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Abstract

The red-backed salamander (Plethodon cinereus) has long-served as a model system in

ecology, evolution, and behavior, and studies surveying molecular variation in this species

have become increasingly common over the past decade. However, difficulties are com-

monly encountered when extending microsatellite markers to populations that are unstudied

from a genetic perspective due to high levels of genetic differentiation across this species’

range. To ameliorate this issue, we used 454 pyrosequencing to identify hundreds of micro-

satellite loci. We then screened 40 of our top candidate loci in populations in Virginia, Penn-

sylvania, and Ohio—including an isolated island population ~ 4.5 km off the shore of Lake

Erie (South Bass Island). We identified 25 loci that are polymorphic in a well-studied region

of Virginia and 11 of these loci were polymorphic in populations located in the genetically

unstudied regions of Ohio and Pennsylvania. Use of these loci to examine patterns of varia-

tion within populations revealed that South Bass Island has low diversity in comparison to

other sites. However, neither South Bass Island nor isolated populations around Cleveland

are inbred. Assessment of variation between populations revealed three well defined genetic

clusters corresponding to Virginia, mainland Ohio/Pennsylvania, and South Bass Island.

Comparisons of our results to those of others working in various parts of the range are consis-

tent with the idea that differentiation is lower in regions that were once glaciated. However,

these comparisons also suggest that well differentiated isolated populations in the formerly

glaciated portion of the range are not uncommon. This work provides novel genetic resources

that will facilitate population genetic studies in a part of the red-backed salamander’s range

that has not previously been studied in this manner. Moreover, this work refines our under-

standing of how neutral variation is distributed in this ecologically important organism.
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Introduction

Since the latter half of the 20th century, the Eastern Red-backed Salamander (Plethodon ciner-
eus; from here out ‘red-backed salamander’) has been the subject of hundreds of ecological,

evolutionary, and behavioral studies [1,2]. The red-backed salamander is a fully terrestrial,

direct developing species and is one of the most abundant vertebrates in eastern North Amer-

ica (Fig 1; [3,4]). In addition to being highly abundant, red-backed salamanders act as a top-

down regulator within the detrital food web [5–7]. These attributes exemplify why the red-

backed salamander has served as an excellent model for examining a wide variety of interesting

topics including: territoriality [8,9], the dynamics of complex social systems [10,11], pheno-

typic variation [12,13], fine-scale population differentiation [14,15], and the effects of anthro-

pogenic modifications of the landscape on gene flow [16,17].

At present, most of what is known about the molecular ecology of red-backed salamanders

is based on populations in western Virginia [14–16,18–20]. However, a handful of studies have

been conducted in other areas including: Quebec [17,21], Indiana [22], New York [13], and

Maryland [23]. The only published study we know of investigating genetic structure across a

wide swath of the red-backed salamander’s range was conducted in the 1970’s and is based on

protein electrophoresis rates [24]. In this study, Highton and Webster [24] concluded that

populations within Appalachian glacial refugia were markedly differentiated, even across short

geographic distances, whereas populations in formally glaciated portions of the range were by-

and-large genetically uniform. While synthesis across studies based on modern molecular

techniques [14,17,21,22] is generally consistent with the findings of Highton and Webster

([24]; see discussion), most of the red-backed salamander’s range has not been investigated via

contemporary approaches to population genetics.

Recently, several studies examining the evolutionary ecology of red-backed salamander

populations in Ohio have been conducted [25–27]. However, to the best of our knowledge,

nothing is known about population genetic dynamics within this part of the range and conse-

quently no codominant markers have been validated in or identified from these populations.

Although roughly 20 microsatellite loci have been isolated from P. cinereus [13,14,20], the typi-

cal number of loci used in published studies (mean number of loci = 6.33; [13–19,21–23]) is

well below the number of loci used in comparable studies on other taxa [28]. The most likely

explanation for this is that the red-backed salamander’s large geographic range (Fig 1) and lim-

ited capacity for dispersal [14,29] have resulted in genetic differentiation, which can lead to dif-

fering patterns of monomorphism and/or problems with PCR-based amplification when

extending loci to new populations (see results in [13,16,17,23]). Consequently, there is a need

for additional genetic resources for red-backed salamanders that will enable molecular ecology

research in and across divergent parts of the range. To this end, we used 454 pyrosequencing

to generate a genomic shotgun sequence library and informatically mined this library to iden-

tify microsatellite markers. We then used these new markers to genotype individuals from sev-

eral populations in geographic regions of interest (e.g., a well-studied region in western

Virginia and a region around Cleveland, Ohio that is becoming increasingly well studied from

an ecological perspective) that have not been surveyed for microsatellite diversity previously.

Materials and methods

Study sites and tissue collection

During November 2011 Salamander tail clippings were collected from the Washington and

Lee University (WLU) campus in Rockbridge County, Virginia, USA (Table 1) to facilitate 454

pyrosequencing. Between April and October 2014, additional tail clippings were collected

Neutral variation in a broadly distributed terrestrial salamander
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from WLU and the other locales listed in Table 1 to facilitate marker development and PCR-

based genotyping. Tail tissue was obtained by searching under cover objects such as rocks and

logs. When salamanders were discovered, tail autotomy was induced by clasping the tail with

Fig 1. Range map, sampling localities, and color morphs of the Eastern Red-backed Salamander. (A) The geographic range (light-grey) of Plethodon

cinereus and the focal region of the current study (black rectangle) (B) Location of the sampled localities: Washington and Lee University (WLU; VA),

Allegheny National Forest (ANF; PA), Squire Valleevue and Valley Ridge Farm (SQ; OH), Manotoc Boy Scout Camp (MBSC; OH) Doan Brook (DB; OH), and

South Bass Island (SBI; OH). (C) The color morphs of P. cinereus found within the sampled populations, the unstriped morph (left) and the striped morph

(right).

https://doi.org/10.1371/journal.pone.0186866.g001

Table 1. Locality and basic information for P. cinereus samples.

