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with a Subjective State Space∗

Youichiro Higashi Kazuya Hyogo†

August 25, 2008

Abstract

This paper provides a model that allows for a criterion of admissibility based
on a subjective state space. For this purpose, we build a non-Archimedean
model of preference with subjective states, generalizing Blume, Brandenburger,
and Dekel [2], who present a non-Archimedean model with exogenous states;
and Dekel, Lipman, and Rustichini [4], who present an Archimedean model
with an endogenous state space. We interpret the representation as modeling
an agent who has several “hypotheses” about her state space, and who views
some as “infinitely less relevant” than others.

JEL classification: D81

Keywords: admissibility, subjective state space, non-Archimedean preferences,
lexicographic expected utility.

1 Introduction

Admissibility has been widely used as a criterion of rationality in decision and game
theory.1 It is the requirement that “weakly dominated” actions should not be taken.
That is, one action should be preferred to another if the outcome of the first action

∗We are grateful to Larry Epstein for his patient encouragement and invaluable suggestions.
We have benefited from comments by Sophie Bade, Barton Lipman, Yutaka Nakamura, Jawwad
Noor, John Quiggin, and Norio Takeoka. We acknowledge helpful feedback from audiences of the
2006 JEA Spring Meeting, RUD 2006, SWET 2007, Hitotsubashi, Kyoto, and Toyama Universities.
Hyogo gratefully acknowledges the financial support by KAKENHI (19830099).

†Higashi is at the Faculty of Economics, Hosei University, 4342 Aihara-cho, Machida, Tokyo
194-0298, Japan, yhigashi@hosei.ac.jp; Hyogo is at the Faculty of Economics, Ryukoku University,
67 Fukakusa Tsukamoto-cho, Fushimi-ku, Kyoto 612-8577, Japan, hyogo@econ.ryukoku.ac.jp.

1See for example, Arrow [1], Luce and Raiffa [11], Kohlberg and Mertens [8], and Brandenberger,
Friedenberg, and Keisler [3].
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is at least as good as that of the second action for each state, and strictly better for
at least one state.

For the criterion of admissibility, it is crucial for the modeler to identify what
uncertainties the agent perceives in her mind. However, the state space in the agent’s
mind is not directly observable to the modeler. The aim of this paper is to build
a model that allows for the criterion of admissibility based on the subjective state
space.

In the theory of subjective probability, Savage derives unique probability over
objective states from preference and provides an axiomatic foundation for subjective
expected utility theory. Subjective expected utility models satisfy admissibility only if
there is no null state. This assumption is restrictive because such preferences would
rule out pure strategy equilibria in games.2 In an Anscombe–Aumann framework,
Blume, Brandenburger, and Dekel [2] (henceforth, BBD) develop a non-Archimedean
subjective probability model that allows for both the criterion of admissibility and
“null” events, although not in the sense of Savage. In their model, the agent has
a lexicographic hierarchy of subjective probabilities over objective states and may
think that some states are “infinitely less relevant” than others. Unless two actions
are indifferent in terms of all states in the first hierarchy, the agent does not care
about outcomes in the other states. The agent thinks “null” states as infinitely less
relevant, but does not entirely exclude them from consideration.

A restrictive feature of BBD is the exogenous state space. Kreps [9, 10] shows
how the ranking of menus of alternatives reveals subjective uncertainty. Building
on that, Dekel, Lipman, and Rustichini [4] (henceforth, DLR) endogenize the state
space in an Archimedean framework. DLR take preference over menus of lotteries as a
primitive and derive a unique subjective state space, corresponding to possible future
preferences over lotteries. In this paper, we provide a non-Archimedean model with
subjective states, which in principle enables us to use admissibility criterion based on
the subjective state space. Our model is related to BBD in the same way that DLR
is related to Savage.

As in DLR, this paper considers preference over menus of lotteries. By weakening
their axiom Continuity, we provide a lexicographic representation (S, U, {µk}K

k=1): is a
tuple consisting of a nonempty finite state space S, a state dependent utility function
U : ∆(B)×S → R, and a hierarchy {µk}K

k=1 of (signed) measures such that for every
menu x and y

x % y ⇔

(∑
s∈Sk

µk(s) max
β∈x

U(β, s)

)K

k=1

≥L

(∑
s∈Sk

µk(s) max
β∈y

U(β, s)

)K

k=1

;

here ∆(B) is the set of lotteries over a finite set of prizes B, and ≥L compares
each level of the hierarchy lexicographically. In the special case of our model where
flexibility is valued, all µk’s are positive measures.

