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Abstract

The purpose of this paper is threefold. First, we represent pref-
erence relations on σ-fields in terms of nonadditive set functions that
satisfy convexity and continuity in an appropriate sense. To this end,
we introduce the convexity and continuity axioms for preferences on
a σ-field with a metric topology and show the existence of a utility
function representing a convex continuous preference relation. Sec-
ond, we prove the existence of ε-Pareto-optimal partitions, show how
they approximate Pareto-optimal partitions and provide their char-
acterization. Third, we prove the existence of ε-core partitions with
nontransferable utility arising in a pure exchange economy and show
how they approximate core partitions.

Mathematics Subject Classification 2000: Primary 28A10, 91B16; Sec-
ondary 90C29, 91B32.
Journal of Economic Literature Classification: C61, C71.
Key words: Convex continuous preferences; Nonadditive representa-
tion; µ-concave function; Cake division; ε-Pareto optimality; ε-Core.
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1 Introduction

Dividing fixed resources between members of a society so as to ensure equity
and efficiency is a central theme of social decision making. The problem of
fair division in a measurable space among finitely many individuals has a long
history, although it has attracted more attention in recent years. From the
publication of the seminal work by Dubins and Spanier (1961), it has been
commonly assumed in the theory of fair division that the preferences of each
individual are represented by a nonatomic probability measure. Under this
assumption, it is relatively simple to show the existence of Pareto-optimal
partitions by a direct application of the Lyapunov convexity theorem, which
ensures that the utility possibility set is convex and compact (see Barbanel
and Zwicker 1997, Dubins and Spanier 1961, and Sagara 2006).

However, representing a preference relation on a σ-field by a probability
measure means that the corresponding utility function is countably additive
on the σ-field and consequently assumes a “constant marginal utility”. This
is obviously a severe restriction on the preference relation that is difficult to
justify from an economic viewpoint.

The purpose of this paper is threefold. First, we represent preference re-
lations on σ-fields in terms of nonadditive set functions that satisfy convexity
and continuity in an appropriate sense. To this end, we propose a convex-
like structure in a nonatomic finite measure space. We introduce convex
combinations of measurable sets, and quasiconcave and concave functions on
a σ-field and prove Jensen’s inequalities, which conform with the standard
results in convex analysis. We then introduce the convexity of preference
relations on the σ-field and show that a utility function representing the
convex preference relation is quasiconcave on the σ-field. The nonadditive
utility functions under investigation not only are generalizations of additive
preferences but also can capture a “decreasing marginal utility”.

We next introduce the continuity axiom for preferences on the σ-field with
a metric topology and show the existence of a continuous utility function
representing a continuous preference relation by the standard argument of
Debreu (1964). Such an approach for the continuous representation of a
preference relation on a σ-field is also pursued by Berliant (1986), Berliant
and Dunz (2004), and Berliant and ten Raa (1988) using different topologies
from the current paper. Unlike the previous works, the metric topology with
which we endow the σ-field does not ensure the compactness of the set of
partitions although it is mathematically natural. Therefore, the existence of
Pareto-optimal partitions is not guaranteed, in general, under the continuity
hypothesis on preference relations.

Second, we apply concepts and basic results analogous to those of stan-

2



dard utility theory to the problems of cake division among a finite number of
individuals. In particular, we are concerned with the existence of ε-Pareto-
optimal partitions. We show that if the preferences of each individual satisfy
the continuity hypothesis, an approximation limit of weakly ε-Pareto-opti-
mal partitions is a weakly Pareto-optimal partition. We show that if the
preferences of each individual are strictly monotone and continuous, then
weak ε-Pareto optimality is equivalent to ε-Pareto optimality. We also pro-
vide conditions guaranteeing that every weakly Pareto-optimal partition is a
solution to the problem of maximizing a weighted sum of individual utilities.
To this end, the convexity of preference relations of each individual plays a
significant role in guaranteeing the convexity of the utility possibility set.

Third, under the convexity hypothesis on the preferences of each individ-
ual, we show the existence of ε-core partitions with nontransferable utility
(NTU) arising in a pure exchange economy in which each individual is en-
dowed with an initial “piece” of the cake. We also show that if the preferences
of each individual satisfy the continuity hypothesis, then an approximation
limit of ε-core partitions is a core partition.

Berliant (1985) and Berliant and Dunz (2004) introduced a price system
into the problem of optimal partitioning and proved the existence of equilib-
ria, which implies the existence of Pareto-optimal partitions. However, the
lack of compactness of the set of partitions, and hence the lack of closedness
of the utility possibility set, prevent us from using the fixed-point argument
to show the existence of equilibria. This is the reason why we present an ap-
proximation procedure to obtain the existence of Pareto-optimal partitions
and core partitions with NTU without introducing a price system.

The organization of this paper is as follows. In Section 2, we introduce
convex combinations of measurable sets, and quasiconcave and concave func-
tions on a σ-field and prove Jensen’s inequalities. In Section 3, we define
the convexity and continuity of preference relations on the σ-field for the
existence of a utility function representing convex continuous preferences.
Section 4 is concerned with the existence and characterization of weakly ε-
Pareto-optimal partitions and their approximation to weakly Pareto-optimal
partitions. Section 5 demonstrates the existence of ε-core partitions with
NTU and their approximation to core partitions.

2 Convexity in a Measure Space

In this section, we propose a new concept of convexity in a nonatomic finite
measure space. We introduce convex combinations of measurable sets, and
concave and quasiconcave functions on a σ-field in conformity with standard
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convex analysis.

2.1 Convex Combinations of Measurable Sets

Let (Ω, F , µ) be a nonatomic finite measure space, where F is a σ-field of
subsets of Ω and µ is a nonatomic finite measure on F . By the Lyapunov
convexity theorem, the range of µ is convex. Therefore, for any t ∈ [0, µ(Ω)]
there exists some A ∈ F satisfying µ(A) = t. Especially, for any A ∈ F and
t ∈ [0, µ(A)], there exists a measurable subset E of A satisfying µ(E) = t.

Let A ∈ F and t ∈ [0, 1] be given arbitrarily. We define the family 〈tA〉
of subsets of A by:

〈tA〉 = {E ∈ F | µ(E) = tµ(A), E ⊂ A}.

In view of the nonatomicity of µ, it follows that 〈tA〉 is nonempty for any
A ∈ F and t ∈ [0, 1]. Note that E ∈ 〈tA〉 if and only if A \ E ∈ 〈(1− t)A〉,
and µ(A) = 0 if and only if 〈tA〉 contains the empty set for any t ∈ [0, 1].

Theorem 2.1. For every element A and B in F and every t ∈ [0, 1] there
exist disjoint elements E ∈ 〈tA〉 and F ∈ 〈(1− t)B〉.
Proof. Select A,B ∈ F and t ∈ [0, 1] arbitrarily. Without loss of generality,
we may assume that µ(B) ≤ µ(A). If µ(A) = 0, then it suffices to take
E = ∅ ∈ 〈tA〉 and choose any F ∈ 〈(1−t)B〉. We thus assume that µ(A) > 0.
Take any F ∈ 〈(1− t)B〉. We then have µ(F ) = (1− t)µ(B) ≤ (1− t)µ(A),
and hence µ(A∩F ) ≤ (1− t)µ(A), which is equivalent to tµ(A) ≤ µ(A \F ).
Therefore, by the nonatomicity of µ, we can choose a subset E of A \ F
satisfying E ∈ 〈tA〉. By construction, we obtain E ∩ F = ∅.

Theorem 2.1 guarantees that for every element A and B in F and every
t ∈ [0, 1], there exists some C ∈ F such that C is a union of disjoint sets
E and F satisfying E ∈ 〈tA〉 and F ∈ 〈(1 − t)B〉. The family of all such
elements C is denoted by Dt(A,B).

Let ∆n−1 denote the (n− 1)-dimensional unit simplex in Rn; that is:

∆n−1 =

{
(α1, . . . , αn) ∈ Rn |

n∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , n

}
.

Lemma 2.1. Let A1, . . . , An be a finite collection of elements in F and
(t1, . . . , tn) ∈ ∆n−1. If j is such that µ(Ai) ≤ µ(Aj) for each i = 1, . . . , n,
then for every collection {Ei}i6=j with Ei ∈ 〈tiAi〉 for each i 6= j, there exists
some Ej ∈ 〈tjAj〉 such that Ej ∩

⋃
i6=j Ei = ∅.
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Proof. Let A1, . . . , An be elements in F , (t1, . . . , tn) ∈ ∆n−1 and µ(Ai) ≤
µ(Aj) for each i. Select any Ei ∈ 〈tiAi〉 for i 6= j. If µ(Aj) = 0, then it
suffices to define Ej = ∅ ∈ 〈tjAj〉. We thus assume that µ(Aj) > 0. Because
µ(Ei) = tiµ(Ai) ≤ tiµ(Aj) for i 6= j, we have µ(

⋃n
i6=j Ei) ≤

∑n
i6=j µ(Ei) ≤

µ(Aj)
∑n

i6=j ti. This implies the inequality µ(Aj ∩
⋃n

i6=j Ei) ≤ µ(Aj)
∑n

i6=j ti,
and hence:

µ(Aj \
⋃n

i6=j Ei)

µ(Aj)
≥ 1−

n∑

i6=j

ti = tj.

Therefore, we can take Ej ∈ 〈tjAj〉 with Ej ⊂ Aj \
⋃n

i6=j Ei by the nonatomic-
ity of µ. By construction, Ej ∩

⋃
i6=j Ei = ∅.

The following result is an obvious extension of Theorem 2.1.