Site Name ID County State Longitude Latitude Morpha N

Squire Valleevue SQ Cuyahoga OH 41.498894 81.421992 S 10

Doan Brook DB Cuyahoga OH 41.49383 81.593892 S 12

South Bass Island SBI Ottawa OH 41.648528 82.823322 US 12

Manatoc Boy Scout Camp MSBC Summit OH 41.229173 81.53055 US/S 24

Allegheny National Forest ANF Forest PA 41.619184 79.159359 S 12

Washington and Lee University WLU Rockbridge VA 37.794173 79.444600 S 32

Potentially amplifiable loci were identified from the Washington and Lee University population and subsequently screened for amplification reliability and

genetic diversity across locales in Ohio and Pennsylvania. Manatoc Boy Scout Camp was the only population that exhibited color polymorphism and equal

numbers of each morph were collected at this site.
aS = Striped US = Unstriped

https://doi.org/10.1371/journal.pone.0186866.t001
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forceps approximately 1 cm from the tip. Tail tips were then placed in 90%-100% molecular

biology grade ethanol and animals were released at their point of capture. Samples were then

stored at -20˚C until DNA isolations were performed. Tissue collected in Virginia was col-

lected under Virginia DGIF permit #33510 and Virginia DGIF permit #49225. Tissue collected

in Ohio was collected under Ohio DNR permit #17–09 and tissue collected in Pennsylvania

was collected under Pennsylvania Fish and Boat Commission permit #2015-01-0040. The tis-

sue collection procedure was approved by the John Carroll University IACUC (protocol

#1302).

454 sequencing and microsatellite identification

DNA for sequencing was isolated according to the phenol/chloroform extraction method

described by Taggart et al. [30] and isolates were qualified and quantified via agarose gel elec-

trophoresis and UV spectrophotometry. A single high-quality isolate was submitted to the

University of Georgia Genomics Facility, where this isolate was pooled with DNA from two

other species (see [31,32]) that were differentiated by terminal barcodes [33]. A library of sin-

gle stranded template DNA fragments was then produced using the GS FLX titanium general

library preparation kit (Roche). Initial sequencing employed the 454 GS FLX titanium

sequencing kit XLR70 (Roche) run on ¼ 70 x 75 mm picotiter plate and additional sequencing

employed the 454 GS FLX titanium sequencing kit XL+ (Roche) run on ½ 70 x 75 mm picoti-

ter plate.

To identify 454 fragments that contained potentially amplifiable loci (PALs), we used

MSATCOMMANDER 1.0.8 [34] to scan for repeat containing fragments. When running

these searches, we required that dinucleotide and trinucleotide motifs contain� eight repeat

units and that tetra-hexanucleotdie motifs contain� six repeat units. The default settings for

MSATCOMMANDER’s PRIMER3 [35] interface were used to batch design primers, with the

exceptions that G/C content was restricted to between 40 and 60% and the minimum primer

melting temperature was set to 57˚C.

Microsatellite screening and genotyping

Upon identifying microsatellite containing 454 fragments, we prioritized tandem (i.e., we

excluded compound and interrupted repeats) tri-pentanucleotide repeat motifs because they

are frequently easier to score than dinucleotide repeats [28]. Once we arrived at a list of candi-

date PALs, we used the forward and reverse primer sequences of each candidate primer pair as

queries in BLASTn searches of our 454 library to ameliorate the potential for redundancy.

PALs whose forward and reverse primer sequences were identical to 454 fragments other than

those they were designed from were precluded from molecular investigation. These searches

were carried out and visualized in GENEIOUS Version R9 (Biomatters).

DNA for PCR was isolated from tail clippings using the Blood and Tissue DNeasy kit (Qia-

gen) according to the manufacturer’s instructions. This procedure included an RNAse diges-

tion and resulting isolates were quantified and qualified via UV spectrophotometry and

agarose gel electrophoresis. The 40 PALs selected for screening (S1 Table and S1 File) were ini-

tially investigated in the WLU population since the sample that we performed 454 sequencing

on was obtained from this population. Loci that performed well in WLU were prioritized in

South Bass Island (SBI) and mainland Ohio and Pennsylvania (OH/PA; DB, MBSC, SQ, ANF;

see Fig 1B); however, eventually most loci were tested using SBI and OH/PA samples. In gen-

eral, PCRs followed the protocol described in Schluke [36] and used the M13F(-21) sequence

as a tag to facilitate 6-FAM labeling (see [31,32] for additional details). Briefly, all PCRs were

25 μl in volume and contained 1x buffer, 20 ng of template DNA, 1.5 mM MgCl2, 0.2 mM of

Neutral variation in a broadly distributed terrestrial salamander
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each dNTP, 0.8 μM of non-M13(-21)-tagged primer, 0.8 μM of 6-FAM labeled M13(-21)

primer, 0.2 μM of M13(-21)-tagged primer, and 0.625 units of GoTaq polymerase (Promega).

Reaction conditions were: 94˚C for 2 minutes followed by 25 cycles of (1) 94˚C for 30 seconds,

(2) 62˚C for 30 seconds decreasing by 0.3˚C per cycle and (3) 72˚C for 40 seconds. These con-

ditions were followed by 8 additional cycles of (1) 94˚C for 30 seconds, (2) 53˚C for 30 sec-

onds, and (3) 72˚C for 40 seconds and a final cleanup step of 72˚C for 30 minutes. Genotyping

reactions were run in 96 well plates that contained four duplicate reactions per locus in WLU,

and on average ~ five duplicate reactions per locus per SBI and OH/PA locale. Reaction suc-

cess was determined by 2% agarose gel electrophoresis and successful reactions were shipped

to the Arizona State University DNA Lab where they were subjected to fragment analysis in an

ABI 3730 (Life Technologies) using GENESCAN LIZ 600 as an internal sizing standard. Stan-

dard curve fitting, manual scoring, and binning were performed using GENEIOUS, Version

R9 (Biomatters).

Statistical analyses of microsatellite data

Summary statistics and quality control. GENALEX, Version 6.5 [37] was used to calcu-

late a variety of summary statistics on a population-by-population basis, including: number of

alleles per locus, effective number of alleles, observed heterozygosity (Ho), and Hardy-Wein-

berg expected heterozygosity (He). Given the uneven sample sizes among populations we addi-

tionally calculated allelic richness (AR) using POPGENKIT, where sample size was determined

for each locus based on the smallest number of individuals sampled across all populations [38].

GENEPOP, Version 4.5.1 [39] was used to test each locus for departure from Hardy-Weinberg

proportions in each population and to test each pair of loci for departure from genotypic equi-

librium in each population. In addition, we used GENEPOP to compute the Weir and Cocker-

ham [40] estimator of FIS for each locus in each population. MICROCHECKER, Version 2.2.3

[41] was used to check each locus in each population for evidence of null alleles, scoring errors,

and large allele drop out.

