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We investigate polarization observables in hyperon-nucleon scattering by decomposing scattering ampli-
tudes into spin-space tensors, where each component describes scattering by corresponding spin-dependent
interactions, so that contributions of the interactions in the observables are individually identified. In this way,
for elastic scattering we find some linear combinations of the observables sensitive to particular spin-dependent
interactions such as symmetric spin-orbitsLSd interactions and antisymmetricLS ones. These will be useful to
criticize theoretical predictions of the interactions when the relevant observables are measured. We treat vector
analyzing powers, depolarizations, and coefficients of polarization transfers and spin correlations, a part of
which is numerically examined ino+p scattering as an example. Total cross sections are studied for polarized
beams and targets as well as for unpolarized ones to investigate spin dependence of imaginary parts of forward
scattering amplitudes.
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I. INTRODUCTION

Interactions between hyperons and nucleons are funda-
mental subjects in studies of nuclear structures and reactions
that contain hyperons. So far, a number of theoretical models
for hyperon-nucleonsYNd interactions have been developed
based on boson-exchange models[1–3] or quark-cluster ones
[4,5]. On the other hand, experimental studies of the interac-
tions throughYN scattering have scarcely been performed,
which leaves many ambiguities, particularly on their spin
dependence.

As is well known, polarization phenomena are a substan-
tial tool for studying spin-dependent interactions. In a phase-
shift analysis ofYN scattering[6], which is an information
source of the spin-dependent interactions, polarization ob-
servables are shown to be indispensable to avoid ambigu-
ities.

Recently, asymmetries of scattered hyperons have been
measured for elastic scattering of polarizedo+ and L on
protons[7], which provide an experimental evidence on the
characteristic difference of the spin dependence betweeno+p
andLp interactions, though of qualitative nature at present.
Considering that such kinds of experimental research will be
developed more in the future, we will theoretically investi-
gate polarization observables inYN scattering in relation to
the spin dependence ofYN interactions. In general, contribu-
tions from different kinds of spin-dependent interactions are
mixed up in scattering observables. However, we will predict
some linear combinations of the observables to exhibit ef-
fects of particular spin-dependent interactions. Analyses of

such combinations will thereby be useful to clarify charac-
teristics of the interactions and provide clear-cut criticisms
on the spin dependence of the model interactions when the
relevant observables are measured.

In order to relate the polarization observables to the spin-
dependent interactions, we will decompose the scattering
amplitudes into scalar, vector, etc., in the spin space, each of
which describes scattering by central interactions, by spin-
vector interactions such asLS ones, etc. When the observ-
ables are described in terms of such amplitudes, one will be
able to identify the contributions of particular spin-dependent
interaction in the observables accordingly. Similar decompo-
sitions of the scattering amplitudes have been applied to
analyses of nucleon-deuteron scattering[8–10], which have
provided deeper understanding of the effects of spin-
dependent interactions in the scattering observables and have
succeeded in clarifying the scalar, vector, and tensor charac-
ters of three-nucleon forces. Such success encourages us to
extend the method to theYN scattering.

In the present paper, we will consider a general case of
scattering between two spin-1/2 particles, since the spins of
nucleons and hyperons,L, o, etc., are 1/2. In Sec. II, the
decomposition of the scattering amplitude into the spin-space
tensors is given in a model independent way. Each compo-
nent of the decomposed amplitude is related to conventional
amplitudes by giving explicit forms for the tensors. In this
way, elastic scattering is investigated in detail. As will be
shown later, the present amplitude includes a vector compo-
nent effective for mixing of total intrinsic spins, which is
absent in the amplitude of nucleon-nucleon scattering. Thus
the polarization observables in theYN scattering are com-
posed of the constituents in a way different from that in the
nucleon-nucleon scattering[11]. Using the amplitudes given
in Sec. II, we investigate typical polarization observables for*Email address: ishikawa@i.hosei.ac.jp
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elastic scattering in Sec. III, where the analyzing powers and
second order polarization observables, such as depolariza-
tions, are treated. Further, it is shown that total cross sections
for the polarized beam and target as well as for the unpolar-
ized ones exhibit contributions of particular spin-dependent
interactions to the scattering amplitudes, when linear combi-
nations are considered. In Sec. IV, a part of theoretical pre-
dictions is numerically examined as an example of theo+p
scattering by using the Nijmegen interactions[2], where the
calculated quantities are compared with different versions of
the interactions. Summary will be given in Sec. V.

II. SCATTERING AMPLITUDES FOR
TWO SPIN-1/2 PARTICLES

A. Spin tensor analysis of scattering amplitudes

Let us consider theT matrix M for scattering of two spin-
1/2 particles,a+b→c+d, characterized by the isospin and
the strangeness, where the parity is conserved. The matrix
element ofM gives the scattering amplitude as usual. To
decompose the amplitude according to the tensorial property
in the spin space, we will expandM by spin-space tensors of
the rankK andz componentk, Sk

sKd,

M = o
Kk

s−dkS−k
sKdRk

sKd, s1d

whereRk
sKd is a coordinate-space tensor associated withS−k

sKd.
Then the matrix element ofM designated by thez compo-
nents of spins of the related particles,na, etc., and the rela-
tive momenta between the particles in the initial and final
states,ki andkf, is given by

kncnd;kfuM unanb;kil = o
sinisfnf

S1

2
U1

2
nanbUsiniD

3S1

2
U1

2
ncndUsfnfD

3o
Kk

s−dsf−nfssisfni − nfuKkd

3Mk
sKdssisf ;kikfd, s2d

where the geometrical part of the matrix element ofSk
sKd is

described by the Clebsch-Gordan coefficient due to the
Wigner-Eckart theorem, and the physical part is included in
the last factorMk

