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Abstract

This paper proposes a new design procedure of single-step numerical calculation meth-
ods for ordinary differential equations. This procedure is composed of the following two
processes (a) determination of the appropriate shift operator function which transforms
differential equations to difference equations and (b) construction of the algorithm based
on the above shift operator. First stage is prepared for the method to satisfy the specified
accuracy and stability. Second stage is for the method to be adaptable to the given
equation form. Following to this procedure, a method for large scale Laqrange’s equation
and a method for nonlinear stiff equations are designed.

1. Introduction

Research investigations of the numerical methods for ordinary differential equations
have attracted much attention as an important tool of an industrial system design and
analysis, during past several years.! »* %5 Most of the investigations have been the
comparison of the various numerical methods and the development of the special meth-
od applicable to specified problems.

Among these investigations, Henrici® 7 has established a theory concerned with the
discretization error, numerical stability and error propagation. Gear' has investigated
the numerical period elongation phenomenon of the oscillatory equations. Watanabe
and Shimizu® have described a systematic error characteristics of various numerical
methods by the transfer function approach. Meanwhile Newmark® proposed his B-par-
ameter method for the oscillatory equations, Wilson'® and Argyris!! also proposed
methods for the similar equations.

This paper intends to summarize the above investigations as a design problem of
the numerical method and proposes a general procedure by which a suitable numerical
method is designed for given equations. Further, this paper proposes two methods ; a
method for Lagrange equation of motion and a method for nonlinear stiff equations, so
as to explain this design procedure concretely.

2. Design procedure of the numerical calculation method for
ordinary differential equations

2.1 Characteristics of the equations and demands for the solutions
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Table 1 Classification of the ordinary differential equations when they are solved
by the numerical calculation method )

The equations with the band structure or the ruled sparse
ruled sparse (1) coefficient matrix, these sparsities can be possitively made
use of whatever the algorithm are.
large scale
led The equations with nonruled sparse matrix. Any algorithm
nonrule (2) can not be adaptable, except the expliated or the similar
sparse scheme
The equations which do not need any accounts for spar-
middle scale (3) sity. Numerically tough method is better even if any al-
gorithm can be used.
linear widely (4) The equations including the very high and low frequency
solution components and is called stiff equations.
around the The oscillatory equations like as the equation of wave
. f .. (5) ] . .
distribution |[lmaginary axis propagation and Lagrange equations of motion.
of eigen
value in nd th The nonoscillatory equations like as the thermal equation.
st plane af-g:[ i se (6) The optimal method making use of this properties can be
designed,
near origin  (7) m;.l;}ﬁz ;quations which are easily processable by the standard
middle scale (8) The equations almost same as following item (9).
The equations of which mathematical characteristics are
large scale (9) not known so that a numerical tough method is desiarable
to obtain the solution as the first approximation.
nonlinear linearizable The equations of which mathematical properties are not
nonlinear (10) always clarified so that the similar approaches as item (9)
should be taken.
essential The equations of which mathematical properties are not
nonlinear (11) clarified at all so that the prudent selection of the method
and treatments are necessary.

Table 1 shows a classification of the ordinary differential equations, appeared in
the technological system design and also in the scientific system analysis.
algorithm must be selected corresponding to the classification in Table 1.

The demands for the numerical solutions depend on the purposes of the problems
and also on the fields of applications. These demands are classified roughly into three
cases as shown in Table 2. The most desirable solution is the one given in the case 1
of Table 2. But, in this case, it is necessary to use a high speed and large scale com-
puter. When such a computer of high capacity is not available or when the solutions
do not need to satisfy all of thre requirements of case 1, case 2 and case 3 become
the main objects of the design.

A proper

2.2 Foundation and classification of the numerical calculation methods
The usual numerical calculation method for ordinary differential equations is con-
sisted of a process to transform the ordinary differential equation (1) to the difference
equation (2) and of a process to solve this difference equation.
x=f(x, uw)
X1 =F(Xn, Un-xy wony Un,

(L
(2)

erey un+l)
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Table 2 Demands for the numerical solutions

Processing Numerical
Case | Accuracy Speed Stability

high low fast slow | good bad

The case when the high speed processings are
1 0 0 0 necessary,

Examples ; Orbit calculation of the artifical sat-
ellite. Calculation of the atomic Energy plant.