Theorem 2.2. For every finite collection of elements A1, . . . , An in F and
every (t1, . . . , tn) ∈ ∆n−1, there exist disjoint elements E1 ∈ 〈t1A1〉, . . . , En ∈
〈tnAn〉.
Proof. The argument is based on induction. For n = 2, the result is reduced
to Theorem 2.1. Suppose that the result is true for n ≥ 2. Let A1, . . . , An+1

be elements in F and (t1, . . . , tn+1) ∈ ∆n. Without loss of generality, we
may assume that µ(Ai) ≤ µ(An+1) for each i = 1, . . . , n. If tn+1 = 1,
then it suffices to take Ei = ∅ ∈ 〈tiAi〉 for i = 1, . . . , n and choose any
En+1 ∈ 〈tn+1An+1〉. We thus further assume that 1 − tn+1 > 0. Define the
real numbers si by si = (1−tn+1)

−1ti for i = 1, . . . , n. In view of (s1, . . . , sn) ∈
∆n−1, the induction hypothesis implies the existence of Fi ∈ 〈siAi〉 for i =
1, . . . , n such that Fi ∩ Fj = ∅ for i 6= j. Take any Ei ∈ 〈(1 − tn+1)Fi〉 for
i = 1, . . . , n. We then have µ(Ei) = (1 − tn+1)µ(Fi) = (1 − tn+1)siµ(Ai) =
tiµ(Ai). Therefore, we have Ei ∈ 〈tiAi〉 for each i = 1, . . . , n. By Lemma 2.1,
we can take En+1 ∈ 〈tn+1An+1〉 such that Ei ∩ En+1 = ∅ for each i 6= n + 1,
and hence Ei ∩ Ej = ∅ for each i, j = 1, . . . , n + 1 with i 6= j.

Theorem 2.2 guarantees that for every finite collection of elements A1, . . . ,
An in F and any (t1, . . . , tn) ∈ ∆n−1, there exists some E in F such that E is
a union of disjoint sets E1, . . . , En satisfying Ei ∈ 〈tiAi〉 for each i = 1, . . . , n.
The family of all such elements E is denoted by Dt1,...,tn(A1, . . . , An). When
n = 2, we adhere to using Dt(A,B) instead of Dt,1−t(A,B).

By a partition we always mean an ordered finite collection of disjoint
elements in F whose union is Ω. A partition is called an n-partition if the
number of its members is n.

Theorem 2.3. Let (X1, . . . , Xm) be an m-partition. For every finite col-
lection of n-partitions (A1

1, . . . , A
1
n), . . . , (Al

1, . . . , A
l
n) and every (t1, . . . , tl) ∈
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∆l−1, there exists some Aij ∈ Dt1,...,tl(A
1
i ∩Xj, . . . , A

l
i ∩Xj) for i = 1, . . . , n

and j = 1, . . . , m such that (
⋃m

j=1 A1j, . . . ,
⋃m

j=1 Anj) is an n-partition satis-

fying
⋃m

j=1 Aij ∈ Dt1,...,tl(A
1
i , . . . , A

l
i) for each i = 1, . . . , n.

Proof. Select any Aij ∈ Dt(A
1
i ∩ Xj, . . . , A

l
i ∩ Xj) for each i and j. Then

Aij = E1
ij ∪ · · · ∪ El

ij with E1
ij ∈ 〈t1(A1

i ∩ Xj)〉, . . . , El
ij ∈ 〈tl(Al

i ∩ Xj)〉 and

Ek
ij ∩ Ek′

ij 6= ∅ for k 6= k′. Because {Ek
ij} are mutually disjoint, we have

µ(
⋃m

j=1 Ek
ij) =

∑m
j=1 tkµ(Ak

i ∩ Xj) = tkµ(Ak
i ) for each i and k, and hence⋃m

j=1 Aij ∈ Dt1,...,tl(A
1
i , . . . , A

l
i) for each i. Note also that:

µ

(
n⋃

i=1

m⋃
j=1

Aij

)
=

n∑
i=1

m∑
j=1

l∑

k=1

µ(Ek
ij) =

n∑
i=1

m∑
j=1

l∑

k=1

tkµ(Ak
i ∩Xj)

=
n∑

i=1

l∑

k=1

tkµ(Ak
i ) =

l∑

k=1

tkµ(Ω) = µ(Ω).

By joining the null set Ω \⋃n
i=1

⋃m
j=1 Aij to any Aij, the desired partition is

easily constructed.

Corollary 2.1. Let (X1, . . . , Xm) be an m-partition. For every pair of n-
partitions (A1, . . . , An) and (B1, . . . , Bn) and every t ∈ [0, 1], there exists
some Cij ∈ Dt(Ai ∩Xj, Bi ∩Xj) for i = 1, . . . , n and j = 1, . . . , m such that
(
⋃m

j=1 C1j, . . . ,
⋃m

j=1 Cnj) is an n-partition satisfying
⋃m

j=1 Cij ∈ Dt(Ai, Bi)
for each i = 1, . . . , n.

2.2 Concave Functions on a σ-Field

The following definitions of the (strict) µ-quasiconcavity and (strict) µ-con-
cavity of functions on F are analogues of the standard definitions in convex
analysis.

Definition 2.1. Let A4B = (A∪B) \ (A∩B) be the symmetric difference
of A and B. A function f on F is:

(i) µ-quasiconcave if A,B ∈ F and t ∈ (0, 1) imply

min{f(A), f(B)} ≤ f(C) for any C ∈ Dt(A,B);

(ii) strictly µ-quasiconcave if µ(A4B) > 0 and t ∈ (0, 1) imply

min{f(A), f(B)} < f(C) for any C ∈ Dt(A,B);
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(iii) µ-concave if A,B ∈ F and t ∈ (0, 1) imply

tf(A) + (1− t)f(B) ≤ f(C) for any C ∈ Dt(A,B);

(iv) strictly µ-concave if µ(A4B) > 0 and t ∈ (0, 1) imply

tf(A) + (1− t)f(B) < f(C) for any C ∈ Dt(A,B).

A function f on F is said to be (strictly) µ-quasiconvex if −f is (strictly)
µ-quasiconcave, and f is said to be (strictly) µ-convex if −f is (strictly) µ-
concave.

Example 2.1. A trivial example of a µ-concave and also µ-convex function
on F is µ itself. It is immediate that µ is neither strictly µ-quasiconcave,
strictly µ-quasiconvex, strictly µ-concave, nor strictly µ-convex by its addi-
tivity.

Example 2.2. Let ϕ be a function on the closed interval [0, µ(Ω)]. Define
the function fϕ on F by fϕ(A) = ϕ(µ(A)). Because C ∈ Dt(A,B) implies
µ(C) = tµ(A) + (1− t)µ(B), if ϕ is quasiconcave, then we have:

fϕ(C) = ϕ(tµ(A) + (1− t)µ(B)) ≥ min{ϕ(µ(A)), ϕ(µ(B))}
= min{fϕ(A), fϕ(B)},

for any C ∈ Dt(A,B) and t ∈ (0, 1), and hence fϕ is µ-quasiconcave on F .
Conversely, suppose that fϕ is µ-quasiconcave on F . Choose a, b ∈ [0, µ(Ω)]
and t ∈ (0, 1) arbitrarily. By the nonatomicity of µ, there exist A and B
in F such that µ(A) = a and µ(B) = b. Then by Theorem 2.1, there exist
E ∈ 〈tA〉 and F ∈ 〈(1− t)B〉 such that E ∩ F = ∅. We then have:

ϕ(ta + (1− t)b) = ϕ(tµ(A) + (1− t)µ(B)) = ϕ(µ(E) + µ(F )) = fϕ(E ∪ F )

≥ min{fϕ(A), fϕ(B)} = min{ϕ(a), ϕ(b)},
and hence ϕ is quasiconcave on [0, µ(Ω)]. Consequently, fϕ is µ-quasicon-
cave on F if and only if ϕ is quasiconcave on [0, µ(Ω)]. Similarly, fϕ is
strictly µ-quasiconcave [resp. (strictly) µ-concave] if and only if ϕ is strictly
quasiconcave [resp. (strictly) concave].

Recall that a continuous function ϕ is concave if and only if ϕ has decreas-
ing differences: x, y ∈ [0, µ(Ω)], x < y, x+v, y+v ∈ [0, µ(Ω)] and v > 0 imply
ϕ(y+v)−ϕ(y) ≤ ϕ(x+v)−ϕ(x). Therefore, for any continuous function ϕ, it
follows that fϕ is submodular on F : fϕ(A∪B)+fϕ(A∩B) ≤ fϕ(A)+fϕ(B)
for any A,B ∈ F if and only if ϕ is concave. As a consequence, the sub-
modularity of fϕ is equivalent to the µ-concavity of fϕ. Note however, that
this is not true when ϕ is defined on a convex subset of a multidimensional
Euclidean space (see Example 2.4).
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A partition (X1, . . . , Xn) is µ-positive if µ(Xi) > 0 for each i = 1, . . . , n.

Definition 2.2. Let (X1, . . . , Xn) be a µ-positive partition. A function f on
F is:

(i) µ-quasiconcave at (X1, . . . , Xn) if A,B ∈ F , t ∈ (0, 1) and Ci ∈ Dt(A∩
Xi, B ∩Xi) for each i = 1, . . . , n imply

min{f(A), f(B)} ≤ f

(
n⋃

i=1

Ci

)
;

(ii) strictly µ-quasiconcave at (X1, . . . , Xn) if µ(A4 B) > 0, t ∈ (0, 1) and
Ci ∈ Dt(A ∩Xi, B ∩Xi) for each i = 1, . . . , n imply

min{f(A), f(B)} < f

(
n⋃

i=1

Ci

)
;

(iii) µ-concave at (X1, . . . , Xn) if A,B ∈ F , t ∈ (0, 1) and Ci ∈ Dt(A ∩
Xi, B ∩Xi) for each i = 1, . . . , n imply

tf(A) + (1− t)f(B) ≤ f

(
n⋃

i=1

Ci

)
;

(iv) strictly µ-concave at (X1, . . . , Xn) if µ(A 4 B) > 0, t ∈ (0, 1) and
Ci ∈ Dt(A ∩Xi, B ∩Xi) for each i = 1, . . . , n imply

tf(A) + (1− t)f(B) < f

(
n⋃

i=1

Ci

)
.