sKdssisf ;kikfd, which is an amplitude of rank
K and is given by

Mk
sKdssisf ;kikfd =

s−dsi−sf

Î2K + 1
ssfuuSsKduusid 3 kkfuRk

sKdukil. s3d

In the choice of the Madison convention for the reference
axes,ẑu uki and ŷu uki 3kf, R−k

sKd is related toRk
sKd due to the

parity conservation[12] as

R−k
sKd = s−dK−kRk

sKd, s4d

which leads to

M−k
sKdssisf ;kikfd = s−dK−kMk

sKdssisf ;kikfd. s5d

Thus the scattering amplitude consists of the following non-
vanishing independent amplitudes classified by the rank of
the spin-space tensor: the scalar amplitudesUjs j =0,1d

Uj = M0
s0ds j j ;kikfd, s6d

the vector onesSjs j =1,2,3d

S1 = M1
s1ds01;kikfd, s7ad

S2 = M1
s1ds10;kikfd, s7bd

S3 = M1
s1ds11;kikfd, s7cd

and the tensor onesTjs j =1,2,3d

Tj = Mj−1
s2d s11;kikfd. s8d

These amplitudes describe the scattering by interactions with
the corresponding tensor property, where contributions of
higher orders of the interactions are included under the re-
striction due to the tensorial property. For example, the sca-
lar amplitudeUj’s include the higher order contributions as
long as they form scalars in the spin space.

The present scattering amplitude is equivalent to the
Wolfenstein amplitude in Ref.[3] in the sense that both are
composed of two scalar components, three vector ones, and
three tensor ones. Also, such decomposition of the scattering
amplitude into spin-space tensor components is based on the
theoretical development in Ref.[13] and is similar to that in
Ref. [14] for nucleon-nucleon inelastic scattering. In practi-
cal cases, Uj, Sj, and Tj are calculated from
kncnd;kf uM unanb;kil, which will be obtained in conventional
ways. More details are given in Appendix A.

In the elastic scattering, time-reversed states are equiva-
lent to the original ones. Then applying the time-reversal
theorem[15] to the matrix element ofM, we get

kncnd;kfuM unanb;kil = s−dnc+nd−na−nb

3k− na − nb;− kiuM u− nc − nd;− kfl,

s9d

which leads to

Mk
sKdssisf ;kikfd=s−dsi+sf−KMk

sKdssfsi ;− kf − kid. s10d

This gives the following relations for the vector and tensor
amplitudes, the derivation of which is given in Appendix B:

S2 = − S1 s11d

and

1

2
sinuSÎ3

2
T1 − T3D = − cosuT2. s12d

Thus the independent amplitudes for the elastic scattering
are two scalar ones, two vector ones, and two tensor ones.
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Since the composition of independent amplitudes depends on
the property of the scattering, we will specify the scattering
to the elastic one for further developments.

B. Conventional representation of elastic scattering

For the elastic scattering,a+b→a+b, the T matrix will
be represented in terms of spin-independent, spin-spin, sym-
metric LS (SLS), antisymmetricLS (ALS), and tensor com-
ponents as

M = Vc + Vsssa ·sbd+ VSLSssa + sbd ·L + VALSssa − sbd ·L

+ VT„fsa ^ sbgs2d ·Y2sr̂d…, s13d

whereL is the a-b relative orbital angular momentum,r is
thea-b relative coordinate, andV,s are form-factor functions,
which include the higher order effects, for the spin-
independent central interactionVc, the spin-spin interaction
Vs, the SLS interactionVSLS, the ALS interactionVALS, and
the tensor interactionVT. Here, exchange effects due to
strangeness transfers between the particles are included in
VALS. For the nucleon-nucleon scattering, the term ofVALS
is eliminated because of the equivalence ofa and b.

We will connect the amplitudes of Eqs.(6)–(8) to those in
Eq. (13) by specifyingSsKd andRk

sKd in Eq. (3) as 1 andVc,
ssa·sbd and Vs, sa±sb and VSLSLk=1 (VALSLk=1), where the
terms ofk=1 are effective due to Eq.(7), etc. For this pur-
pose, we define new scalar amplitudes,

Ua ; kkfuVcukil, s14ad

Ub ; kkfuVsukil, s14bd

and new vector amplitudes,

Sa ; kkfuVALSL1ukil, s15ad

Sb ; kkfuVSLSL1ukil, s15bd

and obtain

U0 = Ua − 3
4Ub, s16ad

U1 = Î3sUa + 1
4Ubd , s16bd

and

S1 = − S2 = − Sa, s17ad

S3 = Î2Sb. s17bd

ThenS1 s=−S2d describes the scattering by the ALS interac-
tion andS3 that by the SLS interaction. The former interac-
tion couples the states of the total intrinsic spins 0 and 1,
while the latter interaction does not.

The tensor amplitudesTj s j =1,2,3d are calculated as

Tj = 1
2kkfuVTY2,j−1ukil, s18d

where one ofTj is not independent due to the time-reversal
theorem, Eq.s12d. For later convenience, we will choose
independent amplitudesTa andTb as

Ta =
1
Î6

T1 + T3, s19ad

Tb =
1
Î6

T1 − T3, s19bd

which give

T2 = − tanus 1
2Ta + Tbd . s20d

III. POLARIZATION OBSERVABLES

In this section, we will calculate analyzing powers, depo-
larizations, polarization transfer coefficients, and spin corre-
lation coefficients for the elastic scattering,a+b→a+b, and
total cross sections using the scattering amplitudes derived in
the preceding section and show their linear combinations
sensitive to individuals of the scalar, vector, and tensor inter-
actions.