Bottleneck tests and effective population size estimation. We used the polymorphic loci

from each locale to test for evidence of recent reductions in effective population size via the

heterozygosity excess approach implemented in BOTTLENECK [42]. This approach compares

He with the level of heterozygosity expected at drift-mutation equilibrium (Heq)—a quantity

that is more sensitive than He to the loss of genetic richness that occurs during population

reductions. Deviations were assessed under the stepwise mutation model (SMM), infinite

alleles model (IAM), and two-phase mutation model (TPM). Following the recommendations

of Piry et al. [42], under the TPM we assumed 95% of all mutations were single-step mutations

with 12% of the variance within multistep mutations. We determined if there were significant

deviations between He and Heq using the Wilcoxon signed-rank test implemented in BOT-

TLENECK. In addition, the output from GENALEX was used to calculate mean M-ratios

across polymorphic loci, which were assessed against the critical value of 0.68 recommended

by Garza and Williams [43]. Effective population size (Ne) estimates were generated using

polymorphic loci for each respective locale via the linkage disequilibrium [44] and the hetero-

zygote-excess methods [45] implemented in NeESTIMATOR v2.0.1 [46].

Population differentiation. We examined population differentiation using several

approaches based upon a variety of conceptual and computational frameworks. First, we used

GENALEX to calculate global and pairwise estimates of GST and Hedrick’s further standard-

ized G"ST [47] that were averaged across all loci. To examine large-scale patterns of differentia-

tion, we used STRUCTURE, Version 2.34 [48] to infer the optimal value of K using the

correlated allele frequencies model and allowing for admixture. We assessed K = 1–7,

Neutral variation in a broadly distributed terrestrial salamander
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preforming ten replicate runs for each value of K. Each Markov Chain Monte Carlo (MCMC)

simulation consisted of 500,000 iterations discarded as burn-in, with an additional 500,000

sampling iterations. The optimal value of K was determined by using STRUCTURE HAR-

VESTER [49] to compute ΔK [50]. Replicate runs were aligned and visualized using CLUMPP

[51] and DISTRUCT [52]. We then used the genetic clusters obtained from STRUCTURE to

perform an AMOVA [53] in GENALEX that partitioned genetic variation among clusters,

among individuals within clusters, and within individuals.

Because the algorithm implemented in STRUCTURE tends to recover the highest level of

subdivision among hierarchically differentiated populations (see STRUCTURE software man-

ual), we performed two additional analyses in STRUCTURE on the mainland OH/PA sites.

When conducting these analyses, we examined K = 1–5 when considering SQ, DB, MBSC, and

ANF and K = 1–4 when considering SQ, DB, and MBSC. Both of these analyses were based on

the same model, number of replicate runs, and MCMC parameters detailed above for the

large-scale STRUCTURE analysis.

STRUCTURE generates clusters by maximizing conformity to Hardy-Weinberg equilib-

rium and tends to assign individuals to superficial clusters when sampling is conducted across

an isolation-by-distance (IBD) cline [54,55]. Given the degree of geographic separation among

the populations we sampled and the low dispersal ability of red-backed salamanders [14], it is

nearly certain that IBD is contributing to differentiation among populations (see below).

Therefore, we conducted a discriminant analysis of principal components (DAPC; [56]) using

the adegenet package [57] for the R statistical computing environment, as this approach allows

for inference of patterns of differentiation without assuming Hardy-Weinberg equilibrium or

a particular migration model (i.e., island, stepping stone, etc.). When performing DAPC, we

used K-means clustering and the Bayesian information criterion (BIC) to assess the fit of K-

means clustering solutions for K = 1–40. The cluster memberships determined via K-means

were then used as prior group assignments when performing DAPC. Prior to performing

DAPC we assessed the optimal number of principal components to retain using the cross-vali-

dation procedure described in Jombart and Collins [58].

Finally, we examined the relationship between genetic differentiation and geographic dis-

tance among mainland OH/PA locales in order to gain insight into the degree to which IBD

influences substructure within the OH/PA cluster identified by our large-scale STRUCTURE

analysis (see below). To do this, we used the GENEPOP [39] package for R to compute approx-

imate bootstrap 95% confidence intervals for the slope of the regression of pairwise FST/(1 –

FST) against the natural logarithm of geographic distance [59,60]. Because these samples (DB,

SQ, MBSC, and ANF) were collected across a spatial scale that cannot be fairly described as

“local” (see [60]), we make no effort to use the resulting slope to estimate Dσ2. Rather, we use

the slope of this regression and the associated approximate bootstrap confidence interval to get

a rough idea of the degree of correlation between genetic differentiation and geographic dis-

tance across a scale that spans ~ 10–200 km.

Detection of outlier loci. To examine whether there is evidence for some of the markers

we discovered residing in genomic regions that have been targets of selection, we tested for

outlier loci by using BAYESCAN 2.1 to implement the regression-based Bayesian framework

described in Foll and Gaggiotti [61]. This approach decomposes FST into a population-specific

component (β) common to all loci and a locus-specific component (α) common to all popula-

tions. This in turn enables comparisons between models containing α and β terms for a given

locus (selection model) and models in which the α term for a given locus has been removed

(neutral model). When running BAYESCAN we used 20 pilot runs with a length of 5000 steps,

a burn in period of 100,000 steps, a sample size (number of sampled steps) of 100,000 with a

thinning interval of 10, and prior odds for the neutral model of 10. This analysis was

Neutral variation in a broadly distributed terrestrial salamander
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performed across all locales (Fig 1), and the q-values provided in the BAYESCAN output were

used to achieve an FDR of 0.05.

Results

454 sequencing and PAL discovery

In total, the 454 runs generated 113,739,428 bp of sequence across 283,830 reads (S2–S5 Files).

Of these reads, 88,240 were generated via the XLR70 chemistry (mean length = 279.1 bp,

St. dev. = 164.3 bp) and 195,590 were generated via the XL+ chemistry (mean length = 455.6

bp, St. dev. = 216.8 bp). MSATCOMMANDER identified a total of 5430 repeat containing

fragments (approximately 1.9% of all reads), which are depicted by repeat class in Fig 2A. Of

these fragments, 690 corresponded to tandemly repeated microsatellites with sufficient flank-

ing sequence for primer design (i.e., are non-compound/non-interrupted PALs; Fig 2B). The

results of BLASTn searches of NCBI’s nr/nt database using 454 fragments containing molecu-

larly pursued PALs as queries are given in S1 Table.

PAL screening

Of the 40 PALs selected for molecular screening (see S1 File for primer sequences) in WLU,

we identified a set of 27 loci that exhibited a high rate of successful amplification (Table 2).

