A Formal Engineering Approach to Service-based
Software Modeling and Integration Testing

Weikai Miao
Faculty of Computer and Information Sciences
Hosei University
weikai.miao.x1@stu.hosei.ac.jp

Abstract—With the increasing popularity of service-based
software in recent years, engineering methods for developing
high quality service-based systems is highly demanded which
are expected to support the essential engineering processes
of system modeling, web service selection and system testing.
However, few systematic methods that unify the above three
essential activities are available, and the present supporting
technologies of these three activities are still not satisfactory.
In order to tackle this challenge, this paper proposes a formal
engineering approach that integrates precise system modeling,
accurate service selection and rigorous system integration testing.
It includes a unified three-step formal engineering framework for
interactive service-based system modeling and existing service
adoption, a service selection method that combines both static
matching and specification-based conformance testing and a
formal specification-based integration testing method. We have
also developed a prototype tool that supports the proposed engi-
neering framework. An empirical case study and corresponding
experiments are conducted to show the feasibility of the proposed
approach.

I. INTRODUCTION

In recent years, large-scale service-based software systems
have been successfully deployed in many enterprises and
organizations ranging from transportation, healthcare, finan-
cial companies, governments, and other social sectors [1][2].
Everyday or even every minute, service-based software sys-
tems are continuously providing the business services, which
has substantially improved our daily life. Inspired by such
great achievements and bright future, the engineering method
for constructing high-quality service-based software systems
is one of the major research areas, which attracts growing
attention of both the industry and research communities.

Service-based software system is the software system in
which appropriate existing web services are reused as software
components to perform the required business functions. Its
development, to a large extent, inherits the traditional software
engineering principles, though specific engineering processes
need to be considered for dealing with the web services
that participate in the construction of service-based software.
System modeling and testing serve as the most critical stages
for constructing high-quality service-based software systems.

Unfortunately, effective service-based software modeling
and testing are still facing great challenges. Specifically, one
major challenge is how to carry out the service-based software
modeling for constructing the precise requirements and design
specifications so that existing services can be efficiently and

accurately discovered, selected, and reused in the target sys-
tem. The second challenge is how to effectively utilize the
system models to carry out service-based software testing to
ensure the software quality.

Formal methods are regarded as potential solutions to tackle
the above challenges which embrace two techniques: formal
specification for precise description of system requirements
and formal verification for proving the correctness of software
against formal specifications. It is well recognized that formal
software modeling, including both formal requirements and
design specifications, based on correct understanding of re-
quirements contributes significantly to software quality [3][4].
Unfortunately, the formal modeling is in fact not widely used
in industry, partly because the mathematically-based notation
is hard for ordinary practitioners to accept and master, partly
because practical constraints, such as time, expertise, or cost,
prevent companies from providing an environment suitable for
application of formal methods [5][6], and partly because there
is still lack of systematic engineering approaches to formal
specification construction. Moreover, appropriate services need
to be discovered, selected and integrated into the system archi-
tecture for developing service-based software, which cannot be
handled by directly applying the traditional formal methods.

To this end, this paper put forward a formal engineering
approach to service-based software modeling and integration
testing. It inherits the basic idea of the SOFL (Structured
Object-oriented Formal Language) formal engineering method
[7][8] that supports the application of formal methods in
developing large-scale software systems, providing systematic
engineering processes to support the formal modeling and
formal specification-based integration testing of service-based
software systems.

Specifically, the formal engineering approach consists of a
formal engineering framework (FEFSSM) and a specification-
based integration testing method. The FEFSSM offers a three-
step modeling framework for specification construction and
integrates web service discovery and selection into the entire
modeling phase, aiming at providing an engineering proce-
dure for constructing precise, comprehensible, and satisfactory
specifications of service-based software. The constructed sys-
tem models are represented by both the formal specifications
that precisely define the expected functions and the corre-
sponding rigorous condition data flow diagrams (CDFDs) that
precisely describes the interactions among the system modules.

The textual and the diagrams are adopted as the foundation of
the rigorous integration testing.

To promote the effectiveness and efficiency of service-based
software modeling and service selection, we have developed
a prototype tool that can support the three-step specification
construction and the service discovery and selection activities.

The remainder of this paper is organized as follows. Section
1I summarizes the research work related to our approach from
various aspects and illustrates the novelty of our research
through the comparison with these related work. Section III
presents the main principle underlying our formal engineering
approach to service-based software modeling and integration
testing. Sections IV, V, and VI describe detailed techniques
involved in different specification construction stages. Section
VII describes the formal specification-based integration testing
method. Section VIII shows the prototype tool that supports
the FEFSSM. Section IX reports the case study and the corre-
sponding experiments conducted for validating the feasibility
of the approach. Section X presents the conclusion of our
work.