A. Vector analyzing powers

The vector analyzing powersAysad for the polarized beam
a andAysbd for the polarized targetb, which are equivalent
to respective cross-section asymmetries, are defined as

Aysad =
1

NR
TrfMsysadM†g, s21ad

Aysbd =
1

NR
TrfMsysbdM†g, s21bd

whereNR is given by

NR ; TrsMM †d=uU0u2 + uU1u2 + 2suS1u2 + uS2u2 + uS3u2d

+ uT1u2 + 2suT2u2 + uT3u2d s22d

and is related to differential cross sectionsds /dcosu as

ds

dcosu
=

2pkf

4ki
NR. s23d

Using the amplitudes in Eqs.(6)–(8), we get

Aysad =
4

NR
ImH−

1
Î2

U0
*S2 +

1
Î3

U1
*S 1

Î2
S1 − S3D − S 1

Î2
S1

+
1

2
S3D*S 1

Î6
T1 + T3D−

1

2
T2

*SÎ3

2
T1 − T3DJ ,

s24ad

Aysbd =
4

NR
ImH 1

Î2
U0

*S2 −
1
Î3

U1
*S 1

Î2
S1 + S3D+ S 1

Î2
S1

−
1

2
S3D*S 1

Î6
T1 + T3D −

1

2
T2

*SÎ3

2
T1 − T3DJ .

s24bd
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For the elastic scattering, in terms of the conventional
amplitudes, Eqs.(14), (15), and(19), we get

Aysad = −
4Î2

NR
ImHUa

* sSa + Sbd +
1

4
Ub

* s− Sa + Sbd

−
1

2
Ta

* s− Sa + SbdJ , s25ad

Aysbd = −
4Î2

NR
ImHUa

* s− Sa + Sbd +
1

4
Ub

* sSa + Sbd

−
1

2
Ta

* sSa + SbdJ , s25bd

and

NR = 4uUau2 + 3
4uUbu2 + 4suSau2 + uSbu2d + 1

2stan2u + 4duTau2

+ 2stan2u + 1dfuTbu2 + ResTa
* Tbdg, s26d

where we used the following relation due to the time-reversal
relation Eq.s12d:

ImHT2
*SÎ3

2
T1 − T3DJ = 0. s27d

Here, we will consider the sum and the difference of
Aysad andAysbd:

Aysad + Aysbd = −
8Î2

NR
ImHSUa +

1

4
Ub −

1

2
TaD*

SbJ ,

s28ad

Aysad − Aysbd = −
8Î2

NR
ImHSUa −

1

4
Ub +

1

2
TaD*

SaJ .

s28bd

The quantities inside the curly brackets in Eqs.(28a) and
(28b) are proportional to the matrix elements ofVSLSL1 and
VALSL1, respectively, as shown in Eq.(15). Then we can
separate the contribution of the ALS interaction from that of
the SLS interaction by considering such linear combinations
of the analyzing powers:Aysad+Aysbd will be sensitive to the
strength of the SLS interaction andAysad−Aysbd to that of
the ALS one for givenUa, Ub, andTa. The boson-exchange
model[3], for instance, predicts a strong SLS interaction for
the o+p system but a weak one for theLp system. On the
other hand, the ALS interaction is stronger for the latter than
for the former, although their magnitudes are small. Mea-
surements of these quantities therefore will give clear-cut
examination of such characteristic features of theLS interac-
tions.

B. Second order polarization observables

First we will define the observables to be discussed. When
the colliding particlea is polarized ini-axis direction, one
defines the depolarizationDi

jsad, which describes the polar-
ization of a in the j-axis direction after the scattering by

Di
jsad =

1

NR
TrfMsisadM†s jsadg. s29d

When we consider the polarization of the partnerb after the
scattering, we define the polarization transfer coefficient as

Ki
jsa → bd =

1

NR
TrfMsisadM†s jsbdg. s30d

Finally we describe effects of the simultaneous polarizations
of both a and b in the initial state by the spin correlation
coefficient

Cij =
1

NR
TrfMsisads jsbdM†g. s31d

Specifyingi and j to two of x, y, andz, one gets 15 nonva-
nishing observables, whose expressions for the general scat-
tering are given in Appendix C.

In the following, we will discuss linear combinations of
such second order polarization observables for the elastic
scattering, which are convenient for studying characteristics
of the interactions.

Let us examine the sum of the diagonal elements of the
second order polarization observables. The results are

Dx
xsad + Dy

ysad + Dz
zsad =

12

NR
HuUau2 −

1

16
uUbu2

+
1

3
fuSau2 + uSbu2 − 4 ResSa

* Sbdg

−
1

3
suT1u2 + 2uT2u2 + 2uT3u2dJ ,

s32d

Kx
xsa → bd + Ky

ysa → bd + Kz
zsa → bd

=
3

NR
H2 ResUa

* Ubd +
1

2
uUbu2 −

4

3
suSau2 − uSbu2d

−
1

3
suT1u2 + 2uT2u2 + 2uT3u2dJ , s33d

Cxx + Cyy + Czz=
3

NR
H− uU0u2 +

1

3
uU1u2 −

4

3
suSau2 − uSbu2d

+
1

3
suT1u2 + 2uT2u2 + 2uT3u2dJ , s34d

where the cross terms of the amplitudes with different ranks
such as ResUb

* Tbd are canceled out.
If we neglect the terms without the scalar amplitudes, for

example, in Eqs.(32) and(26), assuming that the scalar am-
plitudes are dominant over the other amplitudes, we get

