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ABSTRACT

Despite the e¤ectiveness of requirements formalization in producing accurate requirements documentation and

deepening the developers�understanding of the envisioned systems, this technique can hardly be accepted by soft-

ware industry mainly because it requires mathematical sophistication and considerable experience in using formal

notations, which remains a challenge to many practitioners. Many methods and tools have been proposed to deal

with the problem by providing general guidance or automatic support in transforming informal requirements into

formal speci�cations. However, they fail to accomplish the task when encountering incompleteness and ambiguities

in the informal requirements.

To handle this challenge, this thesis describes a pattern-based approach to facilitating the formalization of

requirements. In this approach, a speci�cation pattern system is pre-de�ned to guide requirements formalization

where each pattern provides a speci�c solution for formalizing one kind of function into a formal speci�cation. All

of the patterns are classi�ed and organized into a hierarchical structure according to the functions they can be used

for formalization. The distinct characteristic of our approach is that all of the patterns are stored on computer

as knowledge for creating e¤ective guidance to facilitate the developer in requirements formalization; they are

�understood� only by the computer but transparent to the developer. Based on the pattern system, a method

that guides the requirements formalization process by applying the pattern system is described. To facilitate the

understanding of the guidance produced by the pattern system and the utilization and maintenance of the pattern

knowledge, a method for representing the pattern system is proposed where attribute tree and HFSM are adopted.

These two notations are used to represent di¤erent parts of the pattern knowledge. The method for applying the

pattern knowledge represented in the two notations is given.

We also describe a prototype tool that supports the pattern-based approach. The tool derives necessary func-

tional details of the intended requirement through interactions with the developer and generates a formal speci�-

cation according to the obtained information. Two experiments on the tool supported approach are presented to

demonstrate the e¤ectiveness of the approach.
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Preface

Our software-dependent life and society require an e¤ective method for developing high-quality software, since

even a tiny bug would drag us into a catastrophe where we have to pay considerable prices.

Many researches have been done in software engineering to enhance software quality and the introduction of

formal methods is regarded as a milestone. This technique integrates mathematics with software development

and takes advantage of formalism. It mainly involves two parts: formal speci�cation and formal veri�cation.

Formal speci�cation documents software behaviors in formal notations, which avoids ambiguities in requirements

speci�cation and misunderstanding among the members of the software development team. It also allows rigorous

analysis and automatic manipulations. Formal veri�cation veri�es the consistency between formal speci�cation

and its implementation alternatives to ensure that the resultant program performs the expected behavior.

However, a long distance still exists from the fundamental theory and the real practice in industry. We have

attended several conferences on formal methods and met many practitioners from software companies. Most of

them are satisfactory with the power of formal methods but doubt its acceptance in industry since writing formal

speci�cations is a huge challenge for them, not need to mention formal veri�cation. Without addressing this

challenge, formal methods would not play their expected role in practice.

The problem in writing formal speci�cations mainly stems from the complexity of the formal notations. If we

can assist practitioners to obtain the target formal speci�cations without the need of dealing with formal notations

manually, they will probably accept this easy way to high-quality software development technique.

We have studied the literature to understand why the existing approaches are not able to solve the problem.

There are mainly two kinds of approaches for supporting requirements formalization. One is to provide guidance

for writing formal speci�cations. The problem is that the guidance provided by most of these methods only involves

a general solution to a general problem. Developers who want to use the solution need to understand it �rst. Then

they need to analyze the detailed information of the real problem and instantiate the general solution as a speci�c

solution to the problem. This process requires the understanding of the involved languages, which means that the

developers still have to struggle with formal notations. The other kind of approach is to allow the description of

9
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software functions in informal languages that are easier to use, such as natural language and graphical notations,

and automatically translate the informal languages into formal notations. Compared with the �rst kind, these

approaches prevent developers from directly using formal notations. However, most of them only involve a set of

syntactical rules without semantic support. They cannot guarantee the completeness of the informal requirement

written by the developer and incomplete information would lead to erroneous formal speci�cations or even obstacle

the translation process.

To this end, we introduce our speci�cation pattern as a solution. A pattern treats a function as a composition of

its attributes. Each pattern provides a framework for formalizing one kind of function where the relevant attributes

are guided to be clari�ed and a formal speci�cation is generated according to the clari�ed attributes. Speci�cally,

the major contributions of the thesis are listed below.

1. A speci�cation pattern system for supporting requirements formalization

We design a speci�cation pattern system as knowledge for guiding the requirements formalization process.

The novelty of the system is that the involved speci�cation patterns can be applied by machines for producing

guidance and the users are unaware of their existence. These patterns work on the semantic level to guide re-

quirements clari�cation and provide methods to transform the clari�ed requirements into formal speci�cations.

The users are only required to follow the guidance and the patterns will handle the remaining tasks.

2. The application method of the speci�cation pattern system

In our approach, requirements formalization is actually the application process of the pattern system. Since

the design of the pattern system considers the need of requirements formalization, the application of the system

is straightforward. It includes pattern selection and pattern application. The former is aimed at giving the

outline of the intended function while the latter further clari�es the included details until reaching a formal

expression.

3. An approach to representing the pattern knowledge

Based on the formal de�nition of the speci�cation pattern system, we propose an approach to representing

the included pattern knowledge in attribute tree and HFSM (Hierarchical Finite State Machine). The goal of

the approach is to facilitate the understanding of the guidance produced by the speci�cation patterns and the
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utilization and maintenance of the pattern knowledge. We analyze the problem of using pattern structure or

formal de�nition as the representation of the pattern knowledge and compare the two di¤erent representations

to illustrate the necessity of the representation approach.

4. A prototype tool for supporting the pattern-based approach

To validate and evaluate the pattern-based approach, we developed a supporting tool and use it in the

requirements formalization of experimental software projects. The tool interacts with the developers and

displays the generated formal speci�cation with the obtained information.

The thesis is organized as follows.

Chapter 1 describes the motivation of the research by �rst introducing the background and basic concepts and

then showing the encountered problems to be solved. Then we brie�y present our solution to these problems.

Chapter 2 compares our proposed approach with other related research results from di¤erent aspects. The

comparison shows how our approach solves the problems better than others.

Chapter 3 �rst introduces two basic concepts SOFL and pattern. The former is the speci�c language that we

adopt in this thesis to illustrate each technique of the approach and the latter indicates the source of the underlying

theory of our approach. Then we present the framework of our approach and the relations between each involved

components. Finally we introduce an example system which will be used to explicitly explain how each technique

works in the following chapters.

Chapter 4 describes the speci�cation pattern system which is the foundation of the pattern-based approach.

Speci�cation pattern is �rst introduced by explaining its structure and presenting its formal de�nition. Then the

pattern system is introduced by describing how the patterns are organized into the architecture of the pattern

system. A formal de�nition of the pattern system is also given.

Chapter 5 presents the method for applying the speci�cation pattern system to guide the requirements for-

malization process. There are two activities to be interleavingly carried out in this method: describing informal

requirements informal expressions and data type declaration. We describe these two activities in detail respectively

and use example functions to illustrate them.

Chapter 6 proposes an approach to representing the pattern knowledge involved in the speci�cation pattern
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system. Two languages attribute tree and HFSM are used in the approach to represent di¤erent pattern knowledge.

We present each of their de�nitions in detail respectively and show how they are used to represent the pattern

knowledge with examples.

Chapter 7 describes the prototype tool that we implemented to support the pattern-based approach. We �rst

give the design of the tool that shows how the involved components cooperate to perform the required functionality.

Then the detail of each component is explicitly presented. We also explain some implementation details of the tool

and demonstrate its functionality through its interface and execution in formalizing example functions.

Chapter 8 presents two experiments on the prototype tool. The �rst experiment aims at exploring the domain

that the tool can be applied and checking the validity of the pattern-based approach. The goal of the second

experiment is to evaluate the e¤ectiveness of the tool in facilitating requirements formalization by comparing

manual formalization and tool-supported formalization.

Chapter 9 gives a conclusion on the research results in this thesis and summarizes the problems we found in

developing our approach and the work that we need to do in the future to solve them and improve the approach.
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Chapter 1

Introduction

Software has become a necessity for proper functioning of the society. Everyday millions of people around the

world are transferred to their destinations by subway and aircraft controlled by software. Medical devices contain

tens of thousands of lines of code to provide life-sustaining functions for patients. A large portion of the world

�nancial activities depend on software, such as E-commerce, online-trading and ATM (Automatic Teller Machine)

software. Smart phone works on software to connect billions of people with the world and provide them with

various kinds of daily services.

While bringing signi�cant e¢ ciency and convenience, software would also lead us to great loses or even catastro-

phe if containing bugs. As more and more social functions are performed by computers, we may su¤er from more

serious consequence of software malfunctions. In March 2001, it was determined that 28 cancer patients were

given radiation doses exceeding their required dosage at Panama�s National Oncology Institute. By August 2005,

23 of these 28 patients died. It was reported that at least 18 of the patient deaths were attributed directly to

radiation overdose. The major reason is the lack of warning mechanism in the software program for handling the

improper usage [1]. In 2003, computer system failures cause 814 blackout in North America [2]. Phobos-Grunt,

Russia�s most ambitious planetary mission in decades, was launched on November 9, 2011. But it was lost due

to a programming error and fell back to Earth on January 15, 2012 [3]. An update on the CA-7 software of The

Royal Bank of Scotland Group was corrupted on June 2012 [4]. Large amount of customers�wages, payments and

other transactions were disrupted.

Safety-critical application domains - including nuclear, defense, space, medical, and transport industries - in-

creasingly depend on or are controlled by computer software [5] [6] [7]. On the other hand, as the complexities

of the systems under control rise, software development becomes a complicated process. How to develop reliable
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Figure 1.1. The six phases for software developement in software engineering

large-scale software in a systematic and e¢ cient way is regarded as a critical and urgent problem to be solved in

software engineering.

1.1 Requirements in software engineering

Software engineering is the study and application of systematic, disciplined, quanti�able approaches to the

development, operation, and maintenance of software [8]. As a revolution to software development. The birth

of software engineering changed the view on software: software is not only a program but a combination of

documentation and program [9]. Therefore, the production of software is not just programming but a process

comprising six phases as shown in Figure 1.1: requirements analysis, requirements speci�cation and documentation,

system design, implementation, testing and maintenance.

The requirements analysis phase studies the envisioned system and explores the necessary requirements that

the system should satisfy. It solves the problem of "What the system needs to do?" and requires the collaboration

of di¤erent roles in the development team including stakeholder, analyst and domain experts. The requirements

speci�cation and documentation phase collects and speci�es the explored requirements in a speci�c language. It

results in a requirements speci�cation that describes the expected behaviors of the system under construction.
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Based on the requirements speci�cation, the system design phase produces a design speci�cation for achieving a

system that satis�es the requirements speci�cation. In the design speci�cation, the architecture of the entire system

is given and the involved components are explicitly de�ned. The relations between these components are speci�ed

by de�ning the interface of each component and the involved data types. During the implementation phase, detailed

algorithms are designed and a program is produced by implementing the design speci�cation and the algorithms.

Requirements speci�cation also serves as a supporting material in this phase to ensure that the implementation

details can satisfy the original requirements. In order to check whether the behavior of the implemented software

satis�es the de�ned requirements, testing is carried out by running the produced program with well-de�ned test

cases. It mainly comprises three steps: test case generation, program execution with the test cases and test results

analysis. After the software faults detected in the testing phase are �xed, the software can be delivered to the

customers. The maintenance phase updates the delivered software according to the requirements speci�cation

when errors are found during operation or new requirements is proposed.

It can be seen from the explanation of the above phases, well-written requirements speci�cations are the key to

successful software projects [10]. They provide a clear direction for the development activity that may become a

lengthy and error-prone process if being carried out from scratch. They also enable the identi�cation of software

�aws in the early stage of the development process, which costs much less than discovering design errors in the

later stage. Furthermore, requirements speci�cation serves as benchmark for evaluating and improving the quality

of the produced software.

To achieve well-written requirements speci�cation, we should �rst clarify what is a well-written requirements

speci�cation. According to IEEE guide to software requirements speci�cations, a good requirements speci�cation

should have the following properties [11].

� Unambiguous A requirements speci�cation is unambiguous if and only if each included requirement has

only one interpretation.

� Complete A requirements speci�cation is complete if (1) it includes all signi�cant requirements, whether

relating to functionality, performance, design constraints, attributes or external interfaces. (2) it de�nes

responses to all realizable classes of input data in all realizable classes of situations. (3) it conforms to any
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requirements speci�cation standard that applies to it. (4) it gives full label and reference of all the included

�gures, tables, and diagrams, and de�nes all terms and units of measure.

� Veri�able A requirements speci�cation is veri�able if and only if each included requirement is veri�able.

� Consistent A requirements speci�cation is consistent if and only if no set of individual requirements

described in it con�ict.

� Modi�able A requirements speci�cation is modi�able if its structure and style are such that any necessary

changes to the requirements can be made easily, completely, and consistently.

� Traceable A requirements speci�cation is traceable if the origin of each of its requirements is clear and if

it facilitates the referencing of each requirement in future development or enhancement.

� Usable during the Operation and Maintenance Phase A requirements speci�cation must address

the needs of the operation and maintenance phase, including the eventual replacement of the software.

In the early days, practitioners adopt natural language to write requirements speci�cations since it is easy to

use. Graphical notation and structure are later introduced to facilitate understanding and communications be-

tween team members. However, requirements speci�cations written in natural language or graphical notation can

hardly meet the demand of the above properties due to the inevitable ambiguities. Without accurate de�nition,

requirements speci�cation would probably be incomplete, unveri�able, inconsistent, too disorganized to be modi-

�able, untraceable and di¢ cult to be used in operation and maintenance phase. To deal with the problem, formal

speci�cation technique is proposed.

1.2 Formal methods and formal speci�cation

Before presenting the concept of formal speci�cation, formal methods is �rst introduced since it reveals the role

of formal speci�cation in software development.

Formal methods has made signi�cant contributions to software engineering by establishing relatively mature

techniques to formal speci�cation, re�nement, and veri�cation, and its theoretical in�uence on conventional soft-

ware engineering has been well known. The notion of pre- and post-conditions have been introduced into some
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programming languages to support the "design by contract" principle [12] [13]; many companies have tried or

actually used some formal methods in their real software projects [14]; and many practitioners have become more

interested in formal methods nowadays than before (e.g., in Japan).

The de�nition of formal methods is the use of mathematical approaches in the speci�cation, design, analysis

and assurance of computer systems and software [15]. Its underlying principle is shown in Figure 1.2.

The �rst step in software development using formal methods is to formalize the customer�s informal requirements

into a formal speci�cation. To check whether the formal speci�cation is a faithful representation of the original

informal requirements, various validation approaches are proposed such as animation [16] [17] [18]. If inconsistencies

are found, the formal speci�cation will be modi�ed until being approved by the validation approaches. Then a

formal re�nement process is started where the formal speci�cation is gradually re�ned into an executable program.

For each step of the re�nement, formal veri�cation needs to be performed to ensure the consistency between the

re�ned speci�cation, or the �nal program, and its predecessor.

As one of the critical techniques in formal methods, formal speci�cation describes expected system behaviors

in mathematically based notations. With well-established formalism, it enables rigorous analysis of requirements
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and can be manipulated automatically. It also sets a �rm foundation for the later stages of software development

process and serves as prerequisite for verifying the correctness of the implementation alternatives using formal

proof or speci�cation-based testing [19]. There are many formal speci�cation languages proposed in the literature,

such as VDM (Vienna Development Method) [20], Z [21] and B [22].

Writing formal speci�cations is a requirements formalization process with two steps: clarifying the necessary

functional details of the requirements and representing the clari�ed requirements in formal notations. This process

helps deepen the understanding of the envisioned system and signi�cantly improves the preciseness of the original

requirements.

1.3 Motivation of the research

Many researches on applying formal methods to software engineering over the last twenty years have suggested

that the formal speci�cation technique can e¤ectively help developers understand user requirements and system

components (e.g., data items, operations) if it is applied appropriately [14] [23] [24]. However, "applied appropri-

ately" in real practice remains a challenge. In spite of the statistic data that shows the improvement of software

quality by using formal speci�cations [25] [26] [27] and the successful stories reported in the latest survey on in-

dustrial use of formal speci�cation by Woodcock et al. [28], applications of formal speci�cation to real projects in

industrial are still rare [29]. Experience shows that industrial practitioners are interested in using formal speci�-

cation technique to solve their problems occurring in exercising conventional software engineering techniques, but

only a few of them with courage actually take actions [30, 31]; most of them turn away from the technique after

they learn or try them for the �rst time. For example, in Japan several companies have tried Z and VDM (e.g.,

Nihon Unisys, Fujitsu, CSK, and FeliCa networks), but few of them have shown a positive sign toward the future

use of the same method again.

The major reason is that the practitioners �nd it hard to express their ideas properly in formal notations. It

is often the case that the writer of a formal speci�cation, who can be an analyst or designer, understands what

he or she wants to say in mind (or in natural language), but does not know exactly what formal expression can

be used to properly express his or her informal idea. This may sound di¢ cult to accept by a formal method

researcher or a person with strong mathematical background, but it is the reality in the software industry where
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vast majority of software developers, especially software analysts and designers, may not even receive systematic

training in computer science but have to face pressures to produce quali�ed software systems within limited time and

budget [32]. They are not satis�ed with the current practice for poor quality and high cost, and have expected formal

methods to be a magic solution. Perhaps for this reason, many of them have a high interest in formal methods,

but even they may understand the potential bene�ts of successful application of formal speci�cations, few of them

really take action to use them in practice, simply because "it is complicated". This complicity stems from the

fact that requirements formalization requires high skills for abstraction and experience in manipulating the formal

notation in which the speci�cation is written [29] [33]. It involves decisions to be made by the speci�cation writer

in order to clarify ambiguities. The practitioners need training and practice to enhance such skills, but because

of the economy pressure, many of them would stop continuing to learn the techniques in training courses and to

use them in real projects [34]. Even if they manage to understand formal notations through long-term practice,

formalizing complex functions is still error-prone and costly. They will �nd themselves trapped in tedious syntax

details, rather than working on function designs, especially when the behaviors to be described are complicated.

Speci�cally, according to the two steps for writing formal speci�cations, there are three problems to be handled

when formalizing a requirement.

� What function details of the requirement are needed for formalization?

Formalizing requirements into formal speci�cations is also a re�nement process from abstract ideas to precise

descriptions, during which designers have to consider the intended functions from many perspectives and add

su¢ cient details. Let�s consider the informal requirement "update the datastore D of a banking system".

One cannot write a formal speci�cation with the available information of the given requirement and needs

to provide necessary function details �rst, including the parts to be updated in D and the operations for

updating these parts. These details are clari�ed by specifying lower-level details such as the parts of each

part to be updated in D and the operations for updating them. Such a clari�cation process continues until

reaching the bottom-level function details. Incomplete information at any level will lead to the failure of the

later formalization.

Since most developers are lack of su¢ cient skills and experience in identifying the function details necessary
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to be clari�ed for further formalization, the resultant formal speci�cations are likely to be incomplete or even

erroneous. Although many methods have been proposed to support the identi�cation of function details,

requirements clari�ed by most of them are often too abstract to be formalized. Moreover, these methods

provide few speci�c guidelines on the requirement details that need to be clari�ed to form complete formal

speci�cations; the clari�cation process can be time-consuming and error-prone.

� How to achieve these function details?

For requirements that are su¢ ciently simple, achieving the required function details is not a problem. For

example, when formalizing a requirement that describes "belongTo" relation, one needs to specify the member

involved in the relation and the object that the member belongs to. This task can be easily done by providing

the formal expressions that represent the required two objects. For complex requirements, especially data-

intensive requirements, however, achieving all function details at one time would be overwhelming and the

given details would be di¢ cult to comprehend. For example, if the previously mentioned data store D is

designed with a complex structure and the required function details forms a hierarchy with many layers,

one needs to spend considerable time to study the inner structure of the requirement before achieving the

function details. Besides, the complexity of the requirement also makes the provided information unreliable

and represented in a disordered manner.

Current methods for solving this problem focus on the design of easy-to-use languages for representing

function details, such as UML [35]. They regard the speci�cation of the function details as intelligent work

and do not provide any guidance on the achievement of these function details. In this case, the completeness

and correctness of the provided function details are hard to be guaranteed. Moreover, the designed languages

are often used to informally describe abstract functions and incapable of specifying bottom-level function

details precisely.

� How to formally represent the function details?

With clari�ed function details, the di¢ culty of writing the corresponding formal speci�cation depends on

the complexity of the given function details. For example, "John_Smith belongs to Hosei_University" is

a clari�ed requirement where the member involved in the relation is speci�ed as "John_Smith" and the
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object that the member belongs to is speci�ed as "Hosei_University". How to represent it in an appropriate

formal speci�cation will depend on what we mean by John_Smith and Hosei_University? If John_Smith

is treated as a person and Hosei_University is a set of persons, a membership expression (e.g., John_Smith

in set Hosei_University in VDM [20]) can be an appropriate formal speci�cation. But if the data structure

of Hosei_University is declared as a set of faculties and each faculty is a composite type of several �elds,

for example, "teachers", "students" and "administrators", and each �eld is declared as a set of persons, the

formal speci�cation of the requirement will be more complex.

When the complexity of the clari�ed function details reaches a relatively high level, organizing large amount

of function details in a formal manner without introducing mistakes or missing any information becomes

extremely di¢ cult. Consider the following requirement "Display all the transactions on July 3rd belonging

to the accounts that contain more than 3 transaction records on July 3rd, more than 500 US dollars and

more than 1000 Japanese Yen". All the necessary function details for formalization are already given in this

requirement, but representing these details in an appropriate formal speci�cation is still challenging.

Without e¤ective solutions for addressing the above problems, a great progress in spreading formal speci�cation

technique in industry and introducing it to ordinary practitioners would be highly impossible.

1.4 Our solution | A pattern-based approach

Experience suggests that resolving ambiguities of requirements is a learning process that often requires the

analyst to make decisions and formalizing requirements is a means to precisely understand them. We believe that an

e¤ective way to solve the three problems in requirements formalization is to take the approach in which ambiguities

of informal requirements are gradually clari�ed while the corresponding formal speci�cations are automatically

generated. If the necessary function details can be correctly retrieved, its formalization only involves changing its

format, which can be more e¢ ciently and reliably done by a software tool [36].

To this end, a pattern-based approach to re�ning informal requirements into formal speci�cations is proposed in

the thesis. In this approach, a speci�cation pattern system is pre-de�ned where each speci�cation pattern provides

a speci�c solution for formalizing one kind of function. To facilitate pattern selection, all of the patterns are

categorized into a hierarchy according to the functions they can be used to formalize. In contrast to the conventional

21

Hosei University Repository



template libraries of formal languages that require human e¤ort in understanding the overall structure of the library

to select and apply a proper template for a speci�c problem, the distinct characteristic of our approach is that all

of the patterns are stored on computer as knowledge for creating e¤ective guidances to facilitate the developers in

writing formal speci�cations; they are �understood�only by the computer but transparent to the developers. Our

pattern system is expected to support a systematic and automated formalization of informal requirements with

the characteristic that the writer only needs to work on the informal level while an appropriate formal expression

will be e¢ ciently derived. Such a characteristic provides a possibility of automating the clari�cation process and

motivates the adoption of the pattern system in supporting semi-automatic generation of formal speci�cations.

This will allow the writer to concentrate only on the function design issues, while manipulation of formal notation

to form the most appropriate formal expressions can leave to the machine. Consequently, the formalization process

would become easier and mistakes would be reduced signi�cantly.

Speci�cally, a speci�cation pattern treats one kind of function as the composite of its attributes. It includes

derivation knowledge for deriving the details of the function and transformation knowledge for representing the

function properly in a formal notation. Derivation knowledge formally de�nes the necessary attributes to be

clari�ed and a rule repository for each element which provides a set of clari�cation rules for guiding the assignment

of the attribute. The formal semantics of each attribute ensures that the clari�ed requirements can be understood

by machines and automatically transformed into formal speci�cations. Transformation knowledge is a set of

transformation rules for determining the formal representation of the function according to the assigned attributes.

To be "understood" by machines, the formal de�nition of pattern is given to guarantee the precision of the pattern

system.

Based on the formal de�nition, the method for guiding requirements formalization by using the pattern system

is described. It includes two steps: requirements derivation and requirements translation. The former guides the

selection of appropriate speci�cation patterns and applies the derivation knowledge of the selected patterns to

guide the assignment of the de�ned attributes. The latter automatically transforms the assigned attributes into

formal speci�cations according to the transformation knowledge of the selected patterns.

During the application process of the selected patterns, necessary data types will be automatically recognized

and their de�nitions will be re�ned. Speci�cally, when applying each selected pattern, we use function-related
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declaration to guide the re�nement of the related data types. It consists of two steps: property-guided declaration

and priority-guided declaration. The former is applied during requirements derivation while the latter is carried

out during requirements translation.

In addition to the design and de�nition of the pattern system, the representation of the pattern knowledge is

also an important factor to the performance of the pattern-based approach. We adopt attribute tree and HFSM

(Hierarchical Finite State Machine) to represent the pattern knowledge. Attribute tree organizes the attributes of

a speci�cation pattern into a tree structure to facilitate requirements clari�cation and understanding. A HFSM

comprises a set of FSM (Finite State Machine) models to represent the knowledge to be used by machines in an

individual speci�cation pattern. These FSMs are organized in a hierarchy where the details of some portion of

each high-level FSM are interpreted by a set of low-level FSMs. On the basis of the attribute tree and HFSM,

several knowledge utilization algorithms are constructed. They retrieve pattern knowledge and accordingly produce

appropriate guidance for formalizing requirements.

We also describe a prototype tool that supports the pattern-based approach. Speci�cation pattern knowledge is

stored in an XML �le and the tool contains three major components manipulating on the �le. Knowledge extractor

retrieves appropriate knowledge from the XML �le according to the value of a set of state variables. Guidance

generator produces comprehensible guidance to the user on the basis of the retrieved knowledge. Preprocessor

analyzes the user input responding to the produced guidance and transforms it into state variables�values that

will be used by the knowledge extractor.

The major contributions of this thesis are summarized as follows.

� The design and formal de�nition of a speci�cation pattern system for supporting requirements formalization

A speci�cation pattern system [37] for supporting requirements formalization is proposed. The novelty of the

pattern system is that it is designed to be stored on computers as knowledge to produce guidance. Each

speci�cation pattern contains knowledge for guiding the clari�cation of necessary function details and the

translation of the clari�ed details into formal speci�cations. The formal de�nition of the speci�cation pattern

is given to enable its automatic utilization. We also describe the structure of the pattern system where all

the patterns are organized by classifying the functions they are used to formalize.
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� A method for supporting requirements formalization by applying the speci�cation pattern system

Based on the speci�cation pattern system, the method for re�ning informal requirements into formal speci�-

cations is described [38] [39]. It consists of two steps. The �rst step selects proper patterns from the pattern

system and applies the derivation knowledge of each selected pattern to guide the developer to achieve nec-

essary function details, which solves the �rst two problems in requirements formalization. The second step

automatically transforms the obtained details into formal speci�cations using translation knowledge, which

successfully tackles the third problem in requirements formalization.

� The design of a representation of the pattern knowledge

To facilitate knowledge maintenance, utilization and understanding, we propose an approach to representing

the pattern knowledge in attribute tree and HFSM. In this approach, attributes de�ned in each speci�cation

pattern are represented as an attribute tree that shows the de�nitions of these attributes in an intuitive way

while preserving their formal semantics [40]. The knowledge for automatic utilization in each speci�cation

pattern is represented a HFSM where low-level FSMs interpret certain portion of the high-level FSMs [41].

