
A Systematic Inspection Approach to Verifying
and Validating Formal Specifications based on
Specification Animation and Traceability

著者 李 漠
出版者 法政大学大学院情報科学研究科
雑誌名 法政大学大学院紀要. 情報科学研究科編
巻 11
ページ 1-13
発行年 2015-09-15
URL http://hdl.handle.net/10114/12202

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hosei University Repository

https://core.ac.uk/display/223199763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

―――――――――――――――――――――

博士学位論文

論文内容の要旨および審査結果の要旨

―――――――――――――――――――――

論文題目 A Systematic Inspection Approach to Verifying and Validating Formal

Specifications based on Specification Animation and Traceability

氏 名 李 漠

学位の種類 博士（理学）

学位授与年月日 2015年 9月 15日

学位授与の条件 法政大学学位規則第 5条第 1項第 1号該当者（甲）

論文審査委員 主 査 小池 誠彦 教授

 副 査 劉 少英 教授

 副 査 雪田 修一 教授

 副 査 藤田 悟 教授

A Systematic Inspection Approach to Verifying and
Validating Formal Specifications based on
Specification Animation and Traceability

Mo Li
Graduate School of Computer and Information Sciences

Hosei University
Email: mo.li.3e@stu.hosei.ac.jp

Abstract—Writing formal specifications has been suggested to
be effective in helping developers understand user’s requirements
and in enhancing the quality of the requirements documentation.
However, like the other activities in software development, the
construction of formal specifications is usually error-prone in
practice. In order to effectively detect the defects in the formal
specification, in this paper, we propose a novel and practical
inspection approach for specification verification and validation.
In this approach, an animation method is adopted as a reading
technique to guide the reviewer to read the specification. It
dynamically presents the specification to the inspector by means
of “executing” it in a step-by-step manner. In each step of
the animation, the inspector is required to check a group of
formal specification items related to the “execution” based on
a traceability-based checklist.The traceability is presented by
relations between the formal specification items and their original
requirements described in the informal specification, which is
used to document the user’s requirements using a structured
natural language. In the checklist, the relations are used to
raise specific questions to examine each formal specification
item to check the consistency between the informal and formal
specifications. A prototype supporting tool it built to support
specifications construction and the inspection process. An exper-
iment is conducted to evaluate the performance of our inspection
approach, and the experiment results indicate that our inspection
approach can help inspector find more bugs than the traditional
checklist-based animation, especially the bugs that affect the
consistency between the informal and formal specifications due
to the usage of traceability-based checklist.

I. INTRODUCTION

The role of requirement analysis in assuring the quality of
software products has been well recognized and writing formal
specifications has been suggested to be effective in helping
developers understand user’s requirements and in enhancing
the quality of the requirements documentation. By using
mathematically-based formal notations, formal specifications
can precisely define the user’s requirements. However, like the
other activities in software development, the construction of
formal specifications is usually error-prone in practice. There-
fore, detecting errors contained in the formal specifications
before it is delivered for implementation is very important.

Many techniques have been studied to verify and validate
formal specification. For example, formal proof [1], model
checking [2], and conventional inspection [3]. But these tech-
niques face different challenges. The formal proof requires
its user must be sophisticated and have strong mathematically

background. Since the proof process is usually complex and
time consuming, formal proof is too difficult to be used in
practice. The well-known weakness of model checking is the
state explosion problem, which is caused by the infinite state
space of the target system [4]. The conventional inspection
lacks detailed reading techniques to guide inspector reading
through the specification.

In this paper, we propose a novel and practical inspection
approach for potentially effectively verifying and validating
formal specifications. The essential idea of this approach is
first introduced in [5]. The approach consists a specification
animation-based reading technique and a traceability-based
checklist. The animation method dynamically presents the
operational behaviors of the formal specification by means
of “executing” corresponding system scenarios. Each system
scenario represents an independent operational behavior and
is presented as a sequence of processes. In the “execution” of
a system scenario, each processes involved is “executed” in
a step-by-step manner. The inspector read through the formal
specification by following the animation process, in each step,
he is required to checks a specific process and related formal
specification items against the informal specification based
on a traceability-based checklist. The informal specification
documents the user’s requirements using a structured natural
language and it is the foundation for building formal specifi-
cations. The traceability is presented by the relations between
the requirement items in the informal specification and their
corresponding formalizations in the formal specification. In
the checklist, the relations are used to raise specific questions
to examine each formal specification item for checking the
consistency between informal and formal specifications.

