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Semivectorial Mode Analysis of a Rib Waveguide by an
Imaginary-Distance Beam-Propagation Method Based
on the Generalized Douglas Scheme

Junji YAMAUCHI'®, Jun SHIBAYAMA'*, Shu NAKAMURA',

SUMMARY The field profile and effective index of a rib
waveguide are calculated using an improved semivectorial beam-
propagation method using the imaginary-distance procedure.
Convergence behavior of the effective index is compared with
that obtained by the conventional Crank-Nicholson scheme and
with that derived from a Bierwirth-type formula, demonstrating
the effectiveness of the present method. Field discontinuities at
the interface between different materials are clearly displayed.
key words: finite-difference methods, mode solver, optical wave-
guides

1. Introduction

The beam-propagation method (BPM) is known to be
the most popular method for the simulation of propa-
gating beams in optical waveguides. The BPM can also
be used as an eigenmode solver by taking a purely imag-
inary propagation step|1]-[3]. Recently, the authors
have formulated an improved finite-difference beam-
propagation method (JFD-BPM)[4] based on the gen-
eralized Douglas (GD) scheme for the semivectorial
mode analysis[5]. The formulation was made using
Stern’s formula[6]. The field profile and effective index
were determined by the imaginary distance procedure.
An eigenmode solver based on the BPM has the advan-
tage that it can be directly employed for the propagating
beam analysis by simply changing the propagation axis
to the real one. In Ref. [5] we treated a two-dimensional
step-index waveguide and a three-dimensional graded-
index waveguide to demonstrate the effectiveness of the
GD scheme. We are also interested in investigating
the extent to which the GD scheme is effective for the
analysis of a three-dimensional waveguide with a large
refractive-index discontinuity. In this article, the IFD-
BPM is applied to the eigenmode analysis of a rib wave-
guide frequently used as a benchmark test. The effec-
tive index is compared with that obtained by the con-
ventional Crank-Nicholson (CN) scheme and with that
derived using a Bierwirth-type formula[7],[8].
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2. Configuration and Numerical Method

The geometry of a rib waveguide to be considered
here[7],[8] is shown in Fig.1. The configuration pa-
rameters are ny = 3.44, n, = 3.34, rib width W =
2.0 pm, central rib height H = 1.3 pm, and lateral height
T =0.2pm. A wavelength of A = 1.55 um 1is used.

The field profile is determined by the imaginary
distance IFD-BPM based on the GD scheme, and the
effective index is calculated by the growth in the field
amplitude. Since the numerical method has been de-
scribed in Refs.[4],[5] and [9] in detail, we do not
repeat here. The analysis is made using symmetry with
respect to the y axis, so that the computational domain
is approximately chosen to be 0 < z < 3.3um and
—3.7 £ y £ 1.8 um, which is almost the same as that
used in Ref.[7]. In the present method, Stern’s for-
mula is used, in which the discontinuity lines of dif-
ferent materials are located midway between sampling
points. This is in contrast with the Bierwirth-type for-
mula, in which the discontinuity lines are just on sam-
pling points[10].

As the input field, we choose a step function as

1 for0<z<1.0um and
#(z,y,0) = 0<y<1.3um

0 otherwise

A transparent boundary condition often used in a
propagating beam analysis is not necessarily needed for
this analysis, since the fields other than the fundamental
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Fig. 1 Rib waveguide geometry.
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Fig.2 Convergence behavior of effective index n. as a function
of transverse sampling width.

mode decay rapidly as they propagate along the imag-
inary axis. Hence, no special boundary condition is
imposed at the edge of the computational window, i.e.,
zero boundary terms are used instead of a transparent
boundary condition.

3. Results

Figure 2 shows the convergence behavior of the effective
index n. for the quasi-TE mode as a function of trans-
verse sampling width A(= Az = Ay). The data is ob-
tained at a propagation distance of 7(= —jz) = 100 um
with A7 = 0.1 um. For comparison, the data obtained
from the CN scheme and derived by Liisse et al.[8] us-
ing the Bierwirth-type formula are also presented. The
present results are found to show faster convergence than
the CN scheme (The CPU time for the GD scheme is
increased by 5%). It is interesting to note that the con-
vergence behavior of the present method contrasts with
that of Liisse et al. due to the difference in a discretiza-
tion scheme. For further reference, the data for the ful-
lvectorial case derived by Liisse et al. [ 7] are also shown.
It is noted that the semivectorial results indicate slightly
smaller n. than the fullvectorial results.

Since the convergence is not complete, we deter-
mine a more precise effective index using an extrap-
olation technique. Assuming that n.(A) = n.(A =
0) + aA?, we can readily determine n.(A = 0) and o
from data at two different A’s. The extrapolated val-
ues for all the semivectorial results are the same in six-
digit values: n.(A = 0) = 3.38866. Figure 3 shows
the effective-index error in which the extrapolated value
is assumed to be exact: [n.(A = 0) — n(A)]/n.(A =
0) x 100[%]. We can confirm the second-order accuracy
of each scheme, and higher accuracy of the GD scheme.
Note that the GD scheme also shows the second-order
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Fig.3 Effective-index error as a function of transverse sampling
width.
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Fig. 4 Field profile for the quasi-TE mode.

accuracy. This is due to the fact that the main source of
error is related to the interface discretization, in which
Stern’s formula is approximately employed.

A typical field profile is plotted in Fig. 4. Discon-
tinuities of the field are clearly visible at the vertical
interface with air.

4. Conclusions

The imaginary-distance beam-propagation method
based on generalized Douglas scheme has been applied
to the semivectorial mode analysis of a rib waveguide.
The present method achieves faster convergence in the
effective index than the conventional schemes. The field
profile for the quasi-TE mode clearly shows discontinu-
ities at the interface with air.
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