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Abstract

Extreme value theory studies the extreme deviations from the central portion of a
probability distribution. Results in this field have considerable importance in assessing the
risk that characterises rare events, such as collapse of the stock market, or earthquakes of
exceptional intensity, or floods. In the last years, application of extreme value theory for
prediction of sport records have received increased interest by the scientific community. In
this work we face the problem of constructing prediction limits for series of extreme values
coming from sport data. We propose the use of a calibration procedure applied to the
generalised extreme value distribution, in order to obtain a proper predictive distribution
for future records. The calibrated procedure is applied to series of real data related to
sport records. In particular, we consider sequences of annual maxima for different athletic
events. Using the proposed calibrated predictive distribution, we show how to correctly
predict the probability of future records and we discuss the existence and interpretation of
ultimate records.

Keywords: athletic records, bootstrap, generalised extreme value distribution, prediction.

1 Introduction

From the very beginning, a big effort has been put into understanding the limits of human
being capabilities: how fast can we run or swim? How far can we jump? In the last decades
interest has mainly regarded the application of mathematical or statistical results in order to
describe the progression of records in several sport events and in particular for track and field
competitions.

Different approaches are used for assessing the probability of a new record or eventually the
determination of an ultimate record, that is a measure that will not be overcome ever. [8] and
[7] apply the theory of records to best annual performances. [10] propose a model for series of
records, based on a random walk structure. In [11] a nonlinear regression model is introduced
for fitting the progression of best annual results. Extreme value theory is applied in [9] to model
the tail of the distribution for annual best records. [4] also takes advantage of the theory of
extremes, enlarging the sample dimension by considering the personal best performance of as
many athletes as possible over a period of several years.

In this work we apply the generalised extreme value (GEV) model to best annual results
in the period from 2001 to 2018 for different athletic competitions. Depending on the data,
the estimated model may comprise an end point that depends on the estimated parameters, or

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223185971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Extreme value prediction Fonseca and Giummolè

not. We propose a bootstrap procedure that allows the computation of a calibrated predictive
distribution for best annual performances. The proposed predictive distribution works well in
regular cases, i.e. when the estimated model is unbounded, but can also be useful when the
end point of the support depends on the estimated parameters. Being calibrated, it allows to
compute the correct probability of improving a world record in regular cases and to assess the
quality of the endpoint of the estimated model in non regular cases.

The paper is organised as follows. In Section 2 we briefly describe the bootstrap calibrating
procedure and in Section 3 we define the family of GEV distributions. In Section 4 we apply
the proposed predictive procedure to athletic records.

2 Calibrated distributions for prediction

In this section we briefly review the calibrating approach proposed by [5], that provides a pre-
dictive distribution function whose quantiles give prediction limits with well-calibrated coverage
probability.

Suppose that {Yi}i≥1 is a sequence of continuous random variables with probability distribu-
tion specified by the unknown d -dimensional parameter θ ∈ Θ ⊆ Rd, d ≥ 1; Y = (Y1, · · · , Yn),
n > 1, is observable, while Z = Yn+1 is a future or not yet available observation. For simplicity,
we consider the case of Y and Z being independent random variables and we indicate with
G(z; θ) the distribution function of Z.

Given the observed sample y = (y1, . . . , yn), an α-prediction limit for Z is a function cα(y)
such that, exactly or approximately,

PY,Z{Z ≤ cα(Y ); θ} = α, (1)

for every θ ∈ Θ and for any fixed α ∈ (0, 1). The above probability is called coverage probability
and it is calculated with respect to the joint distribution of (Z, Y ).

Consider the maximum likelihood estimator θ̂ = θ̂(Y ) for θ, or an asymptotically equivalent

alternative, and the estimative prediction limit zα(θ̂), which is obtained as the α-quantile of

the estimative distribution function G(·; θ̂). The associated coverage probability is

PY,Z{Z ≤ zα(θ̂(Y )); θ} = EY [G{zα(θ̂(Y )); θ}; θ] = C(α, θ) (2)

and, although its explicit expression is rarely available, it is well-known that it does not match
the target value α even if, asymptotically, C(α, θ) = α + O(n−1), as n→ +∞, see e.g. [1]. As
proved in [5], function

Gc(z; θ̂, θ) = C{G(z; θ̂), θ}, (3)

which is obtained by substituting α with G(z; θ̂) in C(α, θ), is a proper predictive distribution
function, provided that C(·, θ) is a sufficiently smooth function. Furthermore, it gives, as

quantiles, prediction limits zcα(θ̂, θ) with coverage probability equal to the target nominal value
α, for all α ∈ (0, 1).

