# 法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

## Secular Change of Fog Frequency in Some Japanese Cities

| 著者                | ISHII Sayaka, SATO Norihito       |  |
|-------------------|-----------------------------------|--|
| 出版者               | Japan Climatology Seminar         |  |
| journal or        | Japanese progress in climatology  |  |
| publication title |                                   |  |
| volume            | 2012                              |  |
| page range        | 33-38                             |  |
| year              | 2012-12                           |  |
| URL               | http://hdl.handle.net/10114/10968 |  |

Reprinted from J.Geogr.Soc.Hosei Univ.44,15-30.2012.

#### Secular Change of Fog Frequency in Some Japanese Cities

Sayaka ISHII and Norihito SATO\* [\*Department of Geography, Hosei Univ.]

Key words : fog, seasonal variations, secular change, relative humidity, urbanization.

#### Abstract

This paper deals with statistical analyses to clarify the frequency of fog occurrence in some cities in Japan (Fig.1). In this work, the data of Japan Meteorological Agency were used to analyze at about 80 points in Japan (Tab.1) between 1951 to 2000.

The main results of this study were summarized as follows.

1. It is tendency in fog occurrence to present the regional and seasonal characteristics during recent 50 years (Fig.2, 3 & 4).

2. Judging from the regional and seasonal characteristics in occurrence frequency of fog in Japan, the main causes of fog are advection type as well as radiation one (Fig.4).

3. The secular change of annual number days with fog at each station tends to decrease gradually in many points, especially in inland or basin stations (Fig.5).

4. In spite of above mention, the annual number days with fog have slightly increased at the stations along the coast of Pacific in Northeastern Japan.

5. It will be able to point out that the factors of decreasing of number days with fog in secular change are equal to lower the value of relative humidity or to rise the extreme value of daily minimum temperature (Fig.6).

| () b.      | P <b>o.</b> | Ob. Po.               |
|------------|-------------|-----------------------|
| Wakkanai   | 43,775      | Nagoya 2, 171, 557    |
| Rumoi      | 28, 325     | Iida 107,381          |
| Asahikawa  | 359, 536    | Kofu 196,154          |
| Abashiri   | 43, 395     | Tsu 163, 246          |
| Sapporo    | 1,822,368   | Hamamatsu 582,095     |
| Iwamisawa  | 85,029      | Omaezaki 11,569       |
| Obihiro    | 173,030     | Shizuoka 469,695      |
| Kushiro    | 191,739     | Tokyo* 8,134,688      |
| Nemuro     | 33, 150     | Owase 23,683          |
| Muroran    | 103,278     | Yokohama 3, 426, 651  |
| Urakawa    | 16,634      | Katsuura 23,235       |
| Esashi     | 10,959      | Matsue 152,616        |
| Hakodate   | 287,637     | Toyooka 47, 308       |
| Kutsuchan  | 16,184      | Hamada 47,187         |
| Fukaura    | 8,954       | Kyoto 1,467,785       |
| Aomori     | 297,859     | Hikone 107,860        |
| Hachinohe  | 241,920     | Shimonoseki 252,389   |
| Akita      | 317,625     | Kobe 1, 493, 398      |
| Morioka    | 288, 843    | Wakayama 386,551      |
| Miyako     | 54,638      | Shionomisaki 15,687   |
| Yamagata   | 255, 369    | Fukuoka 1, 341, 470   |
| Sendai     | 1,008,130   | Saga 167,955          |
| Fukushima  | 291,121     | Oita 436,470          |
| Onahama    | 360,138     | Nagasaki 423,167      |
| Wajima     | 26,381      | Kumamoto 662,012      |
| Aikawa     | 9,669       | Kagoshima 552,098     |
| Niigata    | 501, 431    | Miyazaki 305,755      |
| Kanazawa   | 456, 438    | Matsuyama 473,379     |
| Toyama     | 325, 700    | Takamatsu 332,865     |
| Nagano     | 360,112     | Uwajima 62,126        |
| Takada     | 134, 751    | Kochi 330,654         |
| Utsunomiya | 443, 808    | Tokushima 268,218     |
| Fukui      | 252, 274    | Murotomisaki 19,472   |
| Takayama   | 66, 430     | Aizuwakamatsu 118,118 |
| Matsumoto  | 208, 970    | Tsuyama 90,156        |
| Maebashi   | 284, 155    | Hiroshima 1,126,239   |
| Kumagaya   | 156,216     | Okayama 626,642       |
| Mito       | 246,739     | Osaka 2, 598, 774     |
| Tsuruga    | 68,145      | Nara 366,185          |
| Gifu       | 402,751     | Hitoyoshi 38,814      |

### Tab.1 Observatories and its population (2000)

\* Population of Tokyo indicates the total in 23 wards




Fig.1 Location map of meteorological stations in this study.

