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SUMMARY 

A 3-phase equilibrium in argon is obtained by the thermodynamics of the perfect solid and liquid.  The 
equation of state (EOS) for a perfect solid is obtained for a pure substance of spherical molecules that undergo 
molecular interaction of the Lennard-Jones form.  The primitive internal energy EOS for a perfect solid 
(referred to as v0 EOS) is the sum of the thermally averaged kinetic energy and the potential energy of the 
nearest neighbors in a face-centered cubic (FCC) solid at 0 K.  The extended internal energy EOS for a 
perfect solid (v1) includes a long-range effect in the low density region as the internal energy in the van der 
Waals EOS.  The pressure EOS is written as the volume derivative of the potential energy at 0 K to satisfy the 
EOS with respect to thermodynamics.  The temperature effect in the virial term is included in the extended 
pressure EOS. The EOS for a perfect liquid is the van der Waals EOS with empirical coefficients to explain the 
3-phase equilibrium.  The change in entropy for a reversible process is calculated by the standard method. 
The thermodynamic quantities of each phase are written as functions of volume and temperature.  In this way, 
the Gibbs energy per molecule is plotted as a function of pressure for both solid and liquid phases, and the 
crossing point in the plot is the phase transition point.  The p-V-T relations on the equilibrium lines are 
comparable with the experimental and molecular simulation results.  The calculated average potential energy 
and entropy on the phase boundaries are consistent with the simulations.  The thermodynamic quantities 
under a low pressure are compared with the molecular dynamic simulations.  The quantities examined are 
volume, internal energy, enthalpy, entropy, Helmholtz energy, Gibbs energy, expansion coefficient, isothermal 
compressibility and heat capacity under a constant pressure.  

KEY WORDS: equation of state, phase diagram, triple point, critical constants, gibbs energy 

1. INTRODUCTION

The perfect (ideal) solid and liquid are simplified models of a solid and a liquid composed of single-type 
spherical molecules. These models are used to understand 3-phase equilibrium through simplified calculations of 
Gibbs energies. Molecular interactions of the Lennard-Jones (LJ) form [1] are assumed for the spherical 
molecules.  The LJ potential, u(r), is expressed as a function of the interatomic distance, r: 

12 6

( ) 4 ,u r
r r
σ σ

ε
⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦ (1) 

where ε is the depth of the potential well and σ is the separation at which u(σ) = 0.  The ε and σ constants are 
used as units of energy and length, respectively. 

The EOS for a perfect solid obtained in our previous study [2] and the van der Waals EOS were 
applied to the 3-phase equilibrium of argon [3].  The present work employs empirical van der Waals 
coefficients. The average potential energy function of the solid phase is improved by appropriate summation of 
the LJ potential.   

Reasonable results obtained for the phase transition pressure as a function of temperature will be 
compared with the experimental results [4-7] and molecular dynamics (MD) simulations [8-15].  The 
thermodynamic quantities under a low pressure will be compared with the MD simulations [16]. 
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2. Perfect solid

The extended EOS for a perfect solid is expressed for a state with volume V, and temperature T; the most 
important term in the internal energy is the potential energy of the FCC solid at 0 K: 

4 23 3( , 0K)
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v

v v
(2) 

where N is the number of molecules in the system and v  is the volume per molecule.  This form is obtained 
by summation of the LJ system.  The structure of a perfect solid can be expanded or compressed uniformly.   

The potential energy at 0 K is modified to express the low density limit with a better approximation in v1 
EOS [3].  The following weight functions are assumed in the low and high density regions: 

3 3

s( ) 1 , ( ) .w wσ σ
∞ = − =v v

v v   (3) 

The following long- and short-range force effects on the potential energy are assumed: 

s p( ) , ( ) ( , 0K).NaE E E V∞ = − =v v
v (4) 

The long-range effect is the internal energy in the van der Waals EOS [17, 18].  The potential energy in the 
present EOS is expressed as: 

, s s( , 0K) ( ) ( ) ( ) ( ).e s eU V w E w f E∞ ∞= +v v v v  (5) 

where the fe factor (≈1) is introduced as an adjustable parameter. 
The internal energy of the extended EOS for a perfect solid is the sum of the thermally averaged kinetic 

energy and the potential energy: 

,
3( , ) ( , 0K),
2 e sU V T NkT U V= +  (6) 

where k is the Boltzmann constant. 
The extended pressure EOS for a perfect solid is given as [2]: 

3
p,ext

2

( , 0K) 6( , ) .
T

E VNkT NkTp V T
V V V

σ⎛ ⎞∂
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 (7) 