The calibrated predictive distribution (3) is not useful in practice, since it depends on the

unknown parameter θ. However, a suitable parametric bootstrap estimator for Gc(z; θ̂, θ) may
be readily defined. Let yb, b = 1, . . . , B, be parametric bootstrap samples generated from the
estimative distribution of the data and let θ̂b, b = 1, . . . , B, be the corresponding maximum
likelihood estimates. Since C(α, θ) = EY [G{zα(θ̂(Y )); θ}; θ], we define the bootstrap-calibrated
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predictive distribution as

Gbc(z; θ̂) =
1

B

B∑
b=1

G{zα(θ̂b); θ̂}|α=G(z;θ̂). (4)

The corresponding α-quantile defines, for each α ∈ (0, 1), a prediction limit having coverage
probability equal to the target α, with an error term which depends on the efficiency of the
bootstrap simulation procedure.

3 Generalised extreme value distribution

The previous result can be applied, with some care, to the context of extreme value prediction.
Indeed, assume that {Xt}t≥1 is a discrete-time stochastic process with probability distribution
specified by an unknown parameter. Furthermore, let Yi = maxk∈Ti Xk be the maximum of
the process over time interval Ti, i ≥ 1. It is a well known result in extreme value theory
that, under suitable conditions and if the number of observations in each period is big enough,
the Yi’s are approximately independent and with the same generalised extreme value (GEV)
distribution; see for instance [2].

Now, assume that Y = (Y1, · · · , Yn), n > 1, is observable, while Z = Yn+1 is a future or
not yet available observation of the maximum of the process over the next time interval. Then
Y1, · · · , Yn and Z = Yn+1 can be considered as independent random variables with the same
GEV distribution function

G(z;µ, σ, ξ) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]−1/ξ}
, (5)

with z such that 1 + ξ(z − µ)/σ > 0 and σ > 0.

The GEV distribution has three parameters: a location parameter µ, a scale parameter σ
and a shape parameter ξ. In particular, the values of ξ determine the type of GEV distribution:

• ξ → 0 corresponds to the Gumbel distribution (type I);

• ξ > 0 corresponds to the Fréchet distribution (type II);

• ξ < 0 corresponds to the (negative) Weibull distribution (type III).

It is important noticing that when ξ > 0 or ξ → 0 the support of the distribution is not limited
from above. Only in the case when ξ < 0 the support has an upper bound equal to µ− σ/ξ.

Inverting (5) we can achieve an explicit expression for the quantiles of the distribution:

zα = zα(µ, σ, ξ) =

{
µ− σ

ξ

[
1− {− log(α)}−ξ

]
if ξ 6= 0

µ− σ log{− log(α)} if ξ = 0
(6)

with G(zα;µ, σ, ξ) = α. The value zα is also called return level and it indicates the value that
is expected to be exceeded on average once every 1/(1− α) time intervals.
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4 An application to athletic records

In this section we apply the calibrated procedure to athletic records for two different purposes.
First, we estimate the probability of observing a new record in the next year and we predict
the expected time for a future record. This also allows to evaluate the goodness of a current
world record. Secondly, we discuss the existence of the ultimate record and we give the correct
interpretation to its estimate.

We have collected data from the web site of the International Association of Athletics
Federations (IAAF) [6]. Starting from 2001, we have registered the annual records for males
and females, for the following events: 100 m, 200 m, 400 m, 10,000 m, long jump and javelin.
We have transformed times into mean speeds so that, for each event, the higher the best.

4.1 Parameter estimation

The first step consists of estimating the unknown parameters of each distribution. In particular,
the estimates obtained for the shape parameters are very important because they determine
the particular distribution to be used inside the GEV family.

Here we consider three different methods of estimation: maximum likelihood, L-moments
and generalised maximum likelihood. In spite of its optimal asymptotic properties, the method
of maximum likelihood does not perform very well for small sample sizes. Instead L-moments
and generalised maximum likelihood estimates ensure a better fit, especially for the shape
parameter. In particular, estimation based on the generalised maximum likelihood retains large
sample properties of the maximum likelihood but improves on its small sample performance
(see, for instance, [3]).