II. RELATED WORK

Wide ranges of methods have been devoted to service-
based system modeling and construction. One representative
approach is the SOMA (Service-Oriented Modeling and Ar-
chitecture) method proposed by IBM [9]. SOMA incorporates
key aspects of service-oriented software modeling (e.g., ser-
vice identification, business modeling and transformation and
etc.) and offers a unified framework for developing service-
oriented software. Inspired by the basic principle underly-
ing the SOMA method, various MDA-based approaches to
service-based software modeling have been put forward. These
approaches mainly adopt main stream modeling notations
such as the UML and BPMN for modeling the expected
requirements and business processes [10][1 1][12][13]. In most
of the MDA modeling approaches, the high-level system
models specified by UML or BPMN are gradually transformed
into final implementations. Although the BPMN language and
UML-based approaches have contributed to the modeling of
service-based software, precise specifications of service-based
software cannot be achieved by following these techniques
alone. In order to facilitate the construction of precise speci-
fications of service-based systems, one representative trend is
the formalism of BPMN or BPEL notations. The integration
of Petri-Net and BPMN are reported in works [14][15][16].
Similarly, the authors of work [17] suggest using YAWL to en-
hance the formal semantics of BPMN notations. In work [18],
authors extend current BPEL language for modeling service
choreographies. To some extent, enhancement of modeling
languages contributes to service-based software modeling from
various aspects. However, these improvements focus on the
language level rather than the perspective of methodology for
service-based software modeling. The modeling of large-scale
systems are still not easy since few engineering methods can
guide practitioners construct the formal specifications.

Existing service discovery and selection techniques can
be summarized into two categories: the match-making ap-
proaches and the conformance testing approaches. As a main
stream trend, match-making methodology is widely adopted
as the foundation of many service discovery and selection
approaches. Signature matching is the simplest way of web
service match-making, which can be traced back to resources
discovery from software libraries [19]. One typical scenario
of signature matching is that requirements specifications are
abstracted by some keywords that are used to match the
informal descriptions of candidate web services. Since most
services are published with WSDL files which specify their
interfaces syntax, approaches based on interface structure
match-making have been proposed [20][21]. Due to the lack
of analysis on the functional behaviors of services, these
approaches cannot achieve an accurate service selection. With
the development of service description technologies, the be-
havior match-making approaches to service discovery and
selection come into existence. In particular, matching ap-
proaches based on semantic web services are widely used
by many projects [22][23][24][25][26][27][28]. In spite of the
advantage brought by semantic services, two challenges that
obstacle wide application of semantic services still need to
be tackled. One major problem is the insufficient available
semantic services under real web environment. The other
concern is the reliability of semantic descriptions. Therefore,
Service conformance testing is regarded as an alternative
solution to accurate service selection. A number of ser-
vice conformance testing approaches are presented in work
[29][30][311[32][331[34][351[36][37][38][39][40].. Despite of
their contributions to service conformance testing, a majority
of current service testing methods focus on checking the
conformance of service functions with respect to pre-defined
specifications before service publication or service description
documents. To solve this problem, user-end conformance
testing approaches are proposed. Test data of the user-end
conformance testing is generated from the users’ (i.e., the
service requestors’) requirements specifications [38][41].

Various integration testing approaches adopt the control flow
diagrams, especially the UML sequence diagram for test case
generation. In work [42], the authors transform the UML
sequence diagram into the Sequence Dependency Diagram
for test case generation. In the work [43] and [44], state
charts are used as the foundation of test case generation for
integration testing. Similarly, the authors of work [45] and
[46] combine the state-machine and UML sequence diagram
for test data generation of integration testing. The work [47]
also adopts the UML sequence diagram as the foundation for
the integration testing of object-oriented programs. However,
the control flow diagrams and state machines can still satisfy
the demanding of integration testing. As pointed out by the
authors of [45], state charts are more powerful in unit testing
rather than in integration testing. Formal specification-based
testing is regarded as a promising technique for rigorous
software faults detection [48][49]. However, current formal
specification-based testing methods face a challenge that most

of them are powerful in unit testing but relatively difficult to
be applied in integrating testing.

