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INTRODUCTION 

Clustering is considered the most important aspect of 
unsupervised learning in data mining. It deals with 
finding structure in a collection of unlabeled data. One 
simple way of defining clustering  is as follows: the 
process of organizing data elements into groups, called 
clusters, whose members are similar to each other in 
some way. Several algorithms for clustering exist (Gan, 
Ma, & Wu, 2007); proximity-graph-based ones, which 
are untraditional from the point of view of statisticians, 
emanate from the field of computational geometry 
and are powerful and often elegant (Bhattacharya, 
Mukherjee, & Toussaint, 2005). A proximity graph 
is a graph formed from a collection of elements, or 
points, by connecting with an edge those pairs of points 
that satisfy a particular neighbor relationship with 
each other. One key aspect of proximity-graph-based 
clustering techniques is that they may  allow for an 
easy and clear visualization of data clusters, given their 
geometric nature. Proximity graphs have been shown 
to improve typical instance-based learning algorithms 
such as the k-nearest neighbor classifiers in the  typical 
nonparametric approach to classification (Bhattacharya, 
Mukherjee, & Toussaint, 2005). Furthermore, the most 
powerful and robust methods for clustering turn out 

to be those based on proximity graphs (Koren, North, 
& Volinsky, 2006). Many examples have been shown 
where proximity-graph-based methods perform very 
well when traditional methods fail miserably (Zahn, 
1971; Choo, Jiamthapthaksin, Chen, Celepcikay, Giusti, 
& Eick, 2007)

The most well-known proximity graphs are the 
nearest neighbor graph (NNG), the minimum spanning 
tree (MST), the relative neighborhood graph (RNG), 
the Urquhart graph (UG), the Gabriel graph (GG),  
and the Delaunay triangulation (DT) (Jaromczyk, & 
Toussaint, 1992). The specific order in which they are 
introduced is an inclusion order, i.e., the first graph is 
a subgraph of the second one, the second graph is a 
subgraph of the third  and so on. The NNG is formed 
by joining each point by an edge to its nearest neighbor. 
The MST  is formed by finding the minimum-length 
tree that connects all the points. The RNG was initially 
proposed as a tool for extracting the shape of a planar 
pattern (Jaromczyk, & Toussaint, 1992), and is formed 
by connecting an edge between all pairs of distinct 
points if and only if they are relative neighbors. Two 
points A and B are relative neighbors if for any other 
point C, the maximum of d(A, C), d(B, C) is greater 
than d(A, B), where d denotes the distance measure. 
A triangulation of a set of points is a planar graph 
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connecting all the points such that all of its faces, 
except for the outside face, are triangles. The DT is a 
special kind of triangulation where the triangles are as 
“fat” as possible, i.e., the circumcircle of any triangle 
does not contain any other point in its interior. The 
UG is obtained by removing the longest edge from 
each triangle in the DT. Finally, the GG  is formed by 
connecting an edge between all pairs of distinct points 
if and only if they are Gabriel neighbors. Two points 
are Gabriel neighbors  if the hyper-sphere that has them 
as a diameter is empty, i.e., if it does not contain any 
other point in its interior. Clustering using proximity 
graphs consists of first building a proximity graph from 
the data points. Then, edges that are deemed long are 
removed, according to a certain edge-cutting criterion. 
Clusters then correspond to the connected components 
of the resulting graph. One edge-cutting criterion that 
preserves Gestalt principles of perception was proposed 
in the context of MSTs by C. T. Zahn (Zahn, 1971), 
and consists in breaking those edges e  that are  at least 
say, twice as long as the average length of the edges 
incident to  the endpoints of e.  It has been shown that 
using the GG for clustering, or as part of a clustering 
algorithm, yields the best performance, and is adaptive 
to the points, in the sense that no  manual tweaking of 
any particular parameters is required when clustering 
point sets of different spatial distribution and size 
(Bhattacharya, Mukherjee, & Toussaint, 2005).