Since many mature techniques have been developed for automatic manipulation on FSM, the pattern knowl-

edge can be easily utilized, updated and veri�ed.

� A tool that supports the pattern-based approach

We have also implemented a prototype tool for supporting the pattern-based approach where the pattern

knowledge is stored in a XML �le [42]. By utilizing the knowledge, it derives informal requirements through

interactions with its users on the semantic level and automatically transforms the obtained information into

suggested formal speci�cations, which enables developers to concentrate on function issues without worrying

about how to guarantee the completeness and how to formally represent these functions. The implementation

of the tool demonstrates the validity of the approach and shows how the semiautomatic support can be

provided for requirements formalization.
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1.5 Summary

In this chapter, we �rst present the importance of requirements in software engineering and explain the merits

of using formal speci�cation technique to re�ne requirements. Then the problems to be handled in formalizing

requirements into formal speci�cations are analyzed and summarized. Finally, the solution to these problems is

brie�y introduced and the major contributions of this thesis are presented.

In the next chapter, we will compare our research work with others from several aspects and show the novelty

of the pattern-based approach.
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Chapter 2

Related Work

Our pattern-based approach involves methods for supporting requirements formalization, requirements clari�-

cation, requirements formalization, data type declaration, knowledge representation and tool implementation for

supporting requirements formalization. We discuss the related work in these relevant �elds respectively.

2.1 Methods for supporting requirements formalization

Formal speci�cation technique rises much attention in software engineering and many methods were proposed

to support requirements formalization. These methods can be generally divided into two kinds. The �rst kind

focuses on the construction of formal speci�cations and the second kind emphasizes the solution to the conversion

of informal requirements to formal speci�cations. We discuss these two kinds respectively.

2.1.1 Methods for facilitating formal speci�cation construction

There are two major kinds of methods for facilitating formal speci�cation construction. One kind is to combine

formal languages with informal notations or provide guidelines for writing quali�ed formal speci�cations. In [43],

the authors describe some example approaches to integrating structured methods of software development with

formal notations. Aiming at developing speci�cations that are both structured and formal, these approaches make

the use of formal languages more acceptable to managers and engineers in software development organization.

In [44], the authors use the structured analysis (SA) model of a system to guide the analyst�s understanding of

the system and the development of the VDM speci�cations. SOFL provides a SOFL formal speci�cation language

and a three-step approach to formal speci�cation construction [45]. The SOFL language adopts graphical notation

Data Flow Diagrams to describe system architectures, adopts Petri nets to provide an operational semantics for
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the data �ow diagrams and adopts VDM-SL to precisely de�ne the components in the diagrams. Such a language

facilitates the structure design and overall understanding of the envisioned system, and guarantees the precision

of the written requirements. The three-step approach treats formal speci�cation construction as an evolutionary

process where formal speci�cation is built by gradually re�ning the ambiguities of the informal requirements. S.

Liu [46] proposes an approach to constructing software speci�cations by integrating top-down and scenario-based

methods. The top-down method is used to achieve a complete coverage of the user�s functional requirements, while

the scenario-based method is used to precisely de�ne the functionality of each scenario and to construct complex

scenarios by composition of simple scenarios. A software supporting tool for the method is also described.

Although formal language combined with informal notation is easier to use, there is no guidance for formal

speci�cation construction. On the other hand, the guidelines provided by the current methods are often given on

an abstract level. Along the direction pointed out by these guidelines, developers still need to solve the bottom-level

problems by themselves, which brings risk of erroneous formal speci�cations.

The other kind de�nes speci�cation patterns and uses them to guide formal speci�cation construction. This kind

of methods has similar underlying theory as ours. Stepney et al. describe a pattern language for using notation

Z in computer system engineering [47]. The patterns proposed are classi�ed into six types, including presentation

patterns, idiom patterns, structure patters, architecture patterns, domain patterns, development patterns. Each

pattern provides a solution to a type of problem. Lars Grunske presented a speci�cation pattern system of common

probabilistic properties, called ProProST, for probabilistic veri�cation [48]. They also give a structured English

grammar that can guide in the speci�cation of probabilistic properties. The pattern system and the structured

English grammar capture expert knowledge and help practitioners to correctly apply formal veri�cation techniques.

However, a majority of these patterns cope with formal speci�cation construction at a more abstract level compared

with ours. They are not able to provide speci�c guidance for each step of the requirements formalization process.

There exist other example speci�cation patterns that are intended to support the construction process at the

bottom level are as follows. Ding et al. propose an approach for speci�cation construction through property-

preserving re�nement patterns [49]. The re�nement patterns are categorized into connector re�nement, component

re�nement and high-level Petri nets re�nement. Konrad et al. [50] analyze the timing-based requirements of several

industrial embedded system applications and create real-time speci�cation patterns in terms of three commonly
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used real-time temporal logics. They also o¤er a structured English grammar to facilitate the understanding of

the meaning of a speci�cation. This work is complementary to the notable Dwyer et al.�s patterns which are used

for presentation, codi�cation and reuse of property speci�cation in a range of common formalisms [51]. In [52], the

authors design a set of composable Timed Automata patterns based on hierarchical constructs in timed enriched

process algebras. The patterns facilitate the description of complex systems using Timed Automata and can be

used to transform CSP/TCOZ models to Timed Automata to enable the reasoning of TCOZ models. To solve

bottom-level problems, these patterns are designed to deal with speci�c domains.

In spite of enthusiasm in academics, speci�cation patterns are not yet widely utilized in industry mainly because

of the di¢ culties in applying them. E¤ective applications of most speci�cation patterns require full understandings

of them, and the ability to select and solve their speci�c problems depends on the understanding, since their informal

representations make it impossible to utilize the pattern knowledge without human involvement. Developers need

to study the pattern knowledge and gain enough experience in applying the provided general solution to speci�c

problems. Statistical data shows that large amount of patterns have been developed, but only a small subset

of these patterns are being used by industry practitioners and most of them are wasted as users may not fully

understand how to leverage them in practice [53]. In comparison with the above related work, the novelty of

our approach is that it treats the formally de�ned patterns as knowledge that can be automatically analyzed

and utilized by machines to generate comprehensible guidance and the patterns remain transparent to the users.

The produced guidance help the users, in an interactive manner, clarify ambiguities and gradually re�ne informal

requirements into formal speci�cations. Thus, developers need neither to be educated on the patterns nor to be

trapped in tedious and sophisticated formal notations; they only need to make critical decisions on the semantic

level and are able to focus on function design issues. With the help of the guidance produced by our approach,

developers who are not familiar with formal notations are also able to construct reasonable formal speci�cations.

There is a speci�cation pattern similar to ours proposed in [54]. It is also de�ned with formal semantics for

automatic utilization. However, their patterns are designed only for a speci�c domain: formal speci�cation of

OCL constraints. They can only be described in the context of UML and can only be used by UML experts. By

contrast, our patterns are aimed at dealing with commonly used functions and allow new ones to be designed to

handle wider range of functions. Users can focus on function design of the envisioned system and leave the syntax
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issues to the tool. Moreover, the user of the OCL speci�cation patterns is asked to provide all parameters of the

intended requirement at one time and an OCL constraint will be automatically generated. This is good enough for

OCL constraints but may have problems for complex functions. The reason is that in most cases, it is very di¢ cult

to determine all the parameters of a requirement at one time, especially for complex functions. We believe that

requirements formalization is also a clari�cation process. Thus, our patterns are designed to guide the clari�cation

of the intended requirements step by step and collect the provided function details for further formalization.

2.1.2 Methods for transforming informal requirements into formal speci�cations

Compared with formal notations, natural language is much easier to comprehend and use. Hence, many researchers

are devoted in automatic or semi-automatic transformation from informal descriptions to formal speci�cations

[55] [56], with which designers or developers are allowed to remain documenting in natural language, as they

wish. And the documented informal description can be formalized automatically. William E et al. introduce

a general framework for formalizing a subset of UML diagrams in terms of di¤erent formal languages based on

a homomorphic mapping between metamodels describing UML and the formal language [57]. Cory Plock et al.

show how to transform LSC (Live Sequence Charts) speci�cations with concurrency to timed automata [58]. Sunil

Vadera et al. propose an interactive approach for producing formal speci�cations from English speci�cations [36].

Several tools have also been proposed for automatic transformation, such as U2B [59] and RoZ [60].

Some of these transformation methods only translate requirements from one language to another based on certain

pre-de�ned syntactic rule without considering the real meaning of the models. They are not able to analyze the

semantics of the involved functions. Other methods usually involve NLP (Natural Language Processing) and their

performance largely depends on the e¤ectiveness of such technique. However, the current NLP is not satisfactory

for automatic analysis of informal speci�cations and still facing the problem of the great amount of ambiguity issues

at every linguistic level of natural language. The correctness of the transformation result is hard to guarantee.

Although controlled languages are proposed to reduce these ambiguities to some extent [61] [62], such as AECMA

Simpli�ed English, by restricting the grammar and vocabulary, it introduces other shortcomings. First, designers

have to learn the standard of the controlled language so that they will not write any expression determined as illegal

input that can not be recognized by machines. Secondly, the preciseness of statements will be a¤ected if the words
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or expressions that the designer prefers are not included in the controlled language. Lastly, language completeness

is hard to evaluate and guarantee since it is almost impossible to summarize all the combinations of words in a

language and extract a subset of them for describing all possible speci�cation functions. In [62], the authors give an

example that shows even the AECMA Simpli�ed English would make certain informal idea unable to be expressed.

There are also some researchers proposing intermediate languages to bridge the gap between informal and formal

descriptions [63] [64] [65]. However, these languages still require developers to deal with many details in formal

notations when reaching the bottom level of the intended formal speci�cations. Therefore, there is no e¤ective

tool-support in constructing formal speci�cations on the semantic level, but the introduction of patterns seems to

o¤er a solution. By contrast, informal descriptions is not treated as the resource of our pattern-based approach.

The desired functions are obtained by gradually clarifying informal ideas with human involvement. Thus, the

performance of the approach will not be a¤ected by NLP technology.

2.2 Tool support for requirements formalization

Several kinds of tools have been developed for supporting requirements formalization.

� The �rst kind supports the writing of formal speci�cations in di¤erent languages. For example, Z User Studio

is an integrated Z support tool [66]. It supports the production of well-formed Z speci�cations by provid-

ing facilitates for building, editing, checking and reviewing Z speci�cation documents. The Rodin Platform

is developed for supporting re�nement and mathematical proof on Event-B [67]. The re�nement function

represents the envisioned system at di¤erent abstraction levels and the mathematical proof function veri�es

consistency between re�nement levels. VDMTools supports software development based on the speci�cation

written in VDM-SL or VDM++ [68]. It contains a syntax checker and type checker for improving the quality

of the written VDM speci�cation. These tools provide e¤ective support for editing formal speci�cations with-

out syntax problems, but lack of intelligent support for guiding the requirements clari�cation and automatic

translation of requirements in formal notations.

� The second kind aims at automatic transformation from informal requirements to formal speci�cations. U2B

translator [59] converts UML Class diagrams, including attached state charts, into the B notation [69].
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RoZ produces a formal speci�cation from an annotated speci�cation by translating the UML constructs

and merging them with the annotations [60]. They allow developers to model the target system with their

preferred language, which is much easier to use and comprehend, and provides a automatic mean to transform

the model into formal speci�cations. However, they are not working on the semantic level and can hardly give

any guidelines on how to clarify requirements for their formalization. Developers who want to use these tools

need to explore the necessary function details according to their own experience. If the manually explored

function details are inadequate for formalization or involve ambiguities, these tools will fail to produce the

target formal speci�cations. By contrast, our tool that implements the pattern-based approach is able to

support the overall requirements formalization process from requirements clari�cation to formal speci�cation

generation.

� The third kind supports the formalization of system properties. SPIDER [70] derives and instantiates system

properties in terms of their natural language representations. Prospec [71] is developed to assist developers in

the elicitation and speci�cation of system properties based on Speci�cation Pattern System and Composite

Propositions. Our tool di¤erentiates from them by the ability to support the formalization of requirements

involving complex data types.

� The fourth kind deals with formal speci�cations of data types. Kanth Miriyala et al. describe an interactive

system called SPECIFIER for deriving formal speci�cations of data types and programs from their informal

descriptions [55]. Compared with this tool, our tool supports requirements formalization at a higher level of

abstraction so that the developers can focus on the semantics of real functions without the need of considering

their data type issues.

2.3 Methods for supporting requirements clari�cation

As a critical step in requirements formalization, requirements clari�cation is usually separated from require-

ments formalization. Gerald Kotonya et al. present how and which methods should be used for each activity

of requirements engineering including requirements clari�cation [72]. Eric Knauss et al. propose an approach to

analyzing online requirements communication and a method for the detection and classi�cation of clari�cation
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events in requirement discussions [73]. Jawed Siddiqi et al. describes their work towards a system that judiciously

combines the strengths of formal speci�cation and prototyping to assist in the construction, negotiation, clari�-

cation, discovery and formalization of requirements [74]. However, few of them aim at clarifying requirements for

automatic transformation into formal speci�cations .

On the other hand, several literatures, as mentioned in the previous section, claimed the proposals of e¤ective au-

tomatic formalization methods for requirements clari�ed in di¤erent informal notations. Requirements clari�cation

using the above informal notations needs to be manually conducted and the quality of the clari�ed requirements

are hard to guarantee. Besides, most of the informal notations aim at modeling envisioned system on a relatively

abstract level and the clari�ed requirements are often lack of necessary details to be automatically formalized.

Although natural language is capable of describing requirements in detail, NLP technique for natural language

understanding and analysis is still not satisfactory [61], especially when the involved data structures and function

details are complicated.

There are also some researches on the design of new languages that facilitate both requirements clari�cation

and automatic formalization. Lingzi Jin et al. describes the NDRDL language and the system NDRASS for

automatic generation of formal speci�cations in Z from requirements de�nitions in NDRDL [75]. In [76], the

author proposes a new requirements language to better structure informal requirements, and shows the method for

transforming requirements written in this language into formal speci�cations. These new languages contribute to

the intuitiveness of the requirement clari�cation process and step further to formal speci�cations compared with

other existing informal representations. But they are designed to model system architectures without considering

the included function details and rich data types. By contrast, our approach is able to deal with the clari�cation

of detailed behaviors for data-intensive systems.

2.4 Methods for data type declaration

We know of no existing approach that provides assistance throughout the whole data type declaration process,

although some researches have been concerned with certain aspects of the problem.

Type checking technique and model transformation have been introduced to facilitate data type declaration [77]

[78] [36]. The former detects static type errors to prevent erroneous formal descriptions while the latter allows data
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to be described in certain intermediate language easier to use and provides a method for transforming the data

model into formal data types. Unfortunately, they fall short of meeting practitioners�demand. First, relations

between types and functions to be described is not considered, i.e., type de�nitions incapable of or unsuitable for

describing the intended functions are not able to be identi�ed. Secondly, no guidance or automated assistant is

provided during the declaration process. Lastly, the consistency between formal expressions and type de�nitions

cannot be guaranteed. In a formal speci�cation f , if a type de�nition t is changed into t0, all the formal expressions

involving state variables de�ned with t need to be manually modi�ed to be consistent with the new de�nition t0.

In the type checking �eld, several typecheckers are designed and implemented for various formal speci�cation

languages with di¤erent type systems. Jian Chen et al. [78] develop a simple but useful set of rules for type

checking the object-oriented formal speci�cation language Object-Z and an earlier version of the type checker for

Z is given in [79]. For the Vienna Development Method (VDM), the most feature-rich analytic tool available is

VDMTools which includes syntax- and type-checking facilities [77] [80] where syntax checking results in positional

error reporting supported by an indication of error points and type-checking can be divided into static type-checking

and dynamic type-checking. The former checks for static semantics errors of speci�cations including incorrect values

applied to function calls, badly typed assignments, use of unde�ned variables and module imports/exports, while

the latter aims at avoiding semantic inconsistency and potential sources of run-time errors. As one of the major

components in the Rodin tool for Event-B, static checker analyses Event-B contexts and Event-B machines and

generates feedback to the user about syntactical and typing errors in them [81] [67]. Prototype Veri�cation System

(PVS) extends higher order logic with dependent types and structural and predicate subtypes. In addition to

conventional type-checking, it returns a set of proof obligations TCCs (Type Correctness Conditions) as potent

detectors of erroneous speci�cations and provides a powerful interactive theorem prover that implements several

decision procedures and proof automation tools [82] [83]. In [84], the authors present a type checker for formal

speci�cations of software systems described in Real-Time Process Algebra, which is able to handle three tasks:

identi�er type compliancy, expression type compliancy and process constraint consistency. In [85], the authors

de�ne the type system of formal language Circus which combines Z, CSP and additional constructors of Morgan�s

re�nement calculus, and describes the design and implementation of a corresponding type checker based on the

typing rules that formalize the type system of Circus.
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The quality of the declared data types can be signi�cantly improved by the supporting tools listed above,

unfortunately practitioners are still complaining about the di¢ culties in identifying real objects by formal data

type de�nitions due to the lack of e¤ective guidelines throughout the declaration process and everlasting appearance

of errors implicitly explained. Despite the use of "semantic analysis" in some of these tools�underlying theories,

it refers to the semantics of the embedded type system that is part of the built-in mechanism, rather than the

semantics of the informal requirements in users�mind. By contrast, our approach tries to connect the semantics

of speci�cations with the corresponding system behaviors through data types and evaluate the appropriateness of

the declared types on the real semantic level. Moreover, the given systematic guidance in the overall declaration

process speci�es how to reach the appropriate data types step by step while checking the correctness of the result

of each step, which alleviates burdens of manual design.

There are also some researches done for transforming models in intermediate languages to formal data type

de�nitions. These intermediate languages provide accessible visualization of object relation models and therefore

simplify the object identi�cation process. In [36], entity relationship models are treated as the basis for producing

VDM data types in speci�cations. Colin Snook et al. [86] propose a formal modeling technique that emerge UML

and B to bene�t from both languages where the semantics of UML entities is de�ned via a translation into B. [87]

presents an automated transformation method from UML class diagrams with OCL constraints to Alloy which is

a formal language supported by a tool for automated speci�cation analysis. The problem, however, lies in the fact

that identifying and de�ning objects are separated from the functions to be described in these methods and totally

depend on the developer�s initial understanding of the real system. Hence our approach would be more reliable in

declaring data types for function description and practitioners can utilize models in graphical representations as

supplementary materials.

2.5 Methods for pattern knowledge representation

Many e¤orts have been made in the �eld of speci�cation knowledge in terms of patterns. As previously men-

tioned, most kinds of pattern knowledge are represented informally in order to facilitate understanding since they

are generally de�ned with common solutions to common problems and their application to speci�c problems de-

pends on how well the users understand the pattern knowledge. They are unsuitable for automatically processing
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by machines. By contrast, our speci�cation pattern knowledge is formally represented and can be recognized by

machines without ambiguity, which provides a possibility to automate the requirements formalization process.

Developers who intend to bene�t from the knowledge are only required to follow the produced guidance without

the need of knowledge learning.

Meanwhile, researchers are still improving the usability of such patterns by specifying pattern solutions with

pattern speci�cation languages [88] [89] [90] [91] and some of them provide formal semantics for existing patterns.

Elemental Design Patterns are proposed in [92] to provide a formal semantics for composition of OO software

architecture. It bridges the gap between the abstraction of design patterns and the reality of working with an

ultimately mathematically expressible system such as code. In [93], the authors introduce a set of commonly used

process change patterns for PAIS (process-aware information system) engineers to facilitate the comparison between

di¤erent approaches for process modeling. They provide the formal semantics of these patterns to ground pattern

implementation and pattern-based analysis of PAISs on a solid basis. The authors in [94] try to de�ne the assembly

patterns with process algebra theory, so that the component assembly pattern in the software architectures can

be described more precisely and better analyzed. The di¤erence between these researches and ours is that they

provide formal semantics for patterns to pull the provided solutions closer to the speci�c problems in real settings

while our formal representation is to facilitate the maintenance and utilization the pattern knowledge on machines

and the understanding of the produced guidance for users.

There are also other kinds of formal representations for requirements formalization knowledge, such as the

knowledge in the previously mentioned work [36], [57], and tools U2B and RoZ. But this kind of representation

only needs to describe a set of pre-de�ned syntactic mapping rules without considering the real meaning of the

relevant requirement details. Our knowledge is much more complex and needs a representation that can organize all

aspects of the knowledge in a clear and accurate manner. The attribute tree provides a clear view on requirements

structure and a formal semantics of the involved attributes. The relations between the FSMs in each HFSM

represent the architecture of the pattern knowledge and the symbols involved in each FSM represent the elements

for composing the knowledge.
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2.6 Summary

In this chapter, our research is divided into several aspects. For each aspect, we discussed the related work and

explicitly explained the di¤erences between our approach and these related work.

From the next chapter, we will begin to present the pattern-based approach. In the next chapter, the underlying

principle and outline of the approach is given based on some preliminaries. Then an example system is introduced

for later explanation of the approach details.
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Chapter 3

An overview on the pattern-based approach

to requirements formalization

This chapter gives an overview on the proposed approach. Before presenting the outline of the pattern-based

approach, some basic concepts need to be �rst introduced.

3.1 Preliminaries

Two concepts are explained in this section. One is SOFL (Structured Object-Oriented Formal Language)

including SOFL language and SOFL three-step approach. The underlying theory of our approach is language-

independent, but a speci�c formal notation is necessary for illustrating how the approach works. We choose SOFL

as the example notation due to our expertise. The other concept is pattern. We brie�y introduce the history of

pattern and present how we are inspired by this concept.

3.1.1 SOFL

SOFL is composed of two parts: a formal but comprehensible language for requirements and design speci�cations,

called SOFL speci�cation language and a practical method for developing software systems, called SOFL method.

We will explain these two concepts respectively.

The SOFL language is an integration of three notations, including Data Flow Diagrams, Petri nets, and VDM-

SL. Speci�cations in SOFL are usually composed of modules that are associated with CDFDs (Condition Data

Flow Diagrams). CDFDs are designed in a hierarchy to describe the architecture of the system under design, while

the components used in each CDFD, such as data �ows, data stores, and processes, are precisely de�ned in the
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Figure 3.3. An example CDFD hierarchy

corresponding module.

Figure 3.3 shows an example CDFD hierarchy where each box in light yellow denotes a process and each box

in orange denotes a data store. Processes are connected by directed lines where each line denotes a data �ow and

the attached label denotes the name and data type of the data �ow.

This hierarchy includes two levels where the inner structures of the processes B and D are described by two

lower-level CDFDs. In the top level CDFD, four processes A, B, C, D, and one data store datastore are involved.

The process A has two input ports receiving data �ows d1 and d3 respectively, which means that only one of the

two data �ows can be consumed as input for producing output. When either d1 or d3 is available, process A

is activated and takes the available data �ow as input and produces d2 as output. Process B will be activated

when receiving the produced d2 and control �ow c3. It owns two output ports producing data �ows d4 and d5

respectively, which means that only one of the two data �ows can be produced as output. If d4 is produced, the

process C will be activated and output data �ows d6 and d7. If d5 is produced, the process D will be activated

and output data �ow d8. Note that both the processes C and D are connected to datastore. The two directed
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lines between C and datastore indicate that C uses the data of datastore and also updates datastore during its

execution. For the process D, there is only one line originated from datastore, meaning that D only uses the data

of datastore during its execution.

The process B is decomposed into a CDFD composed of processes B1 and B2. This CDFD illustrates how the

input c3 and d2 are transformed into d4 or d5 within the process B. These two data �ows are �rst transformed

into d9 by process B1 and then turned into d4 or d5 by process B2. Similarly, the process D is decomposed into

the processes E and F where E transforms input d5 into d and F transforms d into output d8. The process F

reads from datastore during its execution.

A module, associated with a CDFD, denotes a set of inter-related system behaviors that are relatively indepen-

dent from others. It encapsulates data and processes used in the associated CDFD in a pre-de�ned structure. All

of the data �ows and store variables are declared using well-de�ned types. Each process denotes an operation that

absorbs input and produces output, which is speci�ed in terms of pre- and post-conditions. Input must satisfy

the pre-conditions while output must satisfy the post-conditions. Figure 3.4 shows the modules for de�ning the

example CDFD in Figure 3.3 where the module TopCDFD de�nes the top level CDFD, the module B_decom

de�nes the CDFD of the process B and the module D_decom de�nes the CDFD of the process D.

Each module mainly comprises �ve portions: const portion for constant declaration, type portion for type

declaration, var portion for variable declaration, inv portion for de�ning invariants and the portion for de�ning

processes. We take the module TopCDFD as an example. Its involved types are declared in type portion such as

D1 and D2. Datastore datastore in the top level CDFD is de�ned in the var portion as a variable. Each process

is de�ned with input, output, pre- and post-conditions. The statement "decom : B_decom" in the process B and

statement "decom : D_decom" in the process D indicate that the processes B and D are decomposed into the

modules B_decom and D_decom respectively. One can refer to the bodies of these two modules for the detailed

description of the process B and D.

Since data type plays an important role in our approach, the type system in SOFL is brie�y introduced. In the

module structure, the type portion is composed of a set of user-de�ned types for declaring the variables and data

�ows in the module. These types are de�ned based on the built-in types in SOFL. There are two kinds of built-in

types. One is basic types including numeric types, boolean type, character type and enumeration types. There are
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module TopCDFD;
const;
type
D1 = …
D2 = …
… ;
var
datastore: … ;
inv;
process A(d1: D1 | d3: D3) d2: D2
pre
post
end_process;
process B(d2: D2, c3: C3) d4: D4 | d5: D5
decom: B_decom
end_process;
process C(d4: D4) d6: D6, d7: D7
ext wr datastore
pre
post
end_process;
process D(d5: D5) d8: D8
decom: D_decom
end_process;
end_module;

module B_decom;
const; type; var; inv;
process B1(d2: D2, c3: C3) d9: D9
pre
post
end_process;
process B2(d9: D9) d4: D4 | d5: D5
pre
post
end_process;
end_module;

module D_decom;
const; type; var; inv;
process E(d5: D5) d: D
pre
post
end_process;
process F(d: D) d8: D8
ext rd datastore
pre
post
end_process;
end_module;

Figure 3.4. The module speci�cation of the example CDFD hierarchy

four numeric types: nat0 denoting natural numbers including zero, nat denoting natural languages, int denoting

integers and real denoting real numbers. The other kind is compound types including set types, sequence types,

composite types, product types, map types and union types. Table 3.1 shows the constructor of each compound

type.

