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Abstract Recent years have seen a growing interest in the study of social networks
and relational data and, in particular, of their evolution over time. In the context of
static networks, a commonly used statistical model defines a latent social space and
assumes the relationship between two actors to be determined by the distance be-
tween them in such latent space. In this manner, it is possible to introduce additional
information about each actor and to quantify the residual dependence through a row-
column exchangeability assumption on the adjacency matrix associated to the error
terms of the model. The present paper analyzes the behavior of the stochastic model
given by changes in a “global sociability” parameter which describes the dispersion
of the residuals of the positions of the actors in the latent space. This justifies the
definition of a Bayesian model for dynamic networks which extends the latent space
representation through an infinite hidden Markov model on such positions.
Abstract Negli ultimi anni è cresciuto l’interesse verso lo studio statistico delle reti
sociali e dei dati relazionali, e della loro evoluzione temporale. Un modello statico
comunemente usato introduce uno “spazio sociale” latente, e ipotizza che la proba-
bilità di una relazione fra due attori sia dipendente dalla posizione da essi ricoperta
in tale spazio sociale. In questo modo è possibile introdurre informazioni relative
a ciascun attore, e tener conto della dipendenza residua attraverso la scambia-
bilità tra righe e colonne della matrice di connessione legata al termine di errore.
In questo lavoro si analizza il comportamento stocastico del modello in relazione
ad un parametro di “socialità globale”, espresso dalla dispersione delle posizioni
degli attori nello spazio sociale. Si giustifica quindi un modello Bayesiano per reti
sociali dinamiche che estende la rappresentazione latente attraverso un “infinite
hidden Markov model”, in grado di cogliere cambiamenti nella coesione della rete.
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1 Introduction

Network data consist of measured relations between pairs of actors or particles,
and it arises naturally in many fields, such as computer science, statistical physics,
biology and sociology, to name a few. The first formal treatment of this type of data
dates back to the first half of the 20th century, and throughout its second half, an
active study of mathematical network theory developed. In recent years, however,
we have witnessed a revolution brought about by the intensive data collection from
internet, mobile telecommunications and social network traffic, among others. In
order to analyze such data, scientific focus has turned back to the study of networks
and, in particular, new statistical models have been developed at a pace.

In the present work, we focus on binary network data. Formally, for a fixed set
of N actors, each observation is a binary square matrix Y = (Yi, j)i, j=1...N , for which
each entry Yi, j takes the value 1 if there a relationship is present between actors i
and j, and the value 0 otherwise.

Since the earliest models for this type of data, which constitute what is now con-
sidered the classical approach, a distinction can be made between two main mod-
eling ideas. On one side, models can be constructed by defining a joint distribution
directly on the complete adjacency matrix Y . The simplest version of this type of
model, proposed by Erdős and Rényi (1959) assumes a uniform distribution over all
possible graphs with a given number, E, of edges between the N nodes; different
statistical models can be obtained depending on the distribution assigned to E. A
relevant extension, due to Frank and Strauss (1986) has been widely studied, giv-
ing rise to the exponential family random graph models, based on basic network
structure assumption represented by some form of sufficient statistics.

On the other side, Gilbert (1959), proposed a simple model which constructs the
joint distribution over Y by considering the individual entries Yi, j as i.i.d. Bernoulli
random variables. The model has been extended by replacind the independence
of the links with a milder condition of row-column exchangeability or partial ex-
changeability, in the sense of Aldous-Hoover, of the adjacency matrix (Yi, j). One
example of such type of extension is the stochastic block model, first introduced by
(Nowicki and Snijders, 1959), and extended in recent years, in particular, for the
inroduction of a dynamic evolution of the network. Another example is the latent
space model of (Hoff et al., 2002), in which the probability of link between pairs of
actors is defined through latent variables which can be interpreted as the positions
of such actors in some latent social space; as an additional advantage, this model
may incorporate covariate information on the actors.

The problem of flexibly modeling network structures becomes more crucial when
we consider that real-life networks often vary with time. Dynamic modeling is
rapidly evolving, but effective inference remains an interesting challenge. We pro-
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pose a dynamic extension of the latent space model which aims at preserving the
row-column exchangeability assumption at each fixed time, while incorporating a
dynamic structure by means of an infinite hidden Markov model driving the tempo-
ral evolution of the latent positions of the actors, which allows us to capture changes
in the overall cohesion of the network over time. In the present work, we study the
sensibility of Hoff et al.’s 2002 model to changes in one of the parameters, which
can be interpreted as a measure of the network cohesion. The variety of behaviors
that a network can exhibit, depending on this cohesion parameter, justifies our pro-
posal of introducing the time evolution through it.

