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Abstract—A concise formulation of the frequency-dependent
finite-difference time-domain (FDTD) method is presented using
the trapezoidal recursive convolution (TRC) technique for the
analysis of a Drude-Lorentz model. The TRC technique requires
single convolution integral in the formulation as in the recursive
convolution (RC) technique, while maintaining the accuracy com-
parable to the piecewise linear RC (PLRC) technique with two
convolution integrals. The TRC technique is introduced not only
to the traditional explicit FDTD, but also to the unconditionally
stable implicit FDTD based on the locally one-dimensional (LOD)
scheme. Through the analysis of a surface plasmon waveguide, the
effectiveness of the TRC technique is investigated for both explicit
FDTD and LOD-FDTD, along with the existing RC and PLRC
techniques.

Index Terms—TFinite-difference time-domain (FDTD), piecewise
linear recursive convolution (PLRC), surface plasmon polariton,
trapezoidal recursive convolution (TRC).

I. INTRODUCTION

ECENTLY, considerable effort has been directed at
R analyzing plasmonic devices composed of a metal and
a dielectric material [1]. The metal dispersion has frequently
been taken into account using the Drude model. To treat the
Drude model in the time-domain analysis, we often utilize the
frequency-dependent finite-difference time-domain (FDTD)
method based on the recursive convolution (RC) and piecewise
linear RC (PLRC) techniques [2], [3]. Although the PLRC tech-
nique attains higher accuracy than the RC technique, it requires
complicated formulations of two convolution integrals. On the
other hand, the trapezoidal RC (TRC) technique provides the
accuracy comparable to the PLRC counterpart, while requiring
only a single convolution integral as in the RC technique [4],
[5]. Note, however, that the application of the TRC technique
has been limited to the Debye and Lorentz models, each of
which cannot fully express the dispersion of the metal in optical
wavelengths, and no attempt has been made to apply the TRC
technique to the Drude model frequently used for plasmonic
devices.
In this letter, we introduce the TRC technique into the
Drude-Lorentz model with multiple Lorentzian poles. The
addition of the Lorentz term can accurately account for the
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measured permittivity of Au and Ag over a wide spectrum from
visible to near infrared regions [6]-[12]. While electric field
values from two time steps are required due to the presence
of the Drude model, the use of the TRC technique similar to
the RC technique greatly facilitates the frequency-dependent
formulation, offering the accuracy comparable to the PLRC
counterpart. We discuss the TRC formulation along with the
existing RC and PLRC techniques. We further introduce the
TRC technique to the unconditionally stable implicit FDTD
based on the locally one-dimensional (LOD) scheme [12], [13].
The effectiveness of the TRC technique is investigated through
the analysis of the surface plasmon waveguide.

II. FORMULATION
The linear polarization P(w) = x(w)E(w), where x(w) is
susceptibility, is represented in the time domain as

nAt
P(nAt) = ./0 x(T)E(nAt — T)dr. (1

For the RC technique [2], (1) is approximated as

n—1

P(nAt)= > E™ ™x™ )
m=0
where y™ = [U"FDAT (7)dr, in which the electric field is

assumed constant over At For the PLRC technique [3], (1) is
approximated as

’fLAt Z{En m m (En—m—l _En—m>€m} (3)

where £™ = (1/At) f(mH)At —mAt)x(7)dr, in which the
electric field has piecewise linear functional dependence over
At. Note that the term regarding £™ appears compared with (2),
requiring an additional calculation of the convolution integral.
This formulation results in storage of electric field values from
two time steps [3]-[5].

For the TRC technique [4], [5], (1) is approximated using an
average of the electric fields over two consecutive time steps in
the following form:

n—1 n—m + Enfmfl

P(nAt) =) 5 X" @)

m=0

Obviously, the TRC technique requires only a single convolu-
tion integral regarding x™, as in the RC technique. Note that the
efficient TRC technique with electric field values in single time
step (single time step TRC) has been developed providing the

1041-1135/$25.00 © 2009 IEEE

Authorized licensed use limited to: HOSEI UNIVERSITY KOGANEI LIBRARY. Downloaded on January 22, 2009 at 00:42 from IEEE Xplore. Restrictions apply.