The SOFL method is a three-step modeling approach, transformation from structured design speci�cations

to object-oriented implementations, and speci�cation-based inspection and testing for program veri�cation and

validation. In this approach, the modeling of a system is an evolutionary process, starting from building an informal

speci�cation, through transforming it to a semi-formal one, and �nally constructing a formal speci�cation. In the

informal stage, requirements are written in natural language that re�ects the desired functions of the system, data

resources, and necessary constraints. Based on the informal speci�cation, the system can be designed into modules

in semi-formal speci�cation in which all data types are de�ned formally; all variables are declared using well-de�ned

types; and all processes are speci�ed in terms of pre- and post-conditions but these conditions are usually written

informally (which re�ects the semi-formal feature). The formal speci�cation is then derived from the semi-formal

one by formalizing its informal parts.
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Table 3.1. The constructors of the compound types in SOFL

Type constructor Example

set set of t = set of T (Type t is a set type where each element is of type T )

sequence seq of t = seq of T (Type t is a sequence type where each element is of type T )

composed of t = composed of (Type t is de�ned as a composite type with three �elds f1, f2

f1: T1 f1 : T1 and f3. These three �elds are de�ned as types T1, T2 and T3

composite ... f2 : T2 respectively. Any value of t type is a composite object

fn: Tn f3 : T3 composed of three attributes f1, f2 and f3. Each attribute fi of

end end the value is speci�ed with a value of Ti type.)

product T1*...*Tn t = T1 � T2 (Any value of t type is a tuple (v1; v2) where each vi is of Ti type)

map map ... to ... t = map T1 to T2 (Type t is a maximum mapping from T1 to T2)

union T1 j ... j Tn t = T1jT2jT3 (Any value of t type can come from one types T1, T2, T3)

Our research also adopts this idea that requirements formalization should start from a general intention and

the ambiguities of the original requirements be gradually resolved as the developer gradually clari�es his intended

requirements. The speci�cation pattern system categorizes all the patterns according to the functions they are used

to formalize and pattern selection is actually a process of clarifying the general intention of the developer. The

application of the selected pattern guides the assignment of the relevant attributes sequentially, which is actually

to guide the clari�cation of the ambiguities involved in the original requirement step by step.

The reader who wishes to understand more details of SOFL can refer to [45] for extensive reading.

3.1.2 Pattern

The concept of pattern was initially introduced by Alexander et al [95] in which patterns are used to share the

author�s intelligence on handling the large-scale structure of the environment. A pattern is created to convey

feasible solutions to the corresponding re-occurred problem within a particular context, which is intended to

facilitate people who face the same problem. Instead of learning issues like the growth of town and country, the

layout of roads and paths, etc, software industry was inspired to make their own patterns for software design, which
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has proved to be useful [53]. One of the well-known achievements is design patterns, focusing on software design

problems [96]. Several books [96] [97] about UML based object-oriented design with patterns are published, aiming

at promoting design patterns among practitioners to help create well crafted, robust and maintainable systems.

Amplifying the bene�ts of patterns, researchers and practitioners have later made it applicable in many other areas

of software development process, including formal speci�cation construction.

Inspired by the underlying theory of design pattern that classi�es system architecture into di¤erent kinds and

provides a general design plan for each of these kinds, we start to analyze the feasibility of classifying commonly

used functions and provides a formalization framework for each kind of function.

A pattern usually consists of three parts.

� intention �describing the problem or a sort of problems that the pattern intends to deal with

� solution �presenting recommended algorithms or methods for solving the problem

� context �illustrating the condition under which the pattern can be utilized.

Pattern structure, however, varies depending on the speci�c situation it applies to. In our research, patterns are

designed to be applied by a potential tool to generate appropriate guidelines for the developers. For this reason,

the structure of our pattern must be designed to be easily processed by software tool. Besides, all of the individual

patterns must be organized properly so that they can be easily identi�ed, applied, updated, and extended. Solutions

to these problems are based on the classi�cation of patterns and the structure of each individual pattern that are

presented in the next chapter.

3.2 The outline of the approach

The outline of our pattern-based approach is given in Figure 5.15 where requirements formalization consists of

two stages: requirements derivation and requirements translation.

During the �rst stage, the informal requirements in the developer�mind is gradually clari�ed and the function

details of the clari�ed requirements is derived. There are two major activities in this stage: attributes clari�cation

and data type declaration. In the �rst activity, each function of the requirements is regarded as the composition of

a set of attributes and clarifying a function is to specify each attribute for composing the function. In the second
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Figure 3.5. The outline of the pattern-based approach
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activity, all the necessary data types for formalizing the requirements are declared [98]. Instead of being performed

independently, these two activities are interleavingly carried out. Clarifying attributes needs to use the existing

types de�ned in data type declaration. Meanwhile attributes clari�cation help speci�es the types that should be

de�ned to enable the description of the clari�ed attributes. Therefore, the two activities precede hand in hand

until both them are terminated. In the second stage, the obtained function details are translated into a formal

speci�cation. Such a translation is actually done by a syntactical transformation from the format of the function

details to a formal notation.

Both of the stages are performed through interactions between the developer and computer where computer

produces guidance and the developer inputs the response to the computer. The response triggers the computer to

produce new guidance which is then followed by the developer for the next step of requirements formalization. Such

a process repeats until a formal speci�cation is achieved. The foundation of this interaction process is a speci�cation

pattern system which is stored on the computer to be applied to interact with the developer. The speci�cation

pattern system organizes a set of speci�cation patterns in a hierarchical structure where each pattern carries two

kinds of knowledge for formalizing one kind of function: derivation knowledge and transformation knowledge.

The former is designed to support requirements derivation and the latter is created to deal with requirements

translation. We adopt attribute tree and HFSM to represent the above pattern knowledge in computer. Attribute

tree is used in derivation knowledge to intuitively show the de�nitions of the requirement attributes that need to

be clari�ed, which facilitates the developer�s understanding on the structure of the intended requirements. HFSM

is used to describe the knowledge for guiding the clari�cation of the attributes and generating the target formal

speci�cation, since these knowledge is only applied by machines and HFSM is easy to be manipulated automatically

and maintained by several mature supporting tools.

It should be noted that the requirements formalization process in our approach is not expected to be fully

automatic due to the need for human decisions, but it is expected to help the developer clarify ambiguities in the

informal requirements and generate appropriate formal speci�cations.

From the next chapter, we will explicitly describe each component in the approach outline from the bottom level

since the understanding of the high-level components relies on that of the lower-level components. Consequently,

the structure and de�nition of the speci�cation pattern system will be �rst introduced. Then we will show how
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to apply the pattern system for supporting the two stages during requirements formalization. The �rst stage

requirements derivation is described by presenting the inter-related activities attributes clari�cation and data type

declaration, while the second stage requirements translation is described by explaining the syntactical rules for

transforming the obtained function details into formal speci�cations. The representation of the included pattern

knowledge is �nally described since it is designed based on the application process of the pattern system.

3.3 An example system

To illustrate our approach more clearly, a banking system is introduced and its architecture is shown in Figure

3.6. When presenting the details of each technique in the approach, we will choose some of the included functions

as examples to demonstrate the application of the technique in real settings.

The banking system manages a set of bank accounts in the datastore account_store where each account is

owned by one customer with a unique pair of account number and password. An account holds the information

of balance and a sequence of transactions. Balance reveals the current amount of each kind of currency and each

transaction records the date, type, currency type and the amount of certain operation performed by the customer.

The date of today is hold by the datastore today and the rate information for currency exchange is carried by the

datastore rate_store.

According to the CDFD, the system provides services for two roles: one is the bank customers and the other is

the manager of the banking system. Process roleSelection receives the role information and accordingly determines

the next operation to be performed. For each customer, the banking system will �rst perform identity validation

(denoted as process Account_con�rm) to check whether the current customer is eligible to receive the services. An

authorized customer can choose from four services: deposit, withdraw, information display and currency exchange

(denoted as processes deposit, withdraw, display and exchange respectively). The service deposit allows the customer

to deposit money in their own accounts. By the service withdraw, the customer can withdraw from their own

accounts. The service information display shows the required information to the customer, such as balance and

transaction history. The service currency exchange allows the customer to exchange between several kinds of

currencies.

For the manager with valid ID and password, the banking system provides four services including balance
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Figure 3.6. The CDFD of the banking system
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analysis, transaction analysis, global balance analysis and global transaction analysis (denoted as processes Bal-

ance_Analysis, Tran_Analysis, GBalance_Analysis, GBalance_Analysis respectively). The function balance

analysis displays the balance of the designated currencies in a designated account; the function transaction analy-

sis lists the desired transactions in a designated manner; the function global balance analysis shows the sorted

balance information of all the accounts; and the function global transaction analysis exposes the sorted transaction

information of all the accounts.

3.4 Summary

In this chapter, we �rst introduce the basic concepts used in our requirements formalization approach, including

the formal notation SOFL language that is adopted for illustrating our approach in the thesis, the SOFL three-

step approach that inspired us in the development of our approach and pattern that acts as the foundation of our

approach. Then we describe the outline of our requirements formalization approach which provides a clear view on

the overall framework of the approach. This outline will help readers better understand each involved component.

Finally, a banking system is introduced and its architecture is shown in a CDFD diagram.

From the next chapter, we will begin to explicitly describe the components involved in the approach outline.

Serving as the foundation of the approach, speci�cation pattern system is �rst introduced.
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Chapter 4

Speci�cation pattern system

Speci�cation pattern system is composed of a set of speci�cation patterns each dealing with the formalization of

one kind of function. Instead of isolating from each other, these patterns are connected in a way that one pattern

adopts other patterns to formalize certain sub-functions. All the patterns are categorized according to the kinds

of function they can be used to formalize. We will �rst present the concept of speci�cation pattern and then show

how these patterns are organized in the hierarchy of the pattern system.

4.1 Speci�cation pattern

The idea of adopting pattern in requirements formalization originates from the fact that most requirements can

be divided into a set of bottom-level functions and the bottom-level functions of the same kind share the same set

of attributes. If the attribute set for each kind of bottom-level function is obtained as a pattern of the function

description, the clari�cation of requirements can be guided, as well as requirements formalization. This underlying

theory of our speci�cation pattern is shown in Figure 4.7.

A requirement is the combination of functions and a function is composed of its attributes. Individual functions

of the same kind are composed of the same set of attributes, which forms patterns as guidance for clarifying the

individual functions of this kind. For each kind of function fi, each its attribute attrij can be de�ned as a union

type consisting of a set of constituent types ftij1; tij2; :::g. These constituent types indicate di¤erent ways for

specifying attrij , contributing to individual functions with di¤erent attribute values. Thus, given two requirements

r and r0 which are both composed of functions f and f 0, if f or/and f 0 in r has at least one attribute speci�ed

di¤erently from that of f or/and f 0 in r0 , r and r0 are two di¤erent requirements. The same example can be

found in Figure 4.7 where requirements r1 and r2 are built by di¤erent combinations of f1 and f2 because of their
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Figure 4.7. The underlying theory of the pattern-based approach

di¤erently speci�ed attributes.

Consider the function of altering data items of a system variable. It includes two attributes: the system variable

to be altered (denoted as objAttr) and the way to alter it (denoted as howAttr). All the speci�c functions that

describe the altering of data items of a system variable are composed of these two attributes. Therefore, a pattern

can be created which de�nes attributes objAttr and howAttr as the necessary function details that must be

clari�ed to obtain a complete description of alter functions. When applying the pattern to formalize a speci�c alter

function, one should clarify these two attributes according to their de�nitions. Let�s take the attribute howAttr as

an example. It is di¤erently speci�ed in di¤erent individual altering functions. If the individual function replaces

the target system variables with new values, the attribute should be speci�ed as these new values. However, if the

intended individual function only modi�es parts of the target system variables, the attribute needs to be speci�ed

in several aspects, such as the identi�cation of the data items to be modi�ed in the target system variables and

the way to alter the identi�ed data items.

Based on the underlying theory, we start the introduction of our pattern from its structure for better under-
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standing the inner mechanism. Then the de�nition of the pattern is presented.

4.1.1 Pattern structure

Similar to traditional patterns, our speci�cation pattern is also designed with a structure for organizing the included

knowledge. It is composed of the following four items:

name the unique identity of the pattern

explanation explains what kind of function the pattern can be used to formalize

constituents speci�es how to write the requirement for the intended function

solution rules for transforming the achieved requirement into formal expressions

As can be seen from the structure, a speci�cation pattern is established to guide the formalization of one kind

of function f . It mainly consists of two parts providing solutions for tackling the two tasks during formalization:

the clari�cation of f and the representation of the clari�ed f in a formal notation. In the �rst part, f is treated

as a composition of its necessary attributes. These attributes are formally de�ned as elements and clarifying f is

to assign values to the elements according to their de�nitions. A set of clari�cation rules are provided for guiding

such assignments. In the second part, a set of transformation rules are given for generating formal representation

of f according to the values assigned to the elements. Consider the function "belong to" which describes a relation

where certain object is a member of another object. Each speci�c "belong to" function is composed of two

attributes: the member and the object that the member belongs to. Therefore, the corresponding pattern includes

clari�cation rules for guiding the assignment of the two attributes and transformation rules for generating a formal

representation of the "belong to" function according to the assigned values.

Figure 4.8 shows an example pattern. The name of the pattern is "sorting" and the explanation item tells that

it is used to describe the function of placing objects in a particular order.

The constituents item speci�es how to derive the requirement for a sorting operation by providing derivation

knowledge: item elements composing a set of elements where each element denotes one of the attributes of sorting

functions and item rule for guidance comprising a set of clari�cation rules for assigning values to these elements.

There are four elements in the item elements: objs denoting the set of objects to be sorted, result denoting the

variable representing the result of the sorting operation, ruleType denoting the category of the sorting rule, rule
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name sorting
explanation Placing objects in particular order
constituents

elements:
objs, result, ruleType, rule

rule for guidance:
1. if the data type of the given value of objs is char

then ask the developer to assign another value to objs

2. if the given value of objs owns two sub­objects, element
ruleType should be assigned as “et”

… …
solution

1. if    the pattern is used to describe certain sub­function for
another pattern

and   the value assigned to element result is a defined variable
and   the value assigned to element ruleType is “etg”

then    the resultant formal expression is :
the formal expression generated by applying pattern
group with its element objs assigned as objs in this
pattern and result assigned as “elems(result))”+ “and rule”

… …

Figure 4.8. Pattern �sorting�

denoting the rule for sorting objs. In rule for guidance, two example rules are listed to illustrate the meaning of the

item. If the speci�ed objs is a character, the �rst rule will be applied and the developer will be asked to re-specify

objs since sorting one character makes no sense. Otherwise, if the speci�ed objs is a set owning two members,

the second rule will be applied and element ruleType will be automatically assigned as "et", meaning each pair of

neighbor objects in result holds the same relation.

Item solution involves a set of transformation rules for determining the resultant formal expressions based on

the values assigned to the four elements. For example, the �rst rule gives the formal expression for the elements

whose values satisfy the three listed constraints.

Di¤erent patterns are inter-related in a way that one pattern applies other patterns to formally describe certain

sub-functions of the intended function. In the pattern sorting, for example, pattern group is involved in the �rst

rule for generating a part of the resultant formal expression.
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4.1.2 Pattern de�nition

In our approach, the speci�cation patterns are designed to be applied by machines; any ambiguity will impede

their automatic utilization. For this reason, we formalize the pattern structure in the following de�nition where

P(s) denotes the power set of set s.

De�nition 1 A pattern p is a 6-tuple (f;E; PR; expl;�;	) where

� f is the unique identity of p denoting the kind of function that p is used to formalize

� E is a set of elements where each element denotes one of the necessary attributes of f

� PR is a set of constraints on p or the elements in E

� expl : ffg[E[PR �! string informally interprets f , elements in E and constraints in PR for the purpose

of human-machine interaction where string denotes the universal set of strings

� � : �E [ �R denotes the set of clari�cation rules for guiding the assignment of the elements in E where

��E : E �! E is a partial function that determines the order for specifying elements where

� 9e02E � e0 =2 ran(�E) (e0 represents the �rst element to be speci�ed)

� 8e!e02�E � e 6= e0 (e! e0 denotes a maplet in �E where e0 should be speci�ed after e)

��R : E �! RPT de�nes a rule repository for each element e in E to guide the assignment of e where

each repository in RPT is a triple (CR;R0; 
) where

� CR : P(PR) �! P(PR) denotes the set of rules in the repository where each rule determines the

satisfaction of a set of constraints based on already satis�ed constraints and 8PRi!PR0
i2CR � PRi \

PR0i = ?

� R0 � CR is the �rst set of candidate rules to be applied

� 
 : CR ! P(CR) determines the sequence for applying the rules in CR where 
(r) indicates the

candidate rules for further clarifying e after rule r is applied

� 8RSi2ran(
) � 8PRm!PR0
m;PRn!PR0

n2RSi � 8pr2PRm
�pr ) 9pr02PRn

� :pr0 (for each r 2 CR, only one

of the candidate rules in 
(r) will be activated when formalizing a function using p)
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� 	 : P(PR) �! string is a partial function that denotes the set of transformation rules for generating the

formal representation of f according to the values assigned to the elements where 8PRi!si;PRj!sj2	 �8pr2PRi
�

pr ) 9pr02PRj � :pr0 (only one of the rules in 	 will be activated for the speci�ed elements)

The above de�nition organizes the four items of the pattern structure into a tuple and formalizes them into

corresponding elements of the tuple. Speci�cally, item name and explanation are denoted as f and the mapping

originating from f in expl respectively. The other mappings in expl are designed to explain the semantics of a

subset of the formal concepts in the pattern, which enable the production of comprehensible guidance from formal

notations. For item constituents, its sub-item elements is transformed into a set denoted as E in the tuple and the

sub-item rule for guidance is formalized into rule set �. According to the rule for guidance item of the original

structure, item � formally de�nes how to guide the retrieval of the elements in E by de�ning �E and �R. Mapping

	 mathematically de�nes item solution.

We will describe each item in the formal de�nition in detail sequentially and then give an example pattern to

facilitate the understanding of each item. The �rst item f reveals the functions that the pattern can be used to

formalize. The second item E consists of all the necessary attributes to be clari�ed to formalize f where each

attribute is de�ned as an element. The formal de�nition of element is given as follows.

De�nition 2 An element e is a triple (id; attr; def) where

� id denotes the unique identity of e

� attr denotes the attribute that e refers to

� def = d1 [ d2 [ ::: [ dn (n > 1) denotes the value set that e ranges over where

� d1; d2; :::; dn classi�es the value set into di¤erent categories where each di denotes a constitute type of

e consisting of a kind of values in def

� 8di;dj2P(def) � di \ dj = ?

Ranging over a union type def , each element will be assigned with a value of one of the constitute types according

to the function under description when writing speci�c requirements. Therefore, clarifying a function is actually

to re�ne the de�nitions of its attributes into one of the constitute types and assign a value of that type.
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Table 4.2. An overview on basic element types

element type de�nition

nil The type of the element is not determined yet

strV alue Universal set of strings

numV alue Universal set of numbers

Universal set of formal expressions for representing

expV alue system variables where each formal expression

is written with de�ned variables and operators

typeV alue Universal set of built-in and custom types

choice fc1; :::; cng where each ci is a candidate item

Universal set of constraints on system variables where

constraint constraint(a) denotes constraints on a, constraint(a1; :::; an)

denotes constraints on the relations between a1, ..., an

All the constitute types for de�ning elements are divided into two kinds: atomic type and structured type. The

former indicates to specify an element without further decomposition while the latter decomposes an element into

a structure where child elements and low-level requirements are combined to specify high-level elements.

Atomic types include seven members as shown in TABLE 4.2 where the �rst type nil denotes a special state of

elements. An element of nil type can be assigned with a value of any element type and needs to be more speci�cally

de�ned through further clari�cation. For each element e of atomic type t, de�nition format is e : t.

Structured types are divided into the following categories:

� Set type

An element of Set type refers to an unordered collection of distinct child elements. These child elements

share the same def item and di¤erentiate from each other by the di¤erent values assigned to them. For an

element e de�ned as a set of elements e0, its de�nition format is e : set of e0.

As previously introduced, attribute howAttr represents the way to alter a given system variable. One way

to specify the attribute is to describe various kinds of data items to be modi�ed and depict the performed
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operation for modifying each kind of data item. Therefore, element how for denoting howAttr has a constitute

type of Set type where each child element refers to the performance of the operation on one kind of data

item.

� Composite type

An element of Composite type is described by a set of child elements fe1; e2; :::; eng where each ei is de�ned

for specifying one aspect of the corresponding attribute. For an element e of composite type with �elds

f1; :::; fn, its de�nition format is: e : f1 � ::: � fn. For example, if certain alter function modi�es various

kinds of data items, its element how should be speci�ed as a Set where each child element g of element how

indicates the performance of the operation on one kind of data item. The element g needs to be described

from two aspects: the identi�cation of the data items to be modi�ed (denoted as data) and the way to modify

the data items (denoted as oper). Therefore, Composite is a constitute type of g with �elds data and oper

re�ecting two aspects of the corresponding attribute.

� Option type

An element e of Option type is described by a set of child elements fe01; e02; :::; e0mg where each e0i is selected

from a pre-de�ned child element set fe1; e2; :::; eng(n > m). Each ei denotes a possible aspect of the attribute

corresponding to e and at least one element should be selected from the set to compose e.

Suppose a requirement intends to alter a system variable of mapping type. If it modi�es part of the variable

and gives a set of constraints that describe the target maplets to be altered, these constraints, denoted as

element c, may cover three aspects of each target maplet: constraints on its domain (denoted as dom),

constraints on its range (denoted as ran) and constraints on the relations between its domain and range

(denoted as dRr). Thus, element c can be de�ned as an option type composed of at least one aspect chosen

from dom, ran and dRr.

� Req type

An element of Req type represents an attribute needed to be described by a low-level requirement formalized

by another pattern. For example, for each pair of elements oper and data, oper needs to be speci�ed by a
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lower-level requirement on function alter if data is intended to be modi�ed by an alter operation. Therefore,

one of the constitute types of oper is Req.

For elements of req type, three kinds of formats are provided.

� e : p: element e will be assigned with a function formalized by applying pattern p

� e : p(v1; :::; vn): let the item E of the pattern p be fe1; :::; emg(m � n), element e will be assigned with

a function formalized by applying p with each ei speci�ed as vi where 8ei;ei+12E � ei+1 = �E(ei).

� e : c(v1; :::; vn): element e ranges over a set of formalized functions fp1(v1; :::; vn); :::; pm(v1; :::; vn)g

where category c consists of m patterns fp1; :::; pmg (The concept of category will be introduced in the

next section).

The elements in the item E should be designed to satisfy the following three properties.

� Each two di¤erent individual functions composed of the elements in the same set E have at least one element

assigned with di¤erent values. That is, elements in the item E should be able to distinguish individual

functions with di¤erent function details.

� For any subset E0 of set E, there exist at least two di¤erent individual functions composed of the elements

in E0 that hold the same value for each element. That is, any subset E0 of the set E is not complete for

composing an individual function.

� For any parent set E0 of the set E, the set of individual functions composed of the elements in E0 is the same

as the set of individual functions composed of elements in E. That is, the set E is minimal for completely

describing the corresponding kind of function.

To achieve more precise description of the above three properties, we describe them in formal notations as follows

where RE denotes all the individual functions that are composed of elements in set E, er denotes the element e of

the function r and UE denotes the universal set of elements.

De�nition 3 � 8ri;rj2RE
� (8e2E � eri = eri)) ri = rj

� 8E02P(UE) � E0 � E ) 9ri;rj2RE0 � ri 6= rj ^ 8e2E0 � eri = erj
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� 8E02P(UE) � E0 � E ) RE = RE0

The third item PR includes three kinds of constraints. The �rst kind is the propositions on the pattern p. The

second kind is de�nition constraints, i.e., the constraints on element de�nition. The third kind is value constraints,

i.e., the constraints on element value. All these constraints can be evaluated as either true or false when formalizing

certain function using p. Their evaluation results determine the guidance to be displayed and the formal expression

of the function.

The fourth item expl converts three kinds of objects into their informal explanations for forming comprehensible

guidance. The �rst object is f and expl(f) gives the informal explanation on f so that the developer can obtain a

better understanding on the functions that p can be used to formalize. The second kind is the elements included

in E. For each element e, expl(e) indicates the attribute of f that e stands for. The third kind is the de�nition

constraints and value constraints in PR. For each de�nition constraint or value constraint pr on element e, expl(pr)

indicates the informal guidance that requires for assigning e with a value satisfying pr.

The �fth item � is designed to tackle the �rst task in formalizing the corresponding function f : clarifying

the necessary details of f . Since the elements in E indicate all the attributes needed to be clari�ed to formalize

f , clarifying f is actually to assign appropriate values to these elements according to the intended requirement.

Therefore, a set of rules are provided by � to guide the assignments of the elements in E. These rules are divided

into two groups. The �rst group �E reveals the order for specifying the elements in E where each rule e ! e0

means that element e should be assigned before e0. The second group �R provides a rule repository for guiding the

clari�cation of each element in E step by step. Each rule repository (R;R0; 
) owns a rule set R and determines

the sequence for applying the rules in R. Each rule in R infers new constraint on the value or de�nition of certain

attribute from premise constraint. It will be activated and applied if the premise constraint can be satis�ed. This

application results in new constraint serving as a guideline that requires for assigning the relevant element with a

value satisfying the new constraint. Assume e and e0 are two attributes to be clari�ed where e0 is de�ned as union

type expV alue j strV alue j constraint and "dataType(e) = mapping ! e0 : expV alue" is one of the clari�cation

rules in the clari�cation rule repository of e0 (dataType(e) denotes the data type of the system variable assigned

to element e). This rule indicates that if the premise constraint "e is assigned a system variable of mapping type"

can be satis�ed, the new constraint "the de�nition of e0 is re�ned from the original union type into one of the
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Figure 4.9. The structure of clari�cation rule repository

constituent types expV alue" will be obtained. The obtained new constraint further clari�es the inner structure of

e0 and serves as a guidance for assigning e0.

For each attribute ei, the corresponding rule repository organizes all the clari�cation rules hierarchically as shown

in Figure 4.9. Each node in the hierarchy denotes a set of clari�cation rules with exclusive premise constraints.

The root node R0 indicates the �rst rule set to be applied for clarifying ei and the branches indicate the top-down

sequence for applying all the rule sets. Each branch r ! n means that the low-level rule set n is applied after

high-level rule r is activated and applied. Let fRi1; Ri2; :::; Rimg be the nodes located at level i in the hierarchy

where each Rij contains a set of clari�cation rules frij1; :::; rijkg. The branch connecting each rule rijl in each Rij

and a node R(i+1)q located at level i+1 indicates that R(i+1)q will be applied if Rij is applied and rijl is activated

when applying Rij .

The sequence for applying the rule repository is R0; R1; :::; Rn. Each Ri denotes the ith applied set of candidate

rules where each candidate rule is a rule in CR and the premise constraints of all the candidate rules in Ri are

exclusive. Only one of the candidate rules can be activated when applying Ri. Therefore, applying each candidate

rule set Ri is actually applying its activated candidate rule and treating the newly derived constraint as guidance.

After Ri is applied and the response to the produced guidance is received, the next candidate rule set Ri+1 is

determined as 
(rj) where rj denotes the activated rule when applying Ri. If Ri+1 is not an empty set, it will be

applied to guide the further clari�cation of the corresponding element. Otherwise, the application of the rules in

the rule repository is terminated and the clari�cation of the corresponding element is �nished.
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The last item 	 solves the second task in formalizing f : representing the clari�ed f in formal notations, i.e.,

generating the formal expression of the clari�ed f according to the values assigned to the elements in E.

Figure 4.10 shows the formal de�nition of the previously introduced pattern sorting where dataType(x) denotes

the data type of the value assigned to element x.

In this formal de�nition, f is the same as the item name of the corresponding pattern structure. Item E is

de�ned as a set comprising the four elements listed in the elements item where element ruleType is de�ned as a

sub-attribute of rule. There are three elements in the pattern sorting and the attributes that these elements stand

for are given in the expl item of the de�nition (These attributes will be presented when explaining expl). Elements

objs and result are both de�ned as expV alue types. The last element rule is of composite type with two �elds:

ruleType de�ned as choice type with four candidate items and content de�ned as nil type meaning its de�nition

cannot be decided at the beginning of the formalization process.