(Strict) µ-quasiconcavity [resp. (strict) µ-concavity] implies (strict) µ-
quasiconcavity [resp. (strict) µ-concavity] at (X1, . . . , Xn). To show this, it
suffices to demonstrate that for every µ-positive n-partition (X1, . . . , Xn),
it follows that

⋃n
i=1 Dt(A ∩ Xi, B ∩ Xi) ⊂ Dt(A,B) for any t ∈ (0, 1) and

A,B ∈ F . Let t ∈ (0, 1), and A and B be elements in F . Choose any
Ci ∈ Dt(A ∩Xi, B ∩Xi) for each i. Define αi = µ(A)−1µ(A ∩Xi) and βi =
µ(B)−1µ(B∩Xi) if µ(A), µ(B) > 0. We then have (α1, . . . , αn), (β1, . . . , βn) ∈
∆n−1. If µ(A) = 0, by taking (α1, . . . , αn) ∈ ∆n−1 arbitrarily, we have A ∩
Xi ∈ 〈αiA〉, and similarly, if µ(B) = 0, then for any choice of (β1, . . . , βn) ∈
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∆n−1, we have B ∩Xi ∈ 〈βiB〉. Because Ci = Ei ∪Fi with Ei ∈ 〈t(A∩Xi)〉,
Fi ∈ 〈(1− t)(B ∩Xi)〉 and Ei ∪ Fi 6= ∅ for each i, we have:

µ

(
n⋃

i=1

Ei

)
=

n∑
i=1

µ(Ei) = t

n∑
i=1

µ(A ∩Xi) = t

n∑
i=1

αiµ(A) = tµ(A),

and similarly:

µ

(
n⋃

i=1

Fi

)
=

n∑
i=1

µ(Fi) = (1− t)
n∑

i=1

µ(B ∩Xi)

= (1− t)
n∑

i=1

βiµ(B) = (1− t)µ(B).

Therefore,
⋃n

i=1 Ci ∈ Dt(A,B).
However, for arbitrary n ≥ 2 and for any A,B ∈ F and t ∈ (0, 1), we can

easily find an n-partition (X1, . . . , Xn) such that Dt(A,B) 6⊂ ⋃n
i=1 Dt(A ∩

Xi, B ∩ Xi). Thus, (strict) µ-quasiconcavity [resp. (strict) µ-concavity] at
some µ-positive partition does not imply (strict) µ-quasiconcavity [resp.
(strict) µ-concavity]. The former is a “local” property whereas the latter
is “global”. When n = 1, Definition 2.2 is equivalent to Definition 2.1. See
also Example 2.4.

Theorem 2.4. A function on F is µ-quasiconcave if and only if it is µ-
quasiconcave at each µ-positive n-partition.

Proof. Let n be fixed. Suppose that a function on F is µ-quasiconcave
at each µ-positive n-partition. To prove the µ-quasiconcavity, it suffices
to show that for any A,B ∈ F and t ∈ (0, 1), there exists a µ-positive
partition (X1, . . . , Xn) such that Dt(A,B) ⊂ ⋃n

i=1 Dt(A ∩Xi, B ∩Xi). Take
any C ∈ Dt(A,B). Then C = E ∪ F with E ∈ 〈tA〉, F ∈ 〈(1 − t)B〉 and
E ∩ F = ∅. Decompose the A ∩ B into disjoint sets G1 = A ∩ B ∩ E,
G2 = A ∩ B ∩ F and G3 = (A ∩ B) \ (E ∪ F ), the set A \ (E ∩ F ) into
disjoint sets H1 = E \ (A ∩ B) and H2 = A \ (A ∩ B) ∪ E) and the set
B \ (E ∩ F ) into disjoint sets K1 = F \ (A∩B) and K2 = B \ (A∩B)∪ F ).
These decompositions compose a decomposition of A ∪ B (see Figure 2.1).
By the nonatomicity of µ, we can decompose the set Gj into Gj1, . . . , Gjn

with µ(Gji) = 1
n
µ(Gj) for j = 1, 2, 3 and i = 1, . . . , n, the set Hj into disjoint

sets Hj1, . . . , Hjn with µ(Hji) = 1
n
µ(Hj) for j = 1, 2 and i = 1, . . . , n and

the set Kj into disjoint sets Kj1, . . . , Kjn with µ(Kji) = 1
n
µ(Kj) for j = 1, 2

and i = 1, . . . , n. We then have E =
⋃n

i=1(G1i ∪H1i) and G1i ∪H1i ∈ 〈 1
n
E〉

for each i, and F =
⋃n

i=1(G2i ∪ K2i) and G2i ∪ H2i ∈ 〈 1
n
E〉 for each i.
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E
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Figure 2.1: Decomposition of A ∪B

Define Ωi = G1i ∪ G2i ∪ G3i ∪ H1i ∪ H2i ∪ K1i ∪ K2i. By construction,
Ω1, . . . , Ωn are mutually disjoint and A ∩ Ωi = G1i ∪ G2i ∪ G3i ∪ H1i ∪ H2i,
B ∩ Ωi = G1i ∪ G2i ∪ G3i ∪ K1i ∪ K2i and (Ω \ (A ∪ B)) ∩ Ωi = ∅ for
each i. Decompose Ω \ (A ∪ B) into disjoint sets Ω′

1, . . . , Ω
′
n with µ(Ω′

i) =
1
n
µ(Ω \ (A ∪ B)) and define Xi = Ωi ∪ Ω′

i for each i. Then (X1, . . . , Xn) is
a µ-positive n-partition such that A ∩Xi = G1i ∪G2i ∪G3i ∪H1i ∪H2i and
B ∩Xi = G1i ∪G2i ∪G3i ∪K1i ∪K2i for each i. Therefore:

µ(A ∩Xi) = µ(G1i) + µ(G2i) + µ(G3i) + µ(H1i) + µ(H2i)

=
1

n
[µ(G1) + µ(G2) + µ(G3) + µ(H1) + µ(H2)]

=
1

n
[µ(A ∩B) + µ(A \ (A ∩B))] =

1

n
µ(A)

and:

µ(B ∩Xi) = µ(G1i) + µ(G2i) + µ(G3i) + µ(K1i) + µ(K2i)

=
1

n
[µ(G1) + µ(G2) + µ(G3) + µ(K1) + µ(K2)]

=
1

n
[µ(A ∩B) + µ(B \ (A ∩B))] =

1

n
µ(B).

Because µ(G1i ∪ H1i) = 〈 1
n
E〉 = 1

n
tµ(A) and µ(G2i ∪ H2i) = 〈 1

n
F 〉 = 1

n
(1 −

t)µ(B), we obtain G1i ∪H1i ∈ 〈t(A∩Xi)〉 and G2i ∪H2i ∈ 〈(1− t)(B ∩Xi)〉,
and hence G1i ∪H1i ∪G2i ∪H2i ∈ Dt(A ∩Xi, B ∩Xi) for each i. Therefore,
C =

⋃n
i=1(G1i ∪H1i ∪G2i ∪H2i) ∈

⋃n
i=1 Dt(A ∩Xi, B ∩Xi).

Example 2.3. Let (X1, . . . , Xn) be a µ-positive partition, and let ϕ be a
function on the product [0, µ(X1)] × · · · × [0, µ(Xn)] of the closed intervals.
Define the function fϕ on F by:

fϕ(A) = ϕ(µ(A ∩X1), . . . , µ(A ∩Xn)).
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When n = 1, this case reduces to Example 2.2. Define the set S by:

S = {(µ(A ∩X1), . . . , µ(A ∩Xn)) ∈ Rn | A ∈ F}.

Because the measure µi defined by µi(A) = µ(A ∩ Xi) is nonatomic and S
is the range of the vector measure (µ1, . . . , µn), by the Lyapunov convexity
theorem, it follows that S is convex and compact in Rn.

Suppose that ϕ is quasiconcave on S. Because Ci ∈ Dt(A ∩Xi, B ∩Xi)
implies µ(Ci) = tµ(A ∩Xi) + (1− t)µ(B ∩Xi), it follows that Ci ∈ Dt(A ∩
Xi, B ∩Xi) for each i = 1, . . . , n and t ∈ (0, 1) imply:

fϕ

(
n⋃

i=1

Ci

)
= ϕ(µ(C1), . . . , µ(Cn))

≥ min{ϕ(µ(A ∩X1), . . . , µ(A ∩Xn)), ϕ(µ(B ∩X1), . . . , µ(B ∩Xn))}
= min{fϕ(A), fϕ(B)}.

Hence, fϕ is µ-quasiconcave at (X1, . . . , Xn). Conversely, suppose that fϕ is
µ-quasiconcave at (X1, . . . , Xn). Choose (a1, . . . , an), (b1, . . . , bn) ∈ S and t ∈
(0, 1) arbitrarily. Then there exist A and B in F such that µ(A∩Xi) = ai and
µ(B∩Xi) = bi for each i. Then by Theorem 2.1, there exist Ei ∈ 〈t(A∩Xi)〉
and Fi ∈ 〈(1− t)(B ∩Xi)〉 such that Ei ∩ Fi = ∅. We then have:

ϕ(ta1 + (1− t)b1, . . . , tan + (1− t)bn)

= ϕ(tµ(A ∩X1) + (1− t)µ(B ∩X1), . . . , tµ(A ∩Xn) + (1− t)µ(B ∩Xn))

= ϕ(µ(E1 ∪ F1), . . . , µ(En ∪ Fn)) = fϕ

(
n⋃

i=1

(Ei ∪ Fi)

)

≥ min{fϕ(A), fϕ(B)} = min{ϕ(a1, . . . , an), ϕ(b1, . . . , bn)},

in view of Ei ∪ Fi ∈ Dt(A ∩Xi, B ∩Xi) for each i and the µ-quasiconcavity
of fϕ at (X1, . . . , Xn). Hence, ϕ is quasiconcave on [0, µ(Ω)].

Consequently, fϕ is µ-quasiconcave on F at (X1, . . . , Xn) if and only if ϕ
is quasiconcave on S. Similarly, fϕ is strictly µ-quasiconcave [resp. (strictly)
µ-concave] at (X1, . . . , Xn) if and only if ϕ is strictly quasiconcave [resp.
(strictly) concave] on S.

Example 2.4. Consider the case for n = 2 in Example 2.3. Let ϕ be
a concave function on [0, µ(X1)] × [0, µ(X2)] given by ϕ(x1, x2) =

√
x1x2.

Then fϕ(A) =
√

µ(A ∩X1)µ(A ∩X2) is µ-concave at (X1, X2) as shown in
Example 2.3. We shall show that fϕ is not µ-concave. To this end, let A and
B be measurable sets with positive measure such that µ(A ∩ X1) = 1

2
µ(A)
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and µ(B ∩ X1) = 1
2
µ(B). Let C = (A ∩ X1) ∪ (B ∩ X1). By construction,

C ∈ D 1
2
(A,B) and C ∩ X2 = ∅. We then have fϕ(C) = 0, fϕ(A) = 1

2
µ(A)

and fϕ(B) = 1
2
µ(B), and hence fϕ(C) < 1

2
fϕ(A) + 1

2
fϕ(B). Therefore, fϕ

is not µ-concave. Because ϕ has decreasing differences, this example also
shows that a concave continuous function ϕ with decreasing differences does
not imply the µ-concavity of fϕ in multidimensional cases.