III. OVERVIEW OF THE APPROACH

The proposed formal engineering approach consists of
a formal engineering framework for service-based software
modeling, and a method for service-based software integration
testing based on the formal specifications. The main principle
of our this approach is shown in Figure 1.
As shown in Figure 1, the approach primarily consists of
a three-step modeling and a specification-based integration
testing processes. The main idea of the modeling process is
to provide an evolutionary modeling framework that offers a
three-step specification construction procedure in which appro-
priate services are also discovered, selected and integrated into
the system design architecture. Specifically, the three stages of
the modeling approach are listed below:
« Informal Specification Construction
The goal is to acquire requirements as completely as
possible and discover sufficient candidate services based
on the informal requirements for further conformance
checking at later stages. Since requirements are imprecise
at this stage, candidate services are preliminarily explored
and filtered using keywords that abstract the correspond-
ing informal requirements. For example, in Figure 1,
requirements are documented as the informal specifica-
tion accompanied with a corresponding decomposition
diagram that described the relations between the expected
functions. Potential services are discovered based on the
informal requirements. For instance, function a_2 1 is
decomposed from the sub-function a_2 of function A,
which is associated to candidate services S1 and S3
through the keyword-based service discovery.
« Semi-Formal Specification Construction
This stage aims at carrying out accurate service
selection and further clarifying the requirements. All
service-associated functions are transformed into formal
processes specifying the expected functions rigorously
while other functions are transformed into semi-formal
processes that consist of formal data structures and in-
formal operational semantics. Services are accurately se-
lected through static behavior analysis and specification-
based conformance testing; rest part of the informal spec-
ification is then clarified into semi-formal specification. In
Figure 1, the informal specification is evolved into semi-
formal specification. Service S1 is identified as the most
relevant service of function a_2 1. Assume that service
S1 is selected for the service-associated process a_2_1
through the testing, rest part of the specification can be
semi-formalized.
« Formal Specification Construction
In this stage, all the pre- and post-conditions of
all processes are formalized and all the processes are
organized into a hierarchical structure of system modules.
Service-associated processes can be used as the foun-
dation for gradually formalizing the entire specification

since they have been determined in the previous modeling
stage. The formal specification in Figure 1 shows that all
processes and data structures are formally specified.

Integration testing is a quality assurance engineering activity
to be carried out after the system construction and unit testing.
Since unit testing approaches are relatively mature, our method
focuses on the integration testing techniques in the testing
stage. The first step of integration testing approach is to
derive all potential data flow paths from the CDFDs. Each
data flow path is a sequence of data flows and the involved
processes of the path. The pre- and post-conditions of each
process are then further transformed into a functional scenario
form. Concrete test cases are then generated to cover all the
functional scenario sequences of each path.

Based on the framework, we will explain the detail tech-
niques and methods of each stage of the three-step modeling
framework and the integration testing method, respectively.

IV. INFORMAL SPECIFICATION CONSTRUCTION STAGE

Constructing an informal specification is a mean to help the
initial requirements acquisition and service discovery. That is,
in addition to capturing client’s requirements through writing
the informal specification, the content of the specification can
also help the developer consider whether any existing services
can be utilized to realize some of the required functions.

A. Requirements Acquisition

Requirements acquisition is an activity to discover, un-
derstand and document the customer requirements, which is
aimed at achieving a complete coverage of desired require-
ments and finding clues for services discovery. Specifically,
requirements are acquired via the discussion between the client
and the system developer based on the understanding of the
business goals, the documents of the legacy systems, the
domain knowledge and etc. A top-down strategy is adopted
for analyzing the business processes. Specifically, the require-
ments analysis starts from the top-level business processes.
Through the analysis of the business processes, including
the decomposition of functions, expected functions can be
extracted and documented in a hierarchical structure to clearly
describe the client’s requirements.

B. Service Discovery

During the construction of the informal specification, ser-
vices are discovered and associated with corresponding func-
tions. Since requirements are informally described, the de-
veloper only needs to discover candidate services for more
accurate selection at a later stage.

The technique for service discovery of our approach is
keyword-based searching, where a keyword in our context is
an English word. The keywords are derived from the informal
specification and reflect the major features of the desired
functions that the potential candidate services are expected
to offer. Specifically, the derived keywords are used to either
partially or completely match with the service names or
informal descriptions stored in the service repositories.

Decomposition

[ExamPLE
A

y et Diagram
=A% EBN
(a2 [at] fas |
N
all —l ail2 |

&
Informal Specification
SYSTEM _Example
T evolution
unctions
1.A
1.1 a_s //doworka_s
12 a |
13 a2 Incompleted
1.3.1a_2_1 /* can beAssociated CDEDs
to services S and S3 */
‘0 f1 2 f3
?ata Resource _—_).[all l_ a2l =
S 12 >
Constraints =
1 evolution
! P
-
B ® e it
| | | | Semi-formal Specification evolution
service | i |
discovery || 1 SYSTEM_Example
| i module A_Decom / Example
E type
l * requirements 3
[| | reformulation processa_1_1(f 0: strln‘g)
QL i f 1:nat|f 2: string
post iff 0is "s”. f_I is greater than
10; otherwise, f 2 is “big”
end_process;
processa_2 | (f 1:nat) f_3: nat
postf I<>0andf 3=/ 1% 1
o aemy end_process;
(Service $2) (Service S4 1
=== s evolution
- A
Formal Specification

service
selection

filtering

requirements
reformulation

e e
T R S)