2In complete information games, one can think of states as other agents’ pure strategy profiles.
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The interpretation of the representation above is as follows. The agent anticipates
that after a state in S will be realized, she chooses the best lottery out of the menu.
The difference from DLR is how she perceives subjective contingencies ex ante. That
is, in her mind, the agent has multiple hypotheses about subjective states. The mea-
sure µ1 indicates her primary hypothesis about subjective states. She has a secondary
hypothesis µ2. If two menus are indifferent according to her primary hypothesis, she
uses the secondary hypothesis in order to compare the menus. She has a tertiary
hypothesis, which is represented by µ3, and so on. Since µk matters for the rank-
ing of any two menus only if those menus are indifferent according to µ1, · · · , µk−1,
we interpret that the hypothesis µk is thought of as “infinitely less relevant” than
µ1, · · · , µk−1.

For uniqueness of the representation, the relevant part is the ex post preference %∗
s

over ∆(B) determined by each s ∈ S. Under suitable conditions, we show uniqueness
of the hierarchy of (incomplete) subjective state spaces {%∗

s| s ∈ ∪k
j=1supp(µj)}K

k=1.
The organization of the paper is as follows. Section 2 introduces the DLR model.

In section 3, we provide an example showing that Continuity is not always compelling.
Section 4 states the main results. All proofs are collected in the appendix.

2 The DLR Model

DLR include the following primitives:

• B: finite set of prizes, let |B| = B

• ∆(B): set of probability measures over B, it is compact metric under the weak
convergence topology; a generic element is denoted by β and referred to as a
lottery

• X : set of closed nonempty subsets of ∆(B), it is endowed with the Hausdorff
topology; a generic element is denoted by x and called a menu3

• preference % is defined on X

The interpretation is as follows: At time 0 (ex ante), the agent chooses a menu
according to %. At time 1 (ex post), a subjective state is realized and then she
chooses a lottery out of the previously chosen menu. Note that the ex post stage is
not a primitive of the formal model. However, since the agent is forward looking,
her ex ante choice of menus reflects her subjective perception of states. Therefore,
preference % over menus reveals a subjective state space.

The following are the main axioms in DLR.

3DLR do not restrict menus to be closed. If we allow any subset to be a menu, then we have to
modify the definition of critical set. Under slight modification, all results remain the same.
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Axiom 1 (Order). % is complete and transitive.

We define the mixture of two menus for a number λ ∈ [0, 1] by

λx + (1 − λ)x′ =
{
λβ + (1 − λ)β′|β ∈ x, β′ ∈ x′}.

The following is a version of the Independence Axiom adapted to a model with
preference over menus.

Axiom 2 (Independence). For all x, y, z ∈ X and λ ∈ (0, 1),

x % y ⇔ λx + (1 − λ)z % λy + (1 − λ)z.

Axiom 3 (Nontriviality). There exist x and x′ such that x Â x′.

Axiom 4 (Continuity). For every menu x, the sets {x′ ∈ X |x′ % x} and
{x′ ∈ X |x % x′} are closed.

The next axiom is introduced by Dekel, Lipman, and Rustichini [5] (henceforth,
DLR2) to ensure, together with the other axioms, the finiteness of the state space.
Let conv(x) denote the convex hull of x.

Definition 1. A set x′ ⊂ conv(x) is critical for x if for all menus y with x′ ⊂
conv(y) ⊂ conv(x), we have y ∼ x.

Axiom 5 (Finiteness). Every menu has a finite critical subset.

The intuition is that when the agent faces a menu and contemplates future contin-
gencies, she cares about only finite possibilities. Note that the set of states she cares
about could depend on the menu. Therefore, this axiom does not imply finiteness of
the subjective state space by itself.

Now, we explain a finite state space version of DLR’s model. Let S be a state
space. A function U : ∆(B) × S → R is a state dependent utility function if U(β, s)
has an expected utility form, that is, for β ∈ ∆(B),

U(β, s) =
∑
b∈B

β(b)U(b, s).

Consider the functional form W : X → R defined by

W (x) =
∑
s∈S

µ(s) max
β∈x

U(β, s), (1)

where µ is a measure on S.
Note that S is just an index set though we call it the state space. Given the pair

(S, U), define the ex post preference %∗
s over ∆(B) by

β %∗
s β′ ⇔ U(β, s) ≥ U(β′, s),
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and let
P (S, U) = {%∗

s |s ∈ S}.

Following DLR, we refer to the set of ex post preferences P (S, U) as the subjective
state space.

In general, there are many functional forms (1) that represent the same preference
on X . In order to obtain the uniqueness property, DLR concentrate on “relevant”
subjective states: given a representation of the form (1), a state s is relevant if there
exist menus x and y such that x � y and that for every s′ 6= s, maxβ∈x U(β, s′) =
maxβ∈y U(β, s′).

Definition 2. A finite additive representation (S, U, µ) is a tuple consisting of a
nonempty finite state space S, a state dependent utility function U : ∆(B)×S → R,
and a measure µ such that (i) % is represented by the functional form W : X → R,
(ii) every state s ∈ S is relevant, and (iii) if s 6= s′, then %∗

s 6=%∗
s′ .