Recall that if a function on a vector space is both concave and convex,
then it is an additive function. A similar property holds for a function on F
that is both µ-concave and µ-convex at some µ-positive n-partition.

Theorem 2.5. If f is both µ-concave and µ-convex at some µ-positive par-
tition and f(∅) = 0, then f is finitely additive on F .

Proof. Let f be both µ-concave and µ-convex at some µ-positive partition
(X1, . . . , Xn). Suppose that A and B are disjoint elements in F . It suffices
to show that f(A ∪ B) = f(A) + f(B). By the nonatomicity of µ, we can
decompose the set A ∩ Xi into disjoint subsets Ei1 and Ei2 of A ∩ Xi, and
the set B ∩ Xi into Fi1 and Fi2 of B ∩ Xi such that µ(Ei1) = µ(Ei2) =
1
2
µ(A ∩ Xi) and µ(Fi1) = µ(Fi2) = 1

2
µ(B ∩ Xi). Because µ(Ei1 ∪ Fi1) =

µ(Ei2 ∪Fi2) = 1
2
µ((A∩Xi)∪ (B ∩Xi)), and Ei1 ∪Fi1 and Ei2 ∪Fi2 belong to

D 1
2
((A∩Xi)∪(B∩Xi), ∅), we have f(

⋃n
i=1(Ei1∪Fi1)) = f(

⋃n
i=1(Ei2∪Fi2)) =

1
2
(f(A ∪ B) + f(∅)) = 1

2
f(A ∪ B) by the µ-concavity and µ-convexity of f

at (X1, . . . , Xn) and the fact that f(∅) = 0. Because Ei1 ∪ Fi1 and Ei2 ∪ Fi2

belong to D 1
2
(A∩Xi, B∩Xi), it follows that

⋃n
i=1(Ei1∪Fi1) and

⋃n
i=1(Ei2∪Fi2)

also belong to D 1
2
(A,B). We thus have f(

⋃n
i=1(Ei1 ∪ Fi1)) = f(

⋃n
i=1(Ei2 ∪

Fi2)) = 1
2
(f(A) + f(B)) again by the µ-concavity and µ-convexity of f at

(X1, . . . , Xn). Therefore, we have:

f(A) + f(B) = f

(
n⋃

i=1

(Ei1 ∪ Fi1)

)
+ f

(
n⋃

i=1

(Ei2 ∪ Fi2)

)

=
1

2
f(A ∪B) +

1

2
f(A ∪B) = f(A ∪B).

Lemma 2.2. Let A1, . . . , An be a finite collection of elements in F , and let
t1, . . . , tn be nonnegative real numbers satisfying

∑n
i=1 ti ≤ 1. If E1 ∈ 〈t1A1〉,

. . . , En ∈ 〈tnAn〉 are disjoint, then for every real number s1, . . . , sn satisfying∑n
i=1 si ≤ 1 and ti ≤ si for each i = 1, . . . , n, there exist disjoint elements

F1 ∈ 〈s1A1〉, . . . , Fn ∈ 〈snAn〉 such that
⋃n

i=1 Ei ⊂
⋃n

i=1 Fi.
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Proof. The argument is based on induction. Let A1 and A2 be elements in
F , t1 and t2 be nonnegative real numbers satisfying t1 + t2 ≤ 1, E1 ∈ 〈t1A1〉
and E2 ∈ 〈t2A2〉 be disjoint elements, and s1, s2 be real numbers satisfying
s1 + s2 ≤ 1, t1 ≤ s1 and t2 ≤ s2. Without loss of generality we may assume
that µ(A1) ≤ µ(A2). By the nonatomicity of µ, there exists some F1 ∈ 〈s1A1〉
such that E1 ⊂ F1. We then have:

µ(A2 \ F1) ≥ µ(A2)− µ(F1) = µ(A2)− s1µ(A1)

≥ µ(A2)− s1µ(A2) ≥ s2µ(A2).

By the nonatomicity of µ, there exists some F2 ∈ 〈s2A2〉 such that E2 \F1 ⊂
F2 ⊂ A2 \ F1. By construction, we have F1 ∩ F2 = ∅ and E1 ∪E2 ⊂ F1 ∪ F2.
Thus, the result is true for n = 2.

Suppose that the result is true for n ≥ 2. Let A1, . . . , An+1 be elements
in F , t1, . . . , tn+1 be nonnegative real numbers satisfying

∑n+1
i=1 ti ≤ 1, E1 ∈

〈t1A1〉, . . . , En+1 ∈ 〈tn+1An+1〉 be disjoint elements, and s1, . . . , sn+1 be real
numbers with

∑n+1
i=1 si ≤ 1 and ti ≤ si for each i = 1, . . . , n+1. Without loss

of generality, we may assume that µ(Ai) ≤ µ(An+1) for each i = 1, . . . , n. By
the induction hypothesis, for each i = 1, . . . , n, there exist disjoint elements
F1, . . . , Fn in F such that Fi ∈ 〈siAi〉 for each i = 1, . . . , n and

⋃n
i=1 Ei ⊂⋃n

i=1 Fi. Because it follows that µ(En+1) ≤ sn+1µ(An+1) and:

µ

(
An+1 \

n⋃
i=1

Fi

)
≥ µ(An+1)− µ

(
n⋃

i=1

Fi

)
= µ(An+1)−

n∑
i=1

µ(Fi)

= µ(An+1)−
n∑

i=1

siµ(Ai) ≥ µ(An+1)−
n∑

i=1

siµ(An+1)

≥ sn+1µ(An+1),

there exists some Fn+1 ∈ 〈sn+1An+1〉 such that En+1 \
⋃n

i=1 Fi ⊂ Fn+1 ⊂
An+1 \

⋃n
i=1 Fi by the nonatomicity of µ. Then the elements F1 ∈ 〈s1A1〉, . . . ,

Fn+1 ∈ 〈sn+1An+1〉 are disjoint and satisfy
⋃n+1

i=1 Ei ⊂
⋃n+1

i=1 Fi by construc-
tion. Therefore, the result is true for n + 1 and the proof is complete.

Denote the interior of ∆n−1 by:

int ∆n−1 = {(α1, . . . , αn) ∈ ∆n−1 | αi > 0, i = 1, . . . , n}.
The following result, a variant of Jensen’s inequality, also justifies the

introduction of the µ-quasiconcavity and µ-concavity of functions on F .

Theorem 2.6 (Jensen’s inequality). Let (X1, . . . , Xm) be a µ-positive m-
partition. A function f on F is:
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(i) µ-quasiconcave if and only if for every finite collection of elements
A1, . . . , An in F and every (t1, . . . , tn) ∈ int ∆n−1,

min
1≤i≤n

{f(Ai)} ≤ f(Y ) for any Y ∈ Dt1,...,tn(A1, . . . , An);

(ii) µ-concave if and only if for every finite collection of elements A1, . . . , An

in F and every (t1, . . . , tn) ∈ int ∆n−1,

n∑
i=1

tif(Ai) ≤ f(Y ) for any Y ∈ Dt1,...,tn(A1, . . . , An);

(iii) µ-quasiconcave at (X1, . . . , Xm) if and only if for every finite collection
of elements A1, . . . , An in F and every (t1, . . . , tn) ∈ int ∆n−1, Yj ∈
Dt1,...,tn(A1 ∩Xj, . . . , An ∩Xj) for each j = 1, . . . , m implies

min
1≤i≤n

{f(Ai)} ≤ f

(
m⋃

j=1

Yj

)
;

(iv) µ-concave at (X1, . . . , Xm) if and only if for every finite collection of
elements A1, . . . , An in F and every (t1, . . . , tn) ∈ int ∆n−1, Yj ∈
Dt1,...,tn(A1 ∩Xj, . . . , An ∩Xj) for each j = 1, . . . , m implies

n∑
i=1

tif(Ai) ≤ f

(
m⋃

j=1

Yj

)
.

Proof. Obviously, (i) and (ii) are respectively equivalent to the special cases
of (iii) and (iv) obtained for m = 1. Thus it is sufficient to prove only (iii)
and (iv).

(iii) Because the sufficiency is obvious, we only need to prove the ne-
cessity, for which we use the induction on n. Let f be µ-quasiconcave at
(X1, . . . , Xm). For n = 2, the result immediately follows from Definition
2.2(i). Suppose that the result is true for n ≥ 2. Let A1, . . . , An+1 be el-
ements in F and (t1, . . . , tn+1) ∈ int ∆n. Choose any Yj ∈ Dt1,...,tn+1(A1 ∩
Xj, . . . , An+1 ∩ Xj) for each j. Then Yj =

⋃n+1
i=1 Eij is the union of dis-

joint sets E1j ∈ 〈t1(A1 ∩ Xj)〉, . . . , En+1j ∈ 〈tn+1(An+1 ∩ Xj)〉. Define si =
(1 − tn+1)

−1ti for each i = 1, . . . , n. We then have
∑n

i=1 si = 1 and ti ≤ si

for each i = 1, . . . , n. By Lemma 2.2, there exist disjoint elements F1j ∈
〈s1(A1 ∩ Xj)〉, . . . , Fnj ∈ 〈sn(An ∩ Xj)〉 such that

⋃n
i=1 Eij ⊂

⋃n
i=1 Fij. In

view of:

µ

(
n⋃

i=1

Eij

)
=

n∑
i=1

µ(Eij) =
n∑

i=1

tiµ(Ai ∩Xj) = (1− tn+1)
n∑

i=1

siµ(Ai ∩Xj)
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= (1− tn+1)
n∑

i=1

µ(Fij) = (1− tn+1)µ

(
n⋃

i=1

Fij

)
,

we have
⋃n

i=1 Eij ∈ 〈(1 − tn+1)
⋃n

i=1 Fij)〉. Note that (
⋃m

j=1 Fij) ∩ Xj = Fij

for each i and j. Because
⋃n

i=1 Eij ∪ En+1j ∈ D1−tn+1((
⋃n

i=1

⋃m
j=1 Fij) ∩

Xj, An+1 ∩Xj) and
⋃n

i=1 Fij ∈ Ds1,...,sn(A1 ∩Xj, . . . , An ∩Xj) for each j, by
the µ-quasiconcavity of f at (X1, . . . , Xm) and the induction hypothesis, we
have:

f

(
m⋃

j=1

Yj

)
= f

(
m⋃

j=1

n⋃
i=1

Eij ∪
m⋃

j=1

En+1j

)

≥ min

{
f

(
m⋃

j=1

n⋃
i=1

Fij

)
, f(An+1)

}

≥ min{min{f(A1), . . . , f(An)}, f(An+1)}
= min{f(A1), . . . , f(An+1)}.