The item PR of the pattern sorting involves all three kinds of constraints. The constraint �Reuse�belongs to the

�rst kind �propositions on the pattern�. It means that the pattern is applied to describe sub-functions for the ap-

plication of other patterns. The constraint �ruleType : fetg; grg�belongs to the second kind de�nition constraints.

Element ruleType is initially de�ned as a choice type with four candidate items and this constraint re�nes the def-

inition by eliminating two of the candidate items. If the constraint establishes, specifying element ruleType will be

facilitated as fewer candidate items are provided. The constraints �ruleType = et�and �dataType(objs) = char�

belong to the third kind value constraints where the latter means that the value assigned to the element objs is a

character.

The item expl of the pattern sorting also involves all three kinds of mappings described previously. The

�rst mapping belongs to the �rst kind �explanation on f�. It provides an explanation on sort functions, which

re�ects the explanation item of the corresponding pattern structure. Mapping 2, 3, 4 belong to the second kind

"explanation on the elements of the pattern". They reveal the attributes denoted by elements objs, result, and

rule respectively. These attributes will replace the corresponding element names in the produced guidance to allow

interactions on the semantic level. Mapping 5 belongs to the third kind "explanation on the constraints of the

pattern". It generates the informal guidance for a de�nition constraint on element rule. By following this guidance,

the developer will specify rule with a value that satis�es the de�nition constraint. is the de�nition constraints and
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f sorting

expl

sort “The placement of objects in a particular order”
objs “the set of objects to be sorted”
result “the sorting result”
rule “the intended rule for sorting the given objects”
rule: (ruleType: {et, etg, r, gr} × (content: nil)) “Specify rule from two aspects: 1. the category of rule 2. the detail
of the rule. For aspect 1, choose from: each pair of neighbor objects in the sorting result holds the same relation, objects are
organized into groups and each pair of neighborgroups in the sorting result holds the same relation, more than one rule is used
to sort the objects, more than one rule is used to sort the grouped objects”

gR “the intended rule for grouping the given objects before sorting”
……

E {objs: expValue, result: expValue, rule: ((ruleType: {et, etg, r, gr}) × (content: nil))}

PR {reuse, |objs| = 2, dataType(objs) = set of nat0, dataType(objs) = char, rule.ruleType = et,
rule.ruleType: etg  gr, rule.content: constraint, ...}

Φ

objs → (R1, {r1}, γ)

R1: {true}          {objs : expValue} {dataType(objs) = char} {re(objs)} {dataType(objs) = set} ∅
……

γ : r1 → {r2, r3, …}, r2 → {r2, r3, …}, r3 → ∅, …

result → (R2, {r4}, γ)

R2: {true}            {result : expValue} {dataType(result)=seq of dataType(objs)} ∅
……

γ : r4 → {r5, …}, r5 → {r5, …}, r5 → ∅, …

rule → (R3, {r6, r7, …}, γ)

R3: {|objs| = 2} {rule.ruleType = et}
{dataType(result) = seq of dataType(objs)} {rule.ruleType: {etg, gr}}
{ruleType = et, dataType(objs) = mapping}

{rule.content: Relation(domi, domj) × Relation(rngi,rngj) × Relation(domi,rngj)}
{ruleType = etg}           {rule.content:  (gR: group(objs, elems(result)) × (sR: nil))
{dataType(objs) = set of composed of f1, …, fn, dataType(elems(result)) = set of dataType(objs),
rule.content.gR.grule.content ∈{f1, …, fn}}

{rule.content.sR: constraint(|gi|, |gi+1|) | constraint(gi.(gR.grule.content), gi+1.(gR.grule.content)) | … }
……

//gR.grule.content denotes the value assigned to low­level element grule.content when applying the pattern
group for clarifying element gR.

γ : r6 → {r8, …}, r7 → {r9, …}, r9 → {r10,…}, r10 → ∅, …

Ψ

{!reuse, dataType(objs) = set of composed of f1, …, fn, dataType(result) = seq of dataType(objs), rule.ruleType = etg,
rule.content: constraint(| gi| , | gi+1| )}

“rule.gR and forall[g, g’: elems(result), i : int] | elems(result)[i] = g elems(result)[j] = g’=> card(g) > card(g’)”

……

ΦE {objs → result, result → rule}

ΦR

→
3

→1
→
2

→
4

→5

 →
1r

 →
2r

 →
3r

 →
4r  →

5r

 →
6r

 →
7r

 →
8r

 →
9r

 →
1 0r

 →
1tr

→
6

Figure 4.10. The formal de�nition of the pattern �sorting�
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value constraints in PR.

Item � is composed of �E and �R. In the item �E of the pattern sorting, rule objs ! result means that the

element objs is �rst speci�ed and result should be speci�ed after objs. The other rule result ! rule indicates

that element rule is required to be speci�ed after result is speci�ed.

In the item �R of the pattern sorting, the rule repositories of the three elements are given. The rule repository

for objs is (R1; fr1g; 
) where three example rules r1, r2, r3 in R1 are listed and fr1g is the �rst candidate rule

set to be applied. Premise constraint true indicates that r1 will be activated under any condition. Therefore,

the application of fr1g is actually the application of r1 which results in the constraint "objs : expV alue". This

constraint serves as a guideline that asks for the assignment of objs with a value of expV alue type. When the

response from the developer is received, candidate rule set 
(r1), i.e., fr2; r3; :::g, will be applied by applying its

activated rule. Assigning di¤erent values to objs leads to di¤erent activated rules.

For example, if the given objs is a character, r2 will be activated and applied where the retrieved constraint

re(objs) means that objs should be assigned again with a new value since sorting one character makes no sense

(We use the keyword re in pattern de�nitions to represent reassignment. For each element e, re(e) means the

reassignment of e). But if the given objs is a set, r3 will be activated and applied where ? means that objs needs

not to be clari�ed further at the moment. Assume ar is the activated rule when applying 
(r1), the next candidate

rule set to be applied after the application of 
(r1) is 
(ar). Such kind of process repeats until the application of a

�nal rule fr where 
(fr) = ?. We skip the explanation on the rule repository of element result since it is similar

to that of objs. In the rule repository for element rule, the �rst candidate rule set R3 includes more than one

candidate rules for initial clari�cation of element rule. Rules r6 and r7 are given as the example rules in R3. Rule

r6 states that if the given objs owns two members, composite element rule�s �eld ruleType will be assigned as et.

Rule r7 means that if its premise constraint can be satis�ed, the de�nition of rule�s �eld ruleType will be re�ned

from four to two candidate items. The sequence for applying other candidate rule sets after R3 is determined by

the item 
. For example, fr8; :::g will be applied if r6 is activated when applying R3 and fr9; :::g will be applied

if r7 is activated.

Note that the constraints derived by r8 and r9 in the pattern sorting involve the use of categories and patterns

such as Relation and group. They utilize the de�nition format for de�ning elements of req type. For example,
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"group(objs; elems(result))" is used to de�ne low-level element gR in r9 (According to mapping 6 in the expl

of the pattern sorting, gR refers to attribute "the intended rule for grouping the given objects before sorting".

It is created and de�ned as a low-level element for specifying one aspect of the high-level element rule:content).

It indicates that gR will be assigned as the formal representation generated by applying the pattern group with

the element information (objs; elems(result)). As shown in Figure 4.11, three elements are included in the item

E of the pattern group. The �E item reveals that gobjs and gresult are the �rst two elements to be speci�ed.

Therefore, the above element information means that when applying the pattern group for assigning gR, elements

gobjs and gresult are assigned as objs and elems(result) respectively.

Item	 generates formalization results for sorting functions according to the values assigned to the three elements.

In some formalization results, element names are used to denote the values assigned to the corresponding elements

when applying the pattern. For example, rule tr1 in the pattern sorting has �ve premise constraints. If all these

�ve constraints can be satis�ed by the values assigned to the three elements, the formal expression starting with

"rule:gR" will be generated as the suggested formal representation of the clari�ed f .

On the basis of the above formal de�nition, individual patterns can be created. Di¤erent patterns have di¤erent

elements in the E item and di¤erent rules in the � and 	 items. Since their structures are consistent with the

formal de�nition, their complexities are the same as the complexity of the de�nition. Due to the fact that each

individual pattern needs to be designed by analyzing the semantics of the corresponding kind of function, the

construction of patterns is an intellectual work without a general method. It is manually done according to our

experience and understanding on the semantics of the corresponding functions.

4.2 The hierarchy in the pattern system

Due to the inherent complexity of software, the number of patterns will be so large and the pattern users will

�nd that the selection of an appropriate pattern becomes a hard task. Moreover, the management of these large

number of disordered patterns will be di¢ cult. As more and more new patterns are introduced in, selecting and

managing would become more and more complicated. To overcome these drawbacks, we divide them into distinct

categories and organize them in a hierarchical structure in the pattern system by categorizing the functions they

are used to formalize.
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f group

expl

group → “Dividing a collection of objects into groups”
gobjs → “the objects to be divided”

gresult → “the grouping result”
grule → “the rule for dividing the objects”
grule: (ruleType: {uR, iR} × (content: nil)) → “Specify grule from two aspects:
1. the category of grule 2. the detail of grule. For aspect 1, choose from: certain
parts of the objects in each group are the same, objects in each group satisfy the
same properties”

……

E {gobjs: expValue, gresult: expValue, grule: (ruleType: {uR, iR} × (content: nil))}

PR {reuse, ∀obji, objj ∈ gobjs •dataType(obji) = dataType(objj), ...}

Φ

gobjs → (R’1, {r1}, γ)

R’1: {true}          {gobjs : expValue} {dataType(gobjs) = set} ∅
……

γ : r1 → {r2, …}, …

gresult → (R’2, {r3}, γ)

R’2: {true}            {gresult : expValue}
{dataType(gresult) = set of dataType(gobjs)} ∅
……

γ : r3 → {r4, …}, …

grule → (R’3, {r5}, γ)

R’3: {true} grule.ruleType: {uR, iR}
{dataType(gresult) = set of dataType(gobjs), dataType(gobjs) = set of

composed of f1, …, fn, grule.ruleType = uR}
{grule.content: {f1, …, fn}}

……

γ : r5 → {r6, …}, r6 → ∅, …

Ψ

{reuse, dataType(gresult) = set of dataType(gobjs),
∀obji, objj ∈ gobjs •
dataType(obji) = dataType(objj), dataType(objs) = composite, rule.ruleType = uR}

“forall[g: gresult] | (forall[t: g] | t inset gobjs) and
(forall[ti, tj: g] | ti.(grule.content) = tj.(grule.content))

and forall[gi,gj: gresult] | not exist[t: gi, t’: gj] |

t.(grule.content) = t’.(grule.content)
and forall[t: gobjs] | exists[g: gresult] | t inset g”

……

ΦE {gobjs → gresult, gresult → grule}

ΦR

 →
1r

 →
2r

 →
3r

 →
4r

 →
5r

 →
6r

 →
1tr

Figure 4.11. The formal de�nition of the pattern �group�
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Figure 4.12 shows the hierarchy where each rectangle denotes a category and each oval denotes a concrete

pattern. The child nodes of each node n denote the subcategories for composing category n or the patterns

for composing category n. The root node denotes the pattern system and its child nodes denotes the top-level

categories for classifying all the patterns. As can be seen from the �gure, there are two top-level categories: Unit

Function denoted as UF and Compound Function denoted as CF . This indicates that all the patterns can be

divided into two categories: one for describing unit functions and the other for depicting compound functions.

Their sub-categories are further classi�ed into more speci�c sub-categories or patterns.

Category CF includes the concrete patterns for formalizing compound functions such as conditional function

if � then� else and multiple choice function case. With the experiences from many typical formal speci�cations,

we found that most of the functions are described by the combination of three kinds of basic functions: relations

between objects, acquisition of information and updating of existing data. Therefore, category UF is divided into

three sub-categories: Relation patterns, Retrieval patterns and Recreation patterns.

Pattern System

Relation Recreation

multipleBinary

belongTo … max …

Rearrangement

sorting …

direct

add alter delete …

Modification

Retrieval

Unit Function
UF

Compound Function
CF

if­then­else case …

indirect

equal group

…

Figure 4.12. Pattern categorization

Relation patterns deal with formal descriptions of relationships between objects, such as the equivalence of two

variables. They will not cause any changes on the state of the system and always yield a boolean value as their
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result to indicate whether the relations are satis�ed. There are two kinds of relation patterns: Binary patterns

and multiple patterns. The former is used to formalize the description of relations between two objects while the

latter is usually used to formalize the relations between objects of more than two. For example, belongTo pattern

formalizes the binary relation where certain object belongs to another and the pattern max is often describe the

comparison among multiple objects.

Although some of the system variables are already de�ned in formal speci�cations, but vast majority of them

need to be represented by combinations of de�ned variables, such as the balance of one�s account in a banking

system. And retrieval patterns are designed to generate expressions that show the meaning of obtaining data items

from a compound data structure of any kind of compound types (e.g., set, sequence, map). The data items can be

values of either basic types (e.g., integers, real numbers) or compound types (e.g., sets, sequences). These values are

usually represented by variables of speci�cations that include not only explicit variables explicitly de�ned and used

in the speci�cations, but also implicit variables presented as combinations of explicit variables. For a speci�cation

that involves variables with complex relations, it is di¢ cult to �gure out such combination for certain required

implicit variables. To make it easier, retrieval patterns are used to gradually retrieve the implicit variables from

explicit variables by means of interactions with users. In most cases, the retrieval patterns need to apply themselves

for further formalization and gradually reach the goal data items. There are two patterns in the retrieval category:

indirect and direct patterns. The former deals with the functions that obtain a system variable by operating on

other variables while the latter deals with the functions that obtain the data items within one variable.

Recreation patterns o¤er solutions to formally presented changes on the state of the system. A formal speci-

�cation describes the state change of the system by expressions that de�ne the �nal state variables based on the

initial state variables. The main task of recreation patterns is to help users specify the objects they want to modify

and achieve the target new values. This category can be further classi�ed into sub-categories. For example, sub-

category modi�cation includes the patterns for formalizing the function of general update operations on system

variables where the pattern add deals with the function of adding new data items to existing variables, the pattern

alter deals with the function of altering the data items of the existing variables and the pattern delete deals with

the deletion of data items in existing variables. Another sub-category rearrangement is composed of all the patterns

for formalizing the functions of changing the organization mechanism of a set of objects. For example, the pattern
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sorting deals with the changing of the order of a sequence and the pattern group deals with the changing of the

division of a set of objects.

Currently, there are 41 patterns in the pattern system where 31 patterns are included in category UF and 10

patterns in category CF. Among the patterns in UF, 9 of them compose sub-category Relation, 2 of them compose

sub-category Retrieval and 20 of them compose sub-category Recreation. Patterns in Relation and Recreation are

divided into two and �ve categories respectively.

We also provide a formal de�nition for the pattern system with the above hierarchy that categories all the

patterns.

De�nition 4 Pattern System is a triple (P;C; �), where P denotes the universal set of patterns, C is a set of

categories for classifying the patterns in P , � : C �! P(C [ P ) determines the sub-categories or patterns staying

one level lower than each category c 2 C where 9c02C � c0 =2 ran(�) (c0 is the root of the pattern system).

The �nal goal of the pattern system is to support the requirements formalization for general system development,

i.e., the formalization of most of the commonly used functions for composing the requirements of all kinds of software

systems. But as the �rst step, the domain of the current pattern system described in this thesis is the bottom level

functions that are commonly used to compose more complex functions in typical formal speci�cations. Therefore,

the pattern system is not expected to support the formalization of high-level functions or domain-speci�c functions,

such as the money transfer we mentioned previously. The formalization of these kinds of functions need domain-

speci�c knowledge to guide their decomposition into a set of bottom-level functions that can be formalized using

our pattern system. Therefore, the current pattern system requires the developers to use their own domain-speci�c

knowledge to analyze the high-level functions and obtain the involved bottom-level functions themselves.

Besides, the pattern system is not expected to be complete since all the patterns actually form a pattern language

for describing requirements and proving the expressive of a language is almost impossible. It will be constantly

updated to enable the formalization of bottom-level functions of wider range. During the use of the pattern

system, we may �nd some bottom-level functions that cannot be formalized by the available patterns, then new

patterns and categories will be designed and introduced, or existing ones will be modi�ed to provide more e¢ cient

guidance. Such a task is accomplished manually at present and its automation would be gradually enhanced as
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further research progresses are made.

4.3 Summary

In this chapter, we have explicitly described the speci�cation pattern system which is the fundamental concept

of our requirements formalization approach. The description is started from the concept of speci�cation pattern.

Instead of directly giving the formal de�nition of the pattern, we �rst explain its underlying theory and structure

so that the reader is able to set a �rm foundation for the understanding of the formal notation. After presenting

pattern�s formal de�nition, an example pattern is given to illustrate each component of the de�nition. We also

show the hierarchy of the pattern system where all the patterns are classi�ed according to the functions they can

be used to formalize.

In the next chapter, we will describe how the speci�cation pattern system is applied to guide the requirements

formalization process. The application includes two activities. The �rst activity is to the main stream of re�nement

from informal requirements to formal speci�cations. The second activity is the declaration of data types that are

necessary for performing the �rst activity. We will describe these two activities in detail respectively.
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Chapter 5

Requirements formalization based on the

speci�cation pattern system

The major task in requirements formalization is to describe software behaviors in formal expressions such as pre-

and post-conditions of operations. Another important task is the declaration of data types since writing formal

expressions requires the availability of a set of state variables which needs to be formally de�ned by data types.

Instead of performing sequentially, these two tasks are usually interleavingly carried out. For each function to be

formalized, if the existing data types are not su¢ cient or inappropriate for formally describing it, the developer

will be guided to create new types or modify the existing ones according to the need of the function. Then the

description of the function continues with the updated data types and the declaration activity will be repeatedly

performed to deal with the later encountered data type problems.

We will describe the methods for supporting the above two activities in detail, respectively. For function

description in formal expressions, we assume the necessary data types are de�ned by applying the data type

declaration method and focus on explaining the generation process of the target formal expressions from informal

requirements. For data type declaration, we will show how the functions to be formalized guide the de�ning of the

appropriate data types.

5.1 From informal requirements to formal speci�cations

Well-de�ned pattern structure and pattern system hierarchy establishes a �rm foundation for guiding the re-

quirements formalization process. Applying the speci�cation pattern system to re�ne informal requirements into

formal speci�cations largely depends on pattern structures and is therefore straightforward. It consists of two steps.
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The �rst step is to select an appropriate patterns from the pattern system for guiding the formalization of the

intended requirements. The second step is to apply each selected pattern to obtain the target formal expressions.

Speci�cally, given a requirement rq, its formalization based on the pattern system contains two major steps.

Step 1 Pattern selection

Appropriate patterns for formalizing rq need to be selected �rst. The selection process can be guided by

the hierarchy of the pattern categorization. Starting from the top level of the hierarchy, the developer is

required to select a sub-category on each level until reaching a pattern p. It is not di¢ cult to �nd the right

pattern because of three reasons. First, pattern names are written in natural language and designed to be

distinguishable from each other on the semantic level. Second, the patterns are organized by categories at

di¤erent levels and the developer only needs to deal with one category or sub-category at a time. Third, the

expl items of the patterns describe their usage in more details and can help con�rm the selection decision.

In most cases, it is hard to �nd a pattern speci�cally designed for formalizing rq if rq is a high-level

function consisting of a set of basic functions since the current patterns are designed to deal with basic

functions. Human intelligence is needed to analyze rq on the semantic level and decompose it into a set of

basic functions where each basic function can be formalized by a pattern. For example, when formalizing the

money transfer function for an ATM system, one cannot �nd a pattern speci�cally designed for formalizing

money transfer functions. Considering that the function�s meaning is to transfer certain amount of money

from an original account to a destination account, it can be divided into two sub-functions: add the amount

of the transferred money to the destination account and delete the same amount of money from the original

account. These two sub-functions are essentially updating system variables and therefore can be formalized

by selecting patterns from recreation category.

Step 2 Pattern application

With a set of patterns fp1; :::; png selected for all the sub-functions { f1; :::; fn} of rq, the next step is to

apply them. Each pattern pi denoted as (f;E; PR; expl;�;	) is applied by the following two steps.

(a) requirement clari�cation
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Based on the speci�cation patterns, requirements clari�cation is to instantiate the appropriate speci-

�cation patterns by specifying the relevant elements. It generates requirements composed of elements

assigned with concrete values. The assignment of these elements is guided according to their de�nitions

and results in clari�ed requirements where all the elements are speci�ed with values. The formal de�ni-

tions of the involved elements guarantee the accuracy of the requirement so that it can be automatically

transformed into formal speci�cations.

In this step, the developer will be guided to clarify the necessary details of fi by assigning values to

the elements of pi. Speci�c algorithm is as follows where e0 denotes the �rst element to be speci�ed

when applying pi.

ce = e0; // ce denotes the element being speci�ed

while(ce is an element in E)f

if(ce has not been speci�ed)f

retrieve the rule repository �R(ce) = (CR;R0; 
);

CRS = R0; //CRS denotes the candidate rule set being applied

while(CRS 6= ?)f

apply CRS by applying its activated rule ar;

accordingly display guidance and receive response;

CRS = 
(ar);

g

g

ce = �E(ce);

g

(b) formal expression generation

In this step, an expression exp that formally describes fi will be generated based on the values assigned

to the elements in pi. Speci�c algorithm is as follows.

for each (PRi ! str)2 	
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if(8pr2PRi
� pr) then exp = 	(PRi);

It should be noted that there may exist informal expressions in exp, such as the previously mentioned

group statement. These informal expressions should be further formalized by applying the relevant

patterns through the above two steps.

A case study on the function transaction analysis of the previously introduced banking system is presented

to illustrate the above two steps. Figure 5.13 shows the types and variables formally de�ned for writing the

formal speci�cation of the example function transaction analysis (Since this part focuses on the presentation of

the transformation from informal requirements to formal speci�cations, it is assumed that the relevant types and

variables are already de�ned. How to de�ne appropriate data types will be explained in the next section).

type
AccountNo = seq of nat0;
Password = string;
CustomerInf = composed of

accountNo: AccountNo
password: Password

end;
CurrencyType = {<USD>, <JPY>, <CNY>};
Amount = real;
Balance = map CurrencyType to Amount
Year = nat0;
Month = nat0;
Day = nat0;
Date = Year*Month*Day;
OperationType = {<deposit>, <withdraw>};

Transaction = composed of
date: Date
operationType: OperationType
currencyType: CurrencyType
amount: Amount

end;
AccountInf = composed of

balance: Balance
transactions: set of Transaction

end;
AccountFile = map CustomerInf to AccountInf;

var
ext #account_store: AccountFile;
ext #today: Date;

Figure 5.13. Types and variables declared for the banking system

The example function transaction analysis extracts transactions from certain account and sorts them by dividing

them into di¤erent groups by date and sorting these groups by the number of the included members in descending

order. According to the CDFD of the banking system, process Tran_Analysis requires for two inputs: input inf1

denoting that the manager owns a valid ID, input inf : CustomerInf denoting the customer owning the account

that the desired transactions belong to. It produces an output tranList : seq of set of Transaction according to

the input which denotes the desired transaction list.

With the well-de�ned input and output, the formalization of the function transaction analysis, i.e., the generation

of the post-condition of the process Tran_Analysis, can be started and performed according to the two steps in
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requirements formalization.

Step 1 Pattern selection

The hierarchy of the pattern categorization is �rst shown for pattern selection. By analyzing the

semantics of the example function, the hierarchy is traversed from the top level to an appropriate pattern

through the path: UF ! Recreation! rearrangement! sorting. After con�rming the select decision by

reading expl(sorting), the pattern sorting (previously shown in Figure 4.10) is �nally selected to assist the

formalization of the example function.

Step 2 The application of the pattern sorting

(a) requirement clari�cation

According to the given algorithm, objs is the �rst element to be speci�ed in the pattern sorting and

its rule repository fR1; fr1g; 
g is derived to guide its assignment. As the �rst candidate rule set, fr1g

is �rst applied. Since the premise constraint of r1 is true, it is activated and applied resulting in a new

constraint "objs : expV alue". By applying expl(objs) and expl(objs : expV alue), a comprehensible

guidance "Specify the set of objects to be sorted by a system variable described in de�ned variable or

formal expression." is produced from the new constraint. Representing the transactions to be sorted,

"account_store(inf):transactions" is given as response to the above guidance and assigned to objs (If

the developer �nds it hard to write this formal expression, he can apply the pattern direct which is used

to retrieve the formal representation of system variables). After the application of r1, 
(r1) = fr2; r3; :::g

becomes the next candidate rule set to be applied. By automatically evaluating the premise constraint

for each included candidate rule, r3 is determined as the activated one since its premise constraint can

be satis�ed by the given objs. The derived new constraint is empty and no guidance is provided. Since


(r3) = ?, the assignment of objs is thus �nished.

The �E item of the pattern sorting tells that �E(objs) = result, i.e., element result is the next

element to be speci�ed. Again, the rule repository fR1; fr4g; 
g is derived to guide the assignment of

result. Similar to objs, candidate rule r4 is �rst applied resulting in the constraint "result : expV alue".

Accordingly, guidance "Specify the sorting result by a system variable described in de�ned variable or
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formal expression." is displayed for a reply. Obviously, output variable tranList is the correct response

and used to assign result. Candidate rule set 
(r4) = fr5; :::g is then applied where r5 is activated.

The derived new constraint is empty and the assignment of result terminates since 
(r5) = ?.

Element rule is the last element to be speci�ed. According to its rule repository fR3; fr6; r7; :::g; 
g,

fr6; r7; :::g is �rst applied where r7 is activated. Based on the expl item, the derived constraint

"rule:ruleType : fetg; grg" is transformed into guidance "Specify the category of the intended sort-

ing rule by choosing from: 1. objects are organized into groups and each pair of neighbor groups in the

sorting result holds the same relation 2. more than one rule is used to sort the grouped objects". After

analyzing the semantics of the example function, the �rst choice is selected as response and assigned to

the ruleType �eld of rule. The next candidate rule set is 
(r7) = fr9; :::g where r9 is activated and

applied. The obtained constraint decomposes rule:content into two low-level elements gR and sR. Its

meaning is displayed as the guidance "Specify the detail of the sorting rule from two aspects: how to

group transactions and how to sort grouped transactions:". According to gR�s de�nition given in the

constraint, its assignment is guided by applying the pattern group with the �rst two elements assigned

as objs and elems(result) respectively (In SOFL, elems(seq) means the set of elements in sequence

seq).

The application of the pattern group also follows the given two steps. Step a starts from the

assignment of element grule, since the �rst two elements gobjs and gresult have already been assigned

in gR�s de�nition. According to the pattern, the rule repository of grule is (R03; fr5g; 
) and r5 is �rst

applied resulting in constraint "grule:ruleType : fuR; iRg". Based on the expl item, this constraint is

displayed as guidance "Specify the category of the intended grouping rule by choosing from: 1. certain

parts of the objects in each group are the same 2. objects in each group satisfy the same properties.".

In the example function, transactions are grouped according to their date, which belongs to the �rst

kind. Thus, uR is chosen and assigned to grule:ruleType. The assignment of grule continues with the

candidate rule set 
(r5) = fr6; :::g where r6 is activated. The derived constraint allows the assignment

of grule.content by choosing from f1; :::; fn where each fi denotes grouping gobjs according to the

�eld fi. In our case, each fi is instantiated as one of the �elds of transaction and the grule:content is
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guided to be assigned by choosing from date, operationType, currencyType and amount. It is easy to

make the selection decision according to the semantics of the example function. Item date is selected

as the response and assigned to grule:content. Step a for applying the pattern group is then �nished

since 
(r6) = ?. Then the application moves to step b with the assigned elements. By automatically

evaluating the premise constraint of each rule in the 	 item of the pattern group, rule tr1 is activated

since its premise constraint can be satis�ed by the values assigned to the three elements. The formal

expression suggested by tr1 is generated as the result of applying the pattern group.