The last term is obtained from a harmonic approximation of the following virial expression for the pressure [16]: 

0K 0
( ) .sT T

pV NkT Virial w Virial
= >

= + + v
(8) 

This form of Eq. (7) satisfies the thermodynamic EOS [1]: 

.
T V

U pT p
V T
∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ (9) 

The entropy change by a reversible process can be obtained by standard thermodynamics [1] using these 
EOSs: 

3 2
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The starting point is selected as Vi = Nvmax, Ti = ε/k, where vmax >> σ3. The S0 constant is defined as: 

max
0 max 3( , / ) ln .S S N k Nkε

σ
≡ ≡

v
v

(11) 

3. Perfect liquid

The van der Waals EOS [1] for a perfect liquid (v1) has the following form: 

2( , ) , ,kT a Vp V T
N

= − ≡v
v-b v (12) 

where a and b are the van der Waals coefficients [1].  The internal energy of the van der Waals EOS is 
expressed as follows [17, 18]: 

3( , ) . .
2

aN VU V T NkT
N

= − ≡v
v (13) 

The change in entropy for the reversible process is calculated according to [1]: 
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S S V T S N k
TNk Nk S
k

ε

σ ε

Δ = −

= + −

v

v-b

 (14) 

Here, the S0 constant is the same as that in Eq. (10) and is selected as the origin of entropy in the present 
numerical calculation: 

fluid 3
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2 /

TS V T Nk Nk
kσ ε
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  (15) 

3
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The entropy of a perfect gas is also expressed for the case of b = 0 in Eq. (15): 

gas 3

3( , ) ln ln .
2 /

TS V T Nk Nk
kσ ε

= +
v

  (17) 

The origin of potential energy is selected as zero when there is no interaction in either the solid or liquid phase. 
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The Gibbs energy G is obtained by the standard thermodynamic procedure: 

.G U pV TS= + −  (18) 

The liquid-gas critical points are known [1] as follows: 

2

8 ,
27
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=

=

=v (19) 

The LJ parameters for argon [1] are given in Table 1.  The empirical van der Waals coefficients are shown in 
units of LJ parameters in Table 2.  Table 3 compares the critical points with the experimental results for argon 
[1]; the empirical van der Waals coefficients are determined according to the critical temperature and critical 
pressure.  

Table 1. LJ parameters [1] 
(ε /k )/K ε /10-21 J σ/10-10 m (ε /σ3)/MPa (ε /σ3)/atm
111.84 1.54 3.623 32.5 320

Table 2. Empirical van der Waals coefficients in units of LJ parameters [1] 
a /εσ3 b /σ3

5.087 1.117

Table 3. Comparison of the critical constants of argon obtained from EOS, MD simulation, and experiment [1] 
T c/K p c/atm V c/(cm3/mol)

EOS v1 [3] 133 47 86
This work 151 48 96
MD [15] 148 41 91
Exp. [1] 151 48 75

4. Phase equilibrium in the (T-p) space

The condition of the phase equilibrium between phases 1 and 2 in the (T-p) space is expressed as: 

1 1 2 2

1 1 2 2

1 2

( , ) ( , ),
( , ) ( , ) .

p V T p V T
G V T G V T
N N

=

=
(20) 

The EOSs are known as functions of volume and temperature; therefore, this equation can be solved numerically 
[2, 3].  An example of this is shown in Fig. 1 at T = 0.692 ε/k.  The branch with the lowest chemical potential 
G/N, at a given pressure is the phase that is realized at this temperature and pressure.  The intersection point 
indicates the phase transition pressure at the given temperature.  In the case of T = 0.692 ε/k, the transition 
pressure for the solid-liquid transition is p = 4.97×10-3 ε/σ3.  This is also the liquid-gas and solid-gas transition 
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point, as shown in Fig. 1.  The gas phase is most stable in the lowest pressure region; therefore, the solid phase 
will be realized if the pressure is increased sufficiently at this temperature.  The temperature T = 0.692 ε/k is the 
triple point and this is compared with the experimental results in Table. 4.  The pressure p3, is higher and the 
change in enthalpy for the solid-liquid transition is larger than the experimental value.  Some comments will be 
given on the enthalpy of the liquid phase in the next section.  The mass density of the liquid is reasonable. 
The adjustable parameter in Eq. (2) is fixed in an attempt to reproduce the triple point obtained by Monte Carlo 
(MC) simulation [12]. 

0.9088522ef =  (21) 
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Sol i d
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Li qui d

T=0.692ε/kT3

Fig.1 Gibbs energy per molecule G/N, vs. pressure at T3 = 0.692 ε/k.  The triple point is indicated by an arrow. 