SYSTEM_Example
Module A_Decom / Example
type

processa_1_1 (f O:string)
f_1: nat | f_2:string
postf 0= "s"and [1>10
or 2= “big"
end_process;

processa_2_1 (f_1:nat) f 3: nat

process B (f_3: nat) f 7:sign
ext#rd DI

selection

Fig. 1.

—4—

| incorporating
| services into the

system architecture

deployment

Main Principle Underlying the Formal Engineering Approach

path
extraction
Data Flow
Paths
Paths
1.(F0.a_1_1.2)

3.(f.9.C.f_10.D. f 8)

transformantion

process a_1_1 (f 0: string)
f 1: nat|f 2:string
post/ 0= "s"andf I> 10
or f2= ‘big”
end_process;

processa 2 1 (f_1:nat)f 3:nat

process B (f_3: nat) f_7: sign
ext#rd DI

system integration
testing

—
R—;

p—
==

C. Dynamic Informal Specification Construction

In FEFSSM, when the business processes are analyzed, for
each single function involved in each business process , the
developer needs to consider whether the function can be im-
plemented by certain services, decomposed into sub-functions
for further analysis, or just left for coding from the scratch.
An algorithm is proposed showing how the service searching
is accompanied with the handling of a single function in the
specification.

V. SEMI-FORMAL SPECIFICATION CONSTRUCTION

Our formal engineering method inherits the semi-formal
stage of specification construction from the traditional SOFL
formal engineering method and extends it for handling service-
based software modeling. In order to effectively exploit exist-
ing services into the system architecture, services need to be
first accurately selected and the grouping of related functions,
data resources, and constraints into modules is then carried
out. To this end, our formal engineering method extends the
SOFL method and suggest the following steps in the stage of
semi-formal specification construction:

1) filtering candidate services via static behavior analysis
Large number of candidate services may be discovered
at the informal specification construction stage. To facili-
tate effective service selection, services are ranked based
on their relevance to the associated functions. The rele-
vance is judged by the developer through static behavior
analysis on the descriptions of candidate services, since
most services are provided with some description files,
especially WSDL files specifying their interfaces. Some
irrelevant services can be directly eliminated according
to the developer’s judgements. Such a ranking and
filtering mechanism is achieved based on the analysis of
the services descriptions in a static manner rather than
dynamically checking the functional behaviors of the
services. As the result of static behavior analysis, each
service-associated function is finally associated with its
most relevant service. The most relevant services will be
used as the basis for formalizing the associated functions
and also be tested prior to the less relevant services for
accurate service selection.

2) formalizing the service-associated functions
To carry out accurate service selection through
specification-based ~ conformance testing, service-
associated functions need to be completely formalized
as the foundation for generating proper test cases to
run the corresponding candidate services (i.e., the most
relevant services). The formalization includes two steps.
The first step is to modularize the service-associated
functions into proper SOFL processes. The second
step is to fully formalize the pre- and post-conditions
of these processes to precisely express the expected
operational semantics upon their associated services.

3) determining services using specification-based confor-
mance testing

To check the conformance of the candidate services with
respect to the expected functions, services are tested by
running the test cases generated from the formal service-
associated processes [50]. The final decisions on service
selection are made by the developer via the analysis
upon testing results and the service-associated processes.
If a service under test does not satisfy the required
functions, other relevant services can be picked up for
testing according to their relevance ranking established
via static behavior analysis. In this case, specification
may have to be reformulated.

4) semi-formalizing the specification based on the deter-
mined service-associated processes
Appropriate services are determined after the
specification-based ~ conformance testing. ~ The
determined formal service-associated processes can be
used as foundation for semi-formalizing rest part of the
specification. This involves formalizing all the related
data structures, transforming all the functions into
processes and grouping them into independent system
modules.

VI. FORMAL SPECIFICATION CONSTRUCTION

The major task of the formal specification construction is
twofold. One goal is to design the system architecture by
coupling the independent system modules; the other one is
to formally define all the components (e.g., processes and
invariants) that are not completely formalized in the specifica-
tion. A formal specification represents the architecture of the
entire system and functional definitions of its components.