Table 1 and Table 2 show estimates for the shape parameters ξ obtained using the three
different estimating methods, for men and women, respectively. The first row of each table
reports maximum likelihood estimates (mle), the second row contains estimates obtained by the
method of L-moments (Lmom) and the third row is for generalized maximum likelihood (gmle).
All the estimated values for the shape parameters are negative, with an exception for women
long jump, for which the three estimates are positive. Thus, the corresponding estimative
distributions are reverse Weibull distributions for all events with negative shape parameter and
a Fréchet distribution for women long jump. In the sequel we will use generalised maximum
likelihood estimates.

estimate 100 m 200 m 400 m 10,000 m long jump javelin
mle -0.1618 -0.0826 -0.1781 -0.2157 -0.3984 -0.3231

Lmom -0.1281 -0.0553 -0.2246 -0.0819 -0.3104 -0.3755
gmle -0.1281 -0.0553 -0.2246 -0.0819 -0.3104 -0.3755

Table 1: Men: estimates of the shape parameters for different events

estimate 100 m 200 m 400 m 10,000 m long jump javelin
mle -0.3343 -0.4416 -0.1658 -0.1269 0.1116 -0.3033

Lmom -0.3069 -0.3006 -0.1330 -0.1803 0.1126 -0.1864
gmle -0.3069 -0.3006 -0.1330 -0.1803 0.3311 -0.1864

Table 2: Women: estimates of the shape parameters for different events
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4.2 Prediction

In this section we compare the estimative distribution function obtained from the generalised
maximum likelihood estimator with the bootstrap calibrated one, for each of the considered
events.

We will see that, using the bootstrap calibrated predictive distribution, we can properly
calculate probabilities related to the variable Z which represents the best performance in the
year to come. In particular we can predict the probability of having a new world record in
the next year as αWR = P (Z > WR), where WR represents the present world record. This
probability can also be used to evaluate the goodness of the world record. Moreover, from αWR

we can calculate the expected number of years for the next record, TWR = 1/αWR.
In all the cases when the estimate of the shape parameter ξ is negative, the estimative

distribution is a (negative) Weibull distribution. It has a bounded upper tail at UL = µ̂− σ̂/ξ̂.
In the analysis of sport data UL is the estimate of what is called the ultimate record, which is
a value that cannot be exceeded by any performance. Instead, using the calibrated predictive
distribution we can show that the probability of exceeding UL, αUL = P (Z > UL), is different
from 0. Unfortunately, in non regular cases when the support of the distribution depends
on unknown parameters, formula (4) is only useful for calculating the bootstrap calibrated
predictive distribution inside the estimated domain. As a consequence, when the present world
record exceeds the estimated upper bound, we cannot calculate αWR. This drawback is not
present for women long jump, since in this case the estimated shape parameter is positive,
giving rise to a Fréchet estimative distribution whose upper tail is unbounded.

Table 3 and Table 4 summarise the main results obtained for each considered event. In
particular they report for men and women, respectively: the estimate of the ultimate record UL,
the probability αUL of exceeding that estimate, the present world record WR, the probability
αWR of exceeding it and the expected time TWR for improving it.

100 m 200 m 400 m 10,000 m long jump javelin
UL 10.797 12.052 9.431 6.804 8.871 95.364
αUL 0.009 0.008 0.011 0.008 0.011 0.013
WR 10.438 10.422 9.296 6.339 8.95* 98.48*
αWR 0.031 0.057 0.029 0.054 - -
TWR 31.79 17.51 33.91 18.62 - -

Table 3: Men’s summary results. * means that the corresponding world record is not included
in the data.

100 m 200 m 400 m 10,000 m long jump javelin
UL 9.477 9.368 8.449 5.897 - 78.318
αUL 0.012 0.011 0.009 0.010 - 0.010
WR 9.533* 9.372* 8.403* 5.690 7.52* 72.28
αWR - - 0.009 0.028 0.056 0.084
TWR - - 105.55 36.05 17.93 11.83

Table 4: Women’s summary results. * means that the corresponding world record is not
included in the data.

Three different possible situations are illustrated and commented using data from men’s 400
m, women’s 100 m and women’s long jump.
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4.2.1 Men’s 400 m

Figure 1 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for men’s 400 m data. The bootstrap procedure is based on 5000 replications. The
present world record (blue dash-dotted) and the estimated ultimate record (red dotted) are also
represented. Here the original time data (sec) have been transformed into mean speeds (m/sec)
since the GEV model fits to maxima data.