Hence, the result is true for n + 1.
(iv) Let f be µ-concave at (X1, . . . , Xm). Sufficiency is again obvious.

The argument is based on induction. The same argument applies here as in
the proof of part (iii) except for the last inequalities, which are replaced by:

f

(
m⋃

j=1

Yj

)
= f

(
m⋃

j=1

n⋃
i=1

Eij ∪
m⋃

j=1

En+1j

)

≥ (1− tn+1)f

(
m⋃

j=1

n⋃
i=1

Fij

)
+ tn+1f(An+1)

≥ (1− tn+1)
n∑

i=1

sif(Ai) + tn+1f(An+1) =
n+1∑
i=1

tif(Ai).

It is obvious from the above proof that Jensen’s inequality is also valid
for strictly µ-quasiconcave and strictly µ-concave functions by replacing the
inequalities in Theorem 2.6 with strict inequalities and adding the condition
that µ(Ai 4 Aj) > 0 for some i 6= j.

3 Preference Relations on a σ-Field

In this section, we first define the convexity of preference relations on F .
Convex preferences are in conformity with the representation by a µ-quasi-
concave function discussed in Subsection 2.2. We then show that maximal
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elements in F are essentially unique with respect to the strict µ-convex
preferences. We next introduce a metric on F and define the continuity of
preference relations on F under which the existence of a continuous utility
function representing the continuous preferences is guaranteed when F is
countably generated.

3.1 Convexity of Preference Relations

A preference relation % on F is a complete transitive binary relation on F .
The strict preference A Â B means that A % B and B 6% A. The indifference
A ∼ B means that A % B and B % A. A real-valued set function u on F
represents % if u(A) ≥ u(B) holds if and only if A % B does, and such u is
called a utility function representing %.

The following definition of the (strictly) µ-convexity of preference re-
lations are analogues of the (strict) convexity of preference relations on a
standard commodity space.

Definition 3.1. A preference relation % on F is:

(i) µ-convex if A % C, B % C, and t ∈ (0, 1) imply D % C for any
D ∈ Dt(A,B);

(ii) strictly µ-convex if A % C, B % C, µ(A4B) > 0, and t ∈ (0, 1) imply
D Â C for any D ∈ Dt(A,B).

Definition 3.2. Let (X1, . . . , Xn) be a µ-positive partition. A preference
relation % on F is:

(i) µ-convex at (X1, . . . , Xn) if A % C, B % C, t ∈ (0, 1), and Di ∈
Dt(A ∩Xi, B ∩Xi) for each i = 1, . . . , n imply

⋃n
i=1 Di % C;

(ii) strictly µ-convex at (X1, . . . , Xn) if A % C, B % C, µ(A 4 B) > 0,
t ∈ (0, 1), and Di ∈ Dt(A ∩ Xi, B ∩ Xi) for each i = 1, . . . , n imply⋃n

i=1 Di Â C.

Theorem 3.1. A preference relation is (strictly) µ-convex if and only if it
is (strictly) µ-convex at each µ-positive n-partition.

Proof. This follows from the observation in the proof of Theorem 2.4 that for
each fixed n and for any A,B ∈ F and t ∈ (0, 1), there exists a µ-positive
partition (X1, . . . , Xn) such that Dt(A,B) =

⋃n
i=1 Dt(A ∩Xi, B ∩Xi).

The following result characterizes (strictly) µ-quasiconcave and (strictly)
µ-concave utility functions.
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Theorem 3.2. Let (X1, . . . , Xn) be a µ-positive partition. A utility function
representing a preference relation % is:

(i) (strictly) µ-quasiconcave if and only if % is (strictly) µ-convex;

(ii) (strictly) µ-concave at (X1, . . . , Xn) if and only if % is (strictly) µ-
convex at (X1, . . . , Xn).

Proof. (i) Let u be a utility function representing a preference relation % on
F . Suppose that u is µ-quasiconcave. Let A % C, B % C, and t ∈ (0, 1).
Because u(D) ≥ min{u(A), u(B)} ≥ u(C) for any D ∈ Dt(A,B), we then
have D % C. Thus, % is µ-convex. Conversely, suppose that % is µ-convex.
Without loss of generality, we may assume A % B. Because the µ-convexity
of % implies C % B for any C ∈ Dt(A,B) and t ∈ (0, 1), we then have
u(C) ≥ u(B) = min{u(A), u(B)}. Therefore, u is µ-quasiconcave. The same
argument applies to the case for the strict µ-quasiconcavity of u and the
strict µ-convexity of %.

(ii) Let u be a utility function representing a preference relation % on
F . Suppose that u is µ-quasiconcave at (X1, . . . , Xn). Let A % C, B % C
and t ∈ (0, 1). Because Di ∈ Dt(A ∩ Xi, B ∩ Xi), i = 1, . . . , n implies
u(

⋃n
i=1 Di) ≥ min{u(A), u(B)} ≥ u(C), we have

⋃n
i=1 Di % C. Thus, %

is µ-convex at (X1, . . . , Xn). Conversely, suppose that % is µ-convex at
(X1, . . . , Xn). Without loss of generality, we may assume A % B. Because
t ∈ (0, 1) and Ci ∈ Dt(A ∩Xi, B ∩Xi), i = 1, . . . , n imply

⋃n
i=1 Ci % B, we

have u(
⋃n

i=1 Ci) ≥ u(B) = min{u(A), u(B)}. Therefore, u is µ-quasiconcave
at (X1, . . . , Xn). The same argument applies to the case for the strict µ-
quasiconcavity of u and the strict µ-convexity of % at (X1, . . . , Xn).

An element A ∈ F is maximal with respect to % if there exists no element
B ∈ F such that B Â A. Because % is complete, this is equivalent to saying
that A % B for every B ∈ F .

Two measurable sets A and B in F are µ-equivalent if µ(A4B) = 0. It
can easily be seen that the µ-equivalence is an equivalence relation on F .

Theorem 3.3. If a preference relation on F is strictly µ-convex at some µ-
positive partition, then its maximal element is unique up to µ-equivalence.

Proof. Let % be strictly µ-convex preference at some µ-positive partition
(X1, . . . , Xn), and let A and B be maximal elements with respect to %.
Suppose that µ(A4 B) > 0. Because A,B % C for any C ∈ F , it follows
that t ∈ (0, 1) and Di ∈ Dt(A∩Xi, B∩Xi) for i = 1, . . . , n imply

⋃n
i=1 Di Â C

by the strict µ-convexity of %. This implies the existence of an element⋃n
i=1 Di ∈ F satisfying

⋃n
i=1 Di Â A, which contradicts the maximality of

A. Therefore, we have µ(A4B) = 0.
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Remark 3.1. In this paper, we have not pursued the representability of
µ-convex preferences by a µ-concave utility function. The situation here
is similar to the possibility in which convex preferences may not be repre-
sentable by a concave utility function on a standard commodity space. For
a finite dimensional commodity space, Kannai (1977) characterized the rep-
resentability of convex preferences by a concave utility function. At present,
we do not know whether the approach of Kannai is applicable to the convex
preferences on measure spaces in our framework.

3.2 Continuity of Preference Relations

Let F be countably generated. We denote the µ-equivalence class of A ∈ F
by [A] and the set of µ-equivalence classes in F by F [µ]. If, for any two µ-
equivalence classes A and B, we define the metric d by d(A,B) = µ(A4B),
where A and B are arbitrarily selected elements of A and B, then F [µ]
becomes a complete separable metric space (see Dunford and Schwartz, 1958,
Lemma III.7.1 and Halmos, 1950, Theorem 40.B).

Definition 3.3. A preference relation % on F is µ-indifferent if µ(A4B) =
0 implies A ∼ B.

A µ-indifferent preference relation % induces a preference relation %µ on
F [µ] defined by A %µ B if and only if there exist A ∈ A and B ∈ B such
that A % B. This is equivalent to saying that A %µ B if and only if A % B
for any A ∈ A and B ∈ B. Thus, any utility function u representing % on
F induces a utility function uµ representing %µ on F [µ] by uµ(A) = u(A),
where A is an arbitrary element in A.

Definition 3.4. A preference relation % on F is µ-continuous if it is µ-
indifferent and for every A ∈ F [µ] both the upper contour set {B ∈ F [µ] |
B %µ A} and the lower contour set {B ∈ F [µ] | A %µ B} are closed in
F [µ].

The µ-continuity of % states that the preference relation %µ induced by
% satisfies the standard continuity axiom for preferences.

Definition 3.5. A function f on F is:

(i) µ-indifferent if µ(A4B) = 0 implies f(A) = f(B);

(ii) µ-continuous if it is µ-indifferent and induces a continuous function fµ

on F [µ].
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It is obvious that a utility function representing a preference relation is
µ-continuous if and only if the preference relation is µ-continuous. The next
theorem guarantees the existence of a µ-continuous utility function repre-
senting µ-continuous preferences.

Theorem 3.4. Let F be countably generated. Then for any µ-continuous
preference relation % on F , there exists a µ-continuous utility function rep-
resenting %.

Proof. Note that F [µ] has a countable base of open sets because it is a
separable metric space. Because %µ is a continuous preference relation on
F [µ], by virtue of the celebrated theorem of Debreu (1964), there exists a
continuous utility function ũ on F [µ] representing %µ. Define u(A) = ũ(A)
for A ∈ A. Then u is a µ-continuous utility function on F representing
%.