In order to evaluate the performance of our inspection
approach, an experiment is conducted to compare our inspec-
tion approach with the traditional checklist-based inspection
method. The experiment results indicate that our inspection
approach can help inspector find more bugs than the traditional
checklist-based animation, especially the bugs that affect the
consistency between the informal and formal specifications
due to the usage of traceability-based checklist.

The inspection approach presented in this paper has a
general applicability to any of the model-based (or state-based)
formal notations, such as SOFL (Structured Object-oriented

Formal Language) [6], VDM, or Z, but we choose SOFL as the
formal notation for discussions, partly because of our expertise
in SOFL and partly because of the fact that SOFL provides a
practical three-step modelling approach by which an informal
requirements specification can be gradually evolved into a
formal specification and allows trace links to be built between
the specifications.

The rest of the paper is organized as follows. The structure
of SOFL infomal and formal specifications is introduced in
Section II. The system scenario-based animation method is
explained in Section III. Section IV illustrates the traceability
between specifications. Section V discusses the procedure of
specification inspection and a case study is given. Section VI
presents a tool for supporting our inspection approach, and an
experiment is reported in Section VII for evaluation purpose.
Section VIII concludes the paper.

II. STRUCTURE OF SPECIFICATIONS

Since the structure of SOFL informal and formal spec-
ifications is the foundation for performing animation and
building trace links, we briefly introduce the structure of the
specifications in this section.

A. Informal Specification

The major task of building informal specification is to dis-
cover and collect all desired requirements from user. In SOFL
modelling approach, a informal specification is written in a
structured natural language. As shown in Fig. 1, the informal
specification briefly describes three aspects of requirements,
which include functions, data resources, and constraints. The
functions describe the functionality that should be provided
by the system; the data resources supply necessary data to
the functions; and the constraints restrict the functions or
data resources from different aspects. The relations between
requirement items are indicated at the end of the data resource
or constraint descriptions. For example, the only data resource
D2.1 will be access or update by function F1.1.2, F1.1.4,
F1.2.2, and F1.2.3 as shown in Fig. 1.

B. Formal Specification

A SOFL formal specification is constructed by formalizing
all the requirements described in the informal specification.
Related requirements are grouped into a structure called
module. Each module may contain constant declarations, type
declarations, state variable declarations, invariant definitions,
and a collection of process specifications, as shown in Fig. 2.
Technically, each desired function in the informal specifica-
tion should be realized by a process specification; each data
resource should be represented by a state variable; and each
constraint is mapped to either part of a process specification
or to an invariant, which is a property that must be sustained
throughout the entire specification.

For each module, there is an associated formal graphical
notation called Condition Data Flow Diagram (CDFD). The
CDFD uses visual notation to express the relation between
different processes included in the module specification. A

Fig. 1. A sample of SOFL informal specification

process in a CDFD is treated as a transition and a data
flow as a token. When all the input data flows of a process
become available, the process will be enabled and executed.
The relation between a process and a data store in CDFD
is consistent with the relation between the process and the
corresponding state variable in the module. The CDFD is
designed especially for presenting the the architecture of the
module. Fig. 3 shows the associated CDFD of the module in
Fig. 2.

III. ANIMATION

The animation method adopted in our inspection approach
is called system functional scenario-based animation method
(SFSBAM) [7]. The animation method dynamically presents
the operational behaviors of the formal specification by means
of “executing” corresponding system scenarios. A system sce-
nario represents an independent operational behavior and can
be formally defined as a sequence of processes or graphically
presented as a data flow path in the CDFD. The formal
definition of a system scenario is as follows:

Definition 1: A system functional scenario, or system sce-
nario for short, is a sequence of processes di[P1, P2, ..., Pn]do,
where di and do are the sets of input and output variables
respectively, and each Pi is a process.