Since the above application of the pattern group is to clarify the low-level element gR, the generated

formal expression is assigned to gR and the algorithm goes back to the application of the pattern sorting

where r9 has been activated and applied. According to 
(r9), candidate rule set fr10; :::g is then applied

where r10 is activated. The application of r10 results in a constraint on the de�nition of the low-level

element sR which is interpreted, by the expl item, as guidance "Specify the detail of the sorting rule

by specifying one of the following relations between each pair of neighbor groups (gi; gj) in the sorting

result: 1. relation between the date of the transactions in gi and gj 2. relation between the member

numbers ni and nj of gi and gj 3. � � � ". In the example function, transaction groups are sorted by the

number of their included members in descending order. Therefore, the sorting rule should be clari�ed

by the second kind of relation and ni > nj is input as the response to the above guidance. This response

is assigned to low-level element sR and the step a of the application of the pattern sorting is �nished

since 
(r10) = ?.

(b) formal expression generation

All the three elements are assigned with determined values through step a, that is, all the necessary

details of the function transaction analysis has been clari�ed and recorded through step a. These values

will be used for the automatic generation of the corresponding formal expression in this step.

Each rule in the 	 item of the pattern sorting is automatically analyzed in the context of the clari�ed

elements to explore the activated one "fpr1; :::; prng ! str" where constraints pr1; :::; prn are all satis�ed.

String str is then generated as the formal representation of the function transaction analysis. Since the

premise constraint of the rule tr1 can be satis�ed, tr1 is applied and the corresponding formal expression
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is given as shown in Figure 5.14.

forall[g: elems(tranList)] | (forall[t: g] | t inset account_store(inf).transactions )
and (forall[ti, tj: g] | ti.date = tj.date)

and forall[gi,gj: elems(tranList)] | not exists[t: gi, t’: gj] | t.date = t’.date
and forall[t: account_store(inf).transactions ] |

exists[g: elems(tranList)] | t inset g
and forall[g, g’: elems(tranList), i : int] |

elems(tranList)[i] = g and elems(tranList)[i+1] = g’=> card(g) > card(g’)

Figure 5.14. The formal representation of the function transaction analysis

The case study simulates the interaction process for guiding the formalization of the function transaction analysis

based on the pattern system. It demonstrates that the developer will not be aware of the existence of the pattern

system when it is applied to guide requirements formalization. Instead of studying and utilizing the pattern system

manually, the developer only needs to respond in a speci�ed format to the sequentially displayed guidelines written

in natural language. And the formal representation of the intended function is automatically generated based

on the collected responses and the pattern system. For any requirement within the scope of the pattern system,

practitioners without formal notation expertise are able to formalize it through the application of the pattern

system similar to the application process presented in the case study. But for requirements beyond the pattern

system�s scope, no appropriate patterns can be applied to formalize them. We will keep creating new patterns to

expand the application domain of the pattern system.

We give the details of the function transaction analysis in advance to enable the explanation of the application

process. However, in most real cases, the developer may not be able to have all the necessary details of a function

in mind before formalizing it. The provided guidelines reveals what kind of attributes are needed to formalize

the intended function and the responses to these guidelines will be adequate to form the formal representation

of the function. Besides, the developer can obtain a better understanding on the envisioned system through the

interaction process for clarifying the required attributes.
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5.2 Data type declaration

As the complexity of software grows, data type declaration becomes more di¢ cult to manage and more likely

to result in defected data types. There are mainly two kinds of methods for supporting data type declaration.

One is to allow the developers to design data types using graphical notations, such as entity-relation-diagram, and

transforms the diagram into formal de�nitions. It facilitates the declaration process by the use of more intuitive

languages. The other is to detect the syntactic errors in the declared data type de�nitions. It focuses on the

correctness of the type information for formal speci�cation construction. However, both methods treat data type

declaration as an activity carried out independent from function descriptions. They rarely consider the impact

of system behaviors on shaping the data types to be declared. When encountering systems with complex data

structures and functionality, designing data types that are appropriate for all functions become rather di¢ cult.

Furthermore, neither of the two methods provides guidance on data type declaration. The �rst method provides

a better language without the guidance on how to de�ne data types using the language. The second method only

works on the syntactical level when the declaration activity is �nished. Even if the developers manage to formally

de�ne the initial data types, they will be forced to frequently modify the written formal expressions. The reason is

that the initial data types are usually de�ned according to the �rst function to be formalized and they often need

to be updated to enable the formal descriptions of the following functions. Each time when the type information

is updated, the formal expressions written with the original type information must be updated to guarantee their

consistency with the data types.

To deal with the above problems, we put forward an approach to supporting data type declarations for require-

ments formalization based on speci�cation patterns. Its underlying principle is that types should be de�ned to

meet the need of correctly and concisely describing relevant functions. Type de�nitions will evolve as function

description proceeds until all the expected functions are properly represented in formal expressions. During the

application of each pattern , necessary data types can be automatically recognized and their de�nitions will be re-

�ned. Speci�cally, when applying each selected pattern, we use function-related declaration to guide the re�nement

of the related data types. It consists of two steps for di¤erent stages of the application process: property-guided

declaration and priority-guided declaration.
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We also give a method for updating formal expressions when their involved data types are re�ned to keep the

consistency. When a type de�nition is modi�ed after the application of a pattern, the formal expressions a¤ected

by such modi�cation will be fully explored. For each formal expression, the method �rst retrieves the pattern

applied for writing it and the application process of the pattern. Based on the retrieved information and the

modi�ed type de�nition., the formal expression is automatically updated.

This section is described in two parts. The �rst part gives the outline of the data type declaration approach.

The second part uses several sub-sections to introduce the critical techniques used in the approach.

5.2.1 Approach outline

The proposed approach regards data type declaration as an evolution process along with the writing of formal

expressions based on the speci�cation pattern system. This evolution process starts with a modulized formal

speci�cation and terminates when the detailed behavior of each module is precisely given. Figure 5.15 shows the

outline of the approach where x-axis and y-axis indicate the formal speci�cation construction process and pattern

application process respectively.

On the assumption that speci�cation architecture is already established where modules are organized in a

hierarchical structure and processes of each module are connected by their interfaces, developers will �rst be

required to manually declare data types for de�ning these interfaces. Since process behaviors is not considered in

this stage, the declared data types only re�ects the initial idea of the intended functions and will be re�ned as the

function details are clari�ed.

Then the description of individual processes is started where each process should be attached with a pair of

pre- and post-condition. For each pre-/post-condition, a pattern suitable for describing the expected function will

�rst be selected. The selected pattern is then applied. Step 1 is to guide the specifying of its elements and step

2 is to generate an intermediate formal result based on the speci�ed elements. During these two steps, function-

related declaration is carried out to declare new types and re�ne the existing type de�nitions where property-guided

declaration is carried out on step 1 and priority-guided declaration is carried out on step 2. The former guides

the re�nement of type de�nitions under the principle that all the properties inferred from the speci�ed elements

should be satis�ed while the latter provides suggested de�nition of certain types according to the priority attribute
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Figure 5.15. The outline of the data type declaration approach
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associated to 	 of the selected pattern. These two techniques share a type combination method that re�nes the

existing type de�nitions by combining di¤erent de�nitions of the same type. For example, suppose pattern p is

selected to write a formal expression and type t is initially declared as de�nition def1 for specifying element e1

of p. When specifying element e2, property-guided declaration leads to a suggestion that t should be de�ned as

de�nition def2 to enable the correct representation of the value assigned to e2. If def1 is not equal to def2, the

combination method will be applied to re�ne def1 with def2 by combining them into a new de�nition for declaring

t.

If the generated intermediate result contains informal expressions, formalization of the result is needed. Since

it is performed by applying the patterns indicated by the informal expressions, function-related declaration can

be repeatedly manipulated to further re�ne the data types of the speci�cation. When the formalization process

terminates with a formal expression, a re�ned data type environment is obtained. Finally, expression update is

carried out where all the formal expressions that are inconsistent with the re�ned type information are updated.

Serving as the critical techniques in the described declaration approach, function-related declaration and expres-

sion update will be presented in details respectively.

5.2.2 Function-related declaration

Function-related declaration guides the re�nement of data types to enable the application of the selected speci-

�cation patterns, i.e., the formalization of the intended requirements. It adopts property-guided declaration and

priority-guided declaration in declaring data types for specifying element and generation intermediate result, re-

spectively. Before presenting the detailed techniques in function-related declaration, some necessary concepts are

introduced �rst.

Constants and variables compose a data context under which formal expressions in formal speci�cations can be

written and become analyzable. The formal de�nition of data context is given as follows.

De�nition 5 A data context is a 4-tuple (C; T; V; vt) where C is the set of constants, T is the set of custom data

types, V is the set of variables and vt : V ! T is the type function that determines the data type of each variable

in V .

To facilitate automated analysis and improve speci�cation readability, each variable in the data context is
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required to be de�ned as a custom type in our approach, i.e., for each v 2 V , there exists a type t in T that satis�es

vt(v) = t. For example, when describing an ATM system, a password should be de�ned as a variable of a custom

type declared as string. Although the built-in type string itself is capable of representing the nature of password

and one can de�ne the required password as a variable of string type, it fails to distinguish the object from others

that are also de�ned as string, such as error messages. In addition, modi�cation on the de�nitions of all the

password entities in the speci�cation can be easily manipulated by modifying the de�nition of the corresponding

custom type.

De�nition 6 Given a data context dc and a pattern p, esdcp : Ep ! choice [ Expdc [ P(Propsdc) [ strV alue [

numV alue[ typeV alue[P(Ep) is an element state of p under dc revealing the value of each element e 2 Ep where

� Expdc is the universal set of formal expressions within context dc and each expdc 2 Expdc is a sequence:

N+ ! Cdc [ Vfsc [Operator where Operator is the set of operators in formal notations

� Propsdc denotes the universal set of property values within context dc and for each prop 2 Propsdc, inV ar(prop)

is adopted to denote the variables involved in prop.

Each element state re�ects the state of the application process of the corresponding pattern where all the

elements of the pattern are assigned with a speci�c value. Since the value of elements invovles the use of type

de�nitions of the formal speci�cation to be constructed, the data context of the formal speci�cation is involved in

the de�nition of element state. It should be noted that esp denotes all the possible element states of p, i.e., set

fesdc1p ; :::; esdcip ; :::g where fdc1; :::; dci; :::g is the universal set of data contexts.

De�nition 7 Given a data context dc and a pattern p, function satisfydcp : PRp � ESdcp ! boolean denotes

satisfaction relations between pattern constraints and element states where each esdcp 2 ESdcp is a possible element

state of p under dc and satisfydcp (pr; es
dc
p ) indicates 8e2�(pr) � esdcp (e) 6= ? ^ pr is satis�ed by esdcp .

In the de�nition, function � : PR ! P(E [ fpg) indicates the objects involved in each constraint pr 2 PR in

the corresponding pattern p. The objects may include the pattern p itself and the elements in E item of p.

De�nition 8 Given a data context dc and a pattern p, condSatisfydcp : esp ! P(	p) is a conditional satisfaction

function i¤
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� es0 2 esp ^ 8e2dom(es0) � es0(e) = ? ) condSatisfydcp (es0) = 	p(The initial data context satis�es all the

constraints in the 	 item of p)

� condSatisfydcp (esdcp ) = R )

8PRi2dom(R) � 8pr2PRi
� (satisfydcp (pr; esdcp )_

((9e2�(pr) � esdcp (e) = ?) ^ (pr; es0) =2 dom(satisfydcp )))

where es0 � esdcp ^ 8e2dom(esdcp �es0)� es
dc
p (e) = ? ^ (8e02dom(es0) � es(e0) 6= ?)

The above two de�nitions formally specify the two kinds of relations between the constraints in the corresponding

pattern and a given element state. In the �rst relation, each element in the element state has been assigned with

a speci�c value and these values satisfy the given pattern constraints. In the second relation, there exist elements

that have not been speci�ed in the given element state. All the speci�ed elements hold the values that satisfy the

given constraints in the 	 item of p.

Based on the above de�nitions, we will start to describe the techniques in the type declaration approach.

According to the outline of the approach, the type combination method is employed in both property-guided

declaration and priority-guided declaration, it is thus �rst introduced.

5.2.3 Type combination

Type combination is an operation that combines two di¤erent de�nitions of the same type into an appropriate

new de�nition for declaring that type. The result of the operation is determined by common properties held by

the de�nition pair. Considering that it is impossible to combine all kinds of de�nition pairs automatically, the

strategy of the operation is to deal with syntactic issues by machines and ask the developer to handle the semantic

problems.

In order to precisely describe various properties of de�nition pairs, the concept of subtype is introduced and

formally de�ned as follows.

De�nition 9 Given a custom type ct, subType(ct) denotes the subtype of ct where

� ct is basic type ) subType(ct) = ?

� ct is composite type with each �eld fi de�ned as type ti ) subType(ct) = f(f1; t1); :::; (fn; tn)g
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� ct is product type with the ith �eld de�ned as type ti ) subType(ct) = f1! ti; :::; n! tng

� ct is set or sequence type with each element de�ned as type t ) subType(ct) = t

� ct is mapping type with domain de�ned as type ti and range de�ned as tj ) subType(ct) = (ti; tj)

Based on the de�nition, we try to summarize possible properties of de�nition pairs and �gure out the correspond-

ing combination solutions. Table 5.3 (with formal notations in SOFL) shows part of the work where buildIn(t)

denotes the built-in type that type t belongs to and def indicates the result de�nition of the combination operation.

For each pair of type de�nition d and d0 where d 6= d0, a combination solution sol(d; d0) can be found by matching

the de�nition pair with the properties listed in the table.

It can be seen from the table, properties of de�nition pair are classi�ed into two categories: properties where d

and d0 belong to the same built-in type and properties where d and d0 belong to di¤erent build-in types. The �rst

category is further divided into �ve sub-categories that cover all the built-in types (in SOFL) and a solution is

provided for each speci�c property within each built-in type. For example, the �rst "basic" denotes the property

that d and d0 belongs to the same basic type and its corresponding solution "human e¤ort" indicates the combination

of such kind of de�nition pair needs intelligent decision and the developer will be asked to give the operation result

based on d and d0. More speci�c properties are provided with combination solutions if both d and d0 are composite

types. The second property within "composite" category and its corresponding solution mean that if d and d0 owns

the same �elds and some of them are declared as di¤erent types, the combination method should be conducted on

each pair of di¤erent types to achieve sol(d; d0). Within the second category, all combinations of di¤erent built-in

types are considered and only parts of them are listed in the table for the sake of space. For instance, if d and d0

are declared as di¤erent basic types, only human e¤ort is able to �gure out the proper de�nition. In case d is a

composite type and d0 is a set type, the combination result should be d if one of the �elds in d is de�ned as d0.

For some kinds of de�nition pairs requiring for human e¤ort in the table, there may exist automatic or semi-

automatic methods to obtain the combination results. We will carry out more case studies on more large-scale

software systems to explore these methods.
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Table 5.3. Solution table for type combination

Property of de�nition pair Combination solution

basic human e¤ort

set/sequence sol(subType(d); subType(d0))

subType(d) � subType(d0) def = d0

dom(subType(d)) = dom(subType(d0)) 8(f;t)2subType(d)�

composite ^9(f;t)2subType(d);(f 0;t0)2subType(d0) � 9(f;t0)2subType(d0) � t 6= t0

f = f 0 ^ t 6= t0 ) sol(t; t0)

buildIn(d) ...... ......

= buildIn(d0)
product

rng(subType(d)) � rng(subType(d0)) def = d0

...... ......

dom(d) = dom(d0) ^ rng(d) 6= rng(d0) sol(rng(d); rng(d0))

map dom(d) = rng(d0) ^ rng(d) = dom(d0) human e¤ort

...... ......

buildIn(d) and buildIn(d0) are basic types human e¤ort

buildIn(d) = composite^ 9(f;t)2subType(d) � t = d0 def = d

buildIn(d) buildIn(d0) = set ...... ......

6= buildIn(d0) buildIn(d) = composite^ d = dom(d0) _ d = rng(d0) def = d0

buildIn(d0) = mapping ...... ......

...... ...... ......
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5.2.4 Property-guided declaration

Figure 5.16 shows the main procedure of property-guided declaration for each selected pattern p within data context

dc where cE denotes the element currently being speci�ed, e0 denotes the �rst element to be speci�ed in p, AR

denotes the set of activated rules and inc(pr) denotes that the developer identi�es the property pr as being

inconsistent with the expected function.

The main idea of property-guided declaration is to guide the declaration of data types according to the obtained

constraints during the application of the corresponding pattern. If the obtained constraints involve the de�nition of

data types, then they will be provided as guidance. If the existing data types lead to the violation of the obtained

constraints, the developer will need to modify these data types and formalize the function with the updated type

information.

Speci�cally, the elements in the item E of the pattern p are speci�ed according to the rules in � of p. To

facilitate understanding, we use �p : i � (Ep [ P(PRp)) ! Ep [ P(PRp) to denote all the rules in both �E and

�R of p where i denotes sequence for applying these rules. For example, 2 � e ! e0 means that the element rule

e ! e0 is the second rule to be applied and 3 � PR ! PR0 indicates that the constraint rule PR ! PR0 is the

third rule to be applied. Element rules refers to the rules in the �E item of p and constraint rule refers to the rules

in the rule repositories of p. Since there are usually more than one candidate rules to be selected when applying

the rule repository. Rule set �p contains rules that are attached with the same sequence number. When dealing

with these rules, the premise of each rule will be analyzed and the satis�ed one will be activated.

For each i(0 < i �the length of �p), if i corresponds to a set of constraint rules R � �p, the rule (i; SPR) !

SPR0 2 R will be identi�ed where all the constraints in SPR can be satis�ed. Meanwhile, a set of new constraints

SPR0 will be obtained and added to AR. If i corresponds to an element rule, cE will be set as �p(i; cE) which

is the next element waiting to be speci�ed. To assist the value assignment to cE, activated rules that lead to

constraints of cE will be extracted from set AR and these constraints form a constraint set GS. After con�rming

that all the constraints in GS are consistent with the desired function, the developer needs to assign a value to cE

based on GS. In case that certain constraints in GS violate the expected function, the activated rules that lead

to these constraints form a set AR0 and will be deleted from AR. Then the developer will be required to specify
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i = 1, cE = e0, AR = espdc = ∅

∃ cE,e′∈Ep • Φp(i , e) = e′

cE = Φp(i , cE)

Y

Create a set GS where
∀PRk → PRl ∈AR • ∃pr∈PR l • cE ∈ ∆p(pr ) ⇒ pr ∈GS

AR = AR ∪ Φp(i , SPR) Where
∀pr∈SPR • sat isfy (pr , espdc)

N

∃pr∈GS • inc(pr)

Ask the designer  to speci fy cE
independent ly and do property matching

Specify cE and  update
espdc with input

Y

N

Update AR and re­define each involved
var iables based on the matched rules

i = i + 1

Y

AR = AR – AR′ where AR′ ⊆ AR ∧
∀(i , PR) → PR′ ∈ ΑR • ∃pr∈PR′ • inc(pr) ⇒ (i , PR) → PR′ ∈ ΑR′

∃PR∈ ℘(PRp) • (i , PR) ∈ dom (Φp) TerminateN

Ask the designer to
specify cE based on GS

Figure 5.16. The main procedure of the property-guided declaration
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cE manually and property matching will be carried out to obtain the rules that match the given value.

In addition to the value v assigned to cE by the developer, set CR : P(P(�p)) serves as another critical

participant in constraint matching which satis�es:

8R2CR � (8(m;x);(n;y)2dom(R) �m = n ^ 8R02CS�fRg � 8(k;x0)2R;(l;y02R0) � k 6= l)

^8(no;Pr)2dom(AR0) � 9R2CR � 8(no0;Pr0)2dom(�p) � (no = no0 ^ 9pr2�p(no0;Pr0) � cE 2 �(pr))

Each set R 2 CR comprises all the candidate rules for substituting one of the rules that lead to constraints

violating the expected function. With the given v, dc will be updated accordingly and property matching can be

carried out by the following algorithm where RS denotes the set of rules that match the given v:

RS = temp = fg;

for each R 2 CRf

for each Pr ! Pr0 2 R

if (satisfydcp (Pr
0; esdcp ) = true)

temp = temp [ fPr ! Pr0g;

if (j temp j= 1)

for the only element sr RS = RS [ fsrg;

elsef

tempP = fg;

for each Spr ! Spr0 2 temp

tempP = tempP [ fSprg;

display all the items in tempP and

ask the developer to choose the most appropriate one "item";

RS = RS [ frg where

r 2 temp ^ 9y2P(�p) � r = item! y;

g

g

return RS;

86

Hosei University Repository



This algorithm helps explore a set RS containing all the rules in P(�p) consistent with the function intended

to be described which is re�ected by the values assigned to elements. These rules will then be added into set AR

and for each rule Spr ! Spr0, data context dc will be updated according to Spr.

5.2.5 Priority-guided declaration

The main idea of priority-guided declaration is to provide suggested de�nition of concerned types based on 	

after assigning values to pattern elements. Rules in each 	 are attached with priority attributes that help select a

most appropriate one when elements are incompletely speci�ed or no rule can be applied according to the speci�ed

elements.

De�nition 10 Given a pattern p, PSp : P(P(	p)) is the priority set of p i¤

� 8psi2PSp � 9esdcp 2esp � condSatisfy
dc
p (es

dc
p ) = psi

� 8R2P(	p)
�9esdcp 2esp � condSatisfy

dc
p (es

dc
p ) = R) R 2 PSp

De�nition 11 Given a pattern p, �p : 	p � PSp ! N+ determines the priority of each rule in 	p where

�p(r; psi) = n means that r 2 	p is ranked as the nth rule in set psi.

Based on the de�nition, priority-guided declaration is conducted as the following steps for each selected pattern

p within formal speci�cation context fsc.

1. Ask the developer to provide element information, and de�ne types and variables when necessary, which

results in an element state esfscp .

2. Analyze priority set PSp and extract the item ps 2 PSp that satis�es condSatisfyfscp (esfscp ) = ps.

3. Sort set ps into a sequence psSeq where

8i; j : int � 0 < i < j �j psSeq j) �p(psSeq(i); ps) > �p(psSeq(j); ps)

4. Set rule = psSeq(k) where k is initialized as 1. Provide the constraints involved in rule for the developer to

assist the declaration of relative types and variables.

5. If the suggestion is not accepted and k �j psSeq j, set k = k + 1 and repeat step 4-5. Otherwise terminate.
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5.2.6 Expression update

In contrast to the traditional formal speci�cation construction method that requires formal expressions to be

written manually, function patterns enables automatic generation of formal expressions based on the given values

of necessary elements. Therefore, instead of grammar checking, the essential idea of expression update in our

approach is to record the element values speci�ed during the pattern application process and reuse that information

to update the original formal expression. For an expression exp generated through the application process ap of

the pattern p, if exp becomes erroneous under the re�ned data context, it will be replaced by a new expression

generated by applying p again based on ap.

De�nition 12 Given a pattern p0, sequence (p0; es
p0
dc0
; exp0; p1; es

p1
dc1
; exp1; :::; pn; es

pn
dcn
; expn) is the application

process of p0 where

� p1; :::; pn are the reused patterns

� each espidci denotes the element state after all the elements in Epi are speci�ed

� exp0 denotes the intermediate formal result produced by applying p0 with speci�ed elements in esp0dc0 , which

can be represented as exp0 = p0(es
p0
dc0
)

� each expi(0 < i � n) denotes the intermediate formal result generated by replacing certain informal part

in expi�1 with pi(es
pi
fsci

), which can be represented as expi = expi�1 � pi(espidci) where expi = pi(es
pi
dci
) if

expi�1 = ?

� expn is the resultant formal expression

De�nition 13 Given a data context dc, vdeptdc : Tdc ! Vdc reveals dependent relations between types and variables

where vdeptdc(t) = V indicates that for each variable v 2 V , the de�nition of vtdc(v) involves type t.

De�nition 14 Given a data context dc and a pattern p, sdeptpdc : Tfsc ! P(esdcp ) reveals dependent relations

between types and element values where

sdeptpdc(t) = Es
dc
p )

8e!vl2Esfscp
� (vl 2 Expdcp ^ 9i2N+;v2Vdc � (i; v) 2 vl ^ v 2 vdeptdc(t))_ (vl 2 Propsdc ^ 9v2inV ar(vl) � v 2 vdeptdc(t))
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Assume that the data context dc has been modi�ed into dc0, the update of each formal expressions exp previously

written through application process ap = (p0; es
p0
dc0
; exp0; p1; es

p1
dc1
; exp1; :::; pn; es

pn
dcn
; expn) is conducted as the

following algorithm where defdc(t) denotes the de�nition of type t under dc.

if(9(i;v)2exp � (vtdc(v) 6= vtdc0(v)) _ (9t2Tdc � t 2 Tdc0 ^ v 2 vdeptdc(t) ^ v 2 vdeptdc0(t) ^ defdc(t) 6= defdc0(t))

f

exp�1 = ?;

for each pi in apf

if(9t2Tdc;e!vl2espidc
� t 2 Tdc0^

defdc(t) 6= defdc0(t) ^ e! vl 2 vdeptdc(t))

exp0i = exp
0
i�1 � pi(es

pi
dc0);

else

exp0i = exp
0
i�1 � temp where expi = expi�1 � temp

g

exp = exp0n;

g

The algorithm �rst checks whether there exist variables or types used in exp with de�nitions being modi�ed. If

so, the application of pattern p0 will be restarted with element information es
p0
dc and further formalization will be

conducted by applying the rest of the reused patterns in ap with their element information sequentially. Before

generating formal expression for each pattern pi, the value of each element indicated by es
pi
dc will be analyzed to

determine its change caused by the update of the data context. Expression expi can be directly used to formalize

the current formal result exp0i�1 if no di¤erence is found between es
pi
dc and es

pi
dc0 . Otherwise, pi(es

pi
dc0) will be

produced to replace the corresponding informal part of exp0i�1.

5.2.7 Case study

The processes Account_confirm and Withdraw in the CDFD of the banking system are used as examples to

illustrate the data type declaration approach. For the process Account_confirm, manual declaration is �rst
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required for de�ning its inputs and outputs. According to the expected behavior of the process, one can easily

respond with the following de�nitions:

CustomerInf = composed of

account_num : string

account_psd : string

end

inputInf; inf : CustomerInf;warning : string

No pre-condition is needed in the process and the informal idea of the post-condition is that if the provided ID

information can be found in the datastore account_store, data �ow inputInf will be produced. Otherwise, error

message warning will be displayed to the customer. Such idea leads us to the selection of the pattern belongTo

as shown in Table 5.4 (The expl item is omitted for simplicity, and � = ? means that no clari�cation rule is

included in the pattern and the user needs to specify the two elements without guidance). This pattern is used

to describe a relation where one object is part of another. There are three elements in the pattern: element

denoting the member object, container denoting object that element belongs to and specifier denoting the part

of container that element belongs to. If element is speci�er is assigned as null, constraints on their relations

which can be assigned with either null or a constraint value. The application of pattern belongTo starts from

the requirement of specifying these three elements. Apparently, element is inf and container is account_store

which has not been de�ned. In case that specifier is not decided yet, the generation of an intermediate result

begins and priority-guided declaration will be carried out according to the priority knowledge given in Table 5.5.