D ;
1

3
fDx

xsad + Dy
ysad + Dz

zsadg ,
1

NR
S4uUau2 −

1

4
uUbu2D

s35d

and
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NR , 4uUau2 + 3
4uUbu2, s36d

which give the magnitudes of the scalar amplitudes as

uUau2 ,
NR

16
s1 + 3Dd, s37ad

uUbu2 , NRs1 − Dd. s37bd

Moreover, for the second order polarization observables,
there are several linear combinations that exhibit effects of
particular components of the interaction: for example,

Cxx + Czz+ Kx
xsa → bd + Kz

zsa → bd =
8

NR
RehsUb + Tad*Uaj,

s38d

Cxz− Czx=
4Î2

NR
RehsUb + Tad*Saj, s39d

Kx
zsa → bd − Kz

xsa → bd =
4Î2

NR
RehsUb + Tad*Sbj, s40d

and

Dx
zsad + Dz

xsad = − tanu„Dx
xsad − Dz

zsad…

=
4tanu

NR
ReHsUb + Tad*S1

2
Ta + TbDJ .

s41d

The numerators on the right-hand sides of these equations
are, respectively, proportional to the magnitudes of the am-
plitudes,Ua, Sa, Sb, and 1/2Ta+Tb, and then the left-hand
side quantities will give some kinds of measures of the
strength of the corresponding interactions, when multiplied
by the cross section. Since Eqs.s39d–s41d include onlyUb as
the scalar amplitude, they will be useful for investigation of
the spin-spin interaction.

C. Spin-dependent total cross sections

Total cross sections, when no Coulomb interaction acts,
provide the imaginary parts of forward scattering amplitudes
by the optical theorem. In the present system, three ampli-
tudes withk=0, namely,Ua, Ub, andT1, survive at the for-
ward angle, which are important sources of information on
the scalar and tensor interactions. We will consider corre-
spondingly three kinds of total cross sections by choosing
proper polarizations of the target and beam particles.

Let us denote the spin density of an initial state, which
consists of the beam particlea and the target particleb, by
ri

sa,bd. Then the optical theorem gives the corresponding total
cross sections as

s =
4p

k
ImhTrsri

sa,bdMdu=0j, s42d

wherek is the magnitude ofki.

One of the independent total cross sections is the unpo-
larized total cross sectionsunpol calculated from a density
matrix

ri
sa,bd = 1

2I sad
^

1
2I sbd, s43d

whereI sad andI sbd are the unit matrices for particlesa andb,
respectively.

As for the other two total cross sections, we consider
those with longitudinal and transverse polarizations. In gen-
eral, when particlesa andb are polarized in thej-axis direc-
tion with polarizationspsad andpsbd, the corresponding cross
sections jspsad ,psbdd is obtained with spin density matrix

ri
sa,bd = psad 1

2s j
sad

^ psbd 1
2s j

sbd, s44d

wheressad andssbd are the Pauli spin matrices fora andb.
The polarization axis is along the beam direction,j =z, for
the longitudinal configuration and is perpendicular to the
beam direction, typicallyj =y, for the transverse one. The
longitudinal asymmetryDsL and the transverse asymmetry
DsT f8g are defined as the difference of the cross sections
provided by the reversal of the particleb’s spin:

DsL = szs+ 1,− 1d − szs+ 1, + 1d, s45ad

DsT = sys+ 1,− 1d − sys+ 1, + 1d. s45bd

From these definitions, we obtain

ImfUasu = 0dg =
k

4p
sunpol, s46ad

ImfUbsu = 0dg = −
k

6p
sDsL + 2DsTd, s46bd

ImfT1su = 0dg = −
Î2k

4Î3p
sDsL − DsTd. s46cd

That is, for the imaginary part of the forward scattering am-
plitude, the spin-independent scalar amplitude is determined
by sunpol, and the spin-spin scalar amplitude and the tensor
amplitude are determined byDsL and DsT. Then measure-
ments of such total cross sections will provide criticisms of
the calculated amplitudes for scattering of neutral hyperons,
for example,Lp scattering. Since the imaginary parts of
scattering amplitudes reflect absorption effects due to related
reaction channels, measurements of these cross sections will
provide information of the nature of the couplings with the
channels, particularly, by clarifying which kinds of the spin-
dependent interactions are important.

IV. NUMERICAL EXAMINATION IN o+p SCATTERING

As a test of the validity of the theoretical predictions, we
will perform numerical calculations foro+p scattering with
the Nijmegen soft-core one-boson-exchange potential mod-
els (NSC97) [2]. In Ref. [2], six differentYN potential mod-
els, NSC97a to NSC97f, which are characterized by different
choices for the magnetic vector ratio, have been phenomeno-
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logically derived as descriptions of existing experimental
data. These potential models contain the scalar, vector, and
tensor components of various strengths, and therefore should
be suitable for the present test. In all of the figures below, we
will plot results of three potentials, namely, NSC97a,
NSC97c, and NSC97f, to avoid an unnecessary confusion
due to overclosed lines.