The case to obtain the first approximate solu-
tion of the large scale and stiff equation.
2 0 0 0 Examples ; Simulation of the control system re-
sponce calculation of the structures excited by
the earthquake.

The case which needs the most accurate solu-

3 0 0 0 tions,
Examples ; Calculation in astronomy and nuclear

physics.

where x is an n dimensional solution vector, u is the nonhomogenious term of an m
dimensional vector, and the time coordinate of the difference equation are identified
with subscripts,

A linear ordinary differential equation of the following kind
I
x=Ax+B T Lou, (3)
i=o 1°

is considered as a special case of (1), where A is nXn and B is nxm matrix. When
the nonhomogenious term is an /th order polynomial, interpolated by the given discrete
data ux, (3) can be transformed to the difference equation with stepwidth 7, as fol-
lows ;

! -1 1=
Xn=F(ADxat+ 3 {(F(AD)—DA-*0— g Zl:j. AT BYm/et (4)
i=0 j=0 -5t
If (3) is transformed exactly to (4), F(A7) in (4) must be
F(Ar7) =e?r (5)

The direct numerical processing of (5) needs a large number of numerical oper-
ations, so that the function F(Ar) is approximated by some proper function which is
easily accessible. This is the same with using the approximate shift operator F(st)
instead of e (=z) of z transformation. The single-step numerical calculation methods
can be classified by the function form of F(st). The function form is classified into
three cases as listed in Table 3. These cases are corresponded to an explicit, an im-
plicit and a predictor-corrector algorithm.

The above approaches are mainly for the linear differential equations, but the ap-
proch by the approximate shift operator F(st) is adaptable even to the nonlinear equa-
tions. Because in the formation of the algorithm, the nonlinear equation can be reqarded
as locally linearized by the mean value theorem.

2.3 Characteristic criteria for designing the numerical calculation method
For designing the numerical calculation method, it is necessary to evaluate the
following items ; (a) Adaptivity to the sparsity of a coefficient matrix of equation, (b)
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Table 3 Classification of the numerical calculation method by the approximate
functions of esr function

Approximate
function of esr

Scheme

Characteristics

Typical
algorithm

n
Y ai(st)!
i=0

Explicit

This scheme provides the simple algorithm which
is adaptable to nonlinear equations and linear equa-
tions with nonruled sparse matrix. The accuracy
of the solution can be improved easily by ajusting
the order of the function, but the numerical sta-
bility is not assured,.

Euler’s
Runge-Kutta's
optimized
Runge-Kutta’s
Milne’s

n m
Y ai(so)Y/ X bylst)!
i=0 j

=0

Implicit

This function form can assure the numerical
stability and is adaptable to the ruled sparsity of
the coefficient matrix. But the algorithm is not
always simple and it is difficult to apply it to non-
linear equation,

Backward Euler's
Crank Nicholson’s
Newmark-f's
Stiffly stable’s
Houbolt’s

Characteristics are similar to the explicit scheme.
In this case, the denominator is processed by

Milne-Hamming's
Midpoint

Taylor expanded form, -trapezoidal
Adams Bashforth
Moulton’s

Argyrise's

n m
3 ai(sr)!/ 3 by(sc)d | Predictor
i=0 j=0 -corrector

Numerical stability, (c) Accuracy, (d) Processing speed, (e) Discretization error, (f)
Simplicity of an algorithm. Among these criteria, the items (b) and (c) are evaluated
by the characteristics of F(st) and the items (a) and (f) are by the function form of
F(st) itself. In these items, item (b) and (c) are so important that these items must
be treated quantitatively. The items (d), (e) and (f) are evaluated derivatively from
the above discussions of the item (b) and (c).

2,3.1 Accuracy

Let st be (a characteritic root of the differential equatidn) X (stepwidth) and let z
be a characteristic root of the difference equation.

Consider the mappings of st to z by e % and by its approximate function F(s7).
The mapping by €% is shown in Fig 1. (b) and the mapping by F(s7) is in Fig. 1 (¢).
The inverse mapping of Fig. 1 (b) by In(z) gives exact st value as in Fig. 1 (d),
whereas the mapping of Fig. 1 (c) by In(z) leads different value from original one
as in Fig. 1 (e). Such a plane as shown in Fig. 1 (e) is generated by

st=In{F(st)} (6)

and this st plane is distorted by the characteristics of F(st) function. When such F(s?)
is adopted as a shift operator of a numerical calculation method, period and damping
ratio of numerical solution deviate systematically from those of correct solution. If st
shown by a symbol O in Fig. 1 (e) is near to the original value st on the broad region
of the plane, the method solves the equations with the high accuracy. Therefore the
magnitude of the distortion of the st plane as in Fig. 1 (e) can serve as the assessment
of the accuracy of the given methods.