DLR and DLR2 prove

Theorem 2.1. % satisfies Order, Independence, Nontriviality, Continuity, and Finite-
ness if and only if it has a finite additive representation.

Corollary 2.2. Suppose % has a finite additive representation. Then all finite addi-
tive representations of % have the same subjective state space.

Axiom 6 (Monotonicity). If x ⊂ x′, then x′ % x.

Monotonicity states that the agent values the flexibility of having more options.
The consequence of Monotonicity is the following.

Corollary 2.3. % satisfies Monotonicity and the axioms in Theorem 2.1 if and only
if it has a finite additive representation with a positive measure µ.

3 Continuity and a hierarchy of hypothesis

In this section, we argue that the axiom Continuity is not always compelling.
The intuition against Continuity is as follows: Suppose that a menu x is strictly

preferred to a menu x′. Consider an agent who perceives some subjective contingencies
and who has, in her mind, several hypotheses about these contingencies. Think of
a hypothesis as a (singed) measure over contingencies that is used to weight the
valuation of outcomes across states.4 She may view one hypothesis as “infinitely less
relevant” than another. Think of this as being captured by a hierarchy of hypotheses.
Then there is a critical level k∗ such that x and x′ are indifferent according to each

4As explained later, a hypothesis in the formal model does not correspond to beliefs about states,
and thus, we refer instead to “weights.”
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hypothesis at level k less than k∗, but x is strictly better than x′ according to the
hypothesis at level k∗. Now consider a “small” variation of x, denoted by xε. Then
she should rank xε strictly better than x′ using only the contingencies derived by the
hypothesis at level k∗. However, the critical level for comparing x′ and xε may be
different than k∗; x′ could be better than xε according to the hypothesis at the new
critical level. Therefore, the small deviation might change the ranking between the
menus.

The following examples are provided to illustrate this intuition.

Example: Consider an agent who used to like peanut butter very much, but who
now has an allergy to peanut. Moreover, when she chooses an orange, she will pick
the one that is more likely to be sweet.

There are three alternatives: the first one is an orange oε which turns out to be
sweet with probability 0.9 + ε and sour with 0.1 − ε; the second one is an orange o
which turns out to be sweet with probability 0.9 and sour with 0.1; the last one is
bread with peanut butter, which is denoted by p.

She may then have the following ranking: for every ε ∈ (0, 0.1]

{oε} Â {o, p} Â {o}. (2)

The intuition is that she has two hypotheses for her allergy: the first is that the
allergy continues, and the second is that the allergy disappears. However, she thinks
that it is infinitely less relevant to take into account the possibility that her allergy
disappears. That is, she would rank the two hypotheses hierarchically in her mind.

First, consider the first and second menus. Since flexibility provided by bread
with peanut butter is irrelevant in the primary hypothesis, the ranking of the first
and second menus follows the taste of orange. Hence, the agent prefers the first menu
to the second one.

Next, consider the second and third menus. At first, the agent uses the primary
hypothesis to rank the menus. Since the two menus are indifferent in the primary
hypothesis, the ranking of menus in the secondary hypothesis is relevant for her choice
among menus. Thus, she wants to retain the opportunity to have peanut butter. The
agent prefers the second menu to the third one.

Ranking (2) violates Continuity.

4 Lexicographic Representation

In the previous section, the difficulties for Continuity arise out of the strict preference
relation. Therefore, we impose “continuity” only for indifference sets.

Axiom 7 (Indifference Continuity). For every menu x, the indifference set
{x′ ∈ X |x′ ∼ x} is closed.
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There is no corresponding axiom in BBD. The reason is that BBD assume that
the state space is exogenous and finite. In our model, the state space is derived
endogenously from preference.

Since we weaken Continuity, a numerical representation is not always possible. We
consider a lexicographic representation that compares a vector of utilities assigned to
a menu by ≥L.5 More formally, let S and U : ∆(B) × S → R be a state space and
a state dependent utility function. Consider the vector-valued function V : X → RK

defined by

V (x) =

(∑
s∈S

µk(s) max
β∈x

U(β, s)

)K

k=1

, (3)

where {µk}K
k=1 is a hierarchy of measures. This vector-valued function is the coun-

terpart of the DLR functional form (1). We also need a counterpart of “relevance”:
given a representation of the form (3), a state s is relevant if there exist menus x and
y such that x � y and that for every s′ 6= s, maxβ∈x U(β, s′) = maxβ∈y U(β, s′).

Definition 3. A lexicographic representation
(
S, U, {µk}K

k=1

)
is a tuple consisting of a

nonempty finite state space S, a state dependent utility function U : ∆(B)×S → R,
and a hierarchy {µk}K

k=1 of measures such that

(i) x % y ⇔

(∑
s∈S

µk(s) max
β∈x

U(β, s)

)K

k=1

≥L

(∑
s∈S

µk(s) max
β∈y

U(β, s)

)K

k=1

,

(ii) every state s ∈ S is relevant, and (iii) if s 6= s′, then %∗
s 6=%∗

s′ .
The integer K is referred to as the length (of the hierarchy).