To effectively support the formal specification construction,
we adopt the CDFD assisted middle-out strategy. Specifically,
the following steps are taken for exploiting the strategy:

1) select the crucial modules that represent the important
functions
2) construct the CDFDs of the crucial modules

a) if a crucial module is decomposed, formalize the
processes of this module and then construct the
CDFDs of the lower-level modules and formalize
the involved processes

b) if a crucial module is not decomposed, formalize
all the processes of this module

3) organize the modules that are fully formalized according
to the design decisions

4) complete the formal specification based on the corre-
sponding CDFDs

By following the middle-out strategy, we can gradually
construct all the CDFDs of the modules and processes at
different levels; meanwhile, the textual formal specifications
of each module and process are completed guided by the
organization procedure of the CDFDs.

Based on the formal specification, the developer can im-
plement the target service-based software using appropriate
program languages. Since the SOFL formal language is not
executable, the formal specification cannot be automatically

transformed into programs. The developer needs to manually
map the specification to the programs by following the basic
guidelines proposed in our previous work of the SOFL [8].

VII. THE FORMAL SPECIFICATION-BASED INTEGRATION
TESTING METHOD

The goal of this method is to detect software faults that
are concealed in the interactions between system operations.
The foundation of this formal specification-based integration
testing is the textual formal specification and the affiliated hier-
achical CDFDs of the system architecture. Since the hierarchy
of the system modules are determined, the bottom-up strategy
for integration testing can be adopted.

Specifically, the integration testing starts from the bottom
level system modules. When a lower-level module is thor-
oughly tested, it is nested as a process of its higher level
system module for integration testing. This iterative procedure
continues until the top-level system module is finally tested.
Therefore, the fundamental problem to be resolved is the
integration testing of each individual module described by a
CDFD. The following steps can be taken for the integration
testing of each module:

1) extracting all independent paths from the CDFD;

2) transforming the pre- and post-conditions of each
process involved in each path into functional scenario
form;

3) constructing the functional scenario sequences of the
involved processes of each path, and then testing the sys-
tem using the test cases generated from the constructed
functional scenario sequences;

VIII. THE PROTOTYPE ToOL OF FEFSSM

To effectively support the FEFSSM and the specification-
based integration testing approach, we also devote to the
development supporting tools. Currently, a prototype tool that
supports the FEFSSM is constructed.

A. Tool Design

The tool is designed as a three-layered system which
provides the major functions supporting the application of the
FEFSSM for modeling service-based software systems. The
architecture of this supporting tool is described in Figure 2.

The infrastructure layer mainly consists of the service
repositories, the specification files and the files of functional
scenario matrixes. In our case study, the service repository is
only the AXIS2 service server. Specifications are documented
in the XML files. We use the XML files to store the spec-
ifications since the XML format files are machine-readable,
platform-independent and can easily represent the hierarchical
structures of the processes and other SOFL components (also
including the CDFD).

The function layer consists of three modules: the module
of service discovery and analysis, the module of specification
construction and the module of functional scenario matrix
establishment. The module of service discovery supports the
keyword-based web service discovery and the static behavior

Web Service Discovery
__ and Analysis

i 3

3 - 2 Functional Scenario g
Specification Constructi

P e Matrix Establishment £
4 MRS Brae e 3

|
WSDL | Tree-Navigator | | Specification § | 2(
L of Functions | l Workplace |§ | %
1

Fig. 2. Architecture of the FEFSSM Supporting Tool

analysis in which services are ranked. Specifically, the service
discovery is achieved by the web service explore, and the static
behavior analysis is mainly carried out by the WSDL Analyzer
component.

B. Implementation of the Prototype Tool
Figure 3 gives a snapshot of the main interface of the tool.

Fig. 3.

The Snapshot of the Main Interface of the Prototype Tool

The text edition area located in the left-side of the inter-
face is the workplace for textual specification construction.
The tree-navigator is in the middle part. A tree structure of
expected functions is described by current navigator in which
each node is an expected function. By right-clicking the node,
the user can decide to decompose, delete, edit the function or
search candidate services for the function. Discovered services
can be listed after the keyword-based searching. The right-
side of this interface is the area of service repositories. All
candidate services are listed in this area. For the sake of space
limitation, other functions of the tool are omitted for brevity.

IX. CASE STUDY AND EXPERIMENTS

We have carried out an empirical case study of developing
a Travel Agency System (TAS) for validating the feasibility of

the FEFSSM and two experiments for evaluating the service
conformance testing method of service selection and the
integration testing method.