Example 3.1. Let µ1, . . . , µn be finite measures of a measurable space (Ω,
F ). Define µ = 1

n

∑n
i=1 µi. Then each µi is absolutely continuous with

respect to µ. Let ϕ be a function on [0, µ1(Ω)]×· · ·× [0, µn(Ω)]. A preference
relation on F defined by:

A % B
def⇐⇒ ϕ(µ1(A), . . . , µn(A)) ≥ ϕ(µ1(B), . . . , µn(B))

is µ-continuous if ϕ is continuous. To see this, we show that the function fϕ

defined by fϕ(A) = ϕ(µ1(A), . . . , µn(A)) is µ-continuous. If µ(A4 B) = 0,
then µi(A 4 B) = 0 by the absolute continuity, and hence µi(A ∪ B) =
µi(A∩B) = µi(A) = µi(B) for each i. Thus, fϕ is µ-indifferent and induces a
function f̃ϕ on F [µ] via the formula f̃ϕ(A) = fϕ(A) with A ∈ A. Let {Aν} be
a sequence in F [µ] converging to A, and take Aν ∈ Aν and A ∈ A arbitrarily.
Because µ(Aν4A) → 0 implies µi(A

ν4A) → 0 for each i by the absolute con-
tinuity, we have limν µi(A

ν∪A) = limν µi(A
ν∩A). For any ε > 0, there exists

an integer ν0 such that µi(A
ν ∪A) < µi(A

ν ∩A)+ε for each ν ≥ ν0. We thus
have µi(A

ν) ≤ µi(A
ν∪A) < µi(A

ν∩A)+ε ≤ µi(A)+ε for each ν ≥ ν0. Thus,
lim supν µi(A

ν) ≤ µi(A)+ε. Because ε is arbitrary, we have lim supν µi(A
ν) ≤

µi(A). Similarly, because µi(A) ≤ µi(A
ν ∪A) < µi(A

ν ∩A) + ε ≤ µi(A
ν) + ε

for each ν ≥ ν0, we have µi(A) ≤ lim infν µi(A
ν). Therefore, limν f̃ϕ(Aν) =

limν ϕ(µ1(A
ν), . . . , µn(Aν)) = ϕ(µ1(A), . . . , µn(A)) = f̃ϕ(A), and hence fϕ is

µ-continuous.
When n = 1 and µ is a nonatomic finite measure, the converse implica-

tion is also true; fϕ is µ-continuous if and only if ϕ is continuous on [0, µ(Ω)].
To this end, suppose that fϕ is µ-continuous. Let {aν} be a sequence con-
verging to some point a in the open interval (0, µ(Ω)). Then there exists a

19



subsequence {aνk} satisfying |aνk − a| < 1
k

and aνk ± 1
k
∈ (0, µ(Ω)) for each

k = 1, 2, . . . . By the nonatomicity of µ, there exist A and Aνk ⊂ A such
that µ(A) = a and µ(Aνk) = aνk − 1

k
, and hence µ(Aνk 4 A) < 2

k
→ 0.

Therefore, |ϕ(aνk) − ϕ(a)| = |fϕ(Aνk) − fϕ(A)| → 0 by the µ-continuity
of fϕ. This implies that ϕ is continuous on (0, µ(Ω)). If aν → 0 and
aν ∈ (0, µ(Ω)) for each ν, then there exists some Aν such that µ(Aν) = aν

by the nonatomicity of µ. Because µ(Aν 4 ∅) = µ(Aν) → 0, we have
|ϕ(aν)− ϕ(0)| = |fϕ(Aν)− fϕ(∅)| → 0. Thus, ϕ is continuous at the origin.
Similarly, if aν → µ(Ω) and aν ∈ (0, µ(Ω)) for each ν, then there exists some
Aν such that µ(Aν) = aν . Because µ(Aν 4 Ω) = µ(Ω \ Aν) → 0, we have
|ϕ(aν)− ϕ(µ(Ω))| = |fϕ(Aν)− fϕ(Ω)| → 0. Thus, ϕ is continuous at µ(Ω).

Example 3.2. Let µ1, . . . , µn and µ be defined as in Example 3.1, and let
(X1, . . . , Xn) be a partition. Let ϕ be a continuous function on [0, µ1(X1)]×
· · · × [0, µn(Xn)]. Consider a preference relation on F defined by:

A % B
def⇐⇒ ϕ(µ1(A∩X1), . . . , µn(A∩Xn)) ≥ ϕ(µ1(B∩X1), . . . , µn(B∩Xn)).

This is the numerical representation of preference relations studied by Spru-
mont (2004). As in Example 3.1, it can be shown that % is µ-continuous.

Example 3.3. Berliant and ten Raa (1988) introduced a topology on F
that makes F a compact metric space. Let Ω be a compact subset of Rn

with nonempty interior, and let (Ω, F , µ) be a Lebesgue measure space with
F the σ-field of Borel subsets of Ω. A semimetric d̃ on F is defined by:

d̃(A,B) = H(Ω \ int A, Ω \ int B) +

∣∣∣∣
∫

A

h(x)dµ−
∫

B

h(x)dµ

∣∣∣∣ ,

where H is the Hausdorff distance, int A denotes the interior of the set A
and h is an element in L1(Ω, F , µ). If an equivalence class of F is defined
to be a family of elements of F , where each pair has semimetric zero, then d̃
defines a metric on such equivalence classes F̃ of F . Berliant and ten Raa
(1988) proved that F̃ is a compact metric space.

Denote the ε-open ball with center x ∈ Rn by Bε(x). Define the function
u on BΩ by:

u(A) = sup{ε > 0 | Bε(x) ⊂ A, x ∈ A}.
If the preference relation % on F is defined by A % B if and only if u(A) ≥
u(B), then % induces a continuous preference on F̃ ; that is, u induces a
continuous function on F̃ (see Berliant and Dunz 2004, p. 606). However, this
preference relation is not µ-continuous. To show this, it suffices to compare
the utility of Bε(x) and Bε(x) \ {x}. We have u(Bε(x)) = ε and u(Bε(x) \
{x}) = ε

2
, but µ(Bε(x)4 (Bε(x)\{x})) = 0. Thus, u cannot be µ-indifferent,

and hence % cannot be µ-continuous.
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The (strict) µ-monotonicity of preference relations on F in the following
definition are analogues of the (strict) monotonicity of preference relations
on a standard commodity space.

Definition 3.6. A preference relation % on F is:

(i) µ-monotone if A ⊃ B and µ(A) > µ(B) implies A % B;

(ii) strictly µ-monotone if A ⊃ B and µ(A) > µ(B) implies A Â B.

Similarly to Definition 3.6, the (strict) µ-monotonicity of functions on F
is defined as follows.

Definition 3.7. A function f on F is:

(i) µ-monotone if A ⊃ B and µ(A) > µ(B) implies f(A) ≥ f(B);

(ii) strictly µ-monotone if A ⊃ B and µ(A) > µ(B) implies f(A) > f(B).

Example 3.4. Let fϕ be a set function on F introduced in Example 2.3.
It is evident that if ϕ is increasing on S, then fϕ is µ-monotone on F .
Conversely, suppose that fϕ is µ-monotone on F . Choose any (a1, . . . , an)
and (b1, . . . , bn) in S satisfying ai ≤ bi for each i. By the nonatomicity of µ,
there exist A and B in F such that µ(A ∩ Xi) = ai, µ(B ∩ Xi) = bi and
A ⊂ B. We then have ϕ(a1, . . . , an) = fϕ(A) ≤ fϕ(B) = ϕ(b1, . . . , bn), and
hence ϕ is increasing on S. Consequently, fϕ is µ-monotone on F if and
only if ϕ is increasing on S. Similarly, fϕ is strictly µ-increasing if and only
if ϕ is strictly increasing.

Note that preference relations on a standard commodity space are strictly
monotone if they are continuous, monotone and strictly convex. As the
following result shows, a similar property holds for preference relations on
F .

Theorem 3.5. If a preference relation is µ-continuous, µ-monotone, and
strictly µ-convex at some µ-positive partition, then it is strictly µ-monotone.

Proof. Let % be µ-continuous, µ-monotone and strictly µ-convex at some
µ-positive partition (X1, . . . , Xn). Suppose to the contrary that % is not
strictly µ-monotone. Then, for some A and B in F satisfying B ⊂ A and
µ(B) < µ(A), we have B % A. By the strict µ-convexity of %, it follows
that Ci(t) ∈ Dt(A ∩ Xi, B ∩ Xi) for each i = 1, . . . , n and t ∈ (0, 1) imply⋃n

i=1 Ci(t) Â A. Denote Ci(t) as a union Ci(t) = Ei(t)∪Fi(t) of disjoint sets
Ei(t) ∈ 〈t(A ∩Xi)〉 and Fi(t) ∈ 〈(1− t)(B ∩Xi)〉. We then have:

µ

(
n⋃

i=1

Ci(t)4B

)
= µ

(
n⋃

i=1

Ci(t) ∪B

)
− µ

(
n⋃

i=1

Ci(t) ∩B

)
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=
n∑

i=1

[µ(Ci(t) ∪ (B ∩Xi))− µ(Ci(t) ∩ (B ∩Xi))]

≤
n∑

i=1

[µ(Ei(t) ∪ (B ∩Xi))− µ(Fi(t))]

≤
n∑

i=1

[µ(Ei(t)) + µ(B ∩Xi)− µ(Fi(t))]

≤
n∑

i=1

[tµ(A ∩Xi) + µ(B ∩Xi)− (1− t)µ(B ∩Xi)]

= t(µ(A) + µ(B)),

where the third line uses Fi(t) ⊂ B ∩Xi for each i. Hence, the µ-equivalence
classes [

⋃n
i=1 Ci(t)] and [B] are close enough in the metric d for any sufficiently

small t ∈ (0, 1). Thus, the µ-continuity of % and
⋃n

i=1 Ci(t) Â A for any
t ∈ (0, 1) imply B Â A, which is a contradiction. Therefore, % is strictly µ-
monotone.

4 ε-Pareto-optimal Partitions

In this section, we are concerned with ε-Pareto-optimal partitions. We prove
their existence, show how they approximate Pareto-optimal partitions, and
provide their characterization. The existence of weakly ε-Pareto-optimal
partitions follows if the utility function of each individual is bounded. We
show that if an approximation limit of the weakly ε-partitions exists, then
the limit point is weakly Pareto optimal. It is shown that if each individual
has a µ-continuous and strictly µ-monotone utility function, then weak ε-
Pareto optimality is equivalent to ε-Pareto optimality. We also show that if
each individual has a µ-concave utility function, then the utility possibility
set is a convex set, and consequently every weakly Pareto-optimal partition
is a solution to the maximization problem of a weighted utility sum of each
individual by the supporting hyperplane theorem.

