [18]:  

    𝐽(𝑈, 𝑉) = ∑ ∑ 𝑢𝑖𝑗
𝑚 ∗ ||𝑥𝑗 − 𝑣𝑖||

2                    (4)
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where n is the number of instances in a given data set and c is 
the number of cluster; X = {x1, x2,...,xn} and V = {v1,...,vc}  are 
the feature data and cluster centers; and U = [uij]c×n is a fuzzy 
partition matrix composed of the membership grade of pattern xj 
to each cluster i. ||xj − vi|| is the Euclidean norm between xj and 
vi. The weighting exponent m is called the fuzzifier which can 
have influence on the clustering accuracy. 

A. Dimension Ranking 

As the objective function stands for the summation of 
distance between instances and cluster centers, it will be 
affected by the value of instances. Each instance has several 
dimensions in multidimensional data. When one or some 
dimensions’ absolute value is much bigger than others, its 
influence on the objective function will be greater than the other 
dimensions. To solve this problem, the method Dimension 
Ranking (DR) is proposed by RFC to calculate the weight of 
each instance among all the data set in each dimension. The DR 
is defined in this paper as follows: 

   𝐷𝑅(𝑖, 𝑗) = (
𝐷(𝑖, 𝑗) − 𝑄(𝑗)

𝑃(𝑗) − 𝑄(𝑗)
)

𝑚−1

  𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑓]      (5) 

 

where n is the number of instances and f is the number of 
attributes, D is the given data set, Array P= {P1, P2,...,Pf} and 
Q= {Q1, Q2,...,Qf} is the maximum and minimum values of 
instance’s each feature, m is the weighted index and suitable 
choices of m can make the calculation more precise. On the basis 
of keeping the characteristic of original data, DR translates all 
data into a scaled number between 0 and 1.  

B. Initial Cluster Centers 

Cluster centers will be output as a result of clustering 
algorithm. Optimal centers make the objective function achieve 
the minimum value. Different with FCM setting the initial 
cluster centers randomly, RFC average divide 1 into c pieces, 
sets the centroids as the center. The amount of calculation can 
be reduced while starting calculating from the specified cluster 
centers. The initial center setting formula is defined in this paper 
as follows: 

     𝑉(𝑖, 𝑗) =
2𝑖 − 1

2𝑐
        𝑖 ∈ [1, 𝑐], 𝑗 ∈ [1, 𝑓]                 (6) 

 
where c is the number of clusters and f is the number of attributes 
of each instance. Each feature of initial centers has the same 
value. Average designated cluster centers can simplify the 
calculation and makes the algorithm more stable. For the 
average distribution of data, this setting enables fast and accurate 
classification.  



 

C. Membership Matrix U 

 The membership matrix U describes the membership of each 
instance corresponding to each cluster center. The U is 
calculated as follows [18]: 

𝐾(𝑗, 𝑖) =
1

||𝑥𝑖 − 𝑣𝑗||
         𝑖 ∈ [1, 𝑛]                      (7) 

 

  𝑈(𝑗, 𝑖) =
𝐾(𝑗,𝑖)

∑ 𝐾(𝑗,𝑖)𝑐
𝑗=1

        𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑐]            (8)   

 
where n is the number of instances in the given data set and c is 
the number of clusters, DR = {x1, x2,...,xn} and V = {v1,...,vc}  are 
the feature data and cluster centers, ||xi – vj|| is the Euclidean 
norm between xj and vi. The matrix K is the reciprocal of the 
distance from instance to each cluster center. Equation (9) is a 
normalized translation. It makes the summation of one 
instance’s membership to all cluster centers is 1. 

D. Center Moving Formula 

The new cluster center is the summation of the old cluster 
center and walking distance. The walking distance is calculated 
by the DR, U and old cluster.  The center moving formula is 
defined in this paper as follows: 

Δ𝑣𝑗 =
∑ (

𝑥𝑖 − 𝑣𝑗

2
) ∗ 𝑈𝑖𝑗

𝑚𝑛
𝑖=1

𝑛
      𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑐]       (9) 

 

 𝑁𝑒𝑤 𝑣𝑗 = 𝑣𝑗 + 𝛥𝑣𝑗               𝑗 ∈ [1, 𝑐]              (10) 

 
where n is the number of instances in the given data set and c is 
the number of clusters, Δvj is the moving distance, DR = {x1, 
x2,...,xn} and V = {v1,...,vc}  are the feature data and cluster 
centers, the weighting exponent m is called the fuzzifier which 
can have influence on the clustering accuracy. This formula aims 
at reducing the value of the objective function by center moving. 
It is shown in (5) that the distance from high value instance to 
center has higher influence to the objective function. The center 
moves more to instances has higher membership and all 
instances are considered in each movement in (9). This formula 
aims at reducing the distance between centers and instances 
according to the membership between them. 

E. Process of RFC 

The RFC algorithm is executed in the following steps: 

Step 1: Given a pre-selected number of cluster c, a chosen 

value of m, a certain threshold , the maximum number of 

iterations k, a data set which has n instances and f dimension for 

each instance. 