The case study shows that the number of candidate services
gradually decreases along with the specification evolution and
the number of required functions increases simultaneously. At
the stage of informal specification construction, functions were
gradually recorded along with service discovery. During the
stages of semi-formal and formal specification construction,
the number of functions increased rapidly. Stimulated by the
detailed information of service operations extracted from the
WSDL files, the developer and the client clarified the specifi-
cation extensively. As a result, sub-functions were added for
their high-level functions that were roughly associated to the
corresponding services and some functions were reformulated.

The experiment for service conformance testing method
of service selection shows that the overall fault detection
rate is approximately 90%. This result demonstrates that our
conformance testing method achieve a relative high detection
rate of software faults. Such a testing approach can effectively
check the conformance of services to the expected functions
and also facilitates the reliability of the target service-based
software.

The experiment for integration testing method shows that
the overall fault detection rate is 85%. This fault detection
rate is higher than the one reported in work [5 1] in which test
data generation is achieved based on the paths coverage but
regardless of the functional scenarios.

X. CONCLUSION

With the increasing demands of efficient and value-added
software systems for enabling complex business requirements,
and the continuous development of computer sciences and
technologies, the service-based software systems have seized
great interests of the industry and research communities. The
development methods for constructing high-quality service-
based software are one of the most crucial topics in the area
of software engineering.

Targeting on the most critical engineering tasks of service-
based software system development, the modeling and the
testing phases, we propose a formal engineering approach
to service-based software modeling and integration testing.
Specifically, the formal engineering framework for service-
based software modeling (FEFSSM) supports the evolutionary
formal specification construction and the accurate web service
selection. On the basis of the formal specifications and the
affiliated condition data flow diagrams (CDFDs), the formal
specification-based integration testing approach contributes to
the systems quality via a rigorous testing procedure. An em-
pirical case study of developing a 77 ravel Agency System (TAS)
is carried out for validating the feasibility of the FEFSSM, and
the related experiments are also conducted for evaluating the
service conformance testing method of service selection and
the integration testing method. A prototype tool is developed
to support the FEFSSM.

Our research and its novelty are summarized as the follows:

1) The Formal Engineering Framework for Service-based
Software Modeling
We have presented a novel framework FEFSSM for
service-based software modeling. The main contribution
of the FEFSSM is a systematic solution to service-based
software modeling through an evolutionary process for
specification construction and accurate service selection.

2) The Formal Specification-based Integration Testing
Method
To facilitate the quality assurance of service-based soft-
ware systems, we have proposed a integration test-
ing method based on the formal specification and the
CDFDs acquired form the modeling phase. The most
distinguished merit of the integration testing method is
the utilization of both the SOFL textual formal spec-
ification and the condition data flow diagrams as the
foundation of rigorous and intuitive test data generation
and test result analysis.

3) The Case Study and Experiments
An empirical case study of developing a Travel Agency
System (TAS) and the related experiments are carried
out for validating and evaluating the feasibility of the
proposed approach.

4) The Prototype Supporting Tool
A prototype tool that supports the FEFSSM is estab-
lished.

REFERENCES

[1] 2012. [Online]. Available: "http://www.tibco.com/multimedia/ss-delta-
tcm8-754.pdf"

[2] 2012. [Online]. Available:
03.ibm.com/press/us/en/pressrelease/26995.wss

[3] A.Hall, “Using Formal Methods to Develop an ATC Information Sys-
tem.” IEEE Software, vol. 13, pp. 66-76, March 1996.

[4] G. Booch, Object-Oriented Analysis and Design with Applications.
Addison Wesley Longman, 1994.

[5] 1. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano, “Why Are
Formal Methods Not Used More Widely?” in Fourth NASA Langley
Formal Methods Workshop, C. M. Holloway and K. J. Hayhurst, Eds.,
no. 3356, Hampton, Viginia, 1997, pp. 1-12.

[6] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
Methods: Practice and Experience,” ACM Computing Surveys, vol. 41,
no. 4, 2009.

[7] S.Liu, A.J.Offutt, C.Ho-Stuart, Y.Sun, and M.Ohba, “SOFL: A Formal
Engineering Methodology for Industrial Applications,” /EEE Transac-
tions on Software Engineering, no. 1, pp. 24-45, 1998.

[8] S.Liu, Formal Engineering for Industrial Software Development Using
the SOFL Method. Springer-Verlag, 2004.

[9] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, and
K. Holley, “SOMA: A method for Developing Service-Oriented Solu-
tions,” IBM Systems Journal, vol. 47, no. 3, pp. 377 —396, 2008.

[10] H. Gao, J. Zhang, R. Povalej, and W. Stucky, “Service-Oriented Model-
ing Method for the Development of an E-Commerce Platform,” in Int’l
Conf: on E-Business and Information System Security, May 2009, pp. 1
3

[11] A. Ruokonen, L. Pajunen, and T. Systa, “Scenario-Driven Approach
for Business Process Modeling,” in /EEE Int’l Conf. on Web Services
(ICWS), July 2009, pp. 123 —130.