A. Scattering amplitudes

The magnitudes of the scalar amplitudes,Ua andUb, the
vector amplitudes,Sa andSb, and the tensor amplitudes,T1,
T2, and T3, for the o+p scattering at po+=170 and
450 MeV/c are plotted in Figs. 1 and 2, respectively. As seen
in these figures, the NSC97 models give similar angular de-
pendence for each kind of the amplitude in a global sense: a
weak cosu dependence of the scalar amplitudes except for
forward angles particularly remarkable atpo+=170 MeV/c,
a hill-like distribution peaked at cosu=0–0.5 for the vector
amplitudes, a one-node-like structure for the tensor ampli-
tudeT1, etc. Such characteristics of the angular dependence
will be understood by the plane-wave Born approximation as
demonstrated in Ref.[16], where the matrix element of the
coordinate-space tensor in Eq.(3) is given as

kkfuRk
sKdukil =E eiq·rYKksr̂dVKsrddr

= 4piKYKksq̂dE
0

`

jKsqrdVKsrdr2dr. s47d

Here,VK is a relevant potential for the tensor of rankK, and
q is the momentum transfer in the scattering,

FIG. 1. The magnitudes of the amplitudesUa, Ub, Sa, Sb, T1,
T2, and T3 for the o+p scattering atpo+=170 MeV/c. The solid
lines are calculations by the NSC97a potential model, the dashed
lines by the NSC97c one, and the dotted lines by the NSC97f one.

FIG. 2. The same as Fig. 1, but
at po+=450 MeV/c.
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q = ki − kf . s48d

For the elastic scattering, the magnitude and azimuthal angle
of the momentum transferq are given by

q = kÎ2s1 − cosud, s49ad

tanuq =
sinu

1 − cosu
, s49bd

wherek= uki u = ukfu. Equations(47) and(49) explain essential
features of the angular dependence of the amplitudes in Figs.
1 and 2.

Equation(47) indicates that the magnitudes of the ampli-
tudes in Figs. 1 and 2 are measures of the strengths of the
relevant interactions. Atpo+=170 MeV/c, the magnitude of
Ub is much larger than that ofUa and of the vector and
tensor amplitudes except for cosu,1, where the Coulomb
scattering is dominant inUa. Such superiority of the spin-
spin amplitudes is interpreted as the result of large contribu-
tions of the pion-exchange mechanism to the central interac-
tion. On the other hand, atpo+=450 MeV/c, the magnitudes
of Ua, Ub, and the tensor amplitudes are comparable. The
magnitude ofSa is very small, indicating weak ALS interac-
tions. Both uSau and uSbu decrease with the change of the
interaction from NSC97a to NSC97f, reflecting stronger LS
interactions in NSC97a and weaker ones in NSC97f.

B. Cross sections

As discussed in Sec. III C, a set of the spin-dependent
total cross sections for a system without a Coulomb force
works as measures of the strength for the spin-dependent
interactions by the optical theorem. However, the Coulomb
interaction in theo+p system prevents such a measurement
of the total cross section. In analyzingYN data of 1960s, an
averaged value of the cross section over a certain range of
the scattering angle, cosumin to cosumax,

s =
2

cosumax− cosumin
E

cosumin

cosumax dssud
dcosu

dcosu s50d

was used as “total”o+p cross section. In Fig. 3, the total
cross sections with cosumin=−0.5 and cosumax=0.5 f2g cal-
culated for the NSC97a, NSC97c, and NSC97f are com-
pared with the experimental dataf17–19g. All the mea-
sured cross sections are localized in the low momentum
region below po+=200 MeV/c, where the cross section
calculated by any version of the interaction has a similar
magnitude and agrees to such low momentum data.

As indicated in Eqs.(23) and (29), the differential cross
section consists of the absolute squares of scalar, vector, and
tensor amplitudes. The total cross section accordingly con-
sists of the corresponding contributions:

sA =
2pkf

4ki

2

cosumax− cosumin
E

cosumin

cosumax

OAdcosu, s51d

where OA=4uUau2, 3/4 uUbu2,4uSau2,4uSbu2, and uT1u2
+2suT2u2+ uT3u2d for A=Ua ,Ub ,Sa ,Sb, and T, respectively.
Such components of the cross sections are displayed in Fig.

4. It is seen that the total cross section is mainly governed by
the contributions of the scalar amplitudes and the contribu-
tion of the spin-spin interaction,Ub, is particularly dominant
at the low momenta. ThisUb contribution explains the main
part of the measured cross sections in Fig. 3. For a higher

FIG. 3. “Total” cross section by Eq.(50) for the o+p scattering
for 100 MeV/cøpo+ø600 MeV/c. See the caption of Fig. 1 for
the definitions of the theoretical curves. The filled squares denote
the experimental data from Ref.[17], the open circles from Ref.
[18], the open triangle from Ref.[19].

FIG. 4. Decomposition of total cross section of theo+p scatter-
ing into spin-space components defined in Eq.(51). See the caption
of Fig. 1 for the definitions of the theoretical curves.
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momentum region, the contribution from the tensor ampli-
tudes becomes comparable with that from the scalar ampli-
tudes as indicated in Fig. 2.

In Fig. 5, the calculated differential cross sections
dssud /dcosu at po+=170 and 450 MeV/c are displayed,
which are very similar to each other for givenpo+ and agree
with the experimental data[17,20]. Since uTju2 s j =1,2,3d
and uSju2 s j =a ,bd are small compared touUau2 and uUbu2 for
po+=170 MeV as shown in Fig. 1, the differential cross sec-
tion is governed mainly by 4uUau2+ 3

4 uUbu2 according to Eq.
(26), where the calculateduUau and uUbu complement each
other: uUbu given by the NSC97a potential is larger than that
by the other versions of the interaction as shown in Fig. 1,
but the excess is compensated by the smallness ofuUau, giv-
ing the resultant cross section similar to other calculations as
seen in Fig. 5(a).