Table 4. Comparison of the EOS, MC simulation and experimental triple points [4]. The mass density of the 
liquid ρL, and the change in enthalpy for the solid-liquid transition ΔSLH, are also given 

T3/K p3/atm ρL/(g/cm3) ΔHSL/(J/g)
EOS v1 [3] 69.2 1.75 1.13 60.5
This work 77.4 1.59 1.02 94
MC [12] 77.4 0.32 1.18 26
Exp. [4] 83.8 0.68 1.42 28

The transition pressure is plotted as a function of temperature in Fig. 2 and compared with the 
experimental [5-7] and simulation [8-15] results for argon.  The pressure-axis is presented as a logarithmic 
scale, because the range is very wide.  The overall transition pressure for argon is well reproduced as a function 
of temperature. 
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Fig. 2 Phase transition pressure vs. temperature for argon.  Comparison of the EOS, experimental [5-7], and 
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simulation [8-15] results. 
 

Fig. 3 shows the transition temperature-number density relation for argon, and the calculated results 
are compared with the simulation results [8-15].  The phase boundaries of the liquid and solid branches 
obtained from EOS calculations deviate from the simulation results at high temperatures.  The most important 
reason for this is the hard sphere term in the pressure equation for the liquid.  The differences in the transition 
temperature-number density plot may be improved by the other EOS for the LJ system.  
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Fig. 3 Phase transition temperature vs. number density for argon.  Comparison of the EOS and simulation 
results [8-15]. 
 

The calculated configurational entropy per molecule Sc/N, is compared with the simulation results [12] 
in Fig. 4.  The configurational entropy has the following form in the present model: 

 
3 2

c,solid 3

6( , ) ln V N kS V T Nk Nk
N V

σ
σ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (22) 

c,fluid 3( , ) ln .S V T Nk Nk
σ

= +
v-b  (23) 

 
The overall features of the configurational entropy from the EOS are in good agreement with the simulation 
results [12].  Some differences in the liquid and solid phases at high temperatures are due mainly to differences 
in the volume. 
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Fig. 4. Configurational entropy per molecule Sc/N, vs. temperature for the phase equilibrium of argon.  
Comparison of the EOS and simulation results [12]. 
	
 	
 	
  

The average potential energies per molecule Ue/N, at the phase boundaries are shown in Fig. 5: 
 

p,se,solid ( , 0K)U E V=  (24) 
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2

e,fluid .aNU
V

= −  (25) 

 
The potential energies of the solid and gas at low temperatures correspond well with the simulation results [12].  
However, the potential energies of the liquid and the solid at high temperatures are different from the observed 
results [12], because the present EOS potential energy terms have no explicit temperature dependence (see Eqs. 
(24) and (25)).  Improvement of this weakness is a target for future study.  The average potential energy of the 
harmonic oscillator is kT/2 at temperature T, for each degree of freedom of motion.  This term is not included in 
the present study.  A volume dependent term is expected in the next version of EOS, such as g(V)kT, where 
g(V) is a function of volume. 
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Fig. 5. Average potential energy per molecule Ue/N, vs. temperature for the phase equilibrium of argon.  
Comparison of the EOS and simulation results [12]. 
 

Fig. 6 describes the configurational Helmholtz energy Ac, as a function of temperature on the 
solid-liquid phase boundaries.  The tangent of the calculated Ac corresponds to that of the MC simulation result 
[12].  However, some improvements are necessary for Ac in the liquid phase. 

 

 

-‐‑‒5

0

5

10

15

20

25

0 1 2 3 4

(A
c/
N)
/ε

T/(ε/k)

Li nes:   EOS
Dots:  MC

Li qui d

Sol i d

 
Fig. 6. Configurational Helmholtz energy per molecule Ac/N, vs. temperature for the solid-liquid equilibrium of 
argon.  Comparison of the EOS and simulation results [12].  Squares and triangles represent the solid and 
liquid phases obtained by MC simulation [12], respectively. 
 

Finally, Ac in the solid-gas phase boundary is compared with that from the MC simulation [12] in Fig. 
7.  The present EOS gives Ac values on the solid-gas phase boundary that are comparable with those obtained 
by MC simulation. 
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Fig. 7. Configurational Helmholtz energy per molecule Ac/N vs. temperature for the solid-gas equilibrium of 
argon.  Comparison of the EOS and simulation results [12]. 
 