As examples, st of Euler method and 4th order Runge Kutta method are shown in
Fig. 2 and Fig. 3, where the dotted lines are st and solid lines are st, the correspond-

ing original value. The figures show only the left upper quater of the complex plane.
2.3.2 Numerical stability
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Fig. 1. Mapping relation between the st plane and the z plane
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The real part of st may happen to be positive, even if the real part of the value
st is negative. This means that the stable equation is taken as the unstable equation
in the approximate method. Such a phenomenon is called the numerical instability,
The numerical instability border on the st plane is given by the root locus of the fol-
lowing equation.

F(st)=e'r (wr=0~7) (7)
Where e'*s is the stable border on the z plane., The stable borders of the approximate
shift operators

F(s)= 3 (s)'/i! (n=1~0) (8)
i=0
are shown in Fig. 4, The curve for n=1 is the border of Euler method and the curve
for n=1 is one of 4th order Runge Kutta method.
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2.4 Design procedure
A design procedure of the numerical calcu-
( START ) lation method is pictorially shown in Fig. 5
and the details of each block [IJ~[IV] are as

(1] Analysis of the given follows ;
equations

[I] Analysis of the given equations
This is a stage to determine the design

{I1] Determination of the specifications of the method, referring to the
ﬂggﬁgt"o‘;“ ?chf?;ff form characteristics of equations in Table 1 and to

the demands for numerical solutions in Table 2.

[II7 Determination of the approximate shift

{m] Determination of operator function form

parametors of the ) i
function This is a stage to determine the function

form, following to the result of [I]. Table 3
is referred in order to investigate the charac-

(V] Forming the algorithm teristics of the function and Table 4 is referred
to decide the function form.
[III] Determination of parameters of the
function

Fig. 5. Design procedure of the numer-

This is a stage for adjusting the parameters
ical calculation method

of the function. This adjustment makes it pos-
sible (a) to expand the numerical stable border, (b) to improve the accuracy of the
specified region of the st plane and (c¢) to make the numerical method have the specified
filter characteristics. As the method of the parameter adjustment, we consider the
least square method, the least square method with constraints and the min-max methoed.
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Table 4 A table to decide the approximate z-operator for the numerical calculation

case m. n conditions

For linear equations when their coefficient matrices are ruled sparse and have the

1 m<=30 eigen values around the origin of sr. For nonlinear equations, when it is necessary to
ns obtain the first approximate solutions.
2 m=0 Under the conditions of case 1, when it is necessary to obtain the solutions with the

n>4 | higher accuracy or with the toughness,

For the linear, middle scale or large scale with the ruled sparsity equations when it

3 m_=11 is necessary to obtain the not so accurate but with faster processing speed and numerical
=11 stability.
4 m=2 For the linear, middle scale or large scale with the ruled sparsity equations when it

n2>2 | is necessary to obtain the more accurate solution stably.

In this table, m and n denote the order of denominator and numerater of the ap-
proximate shift operator

= n m
Remarks ¥ a(st)Y/ ¥ by(se)d respectively.

i=0 j=0
When m=0 this operator provide the explicit scheme and m+0, implicit scheme.

[IV] Formation of the algorithm

This is a stage to construct the algorithm of numerical method for the selected
shift operator function. Here, following items are taken into account. (a) adaptivity
to the sparsity of the coefficient matrix, (b) adaptivity to the nonlinear equations, (c)
processing efficiency.

To illustrate this procedure, we consider two examples, the large scale Lagrange
equation of motion and the stiff nonlinear equations, which appear frequently in tech-
nological problems.

3. Design of a numerical calculation method for the large scale
Lagrange equation of motion

3.1 Design specifications

Let’s design the numerical calculation method for the following large scale Lagrange

equation of motion
Mxix+Cx+Kx=f (9)

where M, C and K are symmetrical, and large scale matrices of band structure and
the equation is stiff,

Given below are the specifications proposed in this paper. (a) The accuracy is high-
er than 4th order Runge Kutta method. (b) The numerical stability is assured. (c)
The algorithm must be adaptable to the sparsity of the matrices.