Based on the above definition, the CDFD shown in Fig. 3
contains the following five system scenarios:

• {withdraw com}[Receive Command, Check Password, Withdraw]{cash}

• {withdraw com}[Receive Command, Check Password, Withdraw]{err2}

• {withdraw com}[Receive Command, Check Password]{err1}

• {balance com}[Receive Command, Check Password]{err1}

• {balance com}[Receive Command, Check Password, Show Balance]{balance}

An algorithm has been proposed to automatically generate
system scenarios based on the topology of the CDFD to
facilitate the inspector. The algorithm is first implement in

Fig. 2. A sample of SOFL informal specification

[8] and has been integrated to the supporting tool introduced
in Section VI.

In the “execution” of a system scenario, each processes
involved is “executed” in a step-by-step manner. By “execu-
tion”, we mean a dynamic demonstration of what input values
are used to lead to what output values. To perform such an
animation, we need both input and output values.

The input and output values for an animation are known
as test case and expected result, respectively, throughout this
paper. A test case and the corresponding expected result
together are called a test suite . Since the purpose of animation
in our approach is to serve as a reading technique to facilitate
inspection of the scenario against the corresponding informal
requirement, a test suite should be generated based on the
informal requirements specification. Furthermore, due to the
fact that the judgement on whether errors are found during
the process of animation-based inspection usually needs to be
made by both the designer and the user through comparing the
animation result to the informal requirements, the test suite

Fig. 3. The CDFD associated with the module “SYSTEM ATM”

should usually be made by both the designer and the user in
collaboration. In the animation, the collected test suite is used
to replace the corresponding input and output variables in the
pre- and post-conditions to automatically check whether the
pre- and post-conditions of the process can be satisfied. Only
the test suite that satisfies the pre- and post conditions is used
for dynamic demonstration.

Note that when a process is “executed” in the animation of a
specific system scenario, only one of the operation functional
scenarios defined in the process is involved in the “execution”.

An operation functional scenario of a process defines an
independent relation between its input and output under a
certain condition. Let P (Piv , Pov)[Ppre, Ppost] denote the
process specification of a process P , where Piv and Pov are the
sets of all input and output variables, and Ppre and Ppost are
the pre and post-condition, respectively. Then, the operation
functional scenario is defined as follows.

Definition 2: Let Ppost ≡ (C1∧D1)∨(C2∧D2)∨...∨(Cn∧
Dn), where each Ci is a predicate called a “guard condition”
that contains no output variable in Pov and ∀i,j∈{1,...,n} ·i 6=
j ⇒ Ci∧Cj = false; Di a “defining condition” that contains
at least one output variable in Pov but no guard condition.
Then, a process can be expressed as a disjunction (∼Ppre ∧
C1 ∧D1)∨ (∼Ppre ∧C2 ∧D2)∨ ...∨ (∼Ppre ∧Cn ∧Dn). A
conjunction ∼Ppre∧Ci∧Di is called an operation functional
scenario, or operation scenario for short.

We use ∼x and x to represent the value of state variable
x before and after the process respectively, and ∼Ppre =
Ppre[∼x/x] denotes the predicate resulting from substituting
the initial state ∼x for the final state x in pre-condition Ppre.

For example, the process “Check Password” defined in the
formal specification shown in Fig. 2 contains the following
three operation scenarios:

1) true and exists![x: Account file] | (x.id = id and
x.password = pass and sel = true and acc1 = x)

2) true and exists![x: Account file] | (x.id = id and
x.password = pass and sel = false and acc2 = x)

3) true and not(exists![x: Account file] | (x.id = id and
x.password = pass)) and err1 = “Reenter your password
or insert the correct card”

Fig. 4. The abstract procedure of formal specification inspection

If the system scenario {withdraw comm} [Receive Com-
mand, Check Password, Withdraw] {cash} is “executed”,
the operation scenario involved in the “execution” of process
“Check Password” is the first one of the three operation
scenarios listed above. The test suite used to dynamically
present the “execution” of process “Check Password” must
satisfy this operation scenario.