Note that a preference relation is represented by a (strict) µ-monotone
utility function if and only if the preference relation is (strictly) µ-monotone.
By Proposition 3.4, a preference relation is represented by a µ-continuous
utility function if and only if the preference relation is µ-continuous, and
by Theorem 3.2, a preference relation is represented by a (strict) µ-quasi-
concave utility function if and only if the preference relation is (strictly) µ-
convex. Therefore, it is legitimate in the sequel to employ utility functions
of individuals instead of their preference relations.
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4.1 Approximation of Pareto-optimal Partitions

Denote the finite set of individuals by I = {1, . . . , n}. A utility function of
individual i ∈ I on F is denoted by ui and the set of n-partitions of Ω by
Pn.

Definition 4.1. Let ε ≥ 0. A partition (A1, . . . , An) is:

(i) weakly ε-Pareto optimal if there exists no partition (B1, . . . , Bn) such
that ui(Ai) + ε < ui(Bi) for each i ∈ I. A weakly ε-Pareto-optimal
partition for ε = 0 is said to be weakly Pareto optimal ;

(ii) ε-Pareto optimal if there exists no partition (B1, . . . , Bn) such that
ui(Ai) + ε ≤ ui(Bi) for each i ∈ I and ui(Ai) + ε < ui(Bi) for some
i ∈ I. An ε-Pareto-optimal partition for ε = 0 is said to be Pareto
optimal.

We denote the n-time Cartesian product of F [µ] by F n[µ] and define
the set Pn[µ] of µ-equivalence classes of partitions by:

Pn[µ] = {(A1, . . . ,An) ∈ F n[µ] | ∃(A1, . . . , An) ∈ Pn : Ai ∈ Ai ∀i ∈ I}.

As illustrated in the following example, one cannot expect that U is closed in
Rn even if each ui is µ-continuous because Pn[µ] is not necessarily compact
in the product topology of F n[µ]. This is the reason why we demonstrate the
existence of ε-Pareto-optimal and ε-core partitions instead of the existence
of Pareto-optimal and core partitions in the sequel.

Example 4.1. The following example, a variant of Berliant and ten Raa
(1988), is suggested by Chiaki Hara. Consider the Lebesgue measure space
of the unit interval Ω = [0, 1]. Let {Aν} be a sequence of measurable subsets
in Ω defined by:

Aν =

[
0,

1

2ν

]
∪

[
2

2ν
,

3

2ν

]
∪ · · · ∪

[
2ν − 2

2ν
,
2ν − 1

2ν

]
, ν = 1, 2, . . . .

We claim that the sequence of µ-equivalence classes {[Aν ]} has no conver-
gent subsequence in F [µ], and hence the µ-equivalence classes of partitions
P2[µ] = {([A], [Ω \ A]) ∈ F 2[µ] | A ∈ F} is not compact in F 2[µ]. To this
end, it suffices to show that:

lim
ν→∞

µ(Aν 4 E) = lim
ν→∞

µ((Ω \ Aν)4 E) =
1

2
for any E ∈ F .
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This equality follows from:

lim
ν→∞

µ(Aν ∩ E) = lim
ν→∞

µ((Ω \ Aν) ∩ E) =
1

2
µ(E) for any E ∈ F (4.1)

because Aν 4 E = ((Ω \ Aν) ∩ E) ∪ (Aν ∩ (Ω \ E)) and:

lim
ν→∞

µ(Aν 4 E) = lim
n→∞

µ((Ω \ Aν) ∩ E) + lim
n→∞

µ(Aν ∩ (Ω \ E))

=
1

2
µ(E) +

1

2
µ(Ω \ E) =

1

2
.

Therefore, we shall show (4.1).
If the Lebesgue measure of E is zero, then (4.1) is trivially true. Suppose

that the Lebesgue measure of E is positive. It suffices to show that (4.1)
is true for every closed interval E = [a, b] with 0 ≤ a < b ≤ 1. Consider
the following two cases. (i) The end points a and b are of the form a = i

2ν ,

b = j
2ν , i, j = 0, 1, . . . , 2ν : because for each k ≥ ν it follows that µ(Ak ∩E) =

µ((Ω \ Ak) ∩ E), we obtain µ(Ak ∩ E) = 1
2
µ(E) for each k ≥ ν in view of

µ(E) = µ(Ak ∩E) + µ((Ω \Ak)∩E). Thus, (4.1) holds. (ii) The end points
a and b are arbitrary: because a and b can be approximated to whatever
degree of accuracy is required by rational points i

2ν , i = 0, 1, . . . , 2ν with
large enough value of ν, the Lebesgue measure of the intervals [ i

2ν , i+1
2ν ] and

[ j
2ν , j+1

2ν ] with a ∈ [ i
2ν , i+1

2ν ] and b ∈ [ j
2ν , j+1

2ν ], which is equal to 1
2ν , can be made

arbitrarily small. Because limν µ([ i
2ν , i+1

2ν ]) = limν µ([ j−1
2ν , j

2ν ]) = 0, it follows

that E = [a, b] ⊂ [ i
2ν , i+1

2ν ]∪ [ i+1
2ν , j−1

2ν ]∪ [ j
2ν , j+1

2ν ], a ∈ [ i
2ν , i+1

2ν ] and b ∈ [ j
2ν , j+1

2ν ]

for each ν imply limν µ([ i+1
2ν , j−1

2ν ]) = µ(E). By virtue of (i), we have:

lim
ν→∞

µ(Aν ∩ E) = lim
ν→∞

µ

(
Aν ∩

[
i + 1

2ν
,
j − 1

2ν

])

=
1

2
lim

ν→∞
µ

([
i + 1

2ν
,
j − 1

2ν

])
=

1

2
µ(E).

Because it follows that:

Ω \ Aν =

(
1

2ν
,

2

2ν

)
∪

(
3

2ν
,

4

2ν

)
∪ · · · ∪

(
2ν − 1

2ν
, 1

)
, ν = 1, 2, . . . ,

we obtain as in the above:

lim
ν→∞

µ((Ω \ Aν) ∩ E) =
1

2
µ(E) for any E ∈ F .

Theorem 4.1. (i) If ui is bounded for each i ∈ I, then for every ε > 0,
there exists a weakly ε-Pareto-optimal partition.

24



(ii) If ui is µ-continuous and strictly µ-monotone for each i ∈ I, then for
every ε ≥ 0, a partition is ε-Pareto optimal if and only if it is weakly
ε-Pareto optimal.

Proof. (i) Let α = (α1, . . . , αn) ∈ ∆n−1 be arbitrary. Because each ui is
bounded, for every ε > 0, there exists a partition (Aε

1, . . . , A
ε
n) such that:

∑
i∈I

αiui(A
ε
i ) > sup

{∑
i∈I

αiui(Ai) | (A1, . . . , An) ∈ Pn

}
− ε. (4.2)

We claim that (Aε
1, . . . , A

ε
n) is weakly ε-Pareto optimal. Suppose to the

contrary that (Aε
1, . . . , A

ε
n) is not weakly ε-Pareto optimal. Then there exists

a partition (B1, . . . , Bn) such that ui(A
ε
i ) + ε < ui(Bi) for each i ∈ I. We

thus obtain
∑

i∈I αiui(A
ε
i ) + ε <

∑
i∈I αiui(Bi), which contradicts (4.2).

(ii) It is immediate that ε-Pareto optimality implies weak ε-Pareto op-
timality. We show the converse implication. Let ui be µ-continuous and
strictly µ-monotone for each i ∈ I, and let (Aε

1, . . . , A
ε
n) be a weakly ε-Pareto-

optimal partition. Suppose that (Aε
1, . . . , A

ε
n) is not ε-Pareto optimal. There

then exists a partition (B1, . . . , Bn) such that ui(A
ε
i ) + ε ≤ ui(Bi) for each

i ∈ I and uj(A
ε
j) + ε < uj(Bj) for some j ∈ I. The µ-continuity of uj

and the nonatomicity of µ imply that there exists some Cj ⊂ Bj satisfying
µ(Bj \Cj) > 0 such that uj(A

ε
j) + ε < uj(Cj). Decompose Bj \Cj into n− 1

disjoint sets B′
i for i ∈ I \ {j} such that

⋃
i∈I\{j} B′

i = Bj \Cj and µ(B′
i) > 0

for each i ∈ I \{j}. Let Ci = Bi∪B′
i for each i ∈ I \{j}. Then the resulting

partition (C1, . . . , Cn) satisfies ui(A
ε
i ) + ε < ui(Ci) for each i ∈ I by the

strict µ-monotonicity of ui. This contradicts the weak ε-Pareto optimality
of (Aε

1, . . . , A
ε
n).

Corollary 4.1. Let (Aν
1, . . . , A

ν
n) be a weakly 1

ν
-Pareto-optimal partition for

each ν = 1, 2, . . . . Then each cluster point of the sequence {(Aν
1, . . . , A

ν
n)}

belonging to Pn[µ] is weakly Pareto optimal whenever ui is µ-continuous for
each i ∈ I. Moreover, if, in addition, ui is strictly µ-monotone for each
i ∈ I, then it is Pareto optimal.

4.2 Characterization of Pareto Optimality

Define the utility possibility set U by:

U = {(x1, . . . , xn) ∈ Rn | ∃(A1, . . . , An) ∈ Pn : xi ≤ ui(Ai) ∀i ∈ I}.
Note that if ui is a nonatomic finite measure for each i ∈ I, then the convexity
of U trivially follows from the Lyapunov convexity theorem without imposing
any concavity on ui. Thus, the next theorem is regarded as a variant of this
result for the case that ui is not necessarily additive for each i ∈ I.
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Theorem 4.2. If ui is µ-concave at some µ-positive partition for each i ∈ I,
then U is a convex subset of Rn.

Proof. Let ui be µ-concave at some µ-positive m-partition (X1, . . . , Xm)
for each i ∈ I. Take x = (x1, . . . , xn) and y = (y1, . . . , yn) in U , and
t ∈ (0, 1) arbitrarily. Let (A1, . . . , An) and (B1, . . . , Bn) be partitions sat-
isfying xi ≤ ui(Ai) and yi ≤ ui(Bi) for each i ∈ I. By Corollary 2.1, there
exists some Cij ∈ Dt(Ai ∩ Xj, Bi ∩ Xj) for each i ∈ I and j such that
(
⋃m

j=1 C1j, . . . ,
⋃m

j=1 Cnj) is a partition. The µ-concavity of ui implies that
txi + (1 − t)yi ≤ tui(Ai) + (1 − t)ui(Bi) ≤ ui(

⋃m
j=1 Cij) for each i ∈ I.