A positive aspect of this idea is the simplicity of the interpretability of the mech-
anism driving the dynamics in terms of a time-evolving “global sociability” param-
eter which, in the presence of covariates, still reflects the unexplained dependence.
The nonparametric nature of the infinite hidden Markov model provide enough flex-
ibility to naturally incorporate the evolution of some relevant quantities which are
representative of the network structure. In this sense, our approach has some rela-
tion with exponential random graph models, which assume summary quantities as
sufficient statistics, but suffer from drawbacks (see Chatterjee and Diaconis, 2013).
We avoid the assumption of sufficiency in our dynamic model, but still carefully
monitor the evolution of statistics of interest.

2 Towards a Dynamic Latent Distance Model: the role of
dispersion parameters in the latent space model.

Recall that we are considering network data represented by an adjacency matrix
Y ∈ {0,1}N×N for a fixed set of N actors, for which each entry Yi, j is, marginally
modeled as, a Bernoulli random variable indicating the presence or absence of a
link between actors or nodes i and j. The latent space model introduced by Hoff
et al. (2002) may incorporate additional information on the actors, in the form of
covariates X = (Xi, j)i, j≥1. The probability of a link between two edges is defined as

P(Yi, j = 1|β ,X,Γ ) = f (β T Xi, j + γi, j),

where f is some adequately chosen link function, and the Yi, j’s are considered con-
ditionally independent given the β ,X and Γ .

Row-column exchangeability of the random effects Γ = (γi, j) can be imposed
(see Aldous, 1981) by making

γi, j = d(Zi,Z j),

where d is a distance and {Z1, . . . ,ZN} are i.i.d. latent variables on Rp, interpreted
as the positions of the actors in some latent social space.

For simplicity, we restrict here to the case where no covariate information is
present. This implies that the resulting adjacency matrix Y will be, itself, row-
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column exchangeable. Furthermore, we take Zi ∈R2, which provides a useful graph-
ical representation of the network, and define d to be the Euclidean distance in R2.

The model is completed by the choice of the link function f and the introduction
of a prior distribution for the vector Z = {Z1, . . . ,ZN} of latent positions. Following,
Hoff et al. (2002), we consider the Zi to be i.i.d. random variables with a bivariate
normal distribution N2(0,σ2I2) and we use a logit link. In addition, in order to
simplify notation, we consider here only simple undirected networks, in other words
Yi,i = 0 and Yi, j = Yj,i for i, j = 1, . . . ,N. Therefore, the full model can be expressed
as:

P(Y |Z,β : 0) = ∏
i< j

P(Yi j|Zi,Z j,β0) = ∏
i< j

exp{Yi, j(β0−||Zi−Z j||2)}
1+ exp{βo−||Zi−Z j||2}

, (1)

Zi|σ2 iid∼ N2(0,σ2I2); i = 1, . . . ,N.

The interpretation of the latent Z in terms of locations of the actors in an imagi-
nary social space makes it natural to introduce a time factor into the model precisely
by modeling the change, across time, of such locations. Sewell and Chen (to ap-
pear), for example, propose a dynamic model where the latent positions evolve as
independent Markov processes. We wish to relax the markovian lack of memory
assumption, together with the independence of the evolution of the different actors,
while maintaining the row-column exchangeability at each fixed time. We do so via
a nonparametric hidden Markov model which places the time dependence on the
parameter σ2, as will be explained in the following section.