Fig 2. The number of presumptive simple sequence repeat (SSR) loci (A) and potentially amplifiable microsatellite loci (PALs) for which

primers were designed (B) identified using MSATCOMMANDER. CI = compound/interrupted, di = dinucleotide, tri = trinucleotide,

tet = tetranucleotide, pent = pentanucelotide, and hex = hexanucelotide.

https://doi.org/10.1371/journal.pone.0186866.g002
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The discrepancy among replicate genotypes was negligible for the vast majority of loci

(min = 0%, max = 12.5%, mean = 0.4%, SD = 2.4%). In screening the SBI and OH/PA localities

we identified a subset of 14 loci (Table 3) with a high rate of amplification success (87% across

all loci). However, the majority of missing data were associated with Pc12 and Pc25, where

respective success rates equaled 17% and 50% among SBI and OH/PA localities. Consistent

with the pattern observed in the larger set of loci that performed well in the WLU population,

we observed a low genotyping error rate among replicate reactions from the SBI and OH/PA

populations (min = 0%, max = 1.8%, mean = 0.6%, SD = 0.8%). The scored and binned micro-

satellite genotypes used to perform all subsequent analyses are given in S6 File.

Quality control and summary statistics

Sample sizes, diversity statistics, and inbreeding coefficients for the WLU population are given

in Table 2. Upon applying Holm’s ([62]; FWER = 0.05) correction for multiple testing by treat-

ing each population as a family of tests, seven loci significantly deviated from Hardy-Weinberg

proportions in WLU (Pc5, Pc9, Pc10, Pc15, Pc23, Pc25, and Pc26). In addition to detecting evi-

dence of null alleles at these loci, MICRO-CHECKER also detected evidence of null alleles at

Table 2. Genetic diversity indices and summary statistics for the 27 microsatellite loci that reliably amplified in samples from the Washington and

Lee University locality.

Locus N No. Alleles Obs. Het Exp. Het FIS Allelic Richness Effective Alleles

Pc4 31 13 0.871 0.804 -0.0672 13 5.098

Pc5 24 3 0.125 0.539 0.7767 2.33 2.169

Pc7 32 6 0.500 0.537 0.084 4.13 2.158

Pc8 32 6 0.500 0.524 0.0624 4.86 2.103

Pc9 20 6 0.150 0.751 0.8094 6 4.020

Pc10 20 6 0.200 0.718 0.7333 6 3.540

Pc11 28 4 0.429 0.573 0.2694 4 2.344

Pc12 25 2 0.160 0.147 -0.0667 1.14 1.173

Pc13 30 3 0.333 0.376 0.1304 2.7 1.603

Pc14 28 3 0.393 0.545 0.2962 2.45 2.199

Pc15 25 4 0.280 0.590 0.5397 3.36 2.437

Pc16 27 5 0.741 0.729 0.0029 4.32 3.691

Pc17 27 6 0.704 0.737 0.0635 5.31 3.797

Pc20 31 3 0.355 0.343 -0.0185 2.51 1.522

Pc21 27 2 0.370 0.483 0.2507 2 1.934

Pc22 31 3 0.194 0.180 -0.0619 3 1.219

Pc23 31 6 0.387 0.735 0.4857 6 3.769

Pc25 14 5 0.357 0.717 0.529 3.32 3.532

Pc26 23 5 0.087 0.578 0.8557 5 2.372

Pc27 27 4 0.370 0.642 0.4384 4 2.793

Pc28 31 4 0.742 0.634 -0.1538 3.77 2.734

Pc34 10 4 0.300 0.535 0.4808 4 2.151

Pc35 9 3 0.889 0.537 -0.6203 3 2.160

Pc36 30 1 0.000 0.000 NA 1 1.000

Pc37 32 9 0.813 0.713 -0.1241 6.19 3.483

Pc39 29 1 0.000 0.000 NA 1 1.000

Pc40 10 2 0.300 0.255 -0.125 2 1.342

Mean 25.3 4.407 0.391 0.516 0.223 3.940 2.494

SEM 1.363 0.484 0.049 0.044 0.073 0.458 0.204

https://doi.org/10.1371/journal.pone.0186866.t002
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Table 3. Diversity indices and summary statistics for the 14 loci that reliably amplified samples from Ohio and Pennsylvania localities.

Locus/Pop N No. Alleles Obs. Het Exp. Het FIS Allelic Richness Effective Alleles

South Bass Island

Pc3 10 1 0.000 0.000 NA 1.000 1.000

Pc5 12 3 0.417 0.344 -0.170 2.700 1.524

Pc7 12 3 0.250 0.344 0.313 2.820 1.524

Pc8 11 2 0.091 0.087 NA 1.910 1.095

Pc12 6 1 0.000 0.000 NA 1.000 1.000

Pc13 12 1 0.000 0.000 NA 1.000 1.000

Pc14 12 1 0.000 0.000 NA 1.000 1.000

Pc15 12 5 0.500 0.524 0.090 4.670 2.102

Pc16 12 1 0.000 0.000 NA 1.000 1.000

Pc17 12 1 0.000 0.000 NA 1.000 1.000

Pc20 11 2 0.091 0.087 NA 1.880 1.095

Pc25 7 3 0.714 0.602 -0.111 2.840 2.513

Pc28 10 3 0.500 0.535 0.118 3.000 2.151

Pc37 12 2 0.083 0.080 NA 1.820 1.087

Pop mean 10.787 2.071 0.189 0.186 0.048 1.974 1.364

SEM 0.490 0.300 0.061 0.058 0.071 0.276 0.130

Squire Valleevue

Pc3 10 2 0.500 0.495 0.043 2.000 1.980

Pc5 8 9 0.750 0.852 0.185 9.000 6.737

Pc7 10 2 0.300 0.255 -0.125 2.000 1.342

Pc8 10 2 0.300 0.255 -0.125 2.000 1.342

Pc12 0 0 0.000 0.000 NA 0.000 0.000

Pc13 10 1 0.000 0.000 NA 1.000 1.000

Pc14 8 1 0.000 0.000 NA 1.000 1.000

Pc15 9 1 0.000 0.000 NA 1.000 1.000

Pc16 10 4 0.500 0.410 -0.169 4.000 1.695

Pc17 9 3 0.444 0.549 0.247 3.000 2.219

Pc20 10 3 0.600 0.485 -0.187 3.000 1.942

Pc25 4 5 0.500 0.688 0.400 5.000 3.200

Pc28 10 3 0.300 0.395 0.290 3.000 1.653

Pc37 10 3 0.700 0.605 -0.105 3.000 2.532

Pop mean 8.429 2.786 0.350 0.356 0.045 2.786 1.974

SEM 0.782 0.595 0.071 0.075 0.069 0.595 0.421

Doan Brook

Pc3 11 2 0.364 0.298 -0.177 2.000 1.424

Pc5 12 7 0.500 0.781 0.397 5.860 4.571

Pc7 12 3 0.417 0.344 -0.170 2.830 1.524

Pc8 12 2 0.417 0.413 0.035 2.000 1.704

Pc12 1 1 0.000 0.000 NA 1.000 1.000

Pc13 12 1 0.000 0.000 NA 1.000 1.000

Pc14 10 1 0.000 0.000 NA 1.000 1.000

Pc15 11 5 0.364 0.388 0.111 4.410 1.635

Pc16 11 4 0.727 0.591 -0.185 3.910 2.444

Pc17 12 3 0.583 0.569 0.019 3.000 2.323

Pc20 12 3 0.417 0.344 -0.170 2.830 1.524

Pc25 7 5 0.143 0.765 0.838 3.530 4.261

(Continued )
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Pc27, and Pc34. There was no evidence of genotypic disequilibrium among any pair of loci in

WLU after correcting for multiple testing [62].