Suppose the developer uses "AccountF ile" to represent its type, priority set ps1([) is then selected and rule a is

�rst suggested which indicates that the type AccountF ile should be de�ned as set of CustomerInf . Assume that

the suggestion is accepted, the formal expression for describing the "belongTo" relation is automatically generated

and the post-condition of the process Account_confirm will be written as:

if (inf inset account_store)

then inf = inputInf

else warning = "Invalid user:"
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Table 5.4. Pattern �belongTo�

f belongTo

E felement; container : expV alue; specifier : null j PV g

PR fdataType(element) = T; dataType(container) = set of T; specifier = fi; specifier = null; :::g

� ?

	

ffdataType(element) = T; dataType(container) = set of Tg a�! element inset container;

fdataType(element) = T; dataType(container) = seq of Tg b�! element inset elems(container);

fdataType(element) = set of T; dataType(container) = T ! T 0g

c�! belongTo(elemetn; dom(container));

fdataType(element) = set of T; dataType(container) = composite; specifier = fig

d�! element inset container:fi;

fdataType(element) = T ! T 0; dataType(container) = T ! T 0; specifier = nullg

e�! element subset container;

fdataType(element) = seq of T; dataType(container) = set of product; specifier = nullg

f�! exists[e : container] j forall[i : N+] j element(i) = e(i); :::g

Notice that no formal expression was written before the application of pattern belongTo, expression update is

therefore not needed.

Since the data types and functions involved in the process Selection are simple enough to be manually written

and the data context will not be a¤ected after the description, data type declaration during the construction of

process Withdraw is presented based on the type de�nitions declared for the process Account_confirm. Process

Withdraw takes the intended currency type and amount as inputs and currency or error messages as outputs,

which can be manually de�ned as:

CurrencyType = string;Amount = real;
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Table 5.5. Priority in Pattern �belongTo�

Rule
Priority set

ps1([) ps2(a; b; c; d) ps3(a; b; e) ps4(a; b; f) :::

a 1 3 2 2

b 2 4 3 3

c 3 1 - -

d 4 2 - -

e 5 - 1 -

f 6 - - 1

:::

currencyType : CurrencyType; amount : Amount

currency : Amount; error :Msg

The pre-condition is also true and the post-condition should clarify how the account information in account_store

is altered when the withdraw operation is successfully done. Therefore, pattern alter will be selected to describe

such function, which is shown in Figure 5.17 where constraints(x) denotes certain constraints on object x.

It contains two elements for depicting the altering of system variables: obj denoting the object to be altered,

how denoting the way to alter the speci�ed object. If the whole given obj is replaced by a new value, element how

is de�ned as a variable of the same data type as obj. If the requirement only modi�es parts of the given obj, how

will be de�ned as a set of items where each item speci�es the operations performed on one kind of data items to

be altered in obj.

During the application process of the pattern alter, property-guided declaration is carried out. Its detailed steps

are given in Figure 5.18.

The above application process results in an de�nition "CustomerInf ! AccountInf"for type AccountF ile

that is more appropriate for describing process Withdraw. Thus, the original de�nition set of CustomerInf
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expl

alter → For describing the change of variables or parts of variables
obj → The object  to be altered
how → The way to alter the givenobj
data → The data items to be altered
oper → The operation performed to alter the data items
how: set of composed of data, oper | varValue: varValue → “Choose your requirement from the following: 1. obj is altered by modifying

parts of the included data items. 2. obj is replaced by a new value. ”

……

E {obj: expValue, how: nil}

PR {reuse, dataType(obj) = char, dataType(how) = dataType(obj), dataType(obj) = set,
∃ pair: how •(how.pair.data.e.dom = (dom = v1) ⋀ how.pair.data.e’= rng), ∃ pair: how •(dataType(how.pair.oper) = varValue), ...}

Φ

obj → (R1, {r1}, γ)

R1: {true} {obj : expValue} γ : r1 → ∅

how → (R2, {r2, r3, …}, γ)

R2: {dataType(obj) = char} {how: expValue}
{dataType(obj) = map} {how: {set of composed of data, oper, expValue}}
{dataType(how) != dataType(objs)} {re(how)}
{how: set of composed of data, oper, dataType(obj) = map}
{∃ pair∈ how •((pair.data: {expValue, Composite}) (pair.oper: {varValue, Req, …}))}

{how: set of composed of data, oper, dataType(obj) = set of composed f1, …, fn}
{∃ pair∈ how •((pair.data: {expValue, {f1, …, fn}, constraint(f1), …, constraint(fn)}) (pair.oper: {varValue, Req, …}))}

{dataType(obj) = map, pair.data: composite}
{∃ pair∈ how •(pair.data.e: {constraint (dom), constraint(rng), constraint(dom, rng)} pair.data.e’: {dom, rng, both})}
……

γ : r2 → {r4, …}, r3 → {r4, r5, r6 …}, r4 → {r2, r3, …}, r5 →{r7, …}, r6 → ∅, r7 → ∅, …

Ψ

{!reuse, dataType(obj) = map, ∃1 pair∈ how •((pair.data.e = (dom = v)) (pair.data.e’= rng) pair.oper = p(e1, …, en))} →

“obj = override(~obj, p(e1, …, en))”
{!reuse, dataType(how) = dataType(obj)} → “obj = how”

{!reuse, dataType(obj) = composed of f1, …, fn, ∀ pair ∈ how •pair.data = fi pair.oper = p(e1, …, en)} →

“obj = modify(~obj,”+ ∀pair ∈ how •“pair.data → pair.oper)”+ ”)”
{dataType(obj) = set of T, #how > 1, ∃1pair ∈ how •pair.data: constraint(x) pair.oper = p(x)} →

“let X = {xi: ~obj | constaint(xi)} in obj = union(diff(~obj, X), {”forall[xi: X] •“P(xi)”“})”

……

ΦE {obj → how}

ΦR

f alter

 →
1r

 →
2r

 →
3r

 →
4r

 →
5r

 →
6r

 →
7r

Figure 5.17. The speci�cation pattern alter
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cE = obj, AR = ∅

obj = account_sotre, GS = ∅

cE = decompose, GS = ∅

decompose = true, AR = {rule e}

cE = specifier, GS = {rule e}

inc(specifier : ℘({fi})) = true

Ask the designer to specify specifier independently

specifier = AccountInf

tempP = {{dt(obj) = T→T’, decompose = true}, {dt(obj) = set of compite, decompose = true}, ...}

Suppose the designer choose the first property in tempP

AccountFile = CusotmerInf → AccountInf with AccountInf undefined

Generate formal result “alter(account _store(inf1))”

obj = account_store, GS = ∅

Repeat the above steps until AccountInf is defined and a formal expression is achieved

Figure 5.18. The piority-guided declaration process during the application of the pattern �alter�
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needs to be re�ned by applying the combination method. According to the solution table for type combination,

the de�nition of type AccountF ile should be re�ned as: CustomerInf ! AccountInf .

Due to the re�nement of the de�nition of type AccountF ile and the use of the type in the post-condition

of process Account_confirm, formal expression previously generated by applying the pattern belongTo needs

to be updated accordingly. The application process of the pattern belongTo for the post-condition of process

Account_confirm can be described as:

(belongTo; felement! inf; container ! account_store; specifier = nullg; "inf inset account_store")

According to the algorithm for expression update, formal expression "inf inset account_store" will be trans-

formed into:

belongTo(felement! inf; container ! account_store;

specifier = domg; newExp)

where account_store is de�ned as a map type and element specifier is modi�ed into "dom" in the re�ned data

context. By analyzing the above expression in the context of the 	 of the pattern belongTo, formal expression

"inf inset dom(account_store)" will be generated as the value of newExp to replace the original one.

5.3 Summary

In this chapter, we have presented how to guide requirements formalization by applying the speci�cation pattern

system. As we have mentioned, there are two activities interleavingly carried out during requirements formalization:

describe software behaviors in formal expressions and data type declaration. These two activities are described in

detail respectively and a case study is presented for illustrating each of them.

In the next chapter, we will propose a method for representing the pattern knowledge involved in the speci�cation

pattern system. Although the structures and formal de�nitions of the pattern and the pattern system are already

given in the previous chapter, there will be some problems if we directly use them as the representation of the

pattern knowledge. Our representation method is given to solve the problems. We will also give the utilization

method for utilizing the pattern knowledge represented in the proposed representation.
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Chapter 6

Representation of the pattern knowledge

Every kind of knowledge must be attached with a representation language to enable its availability to the users.

Our pattern knowledge is no exception. Instead of directly using the structure and formal de�nition of the speci-

�cation pattern and the pattern system to represent the pattern knowledge, we adopt two languages to represent

di¤erent parts of the knowledge. The reason will be explained when presenting each of these two languages. One

language is designed to represent the part of the knowledge that needs to be displayed to the developer and the

other is designed to be applied by machines in an automated manner. Considering the di¤erent characteristics

between the requirements of machine-oriented knowledge representation and human-oriented knowledge represen-

tation, attribute tree and HFSM are chosen to describe the two kinds of knowledge respectively.

It should be noted that the knowledge representation for data type declaration is not included in this chapter

which will be studied in our future work.

6.1 Attribute tree

Tree structure is often adopted to describe hierarchical systems to facilitate the understanding of the system

architecture. According to the de�nitions of elements�constituent types, the attributes of a complex requirement

may form a hierarchy. For example, an element of Req type is described by a low-level requirement which is

decomposed into low-level attributes. On the other hand, element de�nitions need to be shown to the developers

to guide the clari�cation of the elements. If they are represented in formal notation or unstructured language,

the produced guidance would be di¢ cult to follow. Therefore, an attribute tree structure is designed to represent

the element de�nitions. It visualizes the inner structures of each element de�nition and is meanwhile assigned

with formal semantics. Through this representation, the developer can intuitively view the function details of
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Figure 6.19. The structure of attribute tree

the requirements to be formalized and the clari�ed requirements can be automatically transformed into formal

speci�cations.

6.1.1 The de�nition of attribute tree

Figure 6.19 shows the attribute tree representation.

The root node F of the tree denotes that the pattern is used to guide the clari�cation of the requirements on

function F . Its child nodes e1; e2; ::: denote the requirement elements for composing the pattern. Each label attri

reveals that the element ei is de�ned to represent attribute attri of F . For each node ei, its child nodes di1; di2; :::

indicate the def item of the corresponding element where each dij represents one of the constitute types.

For each node dij , label tij shows the type identi�er of dij and the child nodes demonstrate the inner structure

of dij . There are �ve kinds of inner structures for representing di¤erent constitute types.

� multiple child nodes denoting candidate items

This structure is designed for representing choice type where each child node denotes a candidate item to

be chosen. For example, the child nodes of node d23 indicate that a value of type t23 is given by selecting

from fv21; v22; :::g.
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� no child node

Atomic types, except for choice type, are represented as leaf nodes, such as node d21.

� one child node denoting another speci�cation pattern

Req types are represented by attaching a child node denoting the speci�cation pattern for guiding the

assignment of the corresponding element. For example, node d11 is attached with a child node F 0 where

F 0 refers to a speci�cation pattern represented as another tree structure. It indicates that if element e1 is

assigned with a value of constitute type t11, it will be speci�ed based on the speci�cation pattern F 0.

� multiple child nodes denoting child elements

Structured types Composite and Option are represented by a set of child nodes. For Composite type, each

child node denotes a child element of the corresponding element. For Option type, child nodes represent the

pre-de�ned child element set to choose from. For example, node d12 is attached with a set of child nodes

which can be further decomposed. If t12 is a Composite type, node d12 refers to the constitute type that

decomposes element e1 into child elements e11; e12; :::; e1n. Otherwise, t12 is an Option type, which indicates

that a value of t12 type should be given by specifying at least one of the child elements in fe11; e12; :::g.

� multiple child nodes denoting constitute types

An element of Set type comprises a set of child elements de�ned with the same def item. Accordingly,

Set type is represented by a set of child nodes, each of which denotes one of the constitute types involved in

the shared def item. For instance, constitute type d22 decomposes element e2 with a set of child elements.

These child elements are de�ned with a same def item d where d = d1 [ d2 [ :::.

The pattern alter is used as an example to illustrate attribute tree. The complexity of the alter operations

on complicated data structures underlines the merits of using attribute tree to represent element de�nitions. The

formal de�nition of the pattern alter is previously given in Figure 5.17. As we have presented, this pattern is used

to the formalization of the functions that change variables or parts of variables (written in the �rst mapping of

the expl item). It involves two elements obj and how representing the object to be altered and the way to alter

the given object respectively. Element obj is initially de�ned as expV alue type and the de�nition of the element
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how cannot be determined at the beginning of the requirements formalization. Rules in item � guides the process

of determining the de�nitions and values of these two elements. With the determined values, formal speci�cations

can be generated according to the 	 item.

This de�nition involves large amount of formal expressions for representing the element de�nitions; we only list

some of them in the �gure as examples, such as how : set of composed of data, oper. Imagine we use natural

language to represent this de�nition as guidance to clarify how. It will be overwhelming for the developers when

they are guided to the lower and lower elements of the elements data and oper. By contrast, an attribute tree that

represent these de�nitions leads to guidance much more comprehensible. Figure 6.20 shows this attribute tree for

the pattern alter. The two elements of the pattern are represented by nodes obj and how and their semantic is

demonstrated by the labels attached to the corresponding branches. For an alter operation, element obj denotes

the attribute of "the object to be altered" and how denotes the attribute of "the way to alter the object". Their

de�nitions are re�ected by the corresponding subtrees respectively.

According to the subtree of node obj, the def item of element obj is de�ned as dobj which is of expV alue type.

It indicates that there is only one way to specify element obj for any alter operation, which is to assign obj with a

formal expression representing certain system variable.

The subtree of node how shows several di¤erent ways to assign element how for di¤erent requirements. Due to

the sake of space, we only give two of them to illustrate the example pattern. Constitute type d1 and d2 indicates

two kinds of requirements on altering the given obj. The �rst kind is to alter part of the given obj, which is clari�ed

by assigning a value of Set type d1 to how. Each child element of the value speci�es the operation performed for

modifying one kind of data item in the given obj (the operation is denoted as attribute operAttr and the kind of

data item is denoted as attribute dataAttr). All the child elements share the same def item denoted as node d0.

According to the child nodes of d0, each child element is of Composite type consisting of two lower-level elements

data and oper which refer to the attributes dataAttr and operAttr of the child element respectively. The second

kind is to replace the whole obj with a new value of expValue type d2.

In the de�nition of constitute type d1, element data is de�ned with four constitute types indicating four di¤erent

ways to specify data.

� If the data items to be altered can be described in de�ned variables, a value of d01 type will be assigned
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Figure 6.20. The attribute tree of the pattern alter
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to data. For example, when describing the altering of a data item denoted as a de�ned variable v, data is

speci�ed as v.

� If the given obj is a mapping, a value of type d02 will be assigned to data to specify two attributes: what

kind of maplets is intended to be altered (denoted as element e) and which part of the intended maplets need

to be altered (denoted as element e0). Since the de�nition of e has already been presented when explaining

the Option type, its detail is skipped here. For element e0, a value of d11 type should be assigned by choosing

from "domain of the intended maplet" (denoted as dom), "range of the intended maplet" (denoted as rng)

and "both domain and range of the intended maplet" (denoted as both).

� If the given obj is a composite system variable with multiple �elds f1; :::; fn, type d03 will be adopted which

speci�es element data by selecting the �elds to be altered from ff1; :::; fng.

� For obj of other data structures, such as set or sequence (built-in types in SOFL), a value of type d04, i.e., a

constraint value, will be assigned to element data to describe the data items to be altered.

The child nodes of element oper reveal three kinds of requirements on the operations performed on the data

items denoted as element data. The �rst kind is to replace data with a value of basic type, such as node d05, d06

and d07. The second kind is to replace data with a composite value, such as node d08 which assigns a composite

value (e1; e2; :::) to oper. The third kind is to perform other operations on data. For example, node d09 speci�es

element oper with a low-level requirement on function add. It is adopted to describe the addition of new data

items to data.

6.1.2 requirement tree

An attribute tree carries the information of elements de�nition. When all the elements are assigned with values

of one of their constitute types, an attribute tree is transformed into a requirement tree that demonstrates the

function details of the intended requirements. Figure 6.21 shows the de�nition of requirement tree.

The root node r indicates that the requirement tree represents the individual requirement r. There is a label R

attached to r, which means that r is instantiated from speci�cation pattern R and the whole structure of the tree

is consistent with that of the tree representation of R. The child nodes of r indicate the elements for composing
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Figure 6.21. The strcuture of requirement tree

r and each attached label attri denotes the attribute that element ei refers to. Each ei is decomposed into child

nodes that re�ect the value of the element ei and the attached label ti demonstrates the type of the assigned value.

Corresponding to the �ve kinds of inner structures for representing element de�nitions, three kinds of structures

are given to represent values of elements.

� one child node denoting an atomic value

If an element ei is assigned with an atomic value, its corresponding node will be decomposed into only one

leaf node vi which indicates the assigned atomic value. For example, the child node of node e3 reveals that

element e3 is assigned with an atomic value v3.

� one child node denoting a low-level requirement

If an element ei is assigned with a value of Req type, its corresponding node will be decomposed into

one leaf node ri which refers to another requirement tree representing the requirement for specifying ei. For

example, node e1 is attached with child node r1, which means that element e1 is speci�ed by requirement r1.

� multiple child nodes

Elements assigned with values of Composite, Option or Set type are represented by multiple child nodes

where each child node denotes a child element. For example, element e2 is decomposed into child elements

e21; e22; :::, meaning that the value of e2 comprises the values of its child elements.
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Based on the above representations, clarifying requirements using speci�cation patterns is to instantiate the

corresponding attribute tree into requirement tree. Depth-�rst strategy is adopted in the construction process so

that one can focus on the clari�cation of one attribute at one time (We �rst present the fundamental process of the

construction of requirement tree without considering the use of other parts of knowledge in the pattern). Speci�c

guidelines are given as follows.

� Preserve all the branches connecting the root node and its child nodes

� When reaching an element node, select from its child nodes according to the intended requirement and only

traverse the subtree of the selected node

� When reaching a type node, create child nodes for the corresponding element node according to the intended

requirement

� With the speci�cation patterns, requirements clari�cation is to specify the relevant elements by assigning each

element with a value of one of its . Such an activity is guided by the tree representation of the appropriate

pattern and leads to a requirement tree

We will take the withdraw function of the ATM system as an example. For each customer (identi�ed as

inf : CustomerInf) intending to withdraw wa amount of currency of cy type, the ATM system dispenses the

required currency and accordingly performs update operation on the balance and transaction information of the

corresponding account in the data store account_store. Since the update operation is an alter operation, the

requirement (denoted as r1) for describing it can be instantiated from the speci�cation pattern alter. Its clari�cation

is guided by traversing the corresponding pattern tree in Figure 6.20, which results in the requirement tree shown in

Figure 6.22 (Some labels for presenting the same kind of attributes are omitted for simplicity, such as the attribute

label of child node obj of node r2).

The traverse of the pattern alter starts from its root node and �rst reaches node obj. According to the given

guidelines, the branch connecting nodes alter and obj is preserved. Since element node obj has only one child

node dobj , no selection decision needs to be made and element obj is required to be assigned with a value of dobj

type. In our case, data store account_store is the object to be altered; a value node v1 is created as the child
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Figure 6.22. The requirement tree of the example alter operation
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node of element node obj. Till now, the traverse of the left subtree has �nished while the left subtree of the target

requirement tree is constructed.

Requirements clari�cation of the example update operation continues with the right subtree of the pattern

alter. When reaching element node how, child node d1 is selected since r1 only modi�es the account information

of the customer inf , rather than replacing the whole account_store with a new value. According to type d1,

child node g is created for element node how and decomposed into child element data and oper where data

speci�es the data items to be altered in account_store and oper indicates the way to alter these data items.

For element data, constitute type d02 is employed since account_store is a mapping from customer information

to account information. Child elements e and e0 are assigned as constraint "CustomerInf = inf" and "rng"

respectively, meaning to modify the range of the maplet whose domain is evaluated as inf , i.e., to modify the

account information of the customer identi�ed as inf . For element oper, constitute type d09 is adopted since the

way to alter the intended account information needs to be described by another requirement r2 on alter function.

Low-level requirement r2 is clari�ed by instantiating pattern alter. Node v3 assigns formal expression account_store(inf)

to obj which represents the account information of the customer identi�ed as inf . According to the semantic of the

update operation, both balance and transaction �elds of the corresponding account need to be modi�ed. Therefore,

two child elements g1 and g2 are created for element how where g1 describes the update of the balance information

and g2 represents the update of the transaction information.

For element g1, low-level requirement r3 is built for specifying the operations performed on balance information.

The element obj of r3 is assigned as formal expression account_store(inf):balance meaning the balance of the

corresponding account. The assignment of element how of r3 is similar to that of r1. Since balance is de�ned as a

mapping from currency type to amount, constitute type d02 is adopted where child elements e and e0 are assigned

as "CurrencyType = cy" and "rng" respectively. Such an assignment indicates to modify the balance information

by updating the amount of currency of type cy. How to update the amount is speci�ed by element oper. As a

deletion operation, oper is described by a lower-level requirement r5 instantiating from the speci�cation pattern

delete shown in Figure 6.23.

To represent a delete operation, two elements are needed to be speci�ed: obj and des where obj denotes the

object from which the data items are deleted and des denotes the data items to be deleted. Element obj has
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Figure 6.23. The attribute trees of the pattern add and delete

only one constitute type dobj and needs to be assigned with a value of expV alue type. Element des is de�ned

as Set type where each child element represents one of the data items to be deleted. These child elements can

be speci�ed according to the constitute types d2; d3; ::: where d2 is adopted to describe system variables to be

deleted from obj and d3 is used to describe composite values to be deleted. Based on the above de�nition for delete

operation, element obj of r5 is assigned with formal expression account_store(inf):balance(cy) representing the

current amount of the currency of type cy. Element des of r5 is attached with one child element de speci�ed as

withdraw amount wa, meaning to delete amount wa from the current balance of the currency of type cy.

For element g2, a requirement r4 instantiating from the speci�cation pattern add is needed to describe the

addition of the withdraw transaction. As a reference, Figure 6.23 shows part of the pattern add which is similar

to the pattern delete. It de�nes two elements obj and ads to represent requirements for add operations where

obj denotes the object to which the new data items are added and ads denotes the new data items. Element

obj is of expV alue type while element ads is de�ned as Set type where each child element represents a new

data item to be added in. Constitute types d2; d3; ::: are used to de�ne these child elements. Based on the add

pattern, r4 is clari�ed by specifying elements obj and ads according to the semantic of the update operation.

Since the transaction information is the object that the add operation performs on, its formal representation

account_store(inf):transactions is assigned to element obj. For element ads, only one child element ad is attached
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which represents the withdraw transaction to be added in. Because each transaction consists of four �elds: date,

operationType, currencyType and amount, element ad is speci�ed by four child elements corresponding to the

four �elds. According to the semantic of the example update operation, these four elements are assigned as today,

withdraw, cy and wa respectively.

The example requirement is clari�ed in an intuitive manner since each element corresponds to an attribute of the

requirement and the way to specify an element conforms to the nature of the corresponding attribute. Developers

can easily build the requirement tree while analyzing the requirement. On the other hand, a better understanding

of the function details can be obtained during the construction process.

6.1.3 Type tree

Supporting the formal description of system variables in formal expressions, the pattern direct in the retrieval

category is designed with a distinguished attribute tree called type tree. We will explain the reason after the

description of the tree. The main strategy is to utilize the type information included in the intended system

variables and organize the information into a tree structure as the source of the formalization guidance.

Speci�cally, the type tree regards the data type of the intended system variable as its root node. Each tree

branch branchi is represented as a transition (s; l; s0) where s0 is a child node of s, l is the label of the branch.

Branches are divided into two kinds. If s0 is a subtype of s, i.e., the de�nition of s relies on the de�nition of

s0(denoted as Dep(s; s0)), branchi is a downward branch where s0 is a left child of s. If Dep(s0; s) establishes,

branchi is a upward branch where s0 is a right child of s. Downward branches use constraints on s0 as their labels

while upward branches take constraints on s as their labels. For example, suppose a function is to retrieve a system

variable obj that satis�es two conditions: the data type of obj is real � int and obj(2) = 5. It can be represented as

a downward branch (real � int; l1; int) where l1 is set to be �5�as the constraint on node int. In the case that the

intended variable obj is an element of a set declared as set of int that satis�es obj > 5, we should use a upward

branch (int; l2; set of int) where l2 is set to be �> 5�as the constraint on node int.

Nodes of the left subtree can only own downward branches while that of the right subtree are able to own both

kinds of branches. And the rightmost leaf node of the right subtree corresponds to a de�ned variable serving

as the basis of the target formal expression. Let�s take the previous upward branch (int; l2; set of int) as an
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example, assume that node set of int corresponds to a de�ned variable v, obj can then be presented as (obj inset

v) ^ (obj > 5).

Besides, pseudo node is introduced to handle special situations. One situation is that certain node corresponds

to more than one system variable. In the previous example, there might be a set of obji satisfying obji(2) = 5.

Furthermore, the user may want to present a condition that the nodes of upper levels should satisfy by giving

constraints on this set. For example, the intended variable becomes a sequence of product containing 2 obji where

obji(2) = 5. To enable such kind of description in the tree structure, we create a pseudo node set of real � int as

shown in Figure 6.24. But if the root node happens to be in such situation, it will be turned into a pseudo node

without creating a new one. The other situation is that some constraints have to be de�ned by composite values.

For example, a node s identi�ed as T ! T 0 may be required to satisfy that one of the elements e in dom(s) maps

to the element e0 in rng(s). To express such meaning, a pseudo node s0 will be created as shown in Figure 6.25.
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Figure 6.26. Comparison between attribute tree and type tree

Based on the above de�nition, we can compare the descriptions of system variables in two kinds of attribute

trees. If we use the previously introduced attribute tree, the representation is given as shown in Figure 6.26A. If

we use the speci�c type tree for the pattern direct, the representation is given as shown in Figure 6.26B where T

denotes the type of the intended system variable..

As can be seen from the �gure, although A is able to re�ect parts of the structures of the intended system

variable, it is not as intuitive as B. One can easily get the subtypes and parent types of each node by identifying

its left and right child. And the labels on the branches clearly shows the constraints on the corresponding subtypes.

Furthermore, the rightmost leaf node v demonstrate the de�ned variable that the intended system variable belongs

to.

Based on the above concepts, the construction method of the tree can be given which only requires users�decisions

on the semantic level and is therefore easy. During this process, developing branches is a critical operation that
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needs to be presented �rst. For a node s, its downward branches branchD(s) are developed by setting selected

subtypes of s as left child nodes and attaching given constraints on these subtypes as labels. By contrast, its upward

branch branchU(s) is only one new branch (s; l; t) where t is the selected type that takes s as its subtype, l is the

given constraints on s. If s encounters special situations, pseudo nodes will be created following the instructions

mentioned above.

The construction process starts from the root node s0 which stands for the value of element initialType meaning

the data type of the intended variable. By generating downward branches for each node s that has been currently

extended to, the left subtree will be built. In case that s0 cannot develop downward branch, the left subtree will

be empty. However, the right subtree can always be built by the following algorithm.

1. Generate branchU(s0) and set the current leaf node as the current node cn.

2. If cn is a right child node of the right subtree and there exists a de�ned variable v of type cn con�rmed and

accepted by the user, then quit with v.