As mentioned previously, the system scenario-based anima-
tion method is adopt as a reading technique in our inspection
approach. The inspector read through the formal specification
by following the animation process, in each step, he is required
to checks a specific process, namely a specific operation
scenario, and related formal specification items against the
informal specification based on a traceability-based checklist.

Fig. 4 illustrate the inspection process of using system
scenario-based animation as a reading technique. The CDFD
with the same structure of the CDFD shown in Fig. 3 is
first divided in to five system scenarios. By following the
“execution” procedure in the animation, the processes involved
are usually inspected in turn. The context of the figure indi-
cates that the first system scenario “SS1” is under inspected.
Three processes are involved in this system scenario. By
following the animation process, the first process in the system
scenario is inspected in “Step 1”. Inspector checks the formal
specification items involved the current process by answering

the questions on a related checklist. After the inspection of
the first process, the second process in system scenario “SS1”
is inspected in “Step 2”. The system scenario “SS2” will be
inspected after the inspection “SS1” is finished and then other
system scenarios.

The checklist used in our inspection approach is traceability-
based checklist, which will be introduced in the following
sections.

IV. TRACEABILITY BETWEEN INFORMAL AND FORMAL
SPECIFICATION

The traceability between informal and formal specifications
is presented by the relations between the requirement items in
the informal specification and their corresponding formaliza-
tions in the formal specification. In order to formally defined
the relation, the categories of the requirement items and formal
specification items should be formally defined first.

A. Requirement Item

The requirement items described in the informal specifica-
tion can be divided into two categories. The first category is
called “explicit requirements” which contains the requirements
defined explicitly in the informal specification. The three types
of explicit requirements include functions, data resources, and
constraints.

Definition 3: Let SI = (FI , DI , CI) denote an informal
specification, where FI is the set of all function items, DI

is the set of all data resource items, and CI is the set of all
constraint items. Then the explicit requirements are defined as
follows, where “RQ” stands for “requirement”.

RQ1 = FI

RQ2 = DI

RQ3 = CI

The other category is the “implicit requirements” which
described by the relations between explicit requirements. For
instance, consider the two items: function F1.1.2 and data
resource D2.1 in the informal specification shown in Figure
1. The relationship between F1.1.2 and D2.1 is that function
F1.1.2 uses data item D2.1. The similar relationship also
exists between function F1.2.2 and data item D2.1. Such
relationships should also be considered as requirements and
should be realized properly in the formal specification. Three
types of implicit requirements are included in the informal
specification, and they are formally defined as follows:

Definition 4: Let the following three functions present the
relations between different explicit requirements

usingD : DI → power(FI)

applyingtoD : CI → power(DI)

applyingtoF : CI → power(FI)

Then, the three types of the implicit requirements are defined
as follow:

RQ4 = {(d, f) | d ∈ DI ∧ f ∈ FI ∧ f ∈ usingD(d)}
RQ5 = {(c, d) | c ∈ CI ∧ d ∈ DI ∧ d ∈ applyingtoD(c)}
RQ6 = {(c, f) | c ∈ CI ∧ f ∈ FI ∧ f ∈ applyingtoF (c)}

B. Inspection Target

As introduced previously, in each step of the animation, the
inspector is required to check a specific operation scenario and
related formal specification items. In our inspection approach,
each formal specification item that needs to be inspected is
called an inspection target. The inspection targets of a formal
specification are divided into two classes. The first class is the
formal specification items defined explicitly, including opera-
tion scenario, state variable, type declaration, and invariant.
The second class is the dependence relations between the
formal specification items. Since different explicitly defined
items are working together to present the user’s requirements,
the dependence relations should also be inspected for their
validity.

Definition 5: Let SF = (M1,M2, ...,Mn) denote a formal
specification, where each Mi(i ∈ {1, 2, ..., n}) is a module
defined in the specification.

Definition 6: Let M = (TM , VM , IM , OSM) be a module
in the formal specification SF , where TM , VM , IM , OSM

are the set of all type declarations, state variable declarations,
invariants, operation scenarios, respectively.

Note that in above definition, the module contains the set
of all operation scenarios derived from the processes in the
module rather than the processes and the associated system
scenarios themselves. This is because the operation scenario
is the basic unit in the specification inspection, and both

the process and system scenario can be transformed to a
conjunction or disjunction of operation scenarios.