Sample sizes, diversity statistics, and inbreeding coefficients are given for SBI and the OH/

PA sites in Table 3. Among SBI and the OH/PA locales, only one significant deviation from

Hardy-Weinberg proportions was detected following adjustments for multiple testing via

Holm’s [62] correction (Pc25 in DB). Evidence for null alleles was detected at Pc5 in DB and

MBSC, and at Pc15 in MBSC. There was no statistical evidence for genotypic disequilibrium

among pairs of loci within or across OH/PA locales upon correcting for multiple testing [62].

Table 3. (Continued)

Locus/Pop N No. Alleles Obs. Het Exp. Het FIS Allelic Richness Effective Alleles

Pc28 12 3 0.417 0.497 0.203 2.820 1.986

Pc37 12 4 0.583 0.656 0.154 3.840 2.909

Pop mean 10.500 3.143 0.352 0.403 0.096 2.859 2.093

SEM 0.817 0.467 0.062 0.071 0.093 0.376 0.303

Manatoc Boy Scout Camp

Pc3 24 2 0.333 0.413 0.214 2.000 1.704

Pc5 23 10 0.652 0.852 0.255 7.040 6.739

Pc7 24 3 0.458 0.374 -0.205 2.840 1.598

Pc8 24 4 0.583 0.544 -0.051 3.220 2.194

Pc12 0 0 0.000 0.000 NA 0.000 0.000

Pc13 24 1 0.000 0.000 NA 1.000 1.000

Pc14 18 1 0.000 0.000 NA 1.000 1.000

Pc15 22 10 0.545 0.691 0.233 6.320 3.237

Pc16 24 8 0.625 0.769 0.208 5.970 4.331

Pc17 24 5 0.792 0.732 -0.061 4.760 3.728

Pc20 23 2 0.261 0.287 0.114 1.990 1.403

Pc25 10 12 0.800 0.875 0.138 6.200 8.000

Pc28 24 5 0.417 0.559 0.274 3.240 2.268

Pc37 24 4 0.417 0.438 0.071 3.520 1.781

Pop mean 20.571 4.786 0.420 0.467 0.108 3.507 2.784

SEM 1.889 1.017 0.074 0.083 0.047 0.599 0.605

Allegheny National Forest

Pc3 11 2 0.545 0.397 -0.333 2.000 1.658

Pc5 10 7 0.600 0.730 0.229 6.190 3.704

Pc7 11 2 0.273 0.236 -0.111 2.000 1.308

Pc8 11 2 0.455 0.483 0.107 2.000 1.936

Pc12 2 1 0.000 0.000 NA 1.000 1.000

Pc13 11 1 0.000 0.000 NA 1.000 1.000

Pc14 7 1 0.000 0.000 NA 1.000 1.000

Pc15 10 5 0.600 0.725 0.223 4.910 3.636

Pc16 10 6 0.700 0.700 0.053 6.000 3.333

Pc17 11 3 0.364 0.314 -0.111 2.960 1.458

Pc20 11 3 0.455 0.368 -0.191 2.900 1.582

Pc25 6 7 0.833 0.764 0.000 5.230 4.235

Pc28 11 3 0.182 0.169 -0.026 2.810 1.204

Pc37 10 3 0.500 0.405 -0.184 3.000 1.681

Pop mean 9.429 3.286 0.393 0.378 -0.031 3.071 2.052

SEM 0.709 0.569 0.072 0.074 0.050 0.485 0.307

https://doi.org/10.1371/journal.pone.0186866.t003
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Bottleneck tests and effective population size estimates

We did not find consistent evidence across methods (i.e., heterozygosity excess tests and M-

ratios) for recent population reductions at any of our sites (Table 4). However, we did obtain

significant Wilcoxon tests for WLU under the IAM and TPM. We also obtained mean M-

ratios< 0.68 in SQ and ANF. NeESTIMATOR was unable to produce point estimates of and/

or confidence limits for Ne at all of our sites (S2 Table). However, the information we obtained

from NeESTIMATOR is consistent with the idea that SBI has a smaller effective population

size (point estimate = 65) than WLU (lower confidence limit = 153.4) and several of the main-

land OH/PA sites (point estimate for MBSC = 517.8 and point estimate for ANF = 158.3).

Detection of outlier loci

As shown in S1 File, only Pc13 exhibited any evidence of being an outlier. However, this result

was not statistically significant after adjusting for multiple testing (FDR = 0.05). Consequently,

in what follows, we assume that all of the loci used in our analyses of population differentiation

are at least passably neutral.

Population differentiation

Analyses that examined genetic differentiation between all sampled locales were based on the

11 loci (Pc5, Pc7, Pc8, Pc13, Pc14, Pc15, Pc16, Pc17, Pc20, Pc28, Pc37; see above) that reliably

Table 4. Results of heterozygosity excess tests and M-ratios for population bottleneck detection.

Population Mutation Model Wilcoxon Test Mode-shift Test M-Ratio (SEM)

Washington and Lee University

IAM 0.003 L—shaped 0.740 (0.044)

SMM 0.933

TPM 0.018

South Bass Island

IAM 0.988 L–shaped 0.800 (0.074)

SMM 0.996

TPM 0.988

Squire Valleevue

IAM 0.150 L-shaped 0.649 (0.087)

SMM 0.674

TPM 0.213

Doan Brook

IAM 0.161 L—shaped 0.683 (0.094)

SMM 0.784

TPM 0.278

Manatoc Boy Scout Camp

IAM 0.080 L—shaped 0.699 (0.077)

SMM 0.919

TPM 0.138

Allegheny National Forest

IAM 0.652 L—shaped 0.615 (0.079)

SMM 0.687

TPM 0.794

Heterozygosity excess tests were investigated under the infinite alleles model (IAM), stepwise mutation model (SMM), and two-phase mutation model

(TPM). The probabilities reported for Wilcoxon signed-rank tests correspond to a one-tailed test of heterozygosity excess. The mean M-ratio across loci for

each population was assessed against a critical value of 0.68.

https://doi.org/10.1371/journal.pone.0186866.t004
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amplified in all populations. We excluded Pc12 and Pc25 due to complete failure within some

OH/PA localities and Pc3 for failure in WLU. We opted to include Pc13 and Pc14 when com-

paring all six locales as these two loci were polymorphic in WLU. However, we removed Pc13
and Pc14 for our investigations of fine-scale population differentiation among OH/PA locales

as these markers were monomorphic across all of these sites.