Now we state our main result:

Theorem 4.1. % satisfies Order, Independence, Nontriviality, Indifference Continu-
ity, and Finiteness if and only if it has a lexicographic representation.

For interpretation, note that the ex post behavior is as in DLR: a state s in S will
be realized at the beginning of time 1. Then she will choose the best alternative out of
the previously chosen menu according to the ex post utility function U(·, s). Moreover,
she anticipates this ex post behavior at time 0. The difference from DLR is how she
perceives subjective contingencies ex ante. The agent has a hierarchy of measures in
her mind. Each level of the hierarchy represents her hypothesis about how she should
allow for the future contingencies ex ante. The measure µ1 indicates her primary
hypothesis. She has a secondary hypothesis, which is represented by µ2. If menus are
indifferent according to her primary hypothesis, she compares them according to her
secondary hypothesis. She has a tertiary hypothesis, which is represented by µ3, and

5For a, b ∈ RK , a ≥L b if and only if whenever bk > ak, there is a j < k such that aj > bj .
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so on. Since µk enters into the ranking of any two menus x and y only if x and y are
indifferent as to µ1, · · · , µk−1, the measure µk is relevant but may be thought of as
being “infinitely less relevant” than µ1, · · · , µk−1.

To further illustrate the meaning of “µk is infinitely less relevant than µk−1,” con-
sider the special case where there is no overlap among the supports of µk’s. Suppose
that sk−1 and sk belong to supp(µk−1) and supp(µk) respectively. Consider two menus
x and y such that the agent expects the same ex post utilities at all states except
sk−1 and sk. Then the ex post ranking between x and y at sk−1 determines the ex
ante ranking regardless of the ex post ranking at sk. This leads us to say “sk is
infinitely less relevant than sk−1.” In the Archimedean case, as in DLR, every state
is either relevant or not. Our model admits a richer comparison between subjective
states. That is, there may be a state which is relevant but infinitely less relevant than
another state.

Uniqueness of the representation does not hold in general. For example, the µk’s
are not uniquely determined by preference, just as in DLR. Secondly, there may be
redundancies in the hierarchy [2, p. 66].

To express the uniqueness properties of our representation, define for each k =
1, . . . , K,

Pk(S, U, {µk}K
k=1) = {%∗

s |s ∈ ∪k
j=1supp(µj)} ⊂ P (S, U).

Following DLR, we can think of {Pk(S, U, {µk}K
k=1)}K

k=1 as a hierarchy of (incomplete)
subjective state spaces. Note that there is a lexicographic representation with minimal
length K, denoted by K∗. To avoid the redundancies, we concentrate on lexicographic
representations of minimal length K∗.

Corollary 4.2. Suppose that % admits a lexicographic representation. Let
(
S, U, {µk}K∗

k=1

)
and

(
S ′, U ′, {µ′

k}K∗

k=1

)
be lexicographic representations of % with the minimal length

K∗. Then, for k = 1, · · · , K∗,

Pk(S, U, {µk}K∗

k=1) = Pk(S
′, U ′, {µ′

k}K∗

k=1).

The next axiom is the difference between our model and DLR’s finite additive
representation.

Axiom 8 (Upper Semicontinuity). For every menu x, the upper contour set {x′ ∈
X |x′ % x} is closed.

Theorem 4.3. % has a lexicographic representation and satisfies Upper Semiconti-
nuity if and only if it has a finite additive representation (as in DLR).

Since the axiom Indifference Continuity is uncommon, and perhaps original to this
paper, we next verify that it is critical in Theorem 4.1, that is, it is not implied by
the other axioms. Let u, v : ∆(B) → R be continuous linear nonconstant functions.
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Consider an order %nsc over menus represented by the following functional form Unsc :
X → R proposed in Gul and Pesendorfer [6].6

Temptation without self-control :

Unsc(x) = max
β∈x

u(l) subject to v(β) ≥ v(β′) for every β′ ∈ x.

It is easy to check that %nsc satisfies Order, Independence, Nontriviality, and Finite-
ness. However, in general, it violates Indifference Continuity: let B = {b1, b2, b3},
u(β) = β2, and v(β) = β1, where βi = β(bi). Let β̄, β∗, βn be lotteries such that

β̄ = (β̄1, β̄2, β̄3)

β∗ = (β̄1, 1 − β̄1, 0)

βn = (β̄1 − εn, 1 − β̄1 + εn, 0) for n ≥ 1,

where β̄1, β̄2, β̄3 > 0 and β̄1 > ε > 0. The sequence of menus,
{
{β̄, βn}

}∞
n=1

, con-

verges to the menu {β̄, β∗} in the Hausdorff topology and {β̄, βn} ∼ {β̄} for every n.
However, we have {β̄, β∗} Â {β̄}, contradicting Indifference Continuity.7

Finally, if we add Monotonicity to the axioms in Theorem 4.1, then all measures
are positive:

Corollary 4.4. % satisfies Monotonicity and the axioms in Theorem 4.1 if and only
if it has a lexicographic representation where all measures are positive.