[12] H. D. Kim, “BPMN-Based Modeling of B2B Business Processes from
the Neutral Perspective of UMM/BPSS,” in IEEE Int’l Conf. on e-
Business Engineering (ICEBE), Oct. 2008, pp. 417 —422.

[13] A. Sadovykh, P. Desfray, B. Elvesaeter, A.-J. Berre, and E. Landre,
“Enterprise architecture modeling with SoaML using BMM and BPMN
- MDA approach in practice,” in 6th Central and Eastern European
Software Engineering Conference, Oct. 2010, pp. 79-85.

http://www-

(4]

(15]

(16]

[17]

[18]

(191

[20]

[21]

(22]

[23]

[24]

(23]

(26]
[27]

(28]
[29]

(30]

311

(32]

[33]

[34]

[35]

(36]

[37]

(38]

P. Y. H. Wong and J. Gibbonse, “Verifying Business Process Compatibil-
ity,” in Proceedings of The Eighth International Conference on Quality
Software. 1EEE Computer Society, June 2008.

T. Takemura, “Formal Semantics and Verification of BPMN Transaction
and Compensation,” in IEEE Asia-Pacific Services Computing Confer-
ence (APSCC), Dec. 2008, pp. 284 —290.

B.-H. Schlingloff, A. Martens, and K. Schmidt, “Modeling and Model
Checking Web Services,” Electronic Notes in Theoretical Computer
Science, pp. 3-26, March 2005.

J. Ye, S. Sun, W. Song, and L. Wen, “Formal Semantics of BPMN
Process Models Using YAWL,” in Second International Symposium on
Intelligent Information Technology Application, vol. 2, Dec. 2008, pp.
70 —74.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extend-
ing BPEL for Modeling Choreographies,” in IEEE Int'l Conf. on Web
Services (ICWS), July 2007, pp. 296-303.

A.M.Zaremski and J.M.Wang, “Signature Matching: A Tool for Using
Software Libraries,” ACM Transactions on Software Engineering and
Methodology, vol. 4, no. 2, pp. 146 —170, 1995.

Y.Wang and E.Stroulia, “Semantic Structure Matchng for Assessing
Web-Service Similarity,” in Ist Int’l Conf. on Service Oriented Com-
puting (ICSOC03). Springer-Verlag, Dec. 2003, pp. 194-207.
W.Hoschek, “The Web Service Discovery Architecture,” in /st
IEEE/ACM Supercomputing Conference. 1EEE Computer Society Press,
Nov. 2002, pp. 1-15.

B. F. M. Klusch and K. Sycara, “Automated Semantic Web Service
Discovery with OWLS-MX,” in Fifth Int’l Joint Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS), Hakodate, Japan, May 2006,
pp. 915-922.

G. Meditskos and N. Bassiliades, “Structural and Role-Oriented Web
Service Discovery with Taxonomies in OWL-S.” JEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 2, pp. 278 —290, Feb.
2010.

K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dynamic discov-
ery and coordination of agent-based semantic Web services,” Internet
Computing, IEEE, vol. 8, no. 3, pp. 66 — 73, may-jun 2004.

1.Mecar, A.Devlic, and K.Trzec, “Agent-Oriented Semantic Discovery
and Match-Making of Web Wervices,” in 8th Int’l Conf. on Telecommu-
nications (ConTEL),, June 2005, pp. 603-607.

2011. [Online]. Available: http://www.soa4all.eu/,

R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint Driven
Web Service Composition in METEOR-S,” in [EEE Int'l Conf. on
Services Computing (SCC), Sept. 2004, pp. 23 — 30.

2011. [Online]. Available: http://www.shape-project.eu/,

M. Jokhio, G. Dobbie, and J. Sun, “Towards Specification Based Testing
for Semantic Web Services,” in Software Engineering Conference, 2009.
ASWEC '09. Australian, April 2009, pp. 54 —63.

M. Shaban, G. Dobbie, and J. Sun, “A Framework for Testing Semantic
Web Services Using Model Checking,” in Fourth South-East European
Workshop on Formal Methods (SEEFM), Dec. 2009, pp. 17 -24.
R.Heckel and L.Mariani, “Automatic Conformance Testing of Web
Services.” in 8th Int'l Conf. on Fundamental Approaches to Software
Engineering (FASE), Edinburgh, UK, April 2005, pp. 34-48.
M.Paradkar, A.Sinha, and et al, “Automated Functional Conformance
Test Generation for Semantic Web Services,” in JIEEE Int’l Conf. on
Web Services (ICWS), Utah, USA, July 2007, pp. 110-117.