The applications of proximity-graph-based 
clustering, and of clustering in general, are numerous 
and varied. Possibilities include applications in the fields 
of marketing, for identifying groups of customers with 
similar behaviours; image processing, for identifying 
groups of pixels with similar colors or that form certain 
patterns; biology, for the classification of plants or 
animals given their features; and the World Wide Web, 
for classifying Web pages and finding groups of similar 

user access patterns (Dong, &  Zhuang, 2004).  In 
bioinformatics, scientists are interested in the problem 
of DNA microarray analysis (Schena, 2003), where 
clustering is useful as well. Microarrays are ordered 
sets of DNA fragments fixed to solid surfaces. Their 
analysis, using other complementary fragments called 
probes,  allows the study of gene expression. Probes that 
bind to DNA fragments emit fluorescent light, with an 
intensity that is positively correlated, in some way, to the 
concentration of the probes. In this type of analysis, the 
calibration problem is of crucial importance. Using an 
experimental data set, in which both concentration and 
intensity are known for a number of different probes, one 
seeks to learn, in a supervised way, a simple relationship 
between intensity and concentration so that in future 
experiments, in which concentration is unknown, one 
can infer it from intensity. In an appropriate scale, it 
is reasonable to assume a linear relationship between 
intensity and concentration. However, some features 
of the probes can also be expected to have an effect 
on the calibration equation; this effect may well be 
non-linear.  Arguably, one may reason that if there is a 
natural clustering of the probes, it would be desirable 
to fit a distinct calibration equation for each cluster, 
in the hope that this would be sufficient to take into 
account the impact of the probes on calibration. This 
hope justifies a systematic application of unsupervised 
learning techniques to features of the probes in order 
to discover, such a clustering, if it exists.

The main concern remains whether one is able 
to discover the absence or presence of any real 
clustering of the probes. Traditionally, clustering of 
microarray probes has been based on standard statistical 
approaches, which were used to validate an empirically 
found clustering structure; however, they were usually 
complex and depended on specific assumptions 
(Johnson, & Wichern, 2007). An alternative approach 

Figure 1.Probes of 25 nucleotides to be clustered. Shown is a gene sequence and a probe window sliding by 
one nucleotide.
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based on proximity graphs could be used, which has the 
advantage of being relatively simple and of providing 
a clear visualization of the data, from which one can 
directly determine whether or not the data support the 
existence of clusters. 

BACKGROUND

A probe is a sequence of a fixed number of nucleotides, 
say 25 (Fig. 1), and it could simply be regarded as a 
string of 25 symbols from the alphabet {A, C, G, T}. 

Probes are generated by sliding over, by one, a 
window of size 25 on the same nucleotide sequence. 
This procedure is not typical but particular to the Mei 
et. al dataset (Mei, Hubbell, Bekiranov, Mittmann, 
Christians, Shen, Lu, Fang, Liu, Ryder, Kaplan, Kulp, 
& Webster, 2003). In order to cluster the probes, one 
can either resort to classical clustering techniques, or 
to proximity-graph-based ones, or both. Moreover, 
for each of these sets of techniques, two approaches 
can be considered: the feature-based approach and 
the sequence-based approach. The first one builds the 
dataset from characteristics extracted from the probes, 
while the second one deals with the probe sequence 
directly. In the feature-based approach, classical probe 
features can be computed such as the frequency  of 
different nucleotide types in the whole probe, and in 
either of its halves (Johnson, & Wichern, 2007).  But 
current interdisciplinary work on the research theme 
reveals novel and creative probe-feature-extraction 
methods. One may, for instance,  combine tools from 
computational music theory and bioinformatics, by 
considering features inspired from the rhythmic analysis 

proposed by Gouyon et. al. (Gouyon, Dixon, Pampalk, 
& Widmer, 2004) and extracting them from microarray 
probes. In this approach,  for  each probe,  an  inter-onset 
interval histogram (IOIH) (Toussaint, 2004; Toussaint, 
2005) is built for each  letter of the alphabet, and 8 
features are computed for each  histogram, namely 
the mean, the geometric mean, the total energy, the  
centroid, the flatness, the kurtosis, the high-frequency 
content, and the  skewness (Gouyon, Dixon, Pampalk, 
& Widmer, 2004). The IOIH is a histogram that 
summarizes how many intervals there exist in a binary 
string of a fixed length, where ‘interval’ denotes the 
distance between two not necessarily successive set 
bits (or ‘1’s). In the left-hand side of Fig. 2, four binary 
strings are first generated from the DNA sequence, one 
for each letter, by writing a ‘1’ where that letter occurs 
and a ‘0’ where it does not. Only the IOIH for letter C 
is shown, in the right-hand side of Fig. 2. 