Definition 7: Let OSF =
n⋃

i=1

Mi.OSM be the set of all

operation scenarios defined in the entire formal specification,
TF =

n⋃
i=1

Mi.TM , VF =
n⋃

i=1

Mi.VM be the set of all type and

state variable declarations respectively, and IF =
n⋃

i=1

Mi.IM

be the set of all invariants. Then the four kinds of inspection
targets belonging to the first class are defined below, where
“IT” stands for “inspection target”.

IT1 = OSF

IT2 = VF

IT3 = TF

IT4 = IF
The second class of inspection target is dependency relation.

Inspecting dependency relations aims to check whether formal
specification items are used appropriately according to the
requirements. The inspection targets that are presented by
dependency relations in the formal specification are formally
defined as follows

Definition 8: Let the following three functions present the
dependency relations.

usingV : VF → power(OSF)

typeofV : VF → TF

typeofOS : OSF → power(TF)

applyingtoV : IF → power(VF)

applyingtoOS : IF → power(OSF)

Then the three kinds of inspection targets corresponding to the
dependency relations are defined as:

IT5 = {(v, os) | v ∈ VF ∧ os ∈ OSF ∧ os ∈ usingV (v)}
IT6 = {(v, t) | v ∈ VF ∧ t ∈ TF ∧ t = typeofV (v)}
IT7 = {(os, t) | os ∈ OSF ∧ t ∈ TF ∧ t ∈ typeofOS(os)}
IT8 = {(i, v) | i ∈ IF ∧ v ∈ VF ∧ v ∈ applyingtoV (i)}
IT9 = {(i, os) | i ∈ IF ∧ os ∈ OSF ∧ os ∈ applyingtoOS(i)}

C. Construction of Traceability

A trace link is the connection between a inspection targets
in the formal specification and its original requirement in the
informal specification. The trace links in Table. 1 formally
define the traceability between informal and formal specifica-
tions, which is first proposed in [9].

The traceability rule link1 in the first row of Table. 1
formally describes the trace links between operation scenarios
and functions. In this definition, power(RQ1) means the
power set of RQ1. It indicates that an operation scenario can
realize one function, the combination of several functions, or
a part of one function.

Another type of explicit requirements is data resource,
which is usually realized by a state variable in the formal
specification. In our inspection approach, a pair of state vari-
able and its type will be inspected against the data resource.
The rule link2 in Table. 1 represents the trace link from a pair
of state variable and its type to a data resource.

The third type of explicit requirement is constraint. In
practice, a constraint is realized either by an invariant or by

TABLE 1
TRACEABILITY RULES BETWEEN INSPECTION TARGETS AND REQUIREMENT ITEMS

ID Review Target(Description) Requirement(Description) Definition

link1 IT1(operation scenario) RQ1(function) link1 : IT1 → power(RQ1)

link2 IT6((state variable, type)) RQ2(data resource) link2 : IT6 → RQ2

link3 IT4(invariant) RQ3(constraint) link3 : IT4 → RQ3

link4 IT1(operation scenario) RQ3(constraint) link4 : IT1 → RQ3

link5 IT5((state variable, operation scenario)) RQ4((data resource, function)) link5 : IT5 → RQ4

link6 IT8((invariant, state variable)) RQ5((constraint, data resource)) link6 : IT8 → RQ5

link7 IT9((invariant, operation scenario)) RQ6((constraint, function)) link7 : IT9 → RQ6

part of a process. The invariants usually realize the constraints
used to restrict data resources, and the constraints for functions
are generally realized as a part of process. The rules link3 and
link4 in Table. 1 define the trace links from an invariant or
operation scenario to the corresponding constraint.

The three types of implicit requirements are described as the
relations between different explicit requirements. Similarly, the
implicit requirements are realized in the formal specification
as dependence relations. The traceability rules link4, link5,
and link6 in Table. 1 describe the trace links from different
dependence relations to corresponding implicit requirements.

V. FORMAL SPECIFICATION INSPECTION

To inspect a formal specification, the inspector should
examine each inspection from four aspects: necessity, appro-
priateness, correctness, and completeness.