J. ZLi and et al, “Towards a Practical and Effective Method for Web
Services Test Case Generation,” in ICSE Workshop on Automation of
Software Test, Vancouver, Canada, May 2009, pp. 106-114.

C.Ma, C.Du, and et al, “WSDL-Based Automated Test Data Generation
for Web Service,” in IEEE Int’l Conf. on Computer Science and Software
Engineering, Wuhan,China, December 2008, pp. 731-737.

S.Hanna and M.Munro, “An Approach for Specification-based Test Case
Generation for Web Services,” in /EEE/ACS Int'l Conf. on Computer
Systems and Applications, Amman, Jordan, May 2007, pp. 16-23.
S.Noikajana and T.Suwannasart, “Web Service Test Case Generation
Based on Decision Table,” in The Eighth Int'l Conf. on Quality Software
(0SIC), Oxford, UK, August 2008, pp. 321-326.

M.Lohmann, L.Mariani, and R.Heckel, 4 Model-driven Approach to
Discovery,Testing, and Monitoring of Web Services. Heidelberg,
Germany: Springer, 2007.

Y.Park, W.Jung, B.Lee, and C.Wu, “Automatic Discovery of Web
Services Based on Dynamic Black-Box Testing,” in 33rd Annual IEEE

(39]

(40]

(41]

(42]

[43]

[44]

[43]

[46]

(47]

[48]

[49]

(50]

[51]

International Computer Software and Applications Conference (COMP-
SAC), Seattle, USA, July 2009, pp. 107-114.

L.Li and C.Wu, “An Abstract GFSM Model for Optimal and Incremental
Conformance Testing of Web Services,” in IEEE Int’l Conf. on Web
Services (ICWS).

C.Ma, J.Wu, and et al, “Web Services Testing Based on Stream X-
machine,” in IEEE Int’l Conf. on Quality Software (QSIC), Zhangjiajie,
China, July 2010, pp. 232-239.

A. Flores, A. Cechich, A. Zunino, and M. Usaola, “Testing-Based
Selection Method for Integrability on Service-Oriented Applications,”
in Fifth Int’l Conf. on Software Engineering Advances (ICSE4), Aug.
2010, pp. 373 -379.

P. Samuel and A. Joseph, “Test Sequence Generation from UML
Sequence Diagrams,” in Ninth ACIS Int’l Conf. on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing,
SNPD °08., Aug. 2008, pp. 879-887.

S.Kansomkeat and W.Rivepiboon, “Automated-Generating Test Case
using UML Statechart Diagrams,” in 2003 Annual Research Conference
of the South African Institute of Computer Scientists and Information
Technologists on Enablement through Technology, ser. SAICSIT’03.
South African Institute for Computer Scientists and Information Tech-
nologists, 2003, pp. 296-300.

L. Castro, M. Francisco, and V. Gulias, “A Practical Methodology for
Integration Testing,” in Computer Aided Systems Theory-EUROCAST
2009, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5717, pp. 881-888.

S. Kansomkeat, J. Offutt, A. Abdurazik, and A. Baldini, “A Comparative
Evaluation of Tests Generated from Different UML Diagrams,” in
Ninth ACIS Int’'l Conf. on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, Aug. 2008, pp. 867—
872.

A. Bandyopadhyay and S. Ghosh, “Test Input Generation Using UML
Sequence and State Machines Models,” in /nt 'l Conf. on Software Testing
Verification and Validation, ICST '09. , April 2009, pp. 121-130.

Z. Li and T. Maibaum, “An Approach to Integration Testing of Object-
Oriented Programs,” in Seventh Int'l Conf. on Quality Software, Oct.
2007, pp. 268-273.

G. Bernot, M. Gaudel, and B. Marre, “Software Testing based on Formal
Specifications: a Theory and a Tool,” Software Engineering Journal,
vol. 6, no. 6, pp. 387405, 1991.

].K.El-Far and J.A.Whittaker, Model-based Software Testing. ~ Wiley,
2001.

W.Miao and S.Liu, “A Formal Specification-based Testing Approach to
Accurate Web Service Selection,” in J/EEE Int’l Conf. on Asia-Pacific
Services Computing (APSCC), Jeju, Korea, Dec. 2011, pp. 259-266.
Y. Chen, S. Liu, and F. Nagoya, “An Approach to Integration Testing
Based on Data Flow Specifications,” in Int 'l Conf. on Theoretical Aspects
on Computing, vol. 3407, 2004, pp. 235-249.