Appendix: Proofs

A Proof of Theorem 4.1

The necessity of the axioms is easily verified. We show only the sufficiency part.
To begin with, note that Finiteness implies that x ∼ conv(x) for every menu

x. In fact, by Finiteness, every menu x has a critical subset x′. Moreover, x′ ⊂
conv(conv(x)) = conv(x). It follows from the definition of critical set that x ∼
conv(x). Thus, we can restrict attention to the set of closed, convex, nonempty
subsets of ∆(B), denoted by X ∗.

Let SB = {s ∈ RB|
∑

i si = 0, and
∑

i s
2
i = 1}. For x ∈ X ∗, define a function

σx : SB → R by

σx(s) = max
β∈x

β · s

The following is Lemma 5 in DLR2 [5]:
6The acronym nsc means no self-control.
7While %nsc may violate Indifference Continuity, it satisfies Upper Semicontinuity (see [6,

p.1413]).
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Lemma 1. There is a finite subset S∗ ⊂ SB such that

∀x, y ∈ X ∗, [∀s ∈ S∗, σx(s) = σy(s)] ⇒ x ∼ y. (4)

Proof. In DLR2’s argument, Continuity is required to prove their Lemma 3. In fact,
Indifference Continuity is enough to show the result.

If two finite subsets S∗, S∗∗ ⊂ SB satisfy the condition (4), then so does the
intersection S∗ ∩ S∗∗. In the following, we identify S∗ as the smallest finite subset of
SB satisfying the condition (4).

Note that S∗ is not empty by Nontriviality. Let m (≥ 1) be the cardinality of S∗.
Appliying the above lemma, we embed X ∗ into m-dimensional vector space. Denote

M =
{
(σx(s))s∈S∗ | x ∈ X ∗} ⊂ Rm.

It is a closed convex subset of Rn and contains the 0 vector. Moreover, it is a mixture
space in the sense of Hausner [7]. In the following, we identify σx with a corresponding
element in M.

Preference % on X ∗ induce %∗ on a mixture space M. That is, σx %∗ σy if and
only if x % y. Since % satisfies Order and Independence, %∗ also satisfies Order and
Independence. The following lemma directly follows from the result of Hausner [7].

Lemma 2. (i) %∗ satisfies Order and Independence if and only if there are K(5 n)
affine functions Vk : M → R such that

σx %∗ σy ⇔ (Vk(σx))
K
k=1 ≥L (Vk(σy))

K
k=1 .

(ii) Moreover, there is minimal K, denoted by K∗, less than or equal to n. {V ′
k}K∗

k=1

satisfy the above representation in place of {Vk}K∗

k=1 if and only if there are real numbers
ak > 0, bkj and ck such that, for every σ ∈ M,

V ′
k(σ) = akVk(σ) +

k−1∑
j=1

bkjVj(σ) + ck.

Now, we follow again the argument in DLR2. Then, Vk has a well-defined extension
to a continuous linear function on Rm. Moreover, there exists a vector (µk(s))s∈S∗ ∈
Rm such that

Vk(M) =
∑
s∈S∗

µk(s)Ms for every M ∈ M.

Define a state dependent utility function U : ∆(B) × S∗ → R by U(β, s) = β · s. By
construction, every s ∈ S∗ is relevant and %∗

s 6=%∗
s′ if s 6= s′. Thus we have the desired

representation (S∗, U, {µk}K
k=1).
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B Proof of Corollary 4.2

Definition 4. A lexicographic representation
(
S̄, Ū , {µ̄k}K∗

k=1

)
is canonical if it satis-

fies

S̄ ⊂ SB, and Ū(β, s̄) = β · s̄ for every β ∈ ∆(B).

Lemma 3. For every
(
S, U, {µk}K∗

k=1

)
, there exists a canonical representation

(
S̄, Ū , {µ̄k}K∗

k=1

)
such that (i)

(
S, U, {µk}K∗

k=1

)
and

(
S̄, Ū , {µ̄k}K∗

k=1

)
represent the same preference, and

for every k = 1, · · · , K∗,

(ii) Pk(S, U, {µk}K∗

k=1) = Pk(S̄, Ū , {µ̄k}K∗

k=1).

Proof. Let

cs =
1

B

∑
b∈B

U(b, s) and ck =
∑
s∈S

µk(s)cs.