Then, 6 inter-histogram distances are computed 
using the  Kolmogorov distance. Hence, in total, 32+6 = 
38 features are  extracted for each probe.  Six classical 
distances are used for defining the dissimilarity of the 
points in the feature space. They are the standardized and 
unstandardized Manhattan distance, the standardized 
and unstandardized Euclidean  distance, the 
Mahalanobis distance and the Mahalanobis-Manhattan 
distance (Johnson, & Wichern, 2007). The Manhattan 
distance is the distance between two points measured 
along axes at right angles. The Mahalanobis distance 
is effectively a weighted Euclidean distance where 
the weighting is determined by the sample correlation  
matrix of the point set.

 The second approach is based entirely on the 
sequence of the symbols in the probe, and aims at 
producing a distance matrix that summarizes the 
distances between all pairs of probes, and which 
serves as input for a clustering algorithm. Sequence-
based distances with normalization variations can be 
derived. These include the nearest neighbour distance, 
the edit distance (Levenshtein, 1966) and the directed 
swap distance (Colannino, & Toussaint, 2005). The 
nearest neighbor distance measures the dissimilarity 
of two binary strings via the concept of nearest set bit 
neighbor mapping. A first pass is done over the first 
string, say from left to right, and set bits are mapped 
to their closest set-bit neighbors in the second string, 
in terms of character count. The same kind of mapping 
is done in a second pass over the second string. The 
nearest neighbor distance is the accumulated distances 

Figure 2. Example of inter-onset interval histogram. 
We see that there are two inter-onset intervals of length 
1, one inter-onset interval of length 3, two inter-onset 
intervals of length 4, one inter-onset interval of length 
5 and no inter-onset intervals of lengths 2, 6.



1626  

Proximity-Graph-Based Tools for DNA Clustering

of each mapping link without counting double links 
twice. The edit distance is a metric that measures the 
dissimilarity of two strings by counting the minimum 
number of editing operations needed to transform one 
string into another. The editing operations typically 
considered are ‘replace’, ‘insert’ and ‘delete’. A cost can 
be associated with each operation, hence penalizing the 
use of one operation over another. Finally, the directed 
swap distance measures the dissimilarity of two binary 
strings via the concept of an assignment. It is equal to 
the cost of the minimum-cost assignment between the 
set bits of the first string and the set bits of the second 
string, where cost is taken to be the minimum number 
of swaps between adjacent bits needed to displace a set 
bit in the first string to the position of a set bit in the 
second string, thereby making one assignment.

Classical clustering techniques include the k-
medoids clustering using partitioning  around medoids 
(PAM) (Handl, & Knowles, 2005), the hierarchical 
clustering using single linkage,  and classical 
multidimensional scaling (CMDS). PAM is an algorithm 
that clusters around medoids. A medoid is the data 
point which is the most centrally located in a point 
set. The sum of the distances of this point to all other 
points in a point set is less than or equal to the sum 
of the distances of any other point to all other points 
in the point set. PAM finds the optimal solution. It 
tends to find ‘round’ or ‘spherical’ clusters, and hence 
is not very efficient when the clusters are in reality 
elongated, or in line patterns. Hierarchical clustering 
is a traditional clustering technique that clusters in an 
agglomerative approach. First, each point is assigned 
to its own cluster and then, iteratively, the two most 
similar clusters are joined, until there is only one cluster 
left. If the ‘single linkage’ version is used, it becomes 
equivalent to clustering with minimum spanning trees. 
Other options include ‘complete linkage’ and ‘average  
linkage’. Finally, CMDS is an algorithm that takes as 
input a distance matrix and returns a set of points such 
that the Euclidean distances between them approximate 
the corresponding values in the distance matrix. This 
method, in the context of clustering, allows one to 
try different dimensions in which clustering can be 
performed.  On the other hand, it is a technique to 
reduce the dimensionality of the data to one that can 
be easily visualized.