C. Analyzing powers

The calculated difference and average of theo+ analyzing
powerAyso+d and the proton analyzing powerAyspd,

DAy = Ayso+d − Ayspd, s52ad

Ay
avr = 1

2fAyso+d + Ayspdg, s52bd

are plotted, respectively, in Figs. 6 and 7 for theo+p scatter-
ing atpo+=170 and 450 MeV/c. Contrary to the similarity in
the calculated differential cross sections among the NSC97
models, the difference in the linear combinations of the cal-
culated vector analyzing powers among the NSC97 models
is significant. The calculated differenceDAy reflects evenly
the magnitude of the ALS interaction, giving the largest mag-
nitude for the NSC97a model and the smallest one for the
NSC97f model. On the other hand, the average of the ana-
lyzing powersAy

avr is rather confusing. While NSC97a and
NSC97c give almost the same magnitudes of the SLS ampli-
tude, which are larger than that of NSC97f, as shown in Figs.
1 and 2, the calculations ofAy

avr do not reflect this tendency.
Particularly,Ay

avr for the NSC97a potential has the opposite
sign to that for other versions at some angles. This happens
due to the sensitivity ofAy

avr not only on the SLS amplitude
Sa but also on a combination of the scalar amplitudes, the
spin-independent amplitudeUa and the spin-spin oneUb as
seen in Eq.(28a). The dependence on the combination of
scalar amplitudes overrides that on the SLS amplitude in
Ay

avr, while this is not the case forDAy. We therefore con-
clude that the spin-independent and spin-spin central interac-
tions in YN scattering should be determined from other
sources in order to obtain unique information ofLS interac-
tions from measurements of analyzing powers.

FIG. 5. Differential cross sectiondssud /dcosu for theo+p scat-
tering atpo+=170 MeV/c (a) and 450 MeV/c (b). See the caption
of Fig. 1 for the definitions of the theoretical curves. Experimental
data are taken from Ref.[17] for po+=170 MeV/c and from Ref.
[20] for po+=450 MeV/c.

FIG. 6. The difference of the vector analyzing powersAyso+d
−Ayspd for the o+p scattering at po+=170 MeV/c (a) and
450 MeV/c (b). See the caption of Fig. 1 for the definitions of the
theoretical curves.
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D. Depolarizations

Information on the scalar interactions can be obtained
from, for example, depolarizations as discussed in the pre-
ceding section. Figure 8 displays the average of the diagonal
elements of depolarizations,D in Eq. (35), for theo+p scat-
tering atpo+=450 MeV/c and the quantities defined as

uŨau ; uNRs1 + 3Ddu1/2/4, s53ad

uŨbu ; uNRs1 − Ddu1/2, s53bd

which are predicted to give scalar amplitudesuUau and uUbu,
respectively, using Eq.(37). In the figure, the average depo-
larization D varies among the three versions of the NSC97
interaction, particularly with different signs at backward
angles for NSC97a and NSC97f. The extracted scalar ampli-

tudesuŨau and uŨbu follow the tendency of the amplitudes in

Fig. 2 exceptuŨbu at backward angles, where effects from the
tensor amplitudeT1 may not be neglected. Thusss1+3Dd
andss1−Dd at middle and forward angles will be good mea-
sures of the spin-independent and spin-spin central interac-
tions. It should be noted that the components ofD, i.e., Dx

x,
Dy

y, andDz
z, also distinguish the above versions of the inter-

action as well asD, although their interaction dependence is
not displayed at present. However,D is favorable to identify

the contribution of the spin-independent interaction and that
of the spin-spin one separately.

V. SUMMARY

In the YN scattering, we have investigated the contribu-
tions of the spin-dependent interactions to the observables by
decomposing the scattering amplitudes according to the ten-
sorial property in the spin space, so that the contributions of
the interactions are individually identified. In terms of such
amplitudes, the expressions for the polarization observables
are derived for general scattering.

For the elastic scattering, we have found some linear com-
binations of the observables to be sensitive to particular in-
teractions and thus to be favorable for studying contributions
of the interactions. In fact, the contributions of the SLS in-
teraction and those of the ALS one are separated from each
other by considering the linear combinations of the vector
analyzing powers, the spin correlation coefficients, the polar-
ization transfer coefficients, etc., each of which is propor-
tional to the strength of the SLS or ALS interactions. Similar
linear combinations have been found to be sensitive to the
tensor interactions and the spin-independent and spin-spin
central ones.

A part of the theoretical predictions is numerically exam-
ined for theo+p scattering as an example. The observables

FIG. 7. The average of the vector analyzing powersfAyso+d
+Ayspdg /2 for the o+p scattering atpo+=170 MeV/c (a) and
450 MeV/c (b). See the caption of Fig. 1 for the definitions of the
theoretical curves.

FIG. 8. (a) The average of the diagonal depolarizations ofo+

using Eq.(35), and (b) the extracted scalar amplitudes using Eq.
(37) for the o+p scattering atpo+=450 MeV/c. See the caption of
Fig. 1 for the definitions of the theoretical curves.
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have been calculated by the use of the series of the NSC97
interactions, and it has been found that some linear combi-
nations of the observables are useful to distinguish the dif-
ferent versions of the interaction even when their cross sec-
tions are so similar to be indistinguishable.