A. Necessity

Checking the necessity property aims to ensure that no
declared type identifier, state variable, or invariant is not used
in the process specifications of each module.

B. Appropriateness

Appropriateness requires that the inspection targets realize
the original requirements in an appropriate manner. Since the
appropriateness of some kinds of inspection targets cannot
be formally defined, examining whether they are appropriate
highly depends on human judgement. For example, the state
variable “Account file” is defined in the formal specification
in Fig. 2 with a type “set of Account”. This state variable
and its type realize the data resource D2.1 described in the
informal specification in Fig. 1. To check the appropriateness
of the inspection target “(Account file, set of Account)”, the
inspector needs to answer some questions, such as “ Whether
the name of the state variable represents the essence of the
data resource?” and “Whether the type of the state variable is
appropriate for the data resource?”.

Below are some appropriateness-related properties that can
be formally defined.

Property 1: If the dependency relation of RT5 is appropri-
ate, the following predicate must hold:

∀v∈VF ,os∈OSF ,d∈DI ,f∈FI ·(d, f) = link5((v, os))⇒
∃t∈TF ·(t = typeofV (v) ∧ d = link2((v, t)))∧

f ∈ link1(os) ∧ os ∈ usingV (v) ∧ f ∈ usingD(d)

The property states that if there is a trace link linking review
target “(v, os)” to requirement “(d, f)”, the state variable “v”
must realize data resource “d” and the operation scenario “os”
must realize function “f ”. Similarly, the dependency relations
of review targets RT9 and RT10 should satisfy the following
two properties.

Property 2: If the dependency relation of RT9 is appropri-
ate, the following predicate must hold:

∀i∈IF ,v∈VF ,c∈CI ,d∈DI ·(c, d) = link6((i, v))⇒
c ∈ link3(i) ∧ ∃t∈TF ·(t = typeofV (v) ∧ d = link2((v, t)))∧

v ∈ applyingtoV (i) ∧ d ∈ applyingtoD(c)

Property 3: If the dependency relation of RT10 is appro-
priate, the following condition must hold:
∀i∈IF ,os∈OSF ,c∈CI ,d∈DI ·(c, f) = link5((i, os))⇒ c ∈ link3(i)

∧f ∈ link1(os) ∧ os ∈ applyingtoOS(i) ∧ f ∈ applyingtoF (c)

C. Correctness

We use “correctness” as a property of an inspection target,
requiring that the target satisfies both the syntax of the formal
specification language and the two properties given in Property
4 and 5 below.

Property 4: Let Ppre ∧ Ci ∧ Di be an operation scenario,
where Ppre is the pre-condition, Ci is guard condition, and
Di is defining condition. Then the following two predicates
must hold:

1)∀x,∼s ·Ppre(x,∼s)⇒ ∃i ·Ci(x,∼s)
2)∀x,∼s ·(Ppre(x,∼s) ∧ Ci(x,∼s))⇒ ∃y,s ·Di(x, y,∼s, s)

In previous property, x and y are the set of input and output
variables respectively. The decorated state variable ∼s denotes
the value of s before the execution of the operation scenario.

Property 5: Let one of related invariant on type T be It =
∀t∈T ·Q(t, w). Then the following predicates must hold:

1)Ppre ⇒ ∀v∈T ·Q(t, w)[v/t]

2)∼Ppre ∧ Ci ∧Di ⇒ ∀v∈T ·Q(t, w)[v/t]

Since the invariants and the operation scenarios are defined
separately, performing syntax checking cannot ensure the
variables in the operation scenario comply with corresponding
invariants. The property states that when the pre- and post-
conditions of an operation scenario evaluates to true, the
related invariants must hold before and after the execution of
the operation scenario.

D. Completeness

Checking completeness reveals whether all the user’s
requirements are realized completely. According to the

TABLE 2
INSPECTION OF A SPECIFIC SYSTEM SCENARIO

NO. Question Answer

1
Does operation scenario “true and exists![x: Account file] | (x.id = id and x.password = pass and sel = true Yes

and acc1 = x)” realize a function?