SHIBAYAMA et al.: SIMPLE TRC TECHNIQUE FOR THE FREQUENCY-DEPENDENT FDTD ANALY SIS 101

accuracy comparable to the PLRC counterpart, to which only
the Debye and Lorentz models are applicable [4], [5]. Unfortu-
nately, the single time step TRC technique is not available for
the Drude model, since its susceptibility is not expressed as an
exponential function. Nevertheless, as shown below, the TRC
technique greatly facilitates the frequency-dependent formula-
tion for the Drude—Lorentz model due to the single convolution
integral.

Although any dispersion model is applicable to the analysis
with monochromatic sources, here we treat the following
Drude-Lorentz model (with P poles for the Lorentz function
[2]) to obtain a spectral response in one time solution with the
help of a pulse excitation scheme

Astw2

Jwv, + w2 — w?

5
Jw I/D—I—Jw )

er(w) = €00 +

where e, 1S the dielectric constant of the material at infinite
frequency, w is the angular frequency, wp and w, are the elec-
tron plasma frequencies, vp and v, are the effective electron
collision frequencies, G, is the pole strength, and Ae¢ is the
weighting coefficient.

Following the RC procedure [2], we newly derive the finite-
difference equation to be solved using (4) as

0
o — % n
E"t = SE"+ o ¢
+ 7 €0 +
A
+7to (v x H"+1/2) 6)
€0 ( €oo T XT)
where \° = + 25:1 Re [x9] and ¢" = ¢} +

211;1 Re [qSZ] . @ and
Em _{_Enfl

» are expressed as follows:

ép = — AXY +e At
E'"+E"" At gn—1
¢, = — Ax, +e77'¢,

where v = —a + jfB, a = 1,/2,and B = | /w? — a?. The

parameters used for the above equations are given as

2 1
X} =20 {At - —(1- e_”DAt)}
1%5)

VD
2AeC w2
Xg = — e *p (1 — e’yAt)
(v = %)
0 sz —UpAt\2
Ay = = 2R (1= o)
D

Axp =xp(1 =)

where * represents the complex conjugate. While electric field
values from two time steps are required as in the PLRC tech-
nique [3], [12], the formulation is quite simple, similar to the RC
counterpart [2]. Equation (6) can explicitly be solved combined
with the standard finite-difference equations for the H field. Ig-
noring the terms for the Lorentz model leads to the equations
for the Drude model that is applicable only to the near infrared
region.
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Fig. 1. Transmission coefficient versus Ax.

We also develop the two-dimensional frequency-dependent
LOD-FDTD based on the TRC technique. The equation for TM
waves is derived as

41 €oo — %0 1
BT = o B2+ P2
Eoo + % €00 + %
/ n+1/2
N At : oH, N oH, o
%0 (Eoo n XT) ox oz

for the first half step, where the relation E"*! = E’ obtained
from the LOD procedure [13] is adopted (H’ and E’ represent
the intermediate fields). For the H field, the standard LOD-
FDTD equation is utilized. The equations for the second half
step can be derived similarly. The simplified TRC-LOD equa-
tions are solvable as in the PLRC-LOD-FDTD [12].

III. DISCUSSION

To investigate the validity of the TRC technique for the
Drude-Lorentz model, we analyze the pulse propagation
of the TM wave in the air core region sandwiched be-
tween the metal claddings, shown in the inset of Fig. 1
[12]. The width of the air core is fixed to be W = 0.2 ym
and the metal is chosen to be Au whose parameters are
€00 = 5.9673, wp /2w = 2113.6 THz, w1 /27 = 650.07 THz,
vp/2n = 15.92 THz, v /2m = 104.86 THz, and Ae = 1.09
[6], [9], [12], which corresponds to P = 1, so that G; = 1
[2]. We calculate the transmission coefficient obtained from the
ratio between the discrete Fourier transforms of the incident
pulse and the transmitted pulse after a propagation on length
z = 5 pm. Due to the problem symmetry to the transverse
section, only half the section (x > 0) is analyzed. No specific
absorbing boundary condition is used, since the pulse is tightly
confined into the air core region.