The total cross section has been investigated for the un-
polarized beam and target as well as for the longitudinal-
polarized ones and for the transverse-polarized ones. These
provide the imaginary parts of the amplitude of the forward
scattering by the spin-independent central interactions, the
spin-spin central ones, and the tensor ones. Measurements of
these cross sections in scattering of neutral hyperons by the
proton therefore will provide important information on the
interactions, particularly on the nature of the coupling with
the related reaction channels.

Due to the significance of information on theYN interac-
tion, we hope more experiments will be performed for polar-
ization phenomena in theYN scattering so that the details of
the interactions, which include the spin dependence, will be
determined.
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APPENDIX A: SPIN-SPACE TENSOR COMPONENTS OF
SCATTERING AMPLITUDE

The T matrix M for general scatteringa+b→c+d with a
given parity is described as

M =1
A B C D

E F G H

− H G F − E

D − C − B A
2 , sA1d

where rows are designated by the spinz componentsna and
nb as sna,nbd=s1/2,1/2d, s1/2,−1/2d, s−1/2,1/2d, and
s−1/2,−1/2d from left to right, and the columns bync andnd

as snc,ndd=s1/2,1/2d, s1/2,−1/2d, s−1/2,1/2d, and
s−1/2,−1/2d from top to bottom. Applying Eq.s2d to A, …,
H in Eq. sA1d, we get

A =
1
Î3

U1 +
1
Î6

T1, sA2ad

B =
1
Î2

S1 +
1

2
S3 −

1

2
T2, sA2bd

C = −
1
Î2

S1 +
1

2
S3 −

1

2
T2, sA2cd

D = T3, sA2dd

E =
1
Î2

S2 −
1

2
S3 −

1

2
T2, sA2ed

F =
1

2
U0 +

1

2Î3
U1 −

1
Î6

T1, sA2fd

G = −
1

2
U0 +

1

2Î3
U1 −

1
Î6

T1, sA2gd

H =
1
Î2

S2 +
1

2
S3 +

1

2
T2. sA2hd

Conversely one can calculateUj, Sj, andTj from A, …, H,

U0 = F − G, sA3ad

U1 =
1
Î3

s2A + F + Gd, sA3bd

S1 =
1
Î2

sB − Cd, sA3cd

S2 =
1
Î2

sE + Hd, sA3dd

S3 = 1
2sB + C − E + Hd, sA3ed

T1 =Î2

3
sA − F − Gd, sA3fd

T2 = − 1
2sB + C + E − Hd, sA3gd

T3 = D. sA3hd

APPENDIX B: TIME-REVERSAL THEOREM
IN ELASTIC SCATTERING

In this appendix, we will give the derivation of the rela-
tionships due to the time-reversal theorem for the vector am-
plitudes, Eq.(11), and the tensor ones, Eq.(12).

The time-reversal theorem is described as[15]

kncnd;kfuM unanb;kil = s− dnc+nd−na−nbk− na − nb;− kiuM̄ u

− nc − nd;− kfl, sB1d

whereM̄ is the T matrix for the inverse reaction. One can
transform this relation to that for the amplitude
Mk

sKdssisf ;kikfd in Eq. s2d as

Mk
sKdssisf ;kikfd=s− dsi+sf−KM̄k

sKdssfsi ;− kf,− kid. sB2d

We will transform the amplitude in the right-hand side of
the above equation so that the directions of the momentum of
the incident particle and that of the outgoing one are, respec-

tively, same as those in the left-hand side amplitude. SinceM̄
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is the same asM for the elastic scattering, the transformation
is described by the use of the rotation matrixD [21] as

M̄k
sKdssfsi ;− kf,− kid = o

k8

Dkk8sp − u,0,pdMk8
sKdssfsi ;kikfd.

sB3d

This leads to, forK=1,

M1
s1ds01;kikfd = − M1

s1ds10;kikfd sB4d

and, forK=2,

−Î3

2

M0
s2ds11;kikfd

cos2u − sin2u
=

M1
s2ds11;kikfd
cosu sinu

=M2
s2ds11;kikfd,

sB5d

which provides

1

2
SÎ3

2
M0

s2ds11;kikfd − M2
s2ds11;kikfdD

= − cotuM1
s2ds11;kikfd. sB6d

EquationssB4d and sB6d are rewritten as

S1 = − S2 sB7d

and

1

2
SÎ3

2
T1 − T3D = − cotu T2. sB8d

APPENDIX C: DEPOLARIZATIONS, POLARIZATION
TRANSFERS, AND SPIN CORRELATIONS IN GENERAL

SCATTERING BETWEEN SPIN-1/2 PARTICLES
In this appendix, the depolarizationsDi

jsad defined in Eq.
(29), polarization transfer coefficientsKi

jsa→dd in Eq. (30),
and spin correlation coefficientsCij in Eq. (31) are described
in terms of the amplitudes in Eqs.(6)–(8) for the case of
general scattering between two spin-1/2 particles.