2 What is the function? F1.1.2

3 Does this operation scenario realize constraint? No

4 Is this operation scenario specified complying with SOFL? Yes

5 Does this operation scenario appropriately realize function F1.1.2? Yes

6 Whether variable “sel”, “id”, “pass” and “Account file” realize any data resource? Yes

7 Which variable realize which data resource? “Account file” realizes D2.1

8 Does the variable “Account file” and its type “set of Account” appropriately realize the data resource D2.1 ? Yes

9 Does the function F1.1.2 use data resource? Yes, D2.1

10 Does this operation scenario use the state variable that realizes the data resource? Yes, “Account file”

definition of the traceability rule between function items
and operation scenarios, each function item in the informal
specification may be realized by more than one operation
scenario in the formal specification. The inspector can
hardly make any judgement of completeness by merely
inspecting each operation scenario independently. The
operation scenarios realizing the same function item should
be well organized and inspected as a whole to ensure the
function is formalized completely. The following disjunctive
normal form presents the appropriate form to organize the
related operation scenarios of a specific function:

(os11 ∧ os12 ∧ ... ∧ os1x) ∨ (os21 ∧ os22 ∧ ... ∧ os2y)

∨... ∨ (osm1 ∧ osm2 ∧ ... ∧ osmz)

In this disjunction, all of the operation scenarios, ospq , can be
traced to the same function item in the informal specification.
The operation scenarios in each conjunction clause belong to
the same system scenario because the operation scenarios in
the same system scenario work together to describe the func-
tionality. The conjunction clauses are connected disjunctively
since different system scenarios are mutually exclusive. By
inspecting the disjunction as a whole, the inspector can judge
whether a function item is realized completely.

E. Case Study

We presents a case study to demonstrate how our inspection
method works in practice. Fig. 2 and 3 show the selected
formal specification in our case study. The corresponding
requirements are documented in the informal specification as
shown in Figure 1.

Based on the characteristics of each category of questions,
the entire inspection process is separated into three stages. In
the first stage, the inspector examines the formal specification
to check whether all of the defined items are used anywhere
else in the specification, which is required by the demand for
inspecting the “necessity” property defined previously. Since
all of the types, state variables, and invariants declared are used
somewhere in the formal specification, property “necessity” is
satisfied.

The second stage is to inspect the formal specification by
following the animation process. At this stage, the inspector
should answer the questions raised based on the traceability,
appropriateness, and correctness. Suppose the system scenario
{withdraw comm} [Receive Command, Check Password,
Withdraw] {cash} is selected for inspection, Table. 2 lists up
the questions for inspecting the operation scenario of process
“Check Password” and related inspection targets. For the
sake of space, only some typical questions are listed in Table
2; the inspection of others can be understood in the same way.

The final stage of inspection must devote to the examination
of whether the function items in the informal specification
are formalized completely in the formal specification. For
example, to check the completeness of function “F1.1”, the
inspector forms the conjunction of all the operation scenarios
that formalize function items “F1.1.1”, “F1.1.2”,“F1.1.3”,
and “F1.1.4”, and then analyzes whether the conjunction
completely formalizes function “F1.1”.

VI. TOOL SUPPORT FOR SPECIFICATION CONSTRUCTION
AND INSPECTION

A prototype software tool we have developed to support
the entire procedure of our formal specification inspection
approach. Actually, the tool is developed not only for sup-
porting the inspection method, but for providing a framework
to support the entire SOFL three-step modelling approach
and related techniques. It is implemented in C# programming
language under the environment of Microsoft Visual Studio
2008. The major functions provided by the current version of
the framework is summarized as follows:

1) Specifications Organization All kinds of SOFL spec-
ifications constructed and managed in our framework.
Each specification is saved in an independent XML file
and the hierarchy of the specification is save in a file
with suffix “.soflpro”, which stands for SOFL project.

2) Formal Specification Editor A customized editor is
provided for SOFL specification construction. This ed-
itor consists of a draw board for drawing CDFD, an

Fig. 5. The snapshot for specification inspection

editor for writing formal specification, and a function
to automatically keep consistency between CDFD and
formal specification.