Indeed, the parameter σ2 plays a relevant role in the model, capturing the dis-
persion of the actors’ positions, thus the “cohesion” or “global sociability” of the
network, so that its temporal evolution may reflect relevant aspects of the network’s
dynamics. To illustrate this, we provide a simulation study of how the stochastic
structure of the network varies when the model parameters influencing the link prob-
ability, (β0,σ

2), change. Figure 1 shows four networks simulated from the model,
with different values of the parameters, namely σ2 = 4;10 and β0 = 1;3. The plots
suggest that an increase in σ2 corresponds to a decrease in the number of links in
the network, while an increase in β0 has the opposite effect. Notice that, as the dis-
tance between two latent locations Zi and Z j approaches 0, the probability of not
having a link between the corresponding actors converges to 1/(1+ exp{β0}) and
therefore β0 will control the degree to which the social space is believed to represent
the relationships between the actors. When β0 = 0, two actors in the same location
will still have a 50% probability of not being linked, and this probability decreases
as β0 increases. In what follows we consider the value β0 = 3 for which we consider
the probability of link between individuals in the same location to be sufficiently
close to zero to say that the social space does represent the relationships between
the actors.

As mentioned before, in the context of network analysis, one is often interested
in some typical summary quantities. We focus on the two of them, which in our case
give a clearer clearer indication of the role of σ2. The first one, commonly known
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Fig. 1: Four networks with N = 20, simulated from the static latent distance model
with different values of parameter σ2 in the prior distribution of the latent positions
Z’s and different β0. By columns σ2 = 4 and σ2 = 16, by rows β0 = 1 and β0 = 3.

as edge density D, defined as the total number of edges present in the graph, divided
by the total possible number of edges given by N(N− 1). The second one, which
we refer to as the triangle density, T , is given by the total number of triangles (also
known as 3-cliques) present in the graph, divided by the total possible number of
triangles, N(N−1)(N−2)/6).

Figure 2 shows smoothed histograms of the edge and triangle densities obtained
from simulated graphs from the static model with varying values of σ2. The static
model is clearly sensitive to changes in the parameter, which thus can be said to
affect the stochastic behavior of the network structure. D and T were not selected
randomly, they are quantities of interest in the context of network analysis and they
even constitute commonly used sufficient statistics for the definition of exponential
random graphs. One could monitor other quantities, such as the eigenvalues of the
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(a) Edge density
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(b) Triangle density

Fig. 2: Smoothed histograms of the edge density, D and the triangle density, T , for
a sample of n = 10000 graphs with N = 20 nodes, simulated from the static latent
distance model with parameters β0 = 3 and σ2 = 0.25,1,4,9,16,36.

spectral representation for the graph or given types of sub-graph relevant to a par-
ticular application. We limit the present discussion to the two quantities mentioned
above only as an example of the different types of behavior that can be captured by
changes in σ2.

3 Dynamic Latent Distance Model

The above study motivates our proposal of a fully Bayesian nonparametric model
latent distance model for dynamic network data of the form Y ∈ {0,1}N×N×T . For
this, we assume that the links are conditionally independent given the latent posi-
tions and parameters, i.e.

P(Y |Z,β0) = ∏
t>=0;i< j

P(Yi jt |Zit ,Z jt ,β0) .

with marginal distribution given by the logistic regression link function, as in the
static model 1. In other words,

P(Yi jt = 1|Zit ,Z jt ,β0) = logit−1(
β0−‖Zit −Z jt‖d

)
The temporal evolution of the process is driven by the change, over time, of the
latent positions, Zi,t which we model through an infinite hidden Markov model, i.e.

Zit |St ,(σ
2
k )

ind∼ N2(0,σ2
St I2)

P(St = j|St−1 = i,π) = πi, j
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(πi)∼ hierarchical DP,

where πi denotes the i-th row of the transition matrix π = (πi, j). In this way, we
obtain a dynamic network model in which, for a fixed time t, the corresponding ad-
jacency matrix Yt is row-column exchangeable. The infinite hidden Markov model
controls the temporal evolution of the position of the actors in the latent space,
through the global sociability parameter σ2, which takes different values over time
depending on the realizations of the state process St . The hierarchical Dirichlet pro-
cess Teh et al. (2006), as a prior distribution on the transition matrix π , avoids the
need for the number of possible states to be fixed a priori. The non Markovian
nonparametric structure of the time dependence so defined over Y provides a great
flexibility to match real life applications.

Bayesian inference for the propose model is challenging due to the complexity of
the data as well as of the modelling structure, and it falls outside of the scope of the
present work. We only mention here that it is possible to implement an algorithm
for MCMC posterior inference based on the beam sampling algorithm of (Van Gael
et al., 2008) and the slice sampling methods of (Kalli et al., 2011), as we will show
elsewhere.
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