The depolarizations ofa are described as

Dx
xsad =

4

NR
ReH 1

2Î3
SU0 +

1
Î3

U1D*

U1 +
1

2SU0 −
1
Î3

U1D*

3S 1
Î6

T1 − T3D+
1
Î2

sS1 − S2d*S3 +
1
Î2

sS1 + S2d*T2

−
1
Î6

T1
*S 1

Î6
T1 + T3DJ , sC1d

Dy
ysad =

4

NR
ReH 1

2Î3
SU0 +

1
Î3

U1D*

U1 +
1

2SU0 −
1
Î3

U1D*

3S 1
Î6

T1 + T3D− S1
*S2 +

1

2
uS3u2

−
1
Î6

T1
*S 1

Î6
T1 − T3D −

1

2
uT2u2J , sC2d

Dz
zsad =

4

NR
ReH 1

2Î3
SU0 +

1
Î3

U1D*

U1 −
1
Î6

SU0 −
1
Î3

U1D*

T1

+
1
Î2

sS1 − S2d*S3 −
1
Î2

sS1 + S2d*T2

+
1

2
S1

6
uT1u2 − uT3u2DJ , sC3d

Dx
zsad =

4

NR
ReH1

2SU0 +
1
Î3

U1D*

S3 −
Î2

2Î3
U1

*sS1 − S2d

+
1

2SU0 −
1
Î3

U1D*

T2−
1
Î2

S1
*S 1

Î6
T1 − T3D −

1
Î3

S2
*T1

+
1

2
S3

*S 1
Î6

T1 + T3D−
1

2
T2

*S 1
Î6

T1 + T3DJ , sC4d

Dz
xsad =

4

NR
ReH−

1

2SU0 +
1
Î3

U1D*

S3 +
Î2

2Î3
U1

*sS1 − S2d

+
1

2SU0 −
1
Î3

U1D*

T2−
1
Î3

S1
*T1 −

1
Î2

S2
*S 1

Î6
T1 − T3D

−
1

2
S3

*S 1
Î6

T1 + T3D−
1

2
T2

*S 1
Î6

T1 + T3DJ . sC5d

The polarization transfer coefficients froma to d are de-
scribed as

Kx
xsa → dd =

4

NR
ReH−

1

2Î3
SU0 −

1
Î3

U1D*

U1

−
1

2SU0 +
1
Î3

U1D*S 1
Î6

T1 − T3D
+

1
Î2

sS1 + S2d*S3 +
1
Î2

sS1 − S2d*T2

−
1
Î6

T1
*S 1

Î6
T1 + T3DJ , sC6d

Ky
ysa → dd =

4

NR
ReH−

1

2Î3
SU0 −

1
Î3

U1D*

U1

−
1

2SU0 +
1
Î3

U1D*S 1
Î6

T1 + T3D+ S1
*S2 +

1

2
uS3u2

−
1
Î6

T1
*S 1

Î6
T1 − T3D −

1

2
uT2u2J , sC7d
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Kz
zsa → dd =

4

NR
ReH−

1

2Î3
SU0 −

1
Î3

U1D*

U1

+
1
Î6

SU0 +
1
Î3

U1D*

T1+
1
Î2

sS1 + S2d*S3

−
1
Î2

sS1 − S2d*T2 +
1

2
S1

6
uT1u2 − uT3u2DJ ,

sC8d

Kx
zsa → dd =

4

NR
ReH−

1

2SU0 −
1
Î3

U1D*

S3 −
1
Î6

U1
*sS1 + S2d

−
1

2SU0 +
1
Î3

U1D*

T2−
1
Î2

S1
*S 1

Î6
T1 − T3D

+
1
Î3

S2
*T1 +

1

2
S3

*S 1
Î6

T1 + T3D
−

1

2
T2

*S 1
Î6

T1 + T3DJ , sC9d

Kz
xsa → dd =

4

NR
ReH1

2SU0 −
1
Î3

U1D*

S3 +
1
Î6

U1
*sS1 + S2d

−
1

2SU0 +
1
Î3

U1D*

T2−
1
Î3

S1
*T1

+
1
Î2

S2
*S 1

Î6
T1 − T3D −

1

2
S3

*S 1
Î6

T1 + T3D
−

1

2
T2

*S 1
Î6

T1 + T3DJ . sC10d

The spin correlation coefficients are described as

Cxx =
1

NR
ReH− uU0u2 +

1

3
uU1u2 −

4
Î3

U1
*S 1

Î6
T1 − T3D

+ 2s− uS1u2 + uS2u2d − 4S3
*T2 +

4
Î6

T1
*S 1

Î6
T1 + T3DJ ,

sC11d

Cyy =
1

NR
ReH− uU0u2 +

1

3
uU1u2 −

4
Î3

U1
*S 1

Î6
T1 + T3D

− 2suS1u2 + uS2u2 − uS3u2d +
4
Î6

T1
*S 1

Î6
T1 − T3D + 2uT2u2J ,

sC12d

Czz=
1

NR
ReH− uU0u2 +

1

3
uU1u2 +

4Î2

3
U1

*T1+ 2s− uS1u2 + uS2u2d

+ 4S3
*T2 −

1

3
uT1u2 + 2uT3u2J , sC13d

Cxz=
4

NR
ReH−

1
Î2

U0
*S2 −

1
Î3

U1
*S 1

Î2
S1 + T2D−

1
Î2

S1
*S 1

Î6
T1

+ T3D +
1

2
S3

*S 3
Î6

T1 − T3D+
1

2
T2

*S 1
Î6

T1 + T3DJ . sC14d

Czx=
4

NR
ReH 1

Î2
U0

*S2 +
1
Î3

U1
*S 1

Î2
S1 − T2D+

1
Î2

S1
*S 1

Î6
T1

+ T3D +
1

2
S3

*S 3
Î6

T1 − T3D+
1

2
T2

*S 1
Î6

T1 + T3DJ .

sC15d

For the combinations ofi and j , si j d=sxyd ,syxd ,syzd ,szyd,
the quantitiesDi

j, Ki
j, andCij automatically vanish.
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