3.2 Design of the algorithm
In order to assure the numerical stability and the accuracy of higher than 4th order
Runge Kutta method, we adopt 2nd order Padé’s expansion of e’

F(st) = 1+st/2+(s7)¥/12 _ (1+st/c)(Q1+st/c2)
T 1—-st/24+(st)?/12 ~ (I—st/c1) (1—sc/cz)

as the approximate shift operator, where c: and c: are

(10)
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Fig. 6. Distortion characteristics of the st plane of the Padé-22 function

a=3+iv3, c2=3-ivV3 (1D
This function satisfies the following relation
Re{In(F(st))}<0.0 for Re(sr)<0.0 12)

which assures the numerical stability. Fig. 6 shows the distorted st plane by this
function and it is clear that this distortion is less than that of 4th order Runge Kutta
method in Fig. 3.

Then this function satisfies the design specification (a) and (b) without any adjust-
ments of the parameters.

So that the design procedures [I], [II] and [III] are omitted. The remaining prob-
lem is how to develop the algorithm, based on this function, which satisfies the spec-
ification (c).

(9) is rewritten in the alternate form.

y=Ay+Bf (13)
where A, B and y are defined as follows ;
I 3
L e >0} o
—M'K -M"C M X

substitution of the factorized function (10) to (4) with /=1 and substitution (14) to
this resultant equation lead

{ I —z/al ][v]
t/eM7'K I+s/eiM'CJ LV L

I T/ClI u - O
= fnit+fa
{—T/CxM"K I—r/c;M“C] [ﬁl+ Ci [1\[-1]( ! ) (15)

where u., va. are respectively

Un=Xn+7/C2X
n n 2.n (16)
Va=Xn _'T/C’.'xn

M M
By the forward multiplication of matrix [c'/r +C ! ] to
—-K ci/t™
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(15), (15) is written in the alternate form

A AR TR
0 RJLvla L—2K T . I

where R, S and T are respectively
R=c//sM+C+7/cK
S=ci/tM+C—z/c:K (18
_ T=ci/tM—C—7/ciK
Elimination of ¥ from (9) and (17) leads the following equations

Rwai=—cKxn+ciMsn+7/2(Ens+ o) —17/12(fn1—£a) (19
Wns1=(Xn+1—Xn) —C17/12(Xn+1—Xn) (20)
Xns1=Xn+Re(Wa.1) — v 3Im(Wai1) en
Xns1=%n—4 ¥/ 3/7Im(Wns1) (22)
K1 =%a+6/7(Xns1+%Xn) —12/72(Xn41—Xn) (23)

The equations (19), (21), (22) and (23) form the following algorithm (a) compute
Wns1 USing the Xu, Xn‘ and fa, fas1 by (19), (b) compute the solutions Xn.1, Xn.1 by
(21) and (22), (c) compute the %..1 by the use of the result of (b), and then replace
n+1 by n and return to (a).

To obtain Wns1 by (19), it is necessary to invert matrix R. In this case, LLT
decomposition of matrix R can make use of the band structure of matrices M, C and
K, which assures the calculation speed to be faster without wasting many memories
of a computer, When M, C and K do not vary, the necessary LL® decomposition is
only once at the start,

Consequency the above algorithm for the large scale Lagrange equation of motion
satisfies all of the specifications.

4, Design of the numerical calculation method for nonlinear
stiff ordinary differential equations

4.1 Design specifications

We consider another design problem with following specifications.

(a) The method is adaptable to the nonlinear and large scale equations easily.

(b) The method must be tough numerically (the numerical stable region must be
wide).

(¢) The accuracy is higher than Euler method and well adaptable to nonoscillatory
differential equations.

(d) The method can process with high speed.

Such methods are suitable for the following applications.

(I) The application to obtain the first approximate solutions,

(II) The application to solve the thermal equation and dynamic chemical process.

(TII) As a method for the simulator of the continuous control system.

4.2 Determination of the function form
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As the approximate shift operator, the function of case 2 in Table 4
m
F(st)= ¥ ai(s?)! 24
i=0

is desirable for the above specifications. To satisfy the specification (d), m in (24)
must not be so greater and let m=4 as 4th order Runge Kutta method, and further
to satisfy the specification (c), let
a=1, a=1 (25)
which leads that F(st) and its first derivative are equal to the corresponding ones
of €% on the origin of st plane,

4,3 Determination of the parameters
Let’s determine the residual parameters a:~as in (24) by the least square method
with the following square function.