Before studying the accuracy of each technique, we empha-
size here the necessity of using the averaged permittivity along
the interface between a metal and a dielectric material [14].
Throughout this letter, we adopt the averaged permittivity be-
tween Au and air along the interface on which the electric field
component is placed. Fig. 1 shows the transmission coefficient
at the center wavelength of the pulse (0.7 ;sm) versus transverse
sampling width Ax. For reference, also included is the result
with the Au permittivity being applied to the interface (not av-
eraged). The explicit FDTD based on the TRC technique is used,
where the upper limit of the Courant—Friedrich—Levy condition
(Atcpy) is utilized with the longitudinal sampling width being
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Fig. 2. Transmission coefficient versus CFLN.
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Fig. 3. Transmission coefficient versus wavelength.

fixed to be Az = 0.004 pm. It is seen that the coefficient ob-
tained with the averaged permittivity monotonically converges,
where it becomes almost constant for Az < 0.005 gm. In con-
trast, the coefficient without the averaged permittivity does not
monotonically converge, primarily because the structure is not
accurately modeled [14]. As a result, we have to use the aver-
aged permittivity along the metal/dielectric interface for the so-
lutions of (6) and (7).

We now investigate the accuracy of the TRC technique with
respect to the time step size. Here, we use Az = 0.005 pm
and Az = 0.004 pm, yielding Atcpr, = 0.0102 fs (Atcpr, =
0.00306 fs stated in [12] should be corrected to 0.0102 fs). The
time step size is defined as CFLN = At/Atcpy. Fig. 2 shows
the transmission coefficient versus CFLN at the center wave-
length (0.7 pm). The results of the RC and PLRC techniques
are included for reference. For CFLN < 1, the explicit FDTD
is used, while for CFLN > 1, the LOD-FDTD is used (the CFL
limit is indicated by the dotted line in Fig. 2). It is worth men-
tioning that the TRC results almost perfectly follow the PLRC
results for both explicit and LOD-FDTDs (the RC result de-
grades with CFLN). For CFLN = 7, the deviation from the
eigenmode solution (0.76451) is only 0.7%. In this case, the
computational time of the TRC-LOD-FDTD is reduced to about
30% of the times of the explicit TRC- and PLRC-FDTDs (the
TRC is slightly (a few percent) faster than the PLRC), where a
PC with a Pentium 4 processor (3.46 GHz) is used (the degree
to which the computational time reduction is attained depends
on a computer to be used).

The wavelength response of the transmission coefficient from
the LOD-FDTD is depicted in Fig. 3, in which the results of
the TRC technique are compared with those of the PLRC tech-
nique. Although not shown, the result of the explicit FDTD for
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CFLN = 1 is superimposed on that of the LOD-FDTD for
CFLN = 1. Again, we can find excellent agreement between
the TRC and PLRC results, in which the computational time
and the required memory are the same level for both techniques.
Even for CFLN = 7, the accuracy is found to be successfully
maintained over a wide wavelength range.

IV. CONCLUSION

We have discussed the effectiveness of the TRC technique
for the frequency-dependent FDTD. The formulation for the
Drude-Lorentz model is found to be simpler than that of
the PLRC technique. We apply the TRC technique not only
to the explicit FDTD but also to the unconditionally stable
LOD-FDTD. The analysis of the surface plasmon waveguide
reveals that the TRC technique provides the accuracy compa-
rable to the PLRC counterpart. Consequently, the FDTD based
on the TRC technique could be a practical alternative for an
accurate frequency-dependent method of analyzing plasmonic
devices. Comparison with the auxiliary differential equation
technique for the Drude—Lorentz model [7]-[11] is now under
consideration, which will be discussed elsewhere.
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