5. Thermodynamic properties at constant pressure 

The thermodynamic quantities under low pressures are examined in this section for comparison of the EOS and 
simulation results.  The Gibbs energy is plotted in Fig. 8 as a function of temperature at p = 0.01 ε/σ3.  The 
entropies of the liquid and solid are negative, due to the present choice of the origin of entropy; therefore, this 
plot appears different from the typical G-T plot [1].  The melting point Tm, and the boiling point Tb, are fixed in 
Fig. 8:  
 

  0.692 ε/k,  0.77 ε/kT Tm b= =  (26) 

 
The EOS results are compared with the Kolafa-Nezbeda (KN) EOS determined from many simulation results on 
the LJ system [13].  Some differences are evident in the liquid branch, which indicates the differences between 
the van der Waals EOS and the LJ system. 
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Fig. 8. Gibbs energy per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and KN EOS 
simulation results [13].  The melting point is 0.692 ε/k and the boiling point is 0.77 ε/k. 
 
 

Fig. 9 shows the volume per molecule as a function of temperature at p = 0.01 ε/σ3.  The solid branch 
is compared with the present MD results.  The MD simulation is performed on an 864 particle system using a 
standard NTP ensemble [16]. 
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Fig. 9. Volume per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and KN EOS simulation 
results [13], including the MD simulation results from this study. 
 

The internal energy is plotted in Fig. 10.  The internal energy of the liquid is slightly different from 
the simulation results for the LJ system, because the EOS calculation is based on the van der Waals EOS.  
Therefore, another EOS will be developed for the liquid phase in a future study.  The difference in the internal 
energy of the solid phase originates from the approximation that the potential energy has no temperature 
dependence, which is invoked for simplicity.  This should be improved by the following research.   
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Fig. 10. Internal energy per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and simulation 
results [13], including the MD simulation results from this study. 
       

Fig. 11 shows the enthalpy per molecule vs. temperature at p = 0.01 ε/σ3.  The EOS calculation is 
based on the van der Waals EOS, and thus the calculated enthalpy of the liquid is different from the simulation 
results for the LJ system.   
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Fig. 11. Enthalpy per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and simulation 
results [13], including the MD simulation results from this study. 
 

The Helmholtz energy per molecule is shown in Fig. 12 for completeness and the entropy per 
molecule is presented in Fig. 13.  The entropy of the liquid obtained by EOS is close to that for the simulations.  
The entropies of the liquid and solid are both negative due to the present choice of the origin of entropy.  
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Fig. 12. Helmholtz energy per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and KN EOS 
simulation results [13]. 
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Fig. 13. Entropy per molecule vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and KN EOS 
simulation results [13].  
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Fig. 14 compares the expansion coefficient α, calculated by EOS with that obtained from the 

simulations.  Although α  for the liquid and solid are slightly different from those obtained by the simulations, 
the overall features are similar.   
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Fig. 14. Thermal expansion coefficient vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and 
simulation results [13], including the MD simulation results from this study. 
      

The isothermal compressibility κT, obtained by EOS is plotted in Fig. 15.  κT of the solid calculated 
by EOS is slightly larger than that obtained by MD simulation. Thus, some improvement in the EOS of the solid 
is necessary to achieve better coincidence of κT.   
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Fig.15. Isothermal compressibility κT, vs. temperature at p = 0.01 ε/σ3.  Comparison of the EOS and simulation 
results [13], including the MD simulation results from this study. 
 

Fig. 16 shows the heat capacity under a constant pressure, Cp.  The main reason for the difference 
between the calculated heat capacities of the solid and the liquid and those obtained by MD simulation is that the 
EOS neglects the explicit temperature dependence in the potential energy of the condensed phase. 
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Fig. 16. Heat capacity at constant pressure per molecule (Cp/N) vs. temperature at p = 0.01 ε/σ3.  Comparison 
of the EOS and simulation results [13], including the MD simulation results from this study. 

6. CONCLUSIONS 

The phase transitions in the three phases of argon are well reproduced by EOSs for a perfect solid and the 
empirical van der Waals fluid.  The potential energy for argon can be expressed by the LJ pair potential.  For 
this reason, the LJ potential parameters, ε and σ, are not adjustable parameters.  Only the fe factor in the 
potential energy of the solid and the van der Waals parameters a and b are adjustable parameters in the present 
EOS.  It is expected that optimization of these parameters will provide improved results that are comparable 
with the experimentally observed results.  The EOS for a perfect solid has a simple analytic form.  The van der 
Waals EOS is also easily understood.  A set of these EOSs is expected to be employed for thermodynamic 
education in physical chemistry.  Some worksheets for the Gibbs energy calculation are available on request to 
the author (YK). 
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APPENDIX 

Some examples of worksheets for the Gibbs energy calculation are attached [18, 19] . 
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