I= [T [° X —e%cos(¥)+{Y —e¥sin (V) ldxdy

+ [ o f 2 rxe+vlaxdy— [ 7 rx+ Y7laxdy (26)
where X, y are real and imaginary part of st and X, Y are real and imaginary part
of function F(st) as follows;

X=1—ay*+aiy") + (1—3asy*)x+ (az—6asy*) x*+asx*+asx!
Y=(y—asy?®) + (2a:y- dasy*)x+3asyx>+4ayx®
The rectangular zone (O, —R, W) in Fig. 7 is the area for fitting F(st) to &5
and the hook shaped zone (—P, Q, W, —R) in Fig. 7 is for making F(sc) vanishingly
small by which the numerical stable region is expanded.
Letting the partial derivative of the square J by a be equal to zero, that is

27

dJ/da=0 (28)
the following equation is derived.
A Im Ha=t (29)
where a and t are given by
St PLANE a=(a; as; aJd",
t=—CA:2+A, As+An, ActAldT (30)
Q and H is the Jacobian of dJ/da for a given as
follows ;
2A22  Axn Ax
w H=[ Az 2As Aa.] (31)
A Ase 2A4
the elements Aijj and Ax of H and t are the
functions of the variables R, W, P and Q, as
> listed in Table 5.
-P -R 0] Re
Fig. 7. Integral intervals of the criterion 4.4 Formation of the algorithm

function of the least square method The parameters of (24) are determined by
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Table 5 Coefficients of the element of matrix H and vector t

An=(Q*+P*)PQ/3

A= —(PQ3/3+P/2)PQ

Ayp=-2(—Q*+PH)PQ/5
Au=(P}Q*/3+3PQ*/5-P5/3)PQ
Ag=(2P?Q%/9+4-P4/54-Q/5)PQ
Agn=—(P3Q3/3+P*/3+PQ4/5)PQ
Au=2(P'Q?/15—P2Q4/15+P8/7—Q8/7)PQ
Ags=—(P1Q?/5-+P1Q*/54-Q5/7T+PS/T)PQ

A= —(PQ3/3+3P*Q{/10+PQ%/7+P7/4)PQ

A= (4PQ%/21 4-4P2Q%/21 4+ P8 /9+Q8/94-6P4Q¢/25)PQ

Ay=—-P2Q—-2Re Rsin(W)—2(e"B—-1)W cos(W)
A;=2(P2-Q?)PQ/3+e R{(2R2+2W?—4)sin(W) +4WR cos(W)}
+ (W3—6W)cos(W)
As=—P1Q/2+4-P2Q*—2[e R{(3R3W+6—W3)cos(W)+ (R2+3RW?
46R)sin(W)}+ (W3—-6W)cos(W) ]
A(=2PQ/5—4P5Q3/3+2PQ°/5—2{eR{(—4R3W —24RW +4RW?3)
cos(W)+ (—R4—12R%+6R3W3—24 —W4+12W3)sin(W)}
+ (—12W34+W14424)sin(W)] -

(29), and the next procedure is to construct the algorithm basing on (24). Let the
algorithm form be as follows ;
d=cf (Xn) (32)
d=tf(Xn+dia1dis)  ((i=2~m)
Xns1=Xn+C1di+c2de+ -+ Cndm
where f(x) is the function of the differential equation. This is the form of the Runge
Kutta algorithm and can satisfy specification (a). The coefficients ci(i=1~m) and
dx(k=1~m—1) of the algorithm are related to the coefficients ai(i=0~m) of (24).
Namely substitution of the equation
x=f(x), f(x)=sx 62))

(33)

to (32) leads
dl-_—San
dr=(st+dis*c*) xa (35)
: m-=1
dn=(st+dm-18*+dm-2dm18'+ -+ 17 dis®r™)xn
i=1
And substitutions of the above 4i(i=1~m) to (33) lead the equation.
Xn+l =G‘Xn (33) !

where

G=1+(a+cz2+ - +em)st+ (dicz+dzcs+ - +dm-10m) %2
m-1 (36)
+eot I diCms™T™
i=1
(33)’ is the difference equation with the shift operator (36). Letting this G be equal
to F(st) of (24)

F(st)=G 37
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and letting each coefficient of (st)! of (24) be equal to one of (36), the following
relations are derived.

ai=ca+ct-+Cm

az=dicz+dzC3+ - +dm-1Cm 38)

a:m=m[;ld|Cm

i=1

(38) has m equations with (2m—1) unknown variables, and does not have unique so-
lution, so that it is possible to introduce the additional criterion (e. g. the minimization
of the discretization error) and to formulate this problem as an optimization problem
with the constraints (38). But, in this paper, parameters dx (k=1~m) are simply to
be equal to the parameters of 4th order Runge Kutta method.