Note that U(·, s) cannot be a constant function for every s ∈ S since every s ∈ S
is relevant. Thus

∑
b∈B(U(b, s) − cs)

2 has to be strictly positive. Define a function
φ : S → RB by

φ(s) =

(
U(b, s) − cs∑

b′∈B(U(b′, s) − cs)2

)
b∈B

.

It is straightforward that φ is one-to-one and φ(s) belongs to SB for every s ∈ S.
Let S̄ = φ(S) ⊂ SB and Ū(β, s̄) = β · s̄ for every s̄ ∈ S̄. Define a measure µ̄k over

SM by

µ̄k(φ(s)) = µk(s)
∑
b∈B

(U(b, s) − cs)
2.

By definition, %∗
s=%∗

φ(s) and φ(s) ∈ supp(µ̄) ⇔ s ∈ supp(µ). Hence, for every

k = 1, · · · , K, Pk(S, U, {µk}K∗

k=1) = Pk(S̄, Ū , {µ̄k}K∗

k=1). Moreover, it holds that∑
φ(s)∈S̄

µ̄k(φ(s)) max
β∈x

Ū(β, φ(s)) = {
∑
s∈S

µk(s) max
β∈x

U(β, s)} − ck.

Part (ii) of Lemma 2 implies that
(
S, U, {µk}K∗

k=1

)
and

(
S̄, Ū , {µ̄k}K∗

k=1

)
represents the

same preference.

Lemma 4. Let
(
S, U, {µk}K∗

k=1

)
and

(
S ′, U ′, {µ′

k}K∗

k=1

)
be canonical lexicographic rep-

resentations of % with the minimal length K∗. Then, for k = 1, · · · , K∗,

Pk(S, U, {µk}K∗

k=1) = Pk(S
′, U ′, {µ′

k}K∗

k=1).

11



Proof. To begin with, we see that S = S ′ (and hence U = U ′). Suppose to the
contrary that S 6= S ′. Without loss of generality, we assume there exists s̄ ∈ S \ S ′.
Fix a sphere y ⊂int∆(B). Define

x = ∩s∈S∪S′\{s̄}{β ∈ ∆(B)| β · s 5 max
β′∈y

β′ · s}.

Since both representations are canonical, it holds that

max
β∈x

U(β, s̄) > max
β∈y

U(β, s̄),

max
β∈x

U(β, s) = max
β∈y

U(β, s) for every s ∈ S, s 6= s̄, and

max
β∈x

U ′(β, s) = max
β∈y

U ′(β, s) for every s ∈ S ′.

Hence, x � y according to
(
S, U, {µk}K∗

k=1

)
, but x ∼ y according to

(
S ′, U ′, {µ′

k}K∗

k=1

)
.

This is a contradiction.
Finally, we show Pk(S

′, U ′, {µ′
k}K∗

k=1) ⊂ Pk(S, U, {µk}K∗

k=1). Then the other di-
rection Pk(S, U, {µk}K∗

k=1) ⊂ Pk(S
′, U ′, {µ′

k}K∗

k=1) also holds since (S, U, {µk}K∗

k=1) and
(S ′, U ′, {µ′

k}K∗

k=1) are symmetric. Define, as in the proof of Theorem 4.1,

M =
{
(σx(s))s∈S | x ∈ X ∗} ,

Vk(σx) =
∑
s∈S

µk(s) max
β∈x

β · s, and

V ′
k(σx) =

∑
s∈S

µ′
k(s) max

β∈x
β · s.

Since Vk and V ′
k represents the same order, it follows from Part (ii) of Lemma 2 that

V ′
k(σx) = akVk(σx) +

k−1∑
j=1

bkjVj(σx) + ck for k = 1, · · · , K∗.

Thus, supp(µ′
k) ⊂ ∪k

j=1supp(µj), and hence, for every l 5 k,

supp(µ′
l) ⊂ ∪l

j=1supp(µj) ⊂ ∪k
j=1supp(µj).

Therefore, ∪k
j=1supp(µ′

j) ⊂ ∪k
j=1supp(µj). That is,

Pk(S
′, U ′, {µ′

k}K∗

k=1) ={%∗
s |s ∈ ∪k

j=1supp(µ′
j)}

⊂{%∗
s |s ∈ ∪k

j=1supp(µj)} = Pk(S, U, {µk}K∗

k=1)
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C Proof of Theorem 4.3

Necessity is straightforward. We show only sufficiency.
Let

(
S, U, {µk}K∗

k=1

)
be a canonical lexicographic representation of minimal length

K∗. We see that if K∗ ≥ 2, then Upper Semicontinuity is violated. More specifically,
we construct menus x and x′ and a sequence of menus {xn} such that xn → x, xn Â x′

for every n, and x′ Â x.
Fix a sphere y ⊂int∆(B). Define

x′ = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ max

β′∈y
β′ · s}.