Therefore, tx + (1− t)y ∈ U .

Theorem 4.3. If ui is µ-concave at some µ-positive partition for each i ∈ I,
then a partition is weakly Pareto optimal if and only if it solves the problem:

sup

{∑
i∈I

αiui(Ai) | (A1, . . . , An) ∈ Pn

}
(Pα)

for some α ∈ ∆n−1.

Proof. Let (A1, . . . , An) be a weakly Pareto-optimal partition. Because the
closure cl U of U is convex by Theorem 4.2 and the utility vector (u1(A1), . . . ,
un(An)) is in the boundary of U , by the supporting hyperplane theorem, there
exists a nonzero vector (β1, . . . , βn) ∈ Rn such that

∑
i∈I βixi ≤

∑
i∈I βiui(Ai)

for any (x1, . . . , xn) ∈ cl U . Because U is unbounded from below, we can
assume βi ≥ 0 for each i ∈ I. Normalizing αi = (

∑
i∈I βi)

−1βi for each
i ∈ I yields α = (α1, . . . , αn) ∈ ∆n−1 and

∑
i∈I αixi ≤

∑
i∈I αiui(Ai)

for any (x1, . . . , xn) ∈ cl U . Because (u1(B1), . . . , un(Bn)) ∈ U for any
(B1, . . . , Bn) ∈ Pn, we obtain

∑
i∈I

αiui(Bi) ≤
∑
i∈I

αiui(Ai) for any (B1, . . . , Bn) ∈ Pn.

Therefore, (A1, . . . , An) solves (Pα). The converse implication is obvious.

Example 4.2. Let (Ω, F , µ) be a Lebesgue measure space with Ω a compact
subset of Rl and F the σ-field of Borel subsets of Ω. Suppose that Ω is
decomposed into disjoint sets X1, . . . , Xm with µ(X1), . . . , µ(Xm) > 0. Let
utility functions of each individual be given by:

ui(A) = ϕi(µ(A ∩X1), . . . , µ(A ∩Xm)),

where ϕi is a function defined on [0, µ(X1)]× · · · × [0, µ(Xm)] for each i ∈ I.
This representation of preferences is a special case of Example 3.2. Note that

26



this economy is analogous to a pure exchange economy with n individuals,
m commodities and total endowment Ω. If ϕi is continuous, then ui is µ-
continuous (Example 3.2). Define the set S by:

S = {(µ(A ∩X1), . . . , µ(A ∩Xm)) ∈ Rm | A ∈ F}.
Then S is convex and compact, and ϕi is concave and strictly increasing
on S if and only if ui is strictly µ-concave at (X1, . . . , Xn) and strictly µ-
monotone (Examples 2.3 and 3.4). Therefore, Theorems 4.1 to 4.3 are true
for this economy. Take, for instance, l = 1, m = 2 and n = 2. This is a
2 × 2 pure exchange economy illustrated by Berliant et al. (1992), which is
analogous to an Edgeworth box economy with continuous preferences.

Remark 4.1. The existence of a weakly Pareto-optimal partition was estab-
lished first by Dubins and Spanier (1961) for the case of additive preferences
represented by a nonatomic finite measure. The equivalence between Pareto
optimality and weak Pareto optimality is guaranteed for the case of additive
preferences if a nonatomic finite measure of each individual is mutually abso-
lutely continuous (see Sagara 2006). A characterization of weak Pareto opti-
mality in terms of the maximization problem of a weighted utility sum using
the supporting hyperplane theorem was provided by Barbanel and Zwicker
(1997) for the case of additive preferences. Without imposing any topological
structure on a σ-field, Sagara (2006) extended these results for the case of
nonadditive preferences with a concave transformation of a nonatomic finite
measure by employing Lyapunov’s convexity theorem.

5 ε-Core Partitions with NTU

This section introduces a cooperative game with NTU in a pure exchange
economy in which the initial individual endowments form a partition. We
show the existence of ε-core partitions with NTU under the assumption that
the utility function of each individual is bounded and µ-quasiconcave at some
µ-positive partition. We also show that if an approximation limit of the ε-
core partitions exists, then the limit point is a core partition whenever the
utility function of each individual is µ-continuous.

5.1 Approximation of Core Partitions

A nonempty subset of I is called a coalition. We denote the collection of
coalitions by N . Let (Ω1, . . . , Ωn) ∈ Pn be an initial partition in which
individual i ∈ I is endowed with a measurable subset Ωi of Ω. A partition
(A1, . . . , An) is an S-partition if

⋃
i∈S Ai =

⋃
i∈S Ωi for coalition S.
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Definition 5.1. Let ε ≥ 0. A coalition S ε-improves upon a partition
(A1, . . . , An) if there exists some S-partition (B1, . . . , Bn) such that ui(Ai) +
ε < ui(Bi) for each i ∈ S. A partition that cannot be ε-improved upon by
any coalition is an ε-core partition. An ε-core partition for ε = 0 is said to
be a core partition.

It is obvious from the definitions that an ε-core partition is weakly ε-
Pareto optimal. Note that if ui is µ-continuous and strictly µ-monotone for
each i ∈ I, then an ε-core partition is also ε-Pareto optimal by Theorem
4.1(ii).

Theorem 5.1. If ui is bounded and µ-quasiconcave at some µ-positive par-
tition for each i ∈ I, then for every ε > 0, there exists an ε-core partition.

Proof. Define the n-person game V : N → 2R
n

with NTU by:

V (S) = cl

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣
∃S-partition (A1, . . . , An) :
xi ≤ ui(Ai) ∀i ∈ S

}
.

The core of V , denoted by Core(V ), is defined by:

Core(V ) = {x ∈ V (I) |6 ∃S ∈ N 6 ∃y ∈ V (S) : xi < yi ∀i ∈ S}.

We show that V is a balanced game. To this end, let B be a balanced
family with balanced weights {λS ≥ 0 | S ∈ B} and let Bi = {S ∈ B | i ∈
S}. We then have

∑
S∈Bi

λS = 1 for each i ∈ I. Define:

χS
i =

{
1 if S ∈ Bi,

0 otherwise
and tS =

1

n

∑
i∈I

λSχS
i .

We then have:

∑

S∈B

tS =
1

n

∑

S∈B

∑
i∈I

λSχS
i =

1

n

∑
i∈I

∑

S∈Bi

λS = 1.

Let ui be µ-quasiconcave at some µ-positive m-partition (X1, . . . , Xm) for
each i ∈ I. Choose any (x1, . . . , xn) ∈ ⋂

S∈B V (S). Then there exists a
sequence {(xν

1, . . . , x
ν
n)} in Rn converging to (x1, . . . , xn) such that for each

S ∈ B, there exists a sequence {(AS,ν
1 , . . . , AS,ν

n )} of S-partitions satisfying
xν

i ≤ ui(A
S,ν
i ) for each i ∈ S, ν = 1, 2, . . . . Enumerate each element in B by

B = {S1, . . . , Sl} and let tk = tSk and Ak,ν
i = ASk,ν

i for each k = 1, . . . , l. By
virtue of Theorem 2.3, there exists some Aν

ij ∈ Dt1,...,tl(A
1,ν
i ∩Xj, . . . , A

l,ν
i ∩Xj)

for each i ∈ I and j = 1, . . . , m such that (
⋃m

j=1 Aν
1j, . . . ,

⋃m
j=1 Aν

nj) is a
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partition. By the µ-quasiconcavity of ui at (X1, . . . , Xm) and Theorem 2.6(i),
we have xν

i ≤ min1≤k≤l{ui(A
k,ν
i )} ≤ ui(

⋃m
j=1 Aν

ij) for each i ∈ I. We thus
obtain (xν

1, . . . , x
ν
n) ∈ V (I) for each ν = 1, 2, . . . . Because V (I) is closed

and (xν
1, . . . , x

ν
n) → (x1, . . . , xn), we obtain (x1, . . . , xn) ∈ V (I). Therefore,⋂

S∈B V (S) ⊂ V (I), and consequently V is balanced.
Because the balanced game V obviously satisfies other sufficient condi-

tions guaranteeing the nonemptiness of the core of V (see Scarf 1967), we
can select an element (x1, . . . , xn) in Core(V ). Let ε > 0 be arbitrary. Then
there exist some (y1, . . . , yn) ∈ Rn with |xi − yi| < ε for each i ∈ I and a
partition (A1, . . . , An) such that yi ≤ ui(Ai) for each i ∈ I. Suppose that
(A1, . . . , An) is not an ε-core partition. Then there exists some S-partition
(B1, . . . , Bn) such that ui(Ai) + ε < ui(Bi) for each i ∈ S. We then have
(u1(B1), . . . , un(Bn)) ∈ V (S) and xi < ui(Bi) for each i ∈ S, which contra-
dicts the fact that (x1, . . . , xn) is in Core(V ).

Corollary 5.1. Let (Aν
1, . . . , A

ν
n) be a 1

ν
-core partition for each ν = 1, 2, . . . .

Then each cluster point of the sequence {(Aν
1, . . . , A

ν
n)} belonging to Pn[µ] is

a core partition whenever ui is µ-continuous for each i ∈ I.

Remark 5.1. Berliant (1985) identified a measurable set with a characteris-
tic function in L∞ and introduced a price system in L1 as a weak* continuous
linear functional on a commodity space in L∞ to show the existence of an
equilibrium for the case of additive preferences by the standard argument of
Bewley (1972). The existence of an equilibrium implies the nonemptiness of a
core partition with NTU. Berliant and Dunz (2004) embedded characteristic
functions in L1 with a price system in L∞ as the norm dual of a commodity
space in L1 to show the existence of an equilibrium for the case of nonadditive
preferences by the fixed-point argument under the continuity assumption of
preferences and the strong convexity assumption that the upper contour set
is separated by hyperplanes in L∞. Dunz (1991) proved balancedness of the
NTU game for the case of nonadditive preferences with a specific integral
form, and Sagara (2006) also gave a proof of the balancedness for the case of
nonadditive preferences with a concave transformation of a nonatomic finite
measure.
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