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Abstract—A three-dimensional horizontally wide-angle beam-
propagation method is proposed on the basis of the alternating-
direction implicit scheme, in which the Padé approximant is applied
only to the horizontal direction. The present formulation reduces
the splitting error to the first order without an iteration procedure.
The effectiveness is demonstrated through the wide-angle propa-
gating beam analysis of a tilted optical waveguide.

Index Terms—Alternating-direction implicit (ADI) scheme,
beam-propagation method (BPM), optical waveguide, Padé
approximant, planar lightwave circuit.

I. INTRODUCTION

TO efficiently analyze the field propagation in three-dimen-
sional (3-D) optical waveguides, the beam-propagation

method (BPM) based on the alternating-direction implicit
(ADI) scheme has widely been employed [1]–[3]. Note,
however, that the ADI scheme has not been extended to the
Padé-based wide-angle equation [4], [5], since the straight-
forward extension gives rise to a zeroth-order splitting error
term. Chui and Lu [5] reformulated the wide-angle equation
as in the ADI iteration scheme for elliptic problems. While
this approach successfully solves the full-vectorial wide-angle
equation, it requires several iterations resulting in a decrease of
the efficiency of the ADI scheme.

Here we pay attention to the fact that a circuit pattern in
most planar waveguiding structures is confined to the horizontal
plane. This means that wide-angle beam propagation may occur
only in the horizontal direction. Therefore, the application of the
Padé approximant [6]–[9] only to the horizontal direction is ex-
pected to be sufficient for most practical waveguide problems.

In this letter, we propose a 3-D semivectorial horizontally
wide-angle BPM based on the ADI scheme, in which the Padé
approximant is applied only to the horizontal direction. The
present formulation reduces the splitting error to the first order,
without resorting to an iteration procedure. It is demonstrated
through the analysis of a tilted optical waveguide that the present
BPM maintains high accuracy for the analysis of the wide-angle
beam propagation regardless of the choice of the reference re-
fractive index.
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II. FORMULATION

The 3-D semivectorial equation with the (1, 1) Padé approx-
imant operator using recurrence relation [9] is expressed as

(1)

where

for the quasi-TE mode

for the quasi-TM mode and , in which is the
free-space wavenumber, the refractive index, and the ref-
erence refractive index to be appropriately chosen. The second
term in the denominator of the right-hand side of (1) results from
the Padé approximant. If we ignore this term, i.e., a value of the
denominator is chosen to be one, the equation reduces to the
Fresnel (paraxial) equation, which can be efficiently solved by
the ADI scheme.

It is known that the direct application of the ADI scheme to (1)
gives rise to the zeroth-order splitting error term. The coefficient
of the error term is derived as

Note that this error does not converge to zero, even when
approaches zero.

Here we apply the Padé approximant only to the horizontal
direction, considering the fact that a circuit pattern is gener-
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ally confined to the horizontal plane for most waveguiding struc-
tures, such as planar lightwave circuits. Doing so leads to

(2)

We discritize (2) by the Crank–Nicolson scheme, so that

(3)

To solve (3) by the ADI scheme, we divide it as follows:

(4)

Finally, we obtain the following two-step algorithm:

(5)

(6)

The second derivatives and are approximated using
the modified finite-difference formulae for the [10] and
fields [11]. Finally, we obtain a tridiagonal matrix, which can
be efficiently solved by the Thomas algorithm, leading to al-
most the same computational speed as that of the conventional
ADI-BPM based on the Fresnel equation.

We alternatively obtain the horizontally wide-angle BPM
using the exponential operators [6]–[8]. The relation between

and is formally expressed as [7]

(7)

where . We here adopt the second-order expan-
sion in and , and the first-order in , so that the expo-
nential operator in (7) can be approximated as

(8)

Note that the term regarding the phase variation should be
included in the first operator. Using the second-order [7] and
first-order approximations to the first and second operators, re-
spectively, in (8), we finally derive the same equation as (4).

Fig. 1. Tilted optical waveguide.

Fig. 2. Normalized guided-mode power for � = 45 , as a function of
reference refractive index n . Each result is obtained using the conventional
noniterative ADI scheme.

Expanding (4), we obtain the splitting error term whose co-
efficient is

It should be emphasized that this error is the first order with re-
spect to . Therefore, the effect of the error can be suppressed
with a reasonably small .

III. NUMERICAL RESULTS

We analyze the fundamental mode propagation in a tilted
waveguide to investigate the accuracy for the wide-angle beam
propagation. The tilted waveguide to be analyzed is illustrated
in Fig. 1, where the refractive indexes of the core and cladding
are and , respectively. The square core
( m) is used and the tilt angle is set to be . The
wavelength is chosen to be m. The spatial sampling
widths are as follows: m.

Fig. 2 shows the guided-mode power of the field observed
at m, normalized to the input power of the funda-
mental eigenmode, as a function of reference refractive index

. The results obtained from the present method are indicated
by the solid line. For comparison, also included are the results
obtained from the Fresnel equation with the ADI and from (1)
with the ADI, which are denoted by the broken and dotted lines,
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Fig. 3. V-shaped waveguide with a facet.

respectively (the latter corresponds to the case where the Padé
approximant is applied to both and directions). When the
eigenmode field propagates without deformation, the normal-
ized guided-mode power remains unity.

It is found in Fig. 2 that the present method attains high ac-
curacy over a wide range of . Note that the results obtained
from the Fresnel equation shows a mode power close to unity,
only when is taken to be , where
is the effective index of the eigenmode. For the use of (1), the
mode power is sensitive to as in the case of the Fresnel equa-
tion. This result is caused by the incorrect noniterative ADI
scheme with the zeroth-order splitting error. Although the max-
imum power observed probably stems from the reduction in
the splitting error at , an optimum value of may
not be predicted in advance from the waveguide parameters.
As a result, the present method offers more accurate results
for the wide-angle beam propagation in the planar waveguiding
structures, regardless of the choice of . This also leads to
the advantage that problems involving radiation modes can be
treated more accurately, when compared with the conventional
ADI-BPM based on the Fresnel equation.

As an application, we analyze the V-shaped waveguide with
a facet, shown in Fig. 3. The perfectly matched layer [12] is em-
ployed to absorb the outgoing waves. The waveguide parameters
are the same as those used in Fig. 1. We excite the field of the
fundamental mode from the input port and extract the reflected
field in the output port. Since this waveguide is a weakly guiding
structure, it is expected that a close correspondence be found
between the numerical results of the 3-D analysis and those of
the two-dimensional (2-D) analysis. Therefore, we also perform
the analysis using the 2-D wide-angle BPM with the equivalent
index method.

Fig. 4 depicts the power reflectivity observed at the output
port, as a function of tilt angle. It can be seen that the reflec-
tivity decreases with an increase in the tilt angle, where the po-
larization dependence is found. In addition, the 3-D results are
in excellent agreement with the 2-D ones. This again demon-
strates the high accuracy of the present method for the analysis
of the 3-D horizontally wide-angle beam propagation.

Fig. 4. Reflectivity as a function of tilt angle �.

IV. CONCLUSION

We have proposed a 3-D semivectorial horizontally wide-
angle BPM based on the ADI scheme without an iteration pro-
cedure. The effectiveness of the present method is investigated
through the analysis of the tilted optical waveguide. It is shown
that the present method attains high accuracy for the analysis
of the wide-angle beam propagation, regardless of the choice of
the reference refractive index. The application to the full-vecto-
rial BPM is now under consideration.
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