Case 1: supp(µ1) ( ∪2
j=1supp(µj). Pick a state s′ ∈ supp(µ2) \ supp(µ1).

Subcase 1-1: µ2(s
′) > 0. Let ε > 0. Define

x = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ f1(s)},

where f1(s
′) = maxβ′∈y β′ · s′− ε and f1(s) = maxβ′∈y β′ · s for s 6= s′. We take ε small

enough so that x is a menu with maxβ∈x β · s = f1(s) for every s ∈ S. This is possible
since S is finite.

Take a state s∗ ∈ supp(µ1). First, we consider the case µ1(s
∗) < 0. Let ξ ∈ (0, 1).

Define
xn = ∩s∈∪2

j=1supp(µj){β ∈ ∆(B)| β · s ≤ g1(s, n)},

where g1(s
′, n) = maxβ′∈y β′ · s′ − ε, g1(s

∗, n) = maxβ′∈y β′ · s∗ − ξn, and g1(s, n) =
maxβ′∈y β′ · s for s 6= s′, s∗. We take ξ small enough so that maxβ∈xn β · s = g1(s, n)
for every s and n. Again, this is possible since S is finite. By construction, xn → x.

Compare xn and x′. In the first hierarchy, the difference between the valuations
from xn and x′ is∑

s∈S

µ1(s) max
β∈xn

β · s −
∑
s∈S

µ1(s) max
β∈x′

β · s = −µ1(s
∗)ξn > 0.

Hence, xn Â x′ for every n.
Next, compare x′ and x. Since s′ /∈ supp(µ1), x′ is indifferent to x in the first

hierarchy. In the second hierarchy, the difference between the valuations from x and
x′ is ∑

s∈S

µ2(s) max
β∈x′

β · s −
∑
s∈S

µ2(s) max
β∈x

β · s = µ2(s
′)ε > 0.

Therefore, x′ Â x.
For µ1(s

∗) > 0, we modify {xn}. Define

xn = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ g2(s, n)},

where g2(s
′, n) = maxβ′∈y β′ · s′ − ε, g2(s

∗, n) = maxβ′∈y β′ · s∗ + ξn, and g2(s, n) =
maxβ′∈y β′ · s for s 6= s′, s∗. Then the same argument holds.
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Subcase 1-2: µ2(s
′) < 0. With the following modification, we can make the

same argument as in Subcase 1-1. Let

x = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ f2(s)},

where f2(s
′) = maxβ′∈y β′ · s′ + ε, and f2(s) = maxβ′∈y β′ · s for s 6= s′. If µ1(s

∗) > 0,
define

xn = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ g3(s, n)},

where g3(s
′, n) = maxβ′∈y β′ · s′ + ε, g3(s

∗, n) = maxβ′∈y β′ · s∗ + ξn, and g3(s, n) =
maxβ′∈y β′ · s for s 6= s′, s∗. If µ1(s

∗) < 0, define

xn = ∩s∈∪2
j=1supp(µj){β ∈ ∆(B)| β · s ≤ g4(s, n)},

where g4(s
′, n) = maxβ′∈y β′ · s′ + ε, g4(s

∗, n) = maxβ′∈y β′ · s∗ − ξn, and g4(s, n) =
maxβ′∈y β′ · s for s 6= s′, s∗.

Case 2: supp(µ1) = ∪2
j=1supp(µj). First, note that supp(µ1) has to contain more

than two states since we consider a lexicographic representation of minimal length.
Moreover, there exit two states s′ and s′′ such that µ2(s′)

µ1(s′)
6= µ2(s′′)

µ1(s′′)
.

Subcase 2-1: µ1(s) < 0 for s = s′, s′′. Label s′, s′′ as µ2(s′)
µ1(s′)

< µ2(s′′)
µ1(s′′)

. Let ε > 0.
Define

x = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ f3(s)},

where f3(s
′) = maxβ′∈y β′ · s′ − ε, f3(s

′′) = maxβ′∈y β′ · s′′ + µ1(s′)
µ1(s′′)

ε, and f3(s) =

maxβ′∈y β′ · s for s 6= s′, s′′. We take ε small enough so that x is a menu with
maxβ∈x β · s = f3(s) for every s ∈ S. This is possible since S is finite.

Let ξ ∈ (0, 1). Define

xn = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ g5(s, n)},

where g5(s
′, n) = maxβ′∈y β′ · s′ − ε − ξn, g5(s

′′, n) = maxβ′∈y β′ · s′′ + µ1(s′)
µ1(s′′)

ε, and

g5(s, n) = maxβ′∈y β′ · s for s 6= s′, s′′. We take ξ small enough so that maxβ∈xn β · s =
g5(s, n) for every s and n. Again, this is possible since S is finite. By construction,
xn → x.