3) Specification Animation The system scenarios will be
automatically extracted based on the topology of the
CDFD, and the animation performing on the CDFD can
be manipulated in a step-by-step manner

4) Inspection The questions for each inspection targets can
be automatically constructed based on a built-in question
template. Each question will be ask in an interactive
manner. Fig. shows the GUI for specification inspection.

Moreover, our framework is designed as a platform to easily
integrate other functions. For now, several functions have been
integrated into this framework.

VII. EXPERIMENT

An experiment has been conducted to evaluate the per-
formance of our inspection approach. In the experiment, the
subjects are divided into three groups based on their experience
in SOFL. Each group is required to inspect the same formal
specification by using either our inspection approach or the
traditional checklist-based inspection method. By carefully
analyzing the experiment results, we make several conclusions.
For the sake of space, we list tow major conclusions as
follows:

Conclusion 1: Our inspection method is more effective than
the traditional checklist-based inspection method to help the
inspector to detect the defects in the formal specification,
especially the defects that affect the consistency between
informal and formal specifications.

Conclusion 2: The ability of an inspector can affect the
results of an inspection. The inspector with more experience
and better skills will make better results, and using a more
effective inspection method can help to offset the difference
caused by the lack of experience.

By interviewing the subjects after the experiment, we find
that our inspection approach does provide an effective reading
technique for inspection, however, the duplication of questions
in the checklist may affect the efficiency of our approach.

VIII. CONCLUSION

In this paper, we propose an novel inspection approach to
verify and validate the formal specification. A system scenario-
based animation method proposed to help the inspector read
the formal specification. The traceability between requirement
items and inspection targets are formally defined. Traceability-
based checklist helps the inspection examine the consistency
between informal and formal specifications. In our inspection
approach, each inspection target is required to be reviewed
from four aspects: necessity, appropriateness, correctness, and
completeness. An case study is presented to illustrate the
inspection process. A supporting tool has been developed
to support SOFL specifications construction and specification
inspection. An experiment is conducted to evaluate the effec-
tiveness of our approach by comparing it to the traditional
checklist-based inspection approach. In the future, we plan to
optimize the procedure of our inspection approach to make
it more efficient, and we also want to build a checklist base
to allow inspectors create their own checklists and reuse the
existing checklists.

ACKNOWLEDGEMENT

I want give my sincere gratitude to my supervisor Prof.
Shaoying Liu for his great support throughout my research
work. His enthusiasm for researching inspired me, and his
encouragement helps me to overcome many difficulties.

REFERENCES

[1] O. Grumberg E. M. Clarke and D. Peled. Model checking. MIT press,
1999.

[2] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182.211, 1976.

[3] N. Shankar S. Owre, J. M. Rushby and F. Von Henke. Formal verification
of fault-tolerant architectures: Prolegomena to the design of pvs. IEEE
Transactions on Software Engineering, 21(2):107125, 1995.

[4] K. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic Publisher, 1993.

[5] Mo Li and Shaoying Liu, ”Traceability-Based Formal Specification
Inspection,” Proceedings of Eighth International Conference on Software
Security and Reliability (SERE), IEEE Press, San Francisco, USA, 30
June-2 July, 2014, pp.167-176.

[6] S. Liu. Formal Engineering for Industrial Software Development Using
the SOFL Method. Springer-Verlag, ISBN 3-540-20602-7, 2004.

[7] Mo Li and Shaoying Liu, ”Automated Functional Scenarios-Based For-
mal Specification Animation,” Proceedings of 19th Asia-Pacific Software
Engineering Conference (APSEC), IEEE Press, Hong Kong, 4-7 Dec.
2012, pp.107-115.

[8] Mo Li and Shaoying Liu, ”Tool Support for Rigorous Formal Specifica-
tion Inspection,” Proceedings of IEEE 17th International Conference on
Computational Science and Engineering (CSE), IEEE Press, Chengdu,
China, 19-21 Dec., 2014, pp.729-734.

[9] Mo Li and Shaoying Liu, ”Reviewing Formal Specification for Vali-
dation Using Animation and Trace Links,” Proceedings of 21th Asia-
Pacific Software Engineering Conference (APSEC), IEEE Press, Jeju,
Korea, 1-4 Dec., 2014, pp.286-293.