Step 2: Calculate the DR using (5), the initial fuzzy cluster 

center V = {v1,...,vc} using (6), the initial fuzzy membership U 

= [uij]c×n using (7) and (8), initial value of J(U, V) using (4) . 

Step 3: Calculating the new center using (9) and (10).  

Step 4: Update the fuzzy membership U using (7) and (8). 

Recording the value of J(U, V). 

Step 5: If the improvement in J(U, V) is less than  or 

iterations is over k, then halt and output the final cluster centers; 

otherwise go to step 3. 

TABLE I.  EVALUATION TEST  ENVIRONMENT 

OS Windows 7 

Processor Intel® Core™ i7 

Memory 16G 

System type Microsoft Corporation 

Tool MATLAB R2015a, Python 2.7 

 

TABLE II.  BENCHMARK DATA SET DESCRIPTION 

Data Set Name Instances Dimension 
Cluster  

Number 
Type 

Iris 150 4 3 Life 

Wine 178 13 3 Physical 

Seeds  210 7 3 Life 

Lung Cancer 27 56 3 Life 

Contraceptive 
Method Choice 

1473 9 3 Life 

 

IV. EXPERIMENT 

A. Experimental Method 

Five benchmark data base, Iris, Wine, Seeds, Lung Cancer, 

Contraceptive Method Choice, are used in the experiment in 

order to verify the accuracy of classification of RFC. 

Comparative experiment is done by the Fuzzy C-Means (FCM) 

algorithm and K-means algorithm. All benchmark data sets are 

from the University of California, Irvine Machine Learning 

Repository. 

Value for each parameter: threshold =10-5; the maximum 

number of iterations k=100 and weighting exponent m=2. The 

test environment is shown in Table I. The description of all data 

sets is shown in Table II. 

B. Experimental Results 

FCM and K-means algorithm have a same correct rate at 

89.33% when facing data set Iris. The RFC gives a better 

accuracy at 92.67% at Iris. FCM and K-means give the correct 

rate at 68.54% and 56.74% when facing data set wine, RFC 

gives a 72.46% correct rate. Three fuzzy cluster algorithms give 

the same accuracy at 89.52% when facing the data base Seeds. 

FCM and K-means gives similar result, accuracy at 62.96% and 

59.25%, when facing data set Lung Cancer. RFC has 48.15% 

correct rate dealing with Lung Cancer. FCM and K-means have 

a correct rate at 39.17% and 39.37% when facing the last data 

set in this experiment, Contraceptive Method Choice. RFC has 

the higher correct rate at 40.80% when facing the Contraceptive 

Method Choice. 

Specially, to the data set Seeds, RFC can give 189 instances 

correct classification in all 210 instances after 122 iterations. 

The max iterations number in this experiment is 100. All results 

of the experiment are shown in Table III. 



 

TABLE III.  EXPERIMENTAL RESULT 

 
Accuracy of   

K-means  

Accuracy  of 

FCM  

Accuracy   of 

RFC  

Iris 134/150 134/150 139/150 

Wine 101/178 122/178 129/178 

Seeds 188/210 188/210 188/210 

Lung Cancer 16/27 17/27 13/27 

Contraceptive 
Method Choice 

580/1473 577/1473 601/1473 

 

C. Discussion 

 The result of experiment shows that RFC has higher 
classification accuracy than FCM and k-means when facing data 
set Iris, Wine and Contraceptive Method Choice. This is because 
the center calculating formula of FCM only considers about the 
instance and membership, but the center moving formula of RFC 
also considers about the distance from centers to all instances. 
This formula reduce the distance between centers and instances 
according to the membership between them. Different with 
FCM using the gradient descent, the center moving formula of 
RFC considers the influences of all instances while calculating. 
This makes the RFC has higher classification accuracy than 
FCM and k-means when facing data set Iris, Wine and 
Contraceptive Method Choice. 

 These three algorithms have same classification accuracy at 
89.52% when facing the data set Seeds. This means the three 
kinds of algorithm are all very suitable at this data set. Specially, 
RFC gets the 188 instances right in all 210 instances after 100 
iterations and it can improve the number to 189 after the 122 
iterations. This shows that the center moving formula can make 
the objective function reach the minimum value and the 
calculating speed can be improved in future work.  

 To the data set Lung Cancer, RFC gives lower classification 
accuracy than FCM and k-means. This is because this data set 
has missing value. Five instances with missing value are deleted 
from the data set, this leads the low classification accuracy of 
RFC. The center moving formula of RFC considers the distance 
from all instances to cluster centers, which means RFC may 
affected by missing value very much. How to reduce the impact 
of missing value is one of the future points.  

V. CONCLUSION 

 In this thesis, we have proposed a Ranking Fuzzy Cluster 
(RFC) algorithm which uses the method Dimension Ranking 
(DR) and a new center moving formula. Five benchmark data 
sets are used in experiment in order to verify the accuracy of 
classification of RFC. Specially, Fuzzy c-means (FCM) 
algorithm and k-means algorithm are also used in the experiment 
as comparison. The experiment result shows that RFC can give 
higher accuracy of classification than FCM and k-means when 
facing multidimensional data. 
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