Compare xn and x′. In the first hierarchy, the difference between the valuations
from xn and x′ is∑

s∈S

µ1(s) max
β∈xn

β · s −
∑
s∈S

µ1(s) max
β∈x′

β · s = −µ1(s
′)ξn > 0.

Hence, xn Â x′ for all n.
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Next, compare x′ and x. In the first hierarchy, x is indifferent to x′ because∑
s∈S

µ1(s) max
β∈x′

β · s −
∑
s∈S

µ1(s) max
β∈x

β · s = µ1(s
′)ε − µ1(s

′′)
µ1(s

′)

µ1(s′′)
ε = 0.

The difference between the valuations from x′ and x in the second hierarchy is∑
s∈S

µ2(s) max
β∈x′

β · s −
∑
s∈S

µ2(s) max
β∈x

β · s

=µ2(s
′) max

β∈y
β · s′ + µ2(s

′′) max
β∈y

β · s′′

− µ2(s
′)

(
max
β∈y

β · s′ − ε

)
− µ2(s

′′)

(
max
β∈y

β · s′′ + µ1(s
′)

µ1(s′′)
ε

)
=

µ2(s
′)µ1(s

′′) − µ2(s
′′)µ1(s

′)

µ1(s′′)
ε > 0.

Therefore, x′ Â x.
With the following constructions of x and {xn}, the same argument holds for the

other cases.

Subcase 2-2: µ1(s) > 0 for s = s′, s′′. Label s′, s′′ as µ2(s′)
µ1(s′)

< µ2(s′′)
µ1(s′′)

. Define

x = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ f4(s)},

where f4(s
′) = maxβ′∈y β′ · s + ε, f4(s

′′) = maxβ′∈y β′ · s′′ − µ1(s′)
µ1(s′′)

ε, and f4(s) =

maxβ′∈y β′ · s for s 6= s′, s′′. Define

xn = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ g6(s, n)},

where g6(s
′, n) = maxβ′∈y β′ · s′ + ε + ξn, g6(s

′′, n) = maxβ′∈y β′ · s′′ − µ1(s′)
µ1(s′′)

ε, and

g6(s, n) = maxβ′∈y β′ · s for s 6= s′, s′′.

Subcase 2-3: µ1(s
′) < 0 and µ1(s

′′) > 0. If µ2(s′)
µ1(s′)

< µ2(s′′)
µ1(s′′)

, the constructions of

x and {xn} are the same as Subcase 2-1.

If µ2(s′)
µ1(s′)

> µ2(s′′)
µ1(s′′)

, we define

x = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ f5(s)},

where f5(s
′) = maxβ′∈y β′ · s′ + ε, f5(s

′′) = maxβ′∈y β′ · s′′ − µ1(s′)
µ1(s′′)

ε, and f5(s) =

maxβ′∈y β′ · s for s 6= s′, s′′. Define

xn = ∩s∈supp(µ1){β ∈ ∆(B)| β · s ≤ g7(s, n)},

where g7(s
′, n) = maxβ′∈y β′ · s′ + ε − ξn, g7(s

′′, n) = maxβ′∈y β′ · s′′ − µ1(s′)
µ1(s′′)

ε, and

g7(s, n) = maxβ′∈y β′ · s for s 6= s′, s′′.
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D Proof of Corollary 4.4

The necessity is straightforward. We show only the sufficiency.
To begin with, note that Monotonicity implies that µ1 is a positive measure.
Let (S, U, {µj}K

j=1) be a canonical lexicographic representation of % such that µj

is a positive measure for j = 1, · · · , k (5 K − 1). It is enough to show that there
is a canonical lexicographic representation (S, U, {µ′

j}K
j=1) of % such that µ′

j = µj for
j = 1, · · · , k and µ′

k+1 is a positive measure.
First, we see that if s ∈ supp(µk+1) \ ∪k

j=1supp(µj), then µk+1(s) > 0. Suppose to
the contrary that µk+1(s) < 0. Fix a sphere y ⊂int∆(B). Define

x = ∩s′∈∪k+1
j=1 supp(µj)\{s}{β ∈ ∆(B)| β · s′ 5 max

β′∈y
β′ · s′}.

Then the representation implies that y Â x while y ⊂ x, contradicting Monotonicity.
Next, we construct the desired {µ′

j}K
j=1. Let ε > 0 be such that

min{µj(s)|j = 1, · · · , k, and s ∈ ∪k
j=1supp(µj)} > ε max

s
|µk+1(s)| .

Define {µ′
j}K

j=1 by

µ′
j = µj for j 6= k + 1,

µ′
k+1 =

k∑
j=1

µj + εµk+1.

Then it follows from Part (ii) of Lemma 2 that (S, U, {µ′
j}) represents the same order

as (S, U, {µj}). By construction, µ′
j is a positive measure for j = 1, · · · , k + 1. This

completes the proof.
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