4,5 Design example

The order m of (24) was equal to 4, and the parameters must be determined so
as to lessen the distortion of st plane and expand the stable region around it real axis.
Therefore the integral intervals of (26) are set as follows.

P=11.0, Q=2.0, R=5.0, W=1.0 39

The resultant coefficients ai (i=2~4) are listed in a; column of Table 6, The
parameters dx (k=1~3) are

di=0.5, d.=0.5, d;:=1.0 (40)
as discribed above, Form these ai, di, the parameters ¢ (i=1~4) are determined
uniquely by (38) as listed in ¢; column of Table 6.

Fig. 8 shows the distortion characteristics of st plane and the stable border of the
designed method.

Comparison between Fig. 2 (Euler method) and Fig. 8 indicates that the distortions
at —0.02 of the real axis and 0.03 of the imaginary axis on Fig. 2 appear —0.1 of
the real axis and 0.06 of the imaginary axis of Fig. 8 respectively. Then the designed
method has higher accuracy than Euler method. The stable region of the designed
method on real axis is 4.4 times wider than one of 4th order Runge Kutta method.

Consequently the designed method satisfies all of the specifications.

4.6 Example of the numerical calculation by the designed method
The dynamic behavior of a chemical plant in Fig. 9 is calculated by 4th order
Runge Kutta method and the designed method. Fig. 10 shows these solutions. The
curve shown by the solid line is the solution by 4th order Runge Kutta method under

Table 6 Coefficient of the designed numerical method

aj [
a;=1, 0600000 c1=0. 402794
ag=0. 301403 ca=0, 462322
ag=0. 351212 c3=0.129284

a,=0. 140000 cs=0. 005600




Kajiro WATANABE, Makoto TERAOKA

Re

Im

— ~10.0

St PLANE 50
an STABLE REGION 2
1% -
17 L, 1.22

LY S Cd
}str T ” 0.63
& ‘i- /| -

L e 0.32

:» i [ i)
'\\ " -:-"l-‘ ’_‘- "0.16
Ry Trocheog. ' 1008

I ‘\.; ; [; '
R 0.04
-1%3 K\ r».__{__-l 1 0.02
4 ~ '
A S | I 0.01

-10.0 -5.0 ~2.5 -1.22~0.63 ~0.32~0.16~0.08~0.04—0.02-0,01

HECRETH M (G515%) 119

Fig. 8. Distortion characteristics of the sr plane and stable

region of the designed method

T 63000
[Eril 3 TS 08 SN X X.] - 101X Xo
3 - 013x10 s ] s o o oazxto .l _|
15400 15400
7700 7100
- -1 N X 1 ol %10-! Xe X
. 0303x10- |X ,-I'| L SNy 0303x 10 “’ll _I
27000 u "
I
Fig. 9. Block diagram of the nonlinear process
Xi, ——: RUNGE KUTTA (x = 0.01)
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the stepwidth =0, 01 and this curve can be regarded as theoretical value.

The numerical unstable phenomenon happens, when solved by 4th order Runge
Kutta method under =0.07 as shown by symbol x. The designed method can solve
it stably when <0, 265, and the solution under r=0. 25 is shown by symbol O. This
is very near to the curve given by the solid line and indicates that the processing ef-
ficiency is almost 4 times higher than 4th order Runge Kutta method when applyed to
the equation of this type. ‘

5. Conclusion

This paper presented a design procedure of the single-step numerical calculation
method for ordinary differential equations and two design examples,

The numerical methods designed by this approach, can adapt the characteristics
of the given equation and can improve the numerical efficiency., These numerical
mathods are designed by simple procedure and are well adaptable to the equstions

with special features and to the digital simulator of a industorial process, which uses
the numerical calculation frequently.

In this design procedure, the designed methods are restricted to the single-step
method and the discretization errors are not always take into consideration. The future
theme in this problem is to establish the design procedure, which includes multi-step
methods and thinks over the discretization errors,
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