Locus-specific estimates of GST across all six populations ranged from 0.215–0.762, and

were highly statistically significant (maximum P-value = 0.0001). Locus-specific values of G"ST

ranged from 0.524–0.883 and were also all highly statistically significant (maximum P-

value = 0.0001). Combining information across all loci, the global estimate of GST was 0.351

(SE = 0.034, P-value = 0.0001) and the analogous estimate for G"ST was 0.669 (SE = 0.044, P-
value = 0.0001). Pairwise comparisons revealed pronounced differentiation between WLU and

all other sampled localities (Table 5). Interestingly, we observed similar degrees of differentia-

tion between SBI vs. OH/PA locales and WLU vs. OH/PA locales.

The large-scale STRUCTURE analysis suggested K = 3 as the optimal value of K (S1 Fig; S2

Fig). The WLU and SBI localities were identified as unique genetic clusters while the mainland

OH/PA locales were assigned to a single cluster. Not surprisingly, there was no evidence for

admixture detected among the three genetic clusters identified (Fig 3A). The AMOVA per-

formed on these three genetic clusters revealed that differences among clusters explained over

one-third of the total variance (Table 6).

Results from the STRUCTURE runs that investigated fine-scale population differentiation

among OH/PA populations suggested K = 3 as the optimal value for K when all four OH/PA

sites were considered (S3 Fig; S4 Fig; Fig 3B). In this analysis, ANF was identified as a well-

defined cluster and all ANF individuals were unambiguously assigned to this cluster. Among

the remaining three mainland OH sites, SQ and DB formed a cluster and MBSC formed the

third cluster. While membership in the SQ/DB and MBSC clusters is also well-defined, it is

considerably ‘fuzzier’ than ANF cluster membership (Fig 3B). In particular, individuals

assigned to the MBSC cluster showed substantial and consistent admixture proportions with

the SQ/DB cluster. To further address patterns of differentiation among SQ, DB, and MBSC,

we conducted a third analysis in STRUCTURE that only considered these three sites (Fig 3C).

Table 5. Pairwise estimates of GST and G"ST based on the 11 loci that reliably amplified samples from all locales.

GST SBI SQ ANF DB MBSC

SBI * 0.0001 0.0001 0.0001 0.0001

SQ 0.441 * 0.0001 0.594 0.0001

ANF 0.420 0.114 * 0.0001 0.0001

DB 0.390 -0.002 0.081 * 0.0001

MBSC 0.358 0.075 0.148 0.065 *

WLU 0.400 0.277 0.295 0.252 0.208

G"ST SBI SQ ANF DB MBSC

SBI * 0.0001 0.0001 0.0001 0.0001

SQ 0.848 * 0.0001 0.529 0.0001

ANF 0.837 0.331 * 0.0001 0.0001

DB 0.817 -0.006 0.257 * 0.0001

MBSC 0.801 0.243 0.463 0.227 *

WLU 0.936 0.830 0.896 0.822 0.740

Values of both G-statistics are located below the diagonal with corresponding P-values above. All significance tests performed in GENALEX are based on

9,999 permutations, and signify P(permuted� observed). All pairwise comparisons were statistically significant with the exception of DB and SQ.

https://doi.org/10.1371/journal.pone.0186866.t005
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In this analysis, K = 2 was the optimal solution (S5 Fig; S6 Fig) with one cluster corresponding

to MBSC and the other cluster corresponding to SQ/DB. As shown in Fig 3C, this analysis sug-

gests substantive admixture between MBSC and SQ/DB.

In order to examine the degree of IBD among sites within the OH/PA cluster, we also

regressed FST/(1 –FST) against the natural logarithm of distance between sites in km. The equa-

tion estimated by this regression is y = -0.122 + 0.070x with approximate 95% confidence

intervals of -0.376–0.069 for the intercept and 0.024–0.157 for the slope, suggesting the effects

of isolation by distance within the OH/PA cluster are not negligible. Nevertheless, as can be

seen in Fig 4 the results of this analysis are generally congruent with the small-scale analyses

we performed in STRUCTURE (Fig 3B and 3C).

K-means clustering and BIC suggested that K = 4–7 all represented essentially equally valid

summaries of our data (S7 Fig). As such, we chose to focus on K = 5 when conducting DAPC,

as we found this solution to be the most straightforward value of K to interpret. The cross-

Fig 3. Results from STRUCTURE analyses. (A) Population structuring among the six localities following the

optimal solution of ΔK = 3 using 11 microsatellite loci. (B) Population structuring among mainland Ohio and

Pennsylvania localities revealed the optimal number of clusters to be ΔK = 3 across 9 loci. (C) Population

structuring among only mainland Ohio localities revealed the optimal number of genetic clusters to be ΔK = 2.

https://doi.org/10.1371/journal.pone.0186866.g003

Table 6. AMOVA results based on the three genetic clusters identified from the large-scale analysis performed in STRUCTURE.

Source of Variation Variation Explained Degrees of Freedom Sum of Squares Variance Component Fixation Index P-valuea

Among clusters 37% 2 209.887 1.766 FST = 0.374 0.0001

Among individuals 18% 98 371.569 0.836 FIS = 0.283 0.0001

Within individuals 45% 101 214.000 2.119 FIT = 0.551 0.0001

Total 100% 201 795.455 4.721 NA NA

aAll significance tests performed in GENALEX based on 9,999 permutations, and signify P(permuted� observed) for all fixation indices reported.

https://doi.org/10.1371/journal.pone.0186866.t006
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validation procedure determined that 10 principal components was the optimal value to retain

and no discriminant functions were discarded. The five clusters strongly corresponded to

locales as follows: (1) “ANF cluster” (11 ANF individuals and 1 DB individual), (2) “WLU clus-

ter” (32 WLU individuals), (3) “MBSC cluster” (23 MBSC individuals, 2 DB individuals, and 1

SQ individual), (4) “SQ/DB cluster” (9 SQ individuals, 9 DB individuals, and 1 MBSC individ-

ual), and (5) “SBI cluster” (12 SBI individuals). As can be seen in S8 Fig, cluster membership

probabilities were generally high and there were no cases in which cluster assignments were

marginal. Scatter plots of the first two discriminant functions revealed that the first discrimi-

nant function separates the same three groups identified using STRUCTURE: WLU, SBI, and

mainland OH/PA (Fig 5). The second discriminant function further distinguishes among the

three major groups, while also providing some separation between the “MBSC” and “ANF”

clusters.