For the transformed data, the estimate of the shape parameter is negative. This implies
that the estimative distribution function is a reverse Weibull distribution with upper bound
UL = µ̂− σ̂/ξ̂ = 9.431 m/sec. This corresponds to a time of 42.41 sec. The value UL is usually
interpreted as an estimate of the ultimate record which is the best possible performance in
the event. It is important noticing that this is just an estimate and, of course, it is subject
to variability. To account for this variability, we can use the calibrated predictive distribution
and correctly predict the probability of exceeding UL. As one can see in the plot, in fact,
this probability is the difference between the value 1 of the estimative distribution at UL and
the value of the bootstrap calibrated distribution at UL. Thus, αUL = P (Z > UL) = 0.011.
Similarly, we can calculate the probability of improving the present world record of 43.03 sec,
WR = 9.296 m/sec, as αWR = P (Z > WR) = 0.029, meaning that we expect to improve the
present world record about 3 times every 100 years. This can also be taken as a measure of
goodness of a world record. Both probabilities αUL and αWR are wrongly underestimated by
the estimative distribution function because in the estimation procedure the true parameters
are substituted by their estimates without taking into account for the additional uncertainty
introduced. In particular, the estimative distribution underestimates to 0.016 the probability
of improving the current world record.

4.2.2 Women’s 100 m

Figure 2 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for women’s 100 m data. The bootstrap procedure is based on 5000 replications. The
present world record (blue dash-dotted) and the estimated ultimate record (red dotted) are also
represented. As in the previous example, the original time data (sec) have been transformed
into mean speeds (m/sec) since the GEV model fits to maxima data.

For the transformed data, the estimate of the shape parameter is negative, thus the estima-
tive distribution function is a reverse Weibull distribution with upper bound UL = µ̂− σ̂/ξ̂ =
9.477 m/sec. This corresponds to a time of 10.55 sec. We can use the calibrated predictive
distribution to correctly predict the probability of exceeding UL. As one can see in the plot, in
fact, this probability is the difference between the value 1 of the estimative distribution at UL
and the value of the bootstrap calibrated distribution at UL. Thus, αUL = P (Z > UL) = 0.012.
In this example, the present world record WR = 9.533 m/sec (10.49 sec) exceeds the upper
limit UL, as can be seen in figure 2. This may occur when the data used for estimation do not
include the world record. Indeed, the present world record dates back to 1988, while we have
considered data from 2001 to 2018. A methodological problem arises in this situation, since
we are not able to calculate the values of the bootstrap calibrated predictive distribution (4)
in points that exceed the upper bound of the estimative distribution. The upper tail of the
calibrated predictive distribution can be estimated using non linear regression, but this issue
requires further research. At the moment, we can only conclude by saying that the probability
of improving the present world record is αWR = P (Z > WR) < P (Z > UL) = 0.012. Actually,
the present world record seems to be an exceptional result that can be hardly improved at the
moment.
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Figure 1: Men’s 400 m. Plot of estimative (red dashed) and bootstrap calibrated (black solid)
distribution functions for men’s 400 m data. Bootstrap procedure is based on 5000 replica-
tions. World record (blue dash-dotted) and estimated ultimate record (red dotted) are also
represented.

4.2.3 Women’s long jump

Figure 3 shows the estimative (red dashed) and bootstrap calibrated (black solid) distribution
functions for women’s long jump data. The bootstrap procedure is based on 5000 replications.
The present world record (blue dash-dotted) is also represented.

This is the only event for which the estimate of the shape parameter of the GEV distribution
is positive, thus the estimative distribution function is a Fréchet distribution with no upper
bound. The present world record, WR = 7.52 m, dates back to 1988 and is not included in the
data. Anyway, this is not a problem, being the upper bound UL = +∞. Using the bootstrap
calibrated distribution, we can predict the probability of improving the present world record:
αWR = P (Z > WR) = 0.056. Notice that the estimative distribution wrongly underestimates
this probability to 0.040. The expected time for improving the current world record is about
18 years.
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Figure 2: Women’s 100 m. Plot of estimative (red dashed) and bootstrap calibrated (black
solid) distribution functions for women’s 100 m data. Bootstrap procedure is based on 5000
replications. World record (blue dash-dotted) and estimated ultimate record (red dotted) are
also represented.
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Figure 3: Women’s long jump. Plot of estimative (red dashed) and bootstrap calibrated (black
solid) distribution functions for women’s long jump data. Bootstrap procedure is based on 5000
replications. World record is also represented (blue dash-dotted). Since the estimative density
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