3. If cn needs to be identi�ed by constraints from its subtypes, then extend the left subtree of cn using the

proposed method for left subtree generation.

4. If cn is not a left child of certain node of the right subtree, then generate branchU(cn).

5. Set each current leaf nodes as the current node and repeat 2 �5 respectively.

With a complete tree, the target formal expression exp is generated by applying the 	 item of the pattern direct.

We brie�y introduce its inner mechanism which treats the left and right subtree of the root node separately. The

expression lExp standing for the left subtree is obtained through the following algorithm, which can be skipped

for the trees with empty left subtrees:

create a stack currentNodes;

currentNodes:push(s0);

while(currentNodes is not empty)f

currentNode = currentNodes:pop();
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lExp = merge(Null; lExp; branchD(currentNode));

for each child childi of currentNode

fcurrentNodes:push(childi); gg

And the algorithm to form the expression rExp standing for the right subtree is as follows where rLeaf denotes

the leaf node of the right subtree:

currentNode = rLeaf:parentNode;

rExp = v;

while(currentNode! = s0)f

tempExp = Null;

if(currentNode has left subtree)f

create a stack temps;

temps:push(currentNode);

temp = currentNode;

while(temps is not empty)f

currentNode = temps:pop();

tempExp = merge(Null; tempExp; branchD(currentNode));

for each child tempChildi of currentNode

ftemps:push(tempChildi); ggg

rExp = merge(rExp; tempExp; fbranchU(temp)g);

currentNode = temp:parentNode; gg

Left subtrees are dealt with in a top-down manner while the right subtrees are transformed by a bottom-up
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method with the critical variable v as the start point. Finally after combining two expressions through the root

node, the �nal formal expression is achieved as:

exp = merge(rExp; lExp; fbranchU(s0)g)

Along the whole transformation process, function merge plays an important role which is de�ned as:

merge : rExp � lExp� set of branch! exp

where rExp is a string denoting an expression transformed from a right subtree, lExp is a string denoting an

expression transformed from a left subtree, and exp is a string denoting the expression generated by combining

rExp, lExp and a set of branches. It is designed for constructing expressions under various situations, but the

detailed rules are not further discussed for the sake of space.

Information display obtains data required by customers, which falls into the scope of the pattern direct. To

better demonstrate the application of the pattern, we make the function more complicated on purpose. Consider

describing displaying the July 3rd�s transactions of accounts that have more than 3 transaction records on July

3rd, 500 US dollars and more than 1000 Japanese Yen. By applying method for constructing the type tree of the

pattern direct, a tree structure shown in Figure 6.27 can be constructed.

Using the proposed transformation method, we will get the result formal expression as shown in Figure 6.28

where output : set of Transaction denotes the output variable.

6.2 HFSM

6.2.1 The de�nition of HFSM

In addition to the knowledge that is visible to the developer, a larger part of the pattern knowledge is designed to

be applied by machines. Despite the fact that pattern structure and formal de�nition provide a e¢ cient way to

organize the pattern knowledge, we treat the application process of the pattern system, rather than the pattern

system itself, as knowledge and represent it using HFSM. The reasons are as follows. First, the application process

speci�es the guidance for each stage of requirements formalization, the method for utilizing such knowledge is

straightforward without the need of analyzing the pattern system and its complexity stays independent from that
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Figure 6.27. The type tree constructed for the example display function

let accountInfSet = {itemAccountInf | itemAccountInf : rng(account_store)
& let transactionSeq = [itemTransaction |

itemTransaction : Transaction
& exists[i : int] | itemAccountInf.transactions(i) = itemTransaction

and itemTransaction.date(2) = 7 and itemTransaction.date(3) = 3]
in  len(transactionSeq) > 3

and itemAccountInf.balance(USD) = 500
and itemAccountInf.balance(JPY) >= 1000}

in   let  TransactionsSet = {itemTransactions | itemTransactions :Transactions
& exists[itemAccountInf : accountInfSet] |

itemAccountInf.transactions = itemTransactions}
in   output = {itemTransaction | itemTransaction : Transaction

& exists[itemTransactions : TransactionsSet, j: int] |
itemTransactions(j) = itemTransaction}

and itemTransaction.date(2) = 7 and itemTransaction.date(3) = 3

Figure 6.28. The formal expression generated based on the example type tree
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of the pattern system. Second, as an interactive process, the application of the pattern system is described by

the basic elements of interaction activities, such as input and output. Regardless of how the pattern system is

modi�ed, the de�nition of these elements will always remain the same. Therefore, the algorithm for utilizing the

knowledge does not need to be modi�ed even if the pattern system is updated. Third, HFSM can be used to

accurately describe interaction processes and easily manipulated automatically. It allows the reuse of existing

FSMs in describing more complex FSMs by introducing hierarchical relations among FSMs, which exactly matches

the characteristic of the relations between individual patterns. Moreover, HFSM leads to a clear structure of

the pattern knowledge and facilitates its maintenance. The de�nitions of FSM and HFSM are �rst given before

explaining how to represent pattern knowledge.

De�nition 15 A FSM (Finite State Machine) is a 9-tuple (Q; q0; F; V P; I;G; '; �; �) where Q is a non-empty

�nite set of states, q0 2 Q is the initial state, F � Q is the set of accept states, V P is a set of variable states

where each variable state is a triple (V; V 0; �) where V is the �nite set of system variables, V 0 is a set of values

and � : V �! V 0 de�nes the associated value for each v 2 V , I is the �nite set of symbols, G is the �nite set

of guard conditions, ' : Q �! V P is the state function indicating the values of the involved variables on each

state, � : Q � (I � P(G)) �! Q is the transition function relating two states by input and guard conditions,

� : Q� (I � P(G)) �! I is the output function determining output based on the current state and input.

In a FSM, each state denotes certain stage of the guidance production process, each i 2 I denotes a symbol for

composing inputs and outputs, and each g 2 G denotes a constraint.

There are 2 kinds of FSMs: value FSM and process FSM. The former returns a value when terminated while

the latter emphasizes on modeling an interactive process without returning any value. For each value FSM, state

variable return is created to carry the returned value.

Figure 6.29 shows an example FSM A where QA = fs1; s2; s3; s4g (�C denotes that each c 2 C is provided as

one of the choices for the developer, &c denotes the fact that item c has been selected and req(var2) denotes the

request "specify system variable var2").

Equations attached to states re�ect the state function '. When A is transferred to certain state s, system

variables will be assigned according to the equations attached to s. For example, A will stay on initial state s1
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s1
a/req(var2)

var1 = v1,
var2 = v2

var1 = v1 + a

b ({var1>5})/∑ C &c/ds2 s3

var2 = b var2 = b + 1,
return = var1 ­var2

s4

Figure 6.29. An example FSM model

when activated. The equations attached to s1 indicate that system variable var1 and var2 will be initialized as v1

and v2 respectively. Notice that for each state si, if the value of certain variable v on si is the same as its value

on the previous state of si, equations for assigning v will not be attached to si for simplicity. For example, no

equation for assigning var2 is attached to the state s2, which means that the value of var2 on s2 is the same as

the value on s1. On the accept state s4, "return = var1 � var2" is attached revealing that A is a value FSM that

will return the value var1 � var2 when terminated.

Connecting states with arrowed lines, transitions re�ect the transition function � and output function � of A.

Each transition si ! sj is attached with a label i(G)=o where sj = �(si; (i; G)) ^ o = �(si; (i; G)), which means

that when A stays on state si, if input i is received and each g 2 G is satis�ed, output o will be displayed and A

will be transferred to state sj .

The semantic of the FSM A is explained as follows. Starting from the initial state s1 where var1 and var2 are

initialized as v1 and v2 respectively, A will be transferred to s2 where var1 is set as v1+ a when receiving input

"a". Meanwhile, an output that asks for the value of var2 will be produced. If receiving response b while var1 > 5

establishes, A will then be transferred to s3 where var2 is set as b and items in C will be provided for the developer

to choose from. Finally, if c 2 C is selected, accept state s4 will be reached where var2 is set as b + 1 and A is

terminated with output d and returned value var1 � var2.

De�nition 16 Given a FSM A and a state s 2 QA, AccA(s) 2 P(I � P(G)) is an acceptable set on s i¤

8acc2AccA(s) � (9s02QA
� �(s; acc) = s0).

For each state s in A, (i; G) 2 AccA(s) means that there exists a transition originated from s, which will be

activated if input i is received and each g 2 G can be satis�ed. Note that (i;?) 2 AccA(s) and (";G) 2 AccA(s)

may also establish. The former indicates that a transition will be triggered on s when receiving i under any
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sA2u u’A1

i4 (G4) / A3i1 (G1) / o1

tA3vσH1(u’)
i5 (G5) / o5i3 (G3) / o3

return = i5 + b

H2H1

s’

t’

i2 (G2) / o2

v’

u”
v = A3 + A4 + a

A4 r

r’

return = i6 ­ c

i6 (G6) / o6

A1'

Figure 6.30. Example HFSM models

condition and the latter indicates that if each g 2 G is satis�ed on s, a transition will be activated without any

input.

De�nition 17 HFSM (Hierarchical FSM) is a pair (F; �) where F is a set of FSMs and � : Q [ I [ V �! P(F )

indicates the hierarchical relations among FSMs in F where lower-level FSMs interpret certain portion of upper-level

FSMs i¤ 9A02F � 8F 02ran(�) �A0 =2 F 0 (A0 is the root FSM).

There are two kinds of hierarchical relations in �: 1. lower-level FSMs demonstrate the inner transitions

of states in upper-level FSMs; 2. upper-level FSMs utilize values generated by the FSMs in lower levels. In

the second relation, a variable return is included in the system variables of each lower-level FSM for carrying

the value to be used by the corresponding upper-level FSM. Figure 6.30 compares the two di¤erent relations

through two example HFSMs H1 and H2. In H1, FSM A1 and the only FSM A01 in �H1
(u0) hold the �rst

relation where the detailed behavior of state u0 is described by FSM A01. The second relation is held in H2 where

�H2
(�(s; (i4; G4))) = fA3g ^ �H2

(v) = fA3; A4g. Label i4(G4)=A3 indicates that if the corresponding transition is

activated, the value generated by FSM A3 will be displayed.

6.2.2 Representing the pattern knowledge in HFSM

Building a HFSM for representing the pattern knowledge starts from analyzing the application process of the pattern

system (P;C; �) under the assumption that types and variables are already de�ned. As previously mentioned, for

each function to be formally described, the �rst step is to help select a proper pattern from the pattern system.

The second step is to apply the selected pattern, which can be further divided into two sub-steps: 1. guide the
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developer to specify the elements of the selected pattern according to the � item; 2. generate a formalization result

by applying the 	 item based on the speci�ed elements and further formalize the result by applying the involved

patterns. The explicit application process is given as follows where pid=str denotes the pattern with identity str,

ce denotes the element currently being speci�ed and apr denotes the set of all the satis�ed constraints. To describe

the HFSM representation of the pattern knowledge more clearly, we illustrate the application process of the pattern

system more speci�cally.

Step 1 Pattern selection process

(a) items = �(c0)

(b) Ask for choosing an item (denoted as im) from items

(c) if(im 2 C) then items = fci : C j ci 2 �(im)g [ fimi : string j imi = expl(eid) where pid=eid 2 �(im)g

and go to step b

else return sid where expl(sid) = im

Step 2 Pattern application process (the application of pid=sid)

(a) specifying elements

ce = e0; apr = ?;

while(elements of pid=sid are not completely speci�ed)f

if(ce has not been speci�ed)f

apply the rule repository of ce and add the activated rules into apr;

provide constraints on ce in apr as guidance and ask the developer to accordingly specify ce;

g

ce = �E(ce);

g

(b) formal expression generation

foreach (PRi ! str)2 	f
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sa

ε/ε

SP = null

sb sf

SP = Aselect

ε({SP = its}) /ε
se

...…

ε/ε
ε/ε

ε/ε

ε({Pid = SP∈η(CF)}) /ε
sc

sd
ε({Pid = SP∈η(UF)}) /ASP

Figure 6.31. The top level FSM in the HFSM

if(8pr2PRi
� pr) temp = 	(PRi);

if(temp is not a formal expression)f

foreach informal statement p(v1; :::; vn)2 tempf

formalize it with element transmission mechanism;

g

g

return temp;

According to the application process, the HFSM HF representing the pattern knowledge is built in a top-down

way. The root FSM re�ects the outline of the process by describing the initial and �nal states of steps 1 and 2.

The details of the steps are modeled in lower-level FSMs. The lower-level FSM for modeling step 1 reveals the

state transitions made by steps 1a, 1b and 1c. For step 2, sub-steps 2a and 2b is modeled by a set of lower-level

FSM each describing the application of one of the patterns.

Figure 6.31 shows the root FSM Aroot where SP denotes the system variable that holds the id of the selected

pattern.

States sa and sb denote the initial state and �nal state of step 1 respectively. On sa, SP is initialized as null

indicating pattern selection has not been conducted. On sb, SP is assigned as the value generated by traversing

FSM Aselect which models the details of step 1. For step 2, transition sb ! sd denotes the application of UF

patterns while paths between states sc and sf model the application of CF patterns. In transition sb ! sd, output

ASP indicates the formal expression generated by traversing FSM Asp which models the details of the application

process of pattern pid=sp 2 �(UF ). Originating from sc, di¤erent transitions lead to di¤erent destination states

where inner state transitions, i.e., the details of the application process of CF patterns, are described by lower-level
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s0
ε /∑η ( c0)

s2
&id/ε

return = id

s114
ε/ε

&Relation/
∑η (Relation)

&Rcreation/
∑η (Recreation)

&UF/∑η (UF)

&CF/∑η (CF)

ε/ε

ε/ε

&Retrieval/
∑η (Retrieval)

ε/ε

ε/ε

s1110

&Hi/
∑η (Hi)

s1113

ε/ε

ε/ε&Nhi/
∑η (Nhi)

s1111

s1112

… …

s1

s110

s111

s112

s113

s10

s11

s12

s13

σHF(s11)

Αselect σHF(s1)

σHF(s111)

Figure 6.32. The HFSM describing the pattern selection process

FSMs. For example, transition sc ! se represents the application of the CF pattern ite where the inner transitions

of state se, which indicate the details of the application process of the pattern ite, are left to be described by a

lower-level FSM.

According to the above design, FSM Aselect and a FSM set AS (where each FSM Aidi 2 AS describes the

detailed application process of an individual pattern with identity idi) need to be built to interpret the detailed

behavior of Aroot.

FSM Aselect is shown in Figure 6.32. It only provides the initial and �nal transitions of the pattern selection

process. The former indicates that the top level categories of the pattern system will be provided for the developer

to choose from at the beginning while the latter means that the developer will be guided to �nally reach a proper

pattern. Other details are given in lower-level FSMs organized in a hierarchy where each FSM interprets the inner

state transitions of the corresponding upper-level state. For example, the FSM in �HF (s1) describes the inner

state transitions of state s1 in Aselect.
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t1

ε({ce = null})/
req(ce)

t2

t7

t'1 ε/ε

input ({legal(
input)}) /ε

t5

input ({!legal(
input)}) /
req (ce)

ce = input

ε( {∀ pr ∈ PR1•
pr} ) /ε

apr = apr
{ΦR(PRi)}

t'n

ε( {∀pr ∈ PRn•
pr} ) /ε

apr = apr
{ΦR(PRn)}

t6

ce = c0
apr = ∅

return =
Ψ (PR')

t''1

t''n
ε({ce ≠null}) / apr1(ce) + … +

aprn(ce) + req (ce)

ε({ce = null,
∀pr ∈ PR1•pr })

/ ε

ce =
ΦE(ce)

…

ε/ε

ε({ce = null,
∀pr ∈ PRn•

pr} ) /ε

PR' =
PRn

PR' =
PR1

t3

t4

ε({ce ≠ null})/ε
ε/ε

ε/ε …
ε/ε

ε/ε

α β

Figure 6.33. The FSM for describing the application of individual patterns

In the set AS, each FSM Aidi is composed of three path sets: �, � and 
 where each �i 2 � describes step 2a of

the pattern system application process, each �i 2 � describes step 2b and each 
i 2 
 describes the detection and

correction of one kind of illegal input. Figure6.33 shows Aidi where apri(ce) 2 apr indicates one of the constraints

on element ce in apr, na + b means displaying both a and b (such as apr1(ce) + ::: + aprn(ce) + req(ce) meaning

the request for specifying ce under the requirement of satisfying the listed constraints on ce), legal(exp) denotes

that expression exp does not violate the grammar of the used formal notation.

Paths between states t1 and t6 form set � where transition t1 ! t3 re�ects the situation where ce has already been

speci�ed before the application of the pattern and transition t2 ! t4 denotes receiving the value to be assigned to ce

from the developer. Transitions ft5 ! t01; :::; t5 ! t0ng determine the rule to be applied to infer satis�ed constraints

based on the speci�ed ce. Paths between states t6 and t7 form set � where transitions ft6 ! t001 ; :::; t6 ! t00ng

determine the target formal expression based on the values assigned to the elements. Paths in 
 are created to

handle exceptions when traversing the paths in both � and �. Loop t2 ! t2 is an example path of 
, which means

that if the input on state t2 violates the grammar of the formal notation, the developer will be asked to modify

the input until it is recognized as a legal one.
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p0

ε({objs = null})/
req(objs)

p1

p13

p5 ε/ε

input ({legal(
input)}) /ε

p4

input ({!legal(input)}) /
req (objs)

objs = input

ε( {dataType(
objs) = char} ) /ε

apr = apr ∪
{ruleType = et}

p6

ε({|objs| =
2}) /ε

p7

return = “group(objs,
elems(result)) and rule”

ε / req (objs)

…

ε/ε

ε({reuse = true,
var (result), ruleType

= etg}) / ε

p3

p2

ε({objs
≠ null})/ε

ε/ε

ε/ε

…

p10

p8

p9

ε (result
= null) /

req (result)

ε({result
≠ null})/ε

p12

input ({
legal(

input)})
/ε

…
ε/ε

…

p11

…

Figure 6.34. The FSM describing the application of the pattern �sort�

Figure 6.34 shows an example FSM Asort in AS which describes the application process of the pattern sort. It

satis�es: fp0 ! p3(p1 ! p2) ! p4 ! p5(p6 ! p1 ! :::) ! p7 ! p8(p9) ! p10 ! :::g � �Asort
^ fp11 ! p12 !

p13g � �Asort
^ fp1 ! p1; p9 ! p9g � 
Asort

.

Each path in �Asort
represents an interactive way to specify the four elements of the pattern sort based on the

rules in the � item of the pattern. In �Asort
, each path re�ects a rule in the 	 item and sets the formal result

as the expression generated by applying the rule. If there exist informal parts in the formal result, each informal

part is interpreted as the value generated by lower-level FSMs. For example, the formal expression generated on

p13 includes "group", which indicates the informal part "group(objs; elems(result))" will be replaced by the value

generated by traversing the FSM Agroup with element information (objs; elems(result)).

6.3 Summary

In this chapter, we described a method for representing the knowledge in the speci�cation pattern system. The

goal of the method is to make the knowledge exposed to the developer easier to understand and the knowledge used

by machines easier to be accessed and manipulated automatically. Therefore, two representations are proposed to
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describe the two kinds of knowledge. We have presented each of them in detail and shown the merits of adopting

them.

In the next chapter, we will present how to formalize requirements into formal speci�cations based on the

pattern knowledge represented in attribute tree and HFSM. Several example functions are adopted to illustrate

the formalization process.
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Chapter 7

Prototype tool for supporting the pattern-

based approach

The main goal of our pattern-based approach is to support computer-aided formalization of software require-

ments. To validate the approach and demonstrate its e¢ ciency, we implement it into a prototype tool that

implements the approach. It interacts with the developers to derive necessary function details of the intended

requirements and transformed the derived requirement into formal speci�cations.

We will �rst describe the design of the tool, as well as the involved components, and present some implementation

details. Then the interface of the tool is shown, through which the main functions of the tool are illustrated.

By presenting a case study on formalizing an example function, we show how the tool works for requirements

formalization.

7.1 Tool design

Figure 7.35 shows the outline of the tool that is composed of four components:

� speci�cation pattern knowledge stored in a XML �le

� knowledge extractor for retrieving appropriate knowledge from the XML �le

� guidance generator for transforming the retrieved knowledge into explicit guidance that asks for the response

from the developer

� preprocessor for collecting input from the developer and processing it for knowledge extractor
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Figure 7.35. The design of the tool for supporting requirements formalization

When supporting the formalization of an intended requirement, knowledge extractor retrieves appropriate knowl-

edge from the XML �le that stores the speci�cation pattern knowledge. The retrieved knowledge is then used by

guidance generator to produce comprehensible guidance. By following the produced guidance, the developer is

expected to respond to the tool. After receiving the input response, preprocessor analyzes and processes it within

the context of the de�ned types and variables (The tool is executed on the assumption that all the necessary

types and variables are already de�ned since the data type declaration method has not been implemented). The

processed input information is used by the knowledge extractor to retrieve new knowledge from the XML �le for

producing new guidance. Such interactions continue until the target formal expression is generated.

Speci�cation pattern knowledge is described in the previous section and we will explain the mechanisms of the

other three components respectively.

7.1.1 Knowledge extractor

Knowledge extractor determines the speci�c knowledge to be applied according to the values of a set of state

variables that re�ect the attributes of the requirement under formalization. For each selected speci�cation pattern,

it retrieves knowledge from derivation knowledge for requirements derivation and extracts knowledge from trans-

formation knowledge for requirements translation. Speci�cally, when supporting requirements formalization with a

pattern p, knowledge extractor works in the following �ve modes for retrieving knowledge in di¤erent formalization
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stages.

� At the beginning of the requirements derivation stage, knowledge extractor �rst accesses to the attribute tree

TR of p and obtains the root node rn of TR, the left-most child node e1 of rn and the subtree of the node

e1. It then accesses to the clari�cation rule repository of e1 and obtains the top-level rule set TRS in the

repository. By evaluating the premise constraint of each clari�cation rule in TRS, the activated rule is found.

A new constraint pr is derived by applying the activated rule. Finally, knowledge extractor outputs the root

node rn, the subtree of the node e1 and the newly derived constraint pr.

� During the clari�cation process for an attribute ei at any level, knowledge extractor accesses to the rule

repository of ei and obtains one of the low-level rule sets RS according to the previously activated rule.

After evaluating the premise constraint of each rule in RS, the activated rule is found and a new constraint

pr is obtained and generated by applying the activated rule. If pr sets a constraint on an attribute of Req type

where speci�cation pattern p0 is involved to specify the attribute, knowledge extractor retrieves knowledge in

the �rst mode from the derivation knowledge of p0.

� After the clari�cation of a low-level attribute of Req type, knowledge extractor goes back to the clari�cation

rule repository of its parent attribute and generates the activated rule.

� When the clari�cation of a node ei in TR is �nished, knowledge extractor accesses to TR and returns the

subtree of the node ei+1 and the activated rule in the top-level rule set in the clari�cation rule repository of

ei+1.

� After all the attributes represented in TR is clari�ed, knowledge extractor accesses to the transformation

knowledge of p and implements the algorithm represented as the previously introduced function reqTransform.

The returned formal expression is generated as the retrieved knowledge.

The algorithm for utilizing the pattern knowledge represented in HFSM is shown in Figure 7.36. It starts

from the initial state of Aroot and displays guidance by traversing the states of the HFSM according to actual

inputs from the developer.
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cf = Aroot; cs = q0cf; input = return = null;
while(cs ∉ Fcf || states is not empty){set variable input as the input from the user;

if(cs ∉ Fcf){ns = o = null;
foreach (i, G) in Acccf(cs){

if(i == input && ∀ g ∈ G ⋅ g){ns = δcf(cs, (i, G)); o = λcf(cs,(i, G));}
if(σHF(cs) ≠ ∅ || ∃v ∈ Vϕcf(cs) ⋅ σHF(v)≠ ∅ || s HF(o)≠ ∅){states.push(ns);

if(σHF(cs) ≠ ∅) set ns as the initial state of one of the FSMs in s HF(cs);
if(∃v ∈ Vϕcf(cs) ⋅ σHF(v)≠ ∅){

for each v ∈ Vϕcf(cs) that satisfies σ(v)≠ ∅{queue.push(v);}
if(σHF(cs) = ∅){

set ns as the initial state of one of the FSMs in s HF(v) where v ∈ Vϕcf(cs);}
else{specify variables according to ϕcf(cs)}
if(s HF(o)≠ ∅){queue.push(o);

if(s HF(cs) = ∅ && s HF(o)= ∅){set ns as the initial state of a FSM in s HF(o);}}
else{display o to the user;}

else{if(return ≠ null ){replace the corresponding part in queue[top] with return;
if(s HF(queue[top]) = ∅){temp = queue.pop();

if(temp is output){display temp;}else{specify variables based on temp;}}}
ns = states.pop();}

cs = ns; cf = A where cs ∈ QA;}

Algorithm Utilization of the HFSM

Figure 7.36. The algorithm for utilizing the HFSM

When traversing each FSM A in the HFSM, A is transferred from the current state to the next state according

to input. On each non-accept state cs in A with input symbol input, the next state is determined by analyzing each

transition in AccA(cs). If there exists one transition labeled i(G)=o where i = input and all the guard conditions in

G are satis�ed, A will be transferred to the destination state of the transition and o will be displayed. The above

process repeats until reaching the accept state.

To deal with hierarchical relations in the HFSM, the following method is adopted: given a upper-level FSM A,

when encountering a component c that is interpreted by a set of lower-level FSMs LF , the current state s will be

stored and FSMs in LF will be traversed. If a value is returned after all the FSMs in LF are terminated, it will be

used to specify c. Then, the algorithm sets the current state back to state s and continues the traverse of FSM A.
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7.1.2 Guidance generator

Guidance generator produces and displays guidance according to the knowledge returned from the knowledge

extractor. As shown in Table 7.8, there are four major kinds of guidances corresponding to the four kinds of

knowledge retrieved from the speci�cation pattern knowledge.

7.1.3 Preprocessor

Preprocessor includes a set of rules for determining the semantics of the user input. Each rule transforms user

input into the value of one kind of state variable that represents one kind of attribute. The obtained state variable�s

value will be used to retrieve knowledge for guiding the user in the next step of the formalization process.

Assume guidance g is displayed for guiding the assignment of an attribute e and the developer inputs a string to

the tool as the response to g based on his understanding on the intended requirement. Preprocessor "understands"

the meaning of the input string based on the type of e. For example, if e is of expV alue type, preprocessor will

treat the input string as a formal expression representing certain system variable and transform it into the value

of a state variable that represents the attribute e.

7.2 Tool implementation

The major concern when implementing the above design is the format for storing the HFSM model in the tool.

Considering that XML is becoming widely used in industry for its simplicity, it is used to carry the information in

the knowledge base so that the knowledge can be easier shared by other communities.

As a markup language, XML requires a set of tags to identify data with di¤erent meanings. Table 7.9 shows

the XML tags for the HFSM model.

These tags solve the problem of storing all kinds of components in FSM models. To illustrate their use in the

tool, the XML representation of an example FSM is given in Figure 7.37 where the left part shows the example

FSM and the right part shows its XML representation.