Fig 4. Relationship between geographic distance and genetic differentiation. Regressing linearized FST values against the natural

logarithm of distance (km) revealed a positive relationship indicative of IBD among sites within the OH/PA cluster.

https://doi.org/10.1371/journal.pone.0186866.g004
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Discussion

Overview

In this study, we used 454 pyrosequencing to identify hundreds of potentially amplifiable

microsatellite loci from the red-backed salamander—an ecologically important species that

has long-served as a model system in evolutionary ecology [2–19, 21–27]. In addition, we

molecularly screened 40 of our top candidate PALs in six populations that are geographically

removed from each other by a variety of scales ranging from ~ 10–500 km. This enabled us to

identify loci that were informative in samples from Virginia, Pennsylvania, and Ohio—includ-

ing an isolated island population (SBI). Ultimately, we used these loci to conduct surveys of

neutral variation in all of the populations that we sampled and to examine differentiation

among these locales. The results of these analyses are consistent with the idea that SBI has

lower genetic diversity than our other sites, presumably due to a founder’s effect. In addition,

our analyses show that WLU is markedly differentiated from OH/PA and that SBI is markedly

differentiated from WLU and OH/PA. In what follows, we discuss the utility of the genetic

resources that we have discovered and patterns of variation within and between populations.

Utility of new genetic resources

Attempts to utilize microsatellite markers developed from large, well-studied populations in

western Virginia [20] in other parts of the red-backed salamander’s range have varied in suc-

cess from none [13] to loss of a small number of screened loci [17,21] to 100% informative

markers [22]. However, to the best of our knowledge, all studies of the red-backed salamander

that have used microsatellites have been restricted to a relatively small number of loci� 7 [13–

19,21–23]. By screening the markers that we developed in three highly divergent regions of the

red-backed salamander’s range, we were able to identify 27 new markers for use in the well-

studied region of western Virginia. Moreover, we identified 14 new markers for use in western

Pennsylvania and northeastern Ohio—a part of the range that is becoming increasingly well

studied from an ecological perspective (see [63] and citations within). Finally, we identified 11

markers that enabled informative analyses of population differentiation between locales in Vir-

ginia, western Pennsylvania/northeastern Ohio, and an isolated island population ~ 4.5 km off

the shore of Lake Erie. These new markers allowed us to correctly assign 100% of the individu-

als we sampled to their geographic region of origin (Figs 3 and 5). In addition, small-scale

STRUCTURE analyses within the OH/PA cluster correctly assigned 100% of ANF and MBSC

individuals to their locales of origin and 100% of SQ and DB individuals to a cluster that

encompassed these two undifferentiated locales (pairwise G"ST = -0.006). Similarly, DAPC

results based on these markers recovered analogous clusters to those obtained from STRUC-

TURE and yielded similar albeit slightly weaker patterns of correct individual assignment. Col-

lectively, these results show that the panel of markers we have identified are informative at

relatively small spatial scales, even in comparisons involving populations that were founded as

a result of post-glacial range expansion (see below). While our endeavors will not eliminate the

need for researchers working in other parts of the range to conduct screens to verify amplifica-

tion success and polymorphism in their study populations, they do provide meaningful guid-

ance about which loci to try first. Indeed, ongoing work in one of our labs (RBP) has begun to

extend a subset of these markers (Pc3, Pc4, Pc5, Pc7, Pc8, Pc15, Pc16, Pc17, Pc20, Pc22, Pc28,

Fig 5. DAPC scatter plot. Scatter plot of the first two discriminant functions revealed groupings consistent with the results from

STRUCTURE. The first discriminant function identifies three clusters: WLU, SBI, and mainland OH/PA. The second discriminant function

further separates the three major clusters, SBI in particular, while also providing some separation within the mainland OH/PA cluster.

https://doi.org/10.1371/journal.pone.0186866.g005
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Pc34, Pc37, Pc38, Pc39, and Pc40) to the Peaks of Otter Salamander, Plethodon hubrichti, and

we recommend starting with this panel of 16 markers when transferring markers to unstudied

red-backed salamander populations and cross-amplifying markers in closely related species.

Genetic variation within populations

South bass island. The most striking pattern when comparing intra-population diversity

and summary statistics across populations is how much lower diversity estimates from SBI are

relative to the other five locales we sampled. For example, in SBI, 6 of 14 (42.9%) loci were

monomorphic in comparison to values ranging from 2 of 27 (7.4%; WLU) to 3 of 13 (23.1%;

SQ) at other sites (these calculations do not consider “monomorphic” loci at which < 5 indi-

viduals were genotyped). Moreover, mean AR for SBI was 1.974, whereas among OH/PA sites

mean AR varied between 2.786–3.507 and mean AR at WLU was 3.940. These findings are

likely a consequence of a founder’s effect followed by strong drift in the SBI population. How-

ever, we were unable to detect other genetic signatures of a recent bottleneck in SBI, and this

population appears to be more-or-less in Hardy-Weinberg equilibrium. Given our fairly small

sample size in SBI (average across loci ~ 11 individuals) and the tendency of bottleneck tests to

be underpowered [64], it is possible that failure to explicitly detect evidence of a recent bottle-

neck in SBI is a Type II Statistical Error.

Northeastern Ohio and western Pennsylvania. Among mainland OH/PA sites, ANF is

within a large tract of continuous forest and MBSC is within a considerable, albeit occasionally

interrupted, wooded area near the shores of a small manmade lake. On the other hand, SQ is

within a somewhat isolated patch of woods that is surrounded by farmland and suburban resi-

dential areas, while DB is within a ~ 2 km strip of woods (< 200 m wide) that is surrounded

on both sides by urban residential areas. MBSC had the highest mean AR (3.507), followed by

ANF (3.071), DB (2.859), and SQ (2.786). However, other measures of diversity (e.g., He and

effective number of alleles) did not follow this pattern. Thus, as reported by Jordan et al. [22]

for sites in northeastern Indiana, there does not appear to be a clear positive relationship

between habitat patch size and genetic diversity among OH/PA sites. Because NeESTIMATOR

was unable to compute point estimates of Ne for SQ and DB, we could not directly assess the

relationship between patch size and effective population size. However, the sampling effort

required to collect individuals at DB was substantially lower than SQ, which suggests a larger

census population size within DB. Differences in salamander abundance between DB and SQ

probably reflect the profusion of high-quality microhabitat (rocks) at DB. As was the case with

SBI, we did not detect unequivocal genetic signatures of recent population reductions at any of

the OH/PA sites. However, SQ and ANF both had mean M-ratios < 0.68, although these esti-

mates were within one SE of this critical value. None of the OH/PA sites were markedly out of

Hardy-Weinberg equilibrium, with DB, MBSC, and SQ having mild homozygote excess (on

average ~ 5% to< 1% more homozygosity than expected) and ANF exhibiting mild heterozy-

gote excess (on average 1.5% less homozygosity than expected). Collectively, these results sug-

gest that these mainland OH/PA populations are not highly inbred even though some of them

(SQ and DB) are restricted to small isolated patches of habitat.