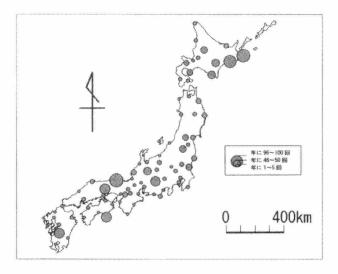



Fig.2 Distibution map of frequency of number days with fog using annual mean value (1951 $\sim 2000$ ).

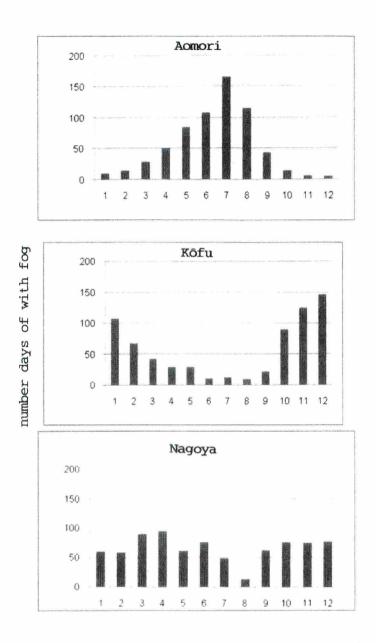
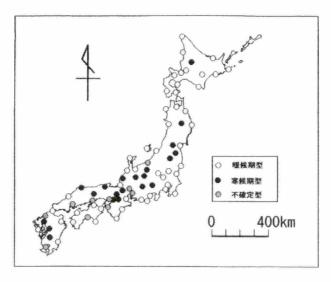
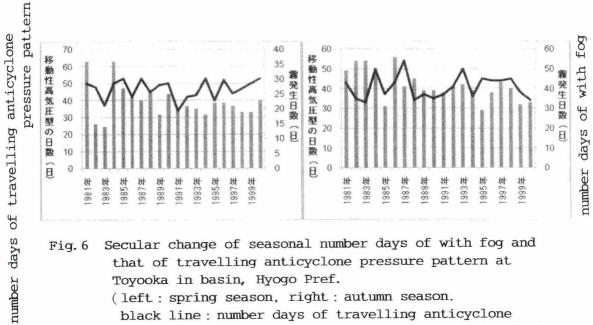





Fig.3 Annual variation of number days with fog using monthly mean value at Aomori, Kofu and Nagoya (1951 $\sim 2000$ ).



- Fig.4 Distribution map of three types in annual variation of number days with fog using monthly value.
  - ( ): maximum peak in summer half year/outlined circle)
  - ( : its peak in winter half year/black circle)
  - ( : its peak unsettled/gray circle)



that of travelling anticyclone pressure pattern at Toyooka in basin, Hyogo Pref. (left: spring season, right: autumn season. black line : number days of travelling anticyclone pressure pattern. vertical bar: number days with fog)

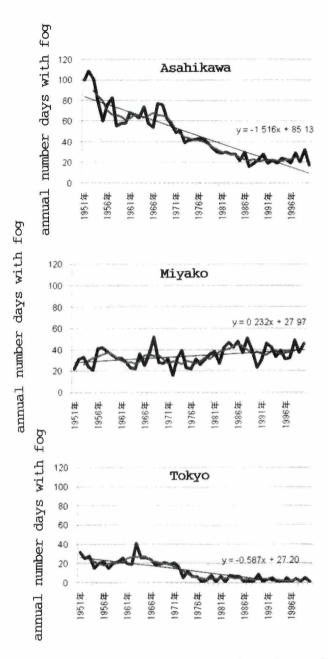



Fig.5 Secular change of annual number days with fog at Asahikawa, Miyako and Tokyo (1951~2000). (gray line: 5-year running means)

Reprinted from J.Geogr.Soc.Hosei Univ.44,15-30.2012.