To store the hierarchical relations among FSMs, two mechanisms are given for the two kinds of hierarchies. The

�rst mechanism is the use of FSM names as destination states to represent the interpretation of high-level states

by low-level FSMs. For example, "<dest>F1<dest>" involved in a <state> fragment of the state s means that
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Table 7.8. Guidance produced from the knowledge retrieved by the knowledge extractor

Retrieved knowledge Produced guidance

the root node Display a requirement tree RT initialized as a root node denoting

of an attribute tree the requirement to be formalized

the subtree of a node ei in an attribute tree Create a same node ei as a child node of the root node in RT

attribute ei is If ei is of choice type, ask for choosing from the displayed candidate

of atomic type items. Otherwise, ask for the input the intended value in a text box.

Create a child node of the node ei in RT for each low-level attributes

attribute ei is of of ei. For each low-level attribute eij of ei, if the constraint contains

a constraint composite type sub-constraint on the de�nition of eij , produce guidance according to

the sub-constraint.

derived by attribute ei is Ask the developer to add member attributes to ei. Each time when

applying certain of set type a new member attribute is added, create a child node of ei for

transformation denoting the member attribute and produce guidance according to the

constraint on the de�nition of the member attributes of ei.

rule attribute ei is Create a requirement tree RT 0 with node ei as its root node. Then

of Req type and produce guidance according to the knowledge retrieved from the

described by applying attribute tree of p and the clari�cation rule repository of the �rst

the pattern p attribute node in the attribute tree.

attribute ei is Display guidance that asks for the developer to clarify the de�nition

of union type of ei by choosing one of the constituent types of the union type

ei = vi Assign vi to attribute ei

a formal expression Display the formal expression
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Table 7.9. Tags for identifying the elements in the FSM model

tag the corresponding elements in the HFSM model

<state> The states of each included FSM model

<transition> transitions originating from certain state

<input> input of a transition label

<guard> guard condition of a transition label

<output> output of a transition label

<dest> destination states of transitions

<inf> value information of state variables

<para> variable names

<value> the value of variables

... ...

the inner structure of s is interpreted by the FSM F1. The other mechanism is the use of FSM names as the

value of state variables to represent the hierarchical relations between the state variables in high-level FSMs and

low-level FSMs for interpreting these variables. For example, "<value>F2<value>" involved in a <inf> fragment

of the variable v means that F2 is a value FSM and v is assigned with the value returned after traversing F2.

Moreover, in order to enable facilitate the description of the informal guidance indicated in the expl item of the

speci�cation patterns, several symbols are introduced as shown in Table 7.10.

When implementing the tool, the FSM model of the pattern system is stored as knowledge in a XML �le

based on the pre-de�ned XML tags. Other components extracts state and transition information from the �le for

implementing the knowledge retrieval algorithm and produces comprehensible guidance with informal explanations

attached to symbols in output.
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s

x = v1,
y = v2

s'
a/b c(x > 0)/d

x = v1 + a y = v2 ­ c

s''

<state>
<name>s</name>
<inf>
<para>x</para>
<value>v1</value>

</inf>
<inf>

<para>y</para>
<value>v2</value>

</inf>
<transition>

<input>a</input>
<guard></guard>
<output>b</output>
<dest>s'</dest>

</transition>
</state>

<state>
<name>s'</name>
<inf>

<para>x</para>
<value>v1+a</value>

</inf>
<transition>

<input>c</input>
<guard>x>0</guard>
<output>d</output>
<dest>s''</dest>

</transition>
</state>

<state type = “accept”>
<name>s''</name>
<inf>
<para>y</para>
<value>v2­c</value>

</inf>
</state>

Figure 7.37. An example FSM and its XML representation

Table 7.10. Symbols involved in FSM models

symbol de�nition

P
S Providing items in set S for the designer to choose from

&itemi Selection of item itemi

#k Asking for pressing key k

req(x) Element or variable x is required to be designated with a value

legal(i) Input symbol i is written in de�ned variables and formal notations

patterns The variable indicating all the patterns in use

pattern The variable indicating the pattern currently being applied

elems A variable of sequence type that holds the values of the elements of pattern

#mM:v The value of variable v in module M

formalExp The variable that holds the generated formal result

... ...
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7.3 Tool interface

Although the underlying theory of the tool is language-independent, a speci�c formal notation needs to be

chosen when implementing the tool. Due to our expertise, we choose SOFL as an example formal notation and

implement the tool to support requirements formalization during the construction of SOFL formal speci�cations.

Figure 7.38 shows a snapshot of the main frame of the tool being executed for supporting the writing of the formal

speci�cation of a banking system.

Figure 7.38. The main frame of the tool

The tree structure on the top left re�ects the architecture of the speci�cation where each node indicates a module

(In SOFL, a formal speci�cation consists of a set of modules. Each module describes an relatively independent

function by a set of inter-related processes. Each process describes an operation producing outputs from inputs

in terms of pre- and post-conditions). High-level modules are decomposed by attaching child nodes representing

low-level modules. For the banking system, the top level module systemModule is decomposed into two low-level
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modules Service_decom and Management_decom. The module Service_decom describes the banking services

provided by the system for the customers owning authorized accounts and the module Management_decom

describes the operations for analyzing and maintaining the system information. The right part of the interface is

used to edit the content of the selected module where Type denotes the declaration of custom data types, V ar

denotes the declaration of speci�cation variables, Processes denotes the collection of processes describing various

operations in the module and Inv denotes the collection of invariants each expressing a property that must be

sustained throughout the entire speci�cation. When editing a module, its types and variables need to be �rst

declared and the tool will use these pieces of information to guide the formalization of pre- and post-condition of

each process, as well as invariants.

Formalizing a pre/post-condition or an invariant starts from manually analyzing and decomposing the pre/post-

condition into a set of basic functions. For each basic function, a speci�cation pattern is chosen by selecting a

function from the tree structure on the bottom left of the main frame. This tree structure categorizes all the

speci�cation patterns according to the functions they can be used to formalize to facilitate correct selection. One

can also retrieve the explanation of each node to con�rm whether it matches the intended requirement. Starting

from the top level of the hierarchy, the developer is required to select a sub-category on each level until reaching

a pattern. It is not di¢ cult to �nd the right pattern because of three reasons. First, pattern names are written in

natural language and designed to be distinguishable from each other on the semantic level. Second, the patterns are

organized by categories at di¤erent levels and the developer only needs to deal with one category or sub-category

at a time. Third, the explanation on the patterns describe their usage in more details and can help con�rm the

selection decision.

For each selection decision, a new frame will be popped up as the medium to derive necessary function details

of the intended basic function. Assume that the pattern alter is selected which is used to formalize the functions

of altering existing data items of system variables, a frame as shown in Figure 7.39 will be displayed. Its left part

shows the requirement tree which is initialized as a root node denoting the selected pattern. It will be gradually

constructed automatically during the requirements derivation process. The right part shows the guidance for

clarifying the selected node in the requirement tree and receives the response from the developer.

All the guidances are numbered to illustrate their display order. According to the attribute tree of the pattern
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Figure 7.39. The snapshot of the supporting tool

alter shown in Figure 6.20, the constraint obj, i.e., the object to be altered, needs to be �rst clari�ed. Therefore,

the top-level rule sets in the clari�cation rule repository of obj is applied to produce the �rst guidance that asks

for the assignment of obj. After the developer �lls in the displayed text box using declared variables and presses

the submit button, the tool will send the provided information to the preprocessor and activate the knowledge

extractor to retrieve knowledge from the XML �le that stores the speci�cation pattern knowledge according to

the processed input. The guidance generator will then produce new guidance based on the retrieved knowledge

for further interactions. When adequate function details are derived, a formal expression will be generated and

displayed on the frame. It is allowed to be modi�ed and copied to the main frame as the formalization result of

the corresponding pre/post-condition or invariant.

7.4 Case study

To demonstrate how the tool works, this section presents the formalization process of the deposit function of the

banking system. The process deposit is created in the previously introduced module systemModule to describe

this function (Figure 7.40 shows the types and variables de�ned in the module). It contains three inputs and one

output where input inf denotes the identity of the customer who deposits money to the system, cy denotes the type

of the currency to be deposited, wa denotes the amount of the currency to be deposited and success denotes the

message declaring the success of the deposit operation. The pre-condition is simply set as true and the writing of
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the post-condition needs guidance. According to the semantics of the deposit operation, the post-condition should

describe the way to update the account information after deposit operation. Since it is an alter function, pattern

alter is selected to assist the formalization of the post-condition and a frame in Figure 7.39 will be displayed.

type
AccountNo = seq of nat0;
Password = string;
CustomerInf = composed of

accountNo: AccountNo
password: Password

end;
CurrencyType = {<USD>, <JPY>, <CNY>};
Amount = real;
Balance = map CurrencyType to Amount
Year = nat0;
Month = nat0;
Day = nat0;
Date = Year*Month*Day;
OperationType = {<deposit>, <withdraw>};

Transaction = composed of
date: Date
operationType: OperationType
currencyType: CurrencyType
amount: Amount

end;
AccountInf = composed of

balance: Balance
transactions: set of Transaction

end;
AccountFile = map CustomerInf to AccountInf;

var
ext #account_store: AccountFile;
ext #today: Date;

Figure 7.40. The de�ned types and variables in the module systemModule

Figure 7.41 demonstrates the interaction process led by the �rst three pieces of guidance. The �rst guidance

requires the clari�cation of the attribute obj in the requirement tree. According to the de�nition of obj, it should be

speci�ed with a system variable represented in SOFL. Denoting the data store for carrying the account information,

variable account_store is input as the response to this guidance. With the analysis result on the given variable,

the tool starts to retrieve knowledge for assigning attribute how and the second guidance is displayed that provides

two items to choose from. Considering that the deposit operation only updates the account information of the

customer identi�ed as inf , rather than replacing the whole account_store with a new value, the second item is

chosen. After receiving the selection decision, the tool "understands" that the user intends to assigned how a value

of type d1 and produces the third guidance in terms of a table. Each row of the table groupi indicates one kind

of data items needed to be modi�ed in account_store (denoted as attribute data) and the way to modify them

(denoted as attribute oper). This guidance should be responded by adding new rows to the table according to the

intended requirement.

The button "add a group" at the top of the table is provided for adding new rows. When it is clicked to add

a row, guidance for clarifying the new row will be displayed. Figure 7.42 shows the produced guidance when the

"add a group" button is pressed (The response to the guidance is also shown which will be explained later). Item
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Figure 7.41. The snapshot of the supporting tool

data of the new row is guided to be clari�ed from two aspects. The �rst aspect is the constraints on the data items

to be altered, i.e., the description on what kind of data items are required to modify. It includes three optional

items and should be clari�ed by specifying at least one of them. In the deposit function, the data item to be altered

in account_store is the information of the customer identi�ed as inf . Therefore, only the �rst item should be

selected and clari�ed as one constraint on the corresponding CustomerInf : ConstraintInf = inf (CustomerInf

is the domain of the variable account_store de�ned as a mapping). The second aspect is the parts of the data

item speci�ed in the �rst aspect are needed to be modi�ed. Three candidate items are provided: CustomerInf ,

AccountInf and both. Considering that the deposit function does not rewrite the customer information and only

alters the account information of the customer identi�ed as inf , item AccountInf should be selected.

Item oper of the new row is �rst speci�ed by choosing from items "replace AccountInf with a new value" and

"other operations". According to the semantics of the function deposit, the information of the target account is

updated by modifying its balance and transaction parts, rather replacing itself with a new account information.

Therefore, the second item should be selected and a new guidance is consequently produced which asks the selection

of the speci�c operation for altering the account information. The candidate operations are provided according to
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Figure 7.42. The snapshot of the supporting tool

the patterns included in the recreation category. By analyzing the intended requirement, the selection decision on

alter operation can be made. To clarify the details of the alter operation, the guidance numbered 2 is produced

with a button "detail1", and a new page for guiding such a clari�cation process is created and linked to the button.

After responding to the produced guidance by �lling out each graphical components according to the semantics

of the deposit operation, the developer will be guided to further clarify the attributes for composing the deposit

operation. Such kind of interactions repeat until all the attributes in the attribute tree of the pattern alter

are assigned. With a complete requirement tree that represents all the necessary function details of the deposit

operation, a formal expression is generated as shown in Figure 7.43. It can be manually revised and copied to the

main frame as the post-condition of the process deposit.

This case study shows that the pattern-based approach can e¤ectively support requirements formalization and

HFSM representation successfully supports the automatic use of the pattern knowledge. The tool separates the

tasks of clarifying requirements and formally representing the clari�ed requirements by allowing human decisions

on function details and automating the translation of the function details. Developers without formal notation
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Figure 7.43. The snapshot of the supporting tool

expertise are also able to write formal expressions using the tool, since the guidance is given in natural language

and can be easily followed.

Notice that the above interaction process involves the use of de�ned variables since they are the only repre-

sentation of the system objects that can be understood by both the tool and the user. Thus, developers should

be clear about the relations between the de�ned variables and the real system before using the tool to formalize

system requirements. One way to avoid the use of de�ned variables is to assign them with informal semantics. But

whether this is necessary needs further investigation.

7.5 Summary

In this chapter, we have described the prototype tool that implements the pattern-based approach. The design

of the tool is �rst given which speci�es its architecture and demonstrates how the involved components cooperate

to perform the required functionality. It also includes the explicit description on each component. Then some

implementation details are presented where the most critical one is the format for storing the HFSM representation

of the pattern knowledge in the tool. Finally, the major functionality of the tool are introduced through its interface
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and a case study on the tool is presented to illustrate these functionality in real practice.

In the next chapter, we will present the experiments held on the prototype tool. The goal of the experiments

is to check whether the tool, as well as the pattern-based approach, can e¤ectively support the requirements

formalization process and help us explore the improvements that need to be done in our future work.
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Chapter 8

Experiment

To evaluate the e¤ectiveness of the pattern-based approach, two controlled experiments on the supporting tool

have been conducted.

These two experiments involve subjective evaluation and the result is a¤ected by the ability and bias of the

participants. This stems from the fact that software engineering includes many subjective factors such as usabil-

ity. When experiments on software engineering techniques are designed, subjective evaluation is inevitable if the

subjective factors of these techniques need to be estimated [99] [100] [101]. In our case, for example, we can only

depend on the feedback of the participants to evaluate whether the interface and the provided guidance are easy

to use.

Because of this reason, it is hard to formally prove that our experiment result exactly re�ect the performance

of our tool in real practice. In order to create an experimental environment that is similar to the real settings,

we choose students as the participants of our experiment since their experience in requirements formalization is

similar to practitioners in software industry. Therefore, the experiment result can demonstrate the fundamental

properties of the proposed approach and the prototype tool.

8.1 Experiment for investigating the ability and usability of the tool

In the �rst experiment, we invited our master students to use the supporting tool to formalize the functions of

several typical software systems. These students have studied the SOFL formal language for one or two years and

have written two or three SOFL formal speci�cations. They are able to read and even analyze a SOFL formal

speci�cation but still not experienced enough to express their envisioned functions in SOFL formal notations

e¢ ciently.
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There are six software systems to be formally speci�ed: Hotel reservation system, Banking system, E-ticket

system, Suica card system, Library information system and Online shopping system (For concise illustration, we

will use H, B, E, S, L, O as the abbreviation of these six systems respectively in the following presentation). Each

student is asked to write the formal speci�cation of one of these systems using the tool. For the purpose of assessing

the application domain of the patterns, manual formalization is not allowed, i.e., all the pre- and post-conditions

are required to be written under the guidance of the tool.

Table 8.11 shows the result of the experiment. It summaries the collected data for each formal speci�cation

and its construction process. The second column indicates the number of the included processes and the third

column records the number of the patterns applied for writing these processes. The fourth column denotes the

percentage of the guidance that is easy to follow where ss denotes the number of pattern selection decisions easy

to be made, s denotes the total number of the pattern selection activities, sg denotes the number of guidelines easy

to understand and g denotes the total number of the displayed guidelines. It represents the simplicity of using the

tool in requirements formalization, including the simplicity of selecting appropriate patterns and the simplicity of

interacting with the given guidance.

After interviewing the participants, we found that the pattern system can cover all the functions in these six

systems. The provided categorization tree facilitates pattern selection and the distinct pattern and category names

give little chance to wrong selections. The major di¢ culty is the decomposition of the intended functions into

basic functions that can be formalized by patterns. They suggest the design of more abstract patterns for speci�c

systems to further facilitate pattern selection. Designing such kind of patterns needs technical support from domain

experts and we will extend our framework along this line based on the foundation proposed in this thesis. We

also found that most of the participants cannot fully understand the representation of the provided guidance when

formalizing the �rst several functions. But once getting familiar to the guidance representation through formalizing

the �rst several functions, they can independently interact with the prototype tool to formalize the rest of the

functions.

The last column reveals the number of errors explored in the formal speci�cation. Most of these errors are

caused by the misunderstanding of the displayed guidance when formalizing the �rst several functions. As more

functions are formalized, fewer errors are made.
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Table 8.11. The result of the �rst experiment

Software Number of Number of ((ss=s) + (sg=g))=2 Number

system processes applied patterns (%) of errors

H 53 10 89% 13

B 49 9 85% 11

E 50 9 89% 10

S 53 11 87% 13

L 55 12 90% 10

O 60 12 85% 11

Although this result cannot lead to the conclusion that any requirement can be formalized by a set of our

patterns, it does demonstrate that the proposed approach is able to support computer-aided formalization of

commonly used functions.

8.2 Experiment for evaluating the e�ectiveness of the tool

In the second experiment, a class of undergraduate students who have received training on SOFL for only one

semester are invited to formalize the requirements of a banking system. This system consists of two parts: a

sub-system for providing banking services to customers and the previously introduced bank data analysis system

for managers. We selected 11 processes from the formal speci�cation of the banking system and replaced their

post-conditions with informal explanations on the behaviors of the processes. The participated 76 students are

divided into two groups. Each student in group 1 is asked to manually write the post-conditions of the 11 processes

and the students in group 2 formalize the 11 processes in terms of post-conditions by using our prototype tool. All

the students are required to record the time they spent for formalizing each process behavior.

After collecting the materials provided by the students and reviewing the submitted formal speci�cations, the

result of the experiment is organized in Table 8.12. As can be seen from the table, the average time for formalizing
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Table 8.12. The result of the second experiment

Average time Average number

Process behavior for formalization of errors

group 1 group 2 group 1 group 2

customer authorization 4.5 min 1min 2 0

deposit 16.7min 14min 6 2

withdraw 7.6min 4min 5 2

currency exchange 10.7min 5.2min 7 1

information display 24.5min 8.4min 9 1

transfer 13min 6.5min 4 0

manager authorization 0.4min 0.8min 1 0

transaction analysis 15min 4.2min 5 2

balance analysis 8.5min 3.8min 6 2

global transaction analysis 19.7min 7.9min 8 3

global balance analysis 14min 7.1min 9 1

each function in group 2 is less than that in group 1 while the average number of errors found in the formalization

result of each function in group 1 is more than that in group 2. This demonstrates that the tool can help formalize

requirements more e¢ ciently and enhance the quality of the resultant formal expressions. Besides, as the complexity

of the intended function increases, more time will be saved. For example, process behavior information display

is more complex than withdraw. Formalizing information display with the tool saves more time than withdraw.

This is because as the complexity of the function increases, students in group 1 have to spend more time on both

clarifying and transforming the details of the function. By contrast, students in group 2 only need to respond to

more guidances for requirements clari�cation and the tool will handle the rest of the work.
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There are also some data demonstrating the same conclusion with the �rst experiment. Although the com-

plexities of the functions deposit and withdraw are the same, there is a large di¤erence between the average times

for formalizing them in group 2. An important reason is that the students have deepened their understanding

on the meaning of the guidance produced by the tool when formalizing the function deposit, which enables them

to respond to the tool more quickly and speeds up the interaction process for formalizing the function withdraw.

Therefore, a course needs to be designed to train the potential users to help them use the tool more e¢ ciently.

Another interesting phenomenon is that formalizing a behavior by reusing the formal representation of a similar

one can promote the e¢ ciency. For example, the formal representations of the behaviors transaction analysis and

balance analysis are similar and the formalization of balance analysis can be easily done by modifying certain parts

of transaction analysis�s formal representation. As can be seen from the table, the average time for formalizing

balance analysis is much less than transaction analysis in group 1 although their complexities are almost the same.

This phenomenon indicates a way to enhance the e¢ ciency of the tool where some "standard" formal fragments

can be designed to facilitate the formalization of the similar functions.

Note that the students participating in both experiments are non-experts in requirements formalization. We

chose them because the proposed approach mainly aims to support non-experts and the experiment result can

re�ect the e¤ectiveness of the approach.

Nevertheless, it is also important to know the approach�s performance on supporting experts. We have discovered

some features according to our experience in using the prototype tool, although they are not proved by large-sized

experiments yet. For simple functions, manual formalization is more e¢ cient than tool-supported formalization.

The reason is that experts have formed their own patterns in mind and can quickly write formal expressions based

on these patterns. For su¢ ciently complex functions, manual formalization becomes time-consuming and error-

prone even for experts, and the prototype tool can largely reduce the time cost and enhance the quality of the

formalization result. Another discovery is that the amount of interactions is appropriate for non-experts but needs

to be reduced for experts. One solution is to design the pattern knowledge on di¤erent levels for assisting di¤erent

users, which is part of our future work.
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8.3 Summary

In this chapter, we have presented two experiments on the developed prototype tool for supporting the pattern-

based approach. The �rst experiment aims at investigating the ability of the tool in formalizing the requirement

of several example software products and the usability of the tool in real practice. The experiment result shows

that the tool is easy to use once the developer gets familiar to the representation of the produced guidance. The

second experiment compares manual requirements formalization and tool-supported requirements formalization to

evaluate the e¤ectiveness of our prototype tool. The experiment result demonstrates that the tool is able to help

requirements formalization more e¢ ciently and reduce the errors in the resultant formal speci�cations.

The next chapter is the last chapter of the thesis which gives the conclusion on our research work and points

out the future work directions.
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Chapter 9

Conclusion and future work

9.1 Conclusion

Formalizing informal requirements into formal speci�cations signi�cantly improve the accuracy of the require-

ments and help deepen the understanding of the envisioned system. However, this activity requires high skills for

abstraction and the use of formal notations, which remains a challenge to most of the practitioners.

To assist practitioners in formalizing requirements, this thesis proposes a pattern-based approach to guide the

clari�cation of requirements and representation of the clari�ed requirements in formal expressions. A speci�cation

pattern system is pre-de�ned in this approach to include a set of patterns categorized in a hierarchy according to

the functions they are used to formalize. A method for guiding the requirements formalization by applying the

speci�cation pattern system is given. It only requires the developers to make decisions on function design issues

and handles the rest of the formalization work.

Attribute tree and HFSM are adopted to represent the pattern knowledge. The former facilitates developers�

understanding on the structure of the intended requirement while the latter facilitates the utilization and mainte-

nance of the pattern knowledge. Algorithms are given to utilize the pattern knowledge represented in these two

languages.

A prototype tool that implements the proposed pattern-based approach is developed and described. We explain

the underlying theory of the tool and illustrate its major functions through a case study. It demonstrate the validity

of the introduction of speci�cation patterns for requirements formalization and the e¤ectiveness of the proposed

representation method in using, storing and managing the pattern knowledge. Through two experiments, we

have shown that the proposed approach is able to support computer-aided formalization of requirements and even
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developers without formal notation expertise are able to achieve quali�ed formal speci�cations using the tool.

When writing formal expressions, practitioners are only required to focus on the design of the relevant functions

and the tool will handle the rest of the work. Besides, the tool can help formalize requirements more e¢ ciently

and enhance the quality of the resultant formal expressions.

9.2 Future work

9.2.1 Future research on the pattern-based approach

Our �rst experiment applies the prototype tool to several software systems and demonstrates that it is able to

tackle most of the commonly used functions. But the application to large-scale systems is still needed to improve

the pattern knowledge. We plan to carry out more large-scale experiments involving both non-experts and experts

in the future to observe the e¤ectiveness of our approach in supporting engineers with di¤erent levels of formal

speci�cation writing skills. For non-experts, we plan to invite our partners from industry to use the tool in their real

projects, and collect the result and feedback to improve the approach. For experts, we plan to invite two groups of

experienced researchers to formalize functions with di¤erent complexities. One group formalizes functions manually

and the other group formalizes functions using our prototype tool. The participants in both groups will be required

to record the time cost for each function. This experiment can help us validate whether the approach is e¢ cient

in supporting experts and clarify its e¤ectiveness in formalizing functions with di¤erent complexities.

Moreover, Individual patterns need to be expanded and more patterns need to be created to handle more

complex situations. Besides, the self-learning mechanism for updating the pattern-based knowledge base is also

one of our future researches. Besides, the speci�cation pattern knowledge can only deal with the formalizations

of bottom-level functions. To provide more intelligent guidance, we will cooperate with domain experts to design

speci�cation patterns for formalizing domain-speci�c functions.

In addition to the above factor, the correctness of the pattern knowledge is also important to the performance

of our approach. We plan to use the following three methods for tackling this problem. First, since the pattern

knowledge is represented in FSM, we can visualize the knowledge using the graphical components of FSM. This

facilitates the understanding and inspection of the knowledge. Besides, model checking is a mature technique for

verifying FSM models and several tools have been implemented. We can formally verify the pattern knowledge
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using these tools. Second, since the pattern knowledge represented in FSM can be regarded as a formal speci�cation,

formal speci�cation inspection technique would be suitable for improving the quality of the pattern knowledge.

Third, testing of the prototype tool can also help us explore the correctness of the pattern knowledge. We plan

to invite students and industry people to use our tool and record the bugs or incorrect behaviors. Based on these

pieces of information, the errors in the pattern knowledge can be found and removed.

At present, the element set for each speci�cation pattern is identi�ed based on our own understanding and

experience. Whether the design of these elements is reasonable enough needs to be evaluated by experiments.

Given a set of tree representations of various speci�cation patterns, a group of developers from industry will be

invited to clarify requirements using the proposed approach. Their feedback and the clari�ed requirements will be

analyzed to improve the quality of element sets and the corresponding element de�nitions.

Besides, the current method for type declaration has only applied on several small systems and its intelligence

still needs to be improved. We plan to carry out this method to large-scale industrial software systems to explore

its problems in real application. We also plan to analyze much more numbers of industrial formal speci�cations to

add more knowledge for supporting the method. This will probably make the method more intelligent.

Another future research is to expand this approach for formal speci�cation evolution where formal speci�cation

gradually becomes more mature and complete.

9.2.2 Future research on the supporting tool

Sometimes, the informal guidance given by the tool is not easy to understand. Due to the inherent complexity

of data structures in empirical systems, the generated guidance often involves a large number of objects and

sophisticated relations. One solution is to adopt simple formal expressions in describing part of the guidance since

they can be more comprehensible than their informal counter-part. Experiments need to be held to investigate

this feasibility.

Another important work is to enhance the fault tolerance of the prototype tool to make it su¢ ciently mature

to be applied by practitioners from the software industry. In our experiments, we have prepared an instruction

for each participant which explicitly describes the steps for accomplishing the required formal speci�cation with

our tool and emphasized to the students to exactly follow the instruction. The reason is that if they interact with
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the tool in a way that is di¤erent from the standard procedure, the tool may crash or response them with an

unexpected message. On the other hand, we could not expect the practitioners to always use the tool according to

the instruction step by step and remain happy when the tool destroys all the previous clari�ed requirements just

because of a wrong tack. Therefore, the ability of the tool for handling exceptional operations need to be enhanced

to reach the goal of our research � facilitating the practitioners to build formal speci�cations.

We are also interested in developing techniques for automatically adding new knowledge to make the tool support

more intelligent, as well as the techniques for supporting type and variable declarations and architecture design to

support the whole process of formal speci�cation construction.
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