Washington and Lee University. The WLU site is within an isolated stand of trees

approximately 0.55 km2 in total area that is boarded by the city of Lexington, Virginia to the

south and east, pastureland to the west and northwest, and the Maury River to the north and

northeast. AR at this site was somewhat higher than at the other sites in our study, and it is pos-

sible that this is related to the older age of Appalachian populations relative to sites that were

glaciated during the Pleistocene [22,24]. However, the mean inbreeding coefficient for WLU

was moderately large (FIS = 0.223, SE = 0.073), and while this may be attributable to null alleles,
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there is evidence that the WLU population has undergone a recent population reduction, as

heterozygosity excess tests were significant under the IAM and TPM. Interestingly, surveys of

dinucleotide loci from sites within large tracts of continuous forest near Mountain Lake Bio-

logical Station (37.375531, 80.523235; ~ 100 km straight line distance from WLU) resulted in

considerably larger genetic richness estimates (on average 7–10 alleles per locus depending on

the locale; [14,15]) than those reported here. Although these comparisons may not be straight-

forward due to differences between the mutation rates of dinucleotide vs. tri and tetranucelo-

tide repeats [65], they suggest that the WLU population may have reduced neutral diversity

relative to populations in undisturbed habitat within the same geographic region.

Genetic variation between populations

General pattern. The pattern of genetic structuring recovered by our analyses of between

population variation is one in which there is isolation by distance at small to intermediate spa-

tial scales (~ 10–200 km) and marked differentiation among geographic regions. In a general

sense, this finding is consistent with the original geographic patterns of protein electrophoretic

rates offered by Highton and Webster [24]. However, the discovery of marked differentiation

between mainland Ohio sites (DB, MBSC, and SQ) and SBI (pair-wise GST 0.358–0.441) dem-

onstrates that there are isolated populations within the formerly glaciated portion of the red-

backed salamander’s range that are very different from populations at relatively nearby locales.

Similarly, Noël et al. [21] observed substantial differentiation between isolated populations in

Montreal and populations in un-fragmented habitat approximately 190 km away in Mount

Megantic National Park. Taken together, these results suggest that within the formerly glaci-

ated portion of the red-backed salamander’s range, well differentiated isolated populations are

not uncommon (see below for further discussion).

Levels of differentiation in un-glaciated vs. formerly glaciated regions. In a survey of

six dinucleotide microsatellite loci across 10 sites (maximum distance between sites of 70 km)

within the fragmented, rural landscape of northeastern Indiana, Jordan et al. [22] observed

low but statistically significant levels of differentiation for 48% of pair-wise comparisons. In

contrast, working in contiguous habitat in Giles County Virginia, Cabe et al. [14] reported low

but statistically detectable levels of differentiation for over 80% of pair-wise comparisons

between 50 m2 plots separated by distances of 2 km or less. While comparison of these studies

is confounded with any differential effects that may exist between urban and rural landscapes,

it suggests that the degree of differentiation among formerly glaciated sites in Ohio is more sim-

ilar to formerly glaciated sites in Indiana than it is to un-glaciated sites in Virginia. Interestingly,

in contrast to the results of Cabe et al. [14], Noël et al. [21] were unable to detect statistically sig-

nificant differentiation among four sites within the continuous habitat of Mount Megantic

National Park, Quebec that were separated by 0.8–4.1 km. As a whole, these results are consis-

tent with the notion that differentiation among red-backed salamander populations is less pro-

nounced in the formerly glaciated portion of the range than in the portion of the range that was

never glaciated (see [21,24] for additional discussion). Further insight regarding levels and pat-

terns of differentiation among populations within formerly glaciated regions will likely be

gained from phylogeographic analysis, and recent work has indeed identified multiple lineages

corresponding to patterns of post-glacial range expansion [66]. Because selection often acts to

increase investment in dispersal at expanding range fronts [67], it is possible that descendants

of ancestral populations which colonized formerly glaciated regions possess greater dispersal

ability relative to descendants of ancestral populations that never left glacial refugia.

Degree of isolation among island populations. One of the more striking results of our

study was that the degree of differentiation between SBI and Cleveland area populations ~ 100
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km away (SB, DQ, MBSC), was greater than the degree of differentiation between these three

sites and WLU. Indeed, the DAPC we performed ordinated OH/PA closer to WLU than SBI

(Fig 5) despite the fact that WLU is> 400 km from any of the OH/PA sites. In comparisons

between Long Island populations and mainland populations in Connecticut, New Jersey, and

New York that were removed by distances ranging from 16–275 km, Fisher-Reid et al. [13]

observed moderate to marked levels of differentiation depending on the pair of locales under

consideration. However, in comparisons between Ile-Bizard, Ile-Perrot, and several sites on

Montreal Island, Noël and Lapointe [17] observed marked differentiation despite the fact that

none of their locales were separated by more than 50 km. Given that none of these islands (i.e.,

South Bass Island, Long Island, Ile-Bizar, Ile-Perrot, and Montreal Island) are particularly

remote, these results strongly suggest that aquatic barriers as small as one km across, and per-

haps even less, are capable of effectively isolating red-backed salamander populations [17].

This conclusion is further supported by ecological studies in Virginia that have shown second

order streams reduce movement by approximately 50% and contribute to fine-scale genetic

structuring [15].

Conclusion

In this paper, we have presented genetic resources that will enable the scientific community to

conduct population genetic studies in regions of the red-backed salamander’s range that have

not previously been investigated in this manner. In addition, we have demonstrated the utility

of these resources by using them to assess genetic variation within and between three well dif-

ferentiated portions of this species range. In many respects, our findings are consistent with

the original description of geographic patterns of protein variation for this species [24]. How-

ever, our results and the findings of others [17, 21] indicate that well differentiated isolated

populations are not uncommon within formerly glaciated parts of the range.
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