 As to proximity-graph-based clustering techniques, 
they are: ISOMAP (Tenenbaum, de Silva, Langford, 
2000), and clustering using Gabriel graphs with the Zahn 

edge-cutting criterion. ISOMAP is a proximity-graph 
based algorithm similar in its goal to CMDS, but with 
the flexibility of being able to learn a broad class of 
nonlinear manifolds.  A manifold is an abstract space in 
which every point has a neighborhood which resembles 
the Euclidean space, but in which the global structure 
may be more complicated. The idea of dimension is 
important in manifolds. For instance, lines are one-
dimensional, and planes two-dimensional. ISOMAP is 
computationally efficient and ensures global optimality 
and asymptotic convergence. It tries to conserve the 
geodesic distances between the points, and for that it 
constructs the k-nearest neighbor graph. This set of 
techniques can help to find and visualize the presence 
or absence of any real clustering in the data.

MAIN FOCUS

The rhythmic-analysis-based feature extraction 
applied to microarray probes, and the nearest neighbor 
distance for measuring probe dissimilarity are, in 
themselves, a novelty in the current research on 
microarray data mining. What is further emphasized 
here is the comparison between traditional clustering 
techniques and novel proximity-graph-based clustering 
techniques, the latter which give a simple and clear 
way of visualizing the clustering and, for our DNA 
microarray clustering example,  it shows that the data 
lacks any real clustering.

Dataset

The dataset consists of a collection of genes, with sliding 
probes (Fig. 1) for each gene. The HTC (Human Test 
Chip) data set is used.  This is a proprietary data set 
that Affymetrix used in its probe selection algorithm 
study (Mei, Hubbell, Bekiranov, Mittmann, Christians, 
Shen, Lu, Fang, Liu, Ryder, Kaplan, Kulp, & Webster, 
2003) and was accessed through Simon Cawley and 
Teresa Webster (Affymetrix). A set of 84 transcripts (77 
human and 7 bacterial) were used for probe selection 
analysis.  Each human gene has approximately 500 
probes made of 25 nucleotides each. Let us consider 
one representative gene from which 303 probes have 
been generated. The dataset is therefore the collection 
of the 303 probes.
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Methods

PAM and  hierarchical clustering using single linkage 
are used as a baseline to  which proximity-graph-based 
clustering methods are compared. 

Clustering of Microarray Probes using 
Classical Techniques

First, PAM is applied using the feature-based approach. 
No good clustering is obtained. Fig. 3 shows a silhouette 
plot for each of the three distance measures used.  A 
silhouette plot is a plot that displays a measure of 
how close each point in one cluster is to points in the 
neighboring clusters. It takes into account both cohesion 
and separation. A detailed definition is given by (Choo, 
Jiamthapthaksin, Chen, Celepcikay, Giusti, & Eick, 
2007). It is therefore an indicator of the ‘goodness’ of 
the clustering. The plots show that clusters do not look 
well defined; they hence give a first indication that there 
is no  cluster structure in the data.

Next,  hierarchical clustering with single linkage, 
using the feature-based approach, is applied. Fig. 4 
shows one representative dendrogram. A dendrogram 
is a tree diagram used to illustrate the arrangement of 
the clusters produced by the hierarchical clustering 
algorithm. The leafs represent the data points, children 

of the same parent are points in the same cluster, and 
the edge lengths correspond to the distances between 
clusters. The dendrogram in Fig. 4 shows, again, that no 
clustering  structure seems to be present in the data, this 
time with long clusters,  just as with spherical ones.

Now, let us apply PAM again, but with the sequence-
based approach. The total average silhouette width was 
chosen as an indicator of the  ‘goodness’ of the clustering 
using PAM. With the non-normalized edit distance, a  
clustering with 61 clusters  yielded the best average 
width. With the nearest neighbor distance, a  clustering 
with 5 clusters yielded the best average width. In both 
cases, however, the corresponding silhouette plots 
showed no real clustering. The dendrograms output by 
the hierarchical clustering with single linkage algorithm 
also showed no  clustering for both the edit distance 
and the nearest neighbor distance. 

The last method we can apply in classical clustering 
is CMDS. As previously defined, CMDS can reduce the 
dimensionality of the data to one that can be visualized. 
However, clustering would have to be visually 
performed, which is often difficult and inaccurate. Fig. 
5 shows the probe set in a three dimensional space after 
CMDS is applied.

Figure 3. PAM silhouettes using: a) Standardized Manhattan distance, b) Standardized Eucidean distance, c) 
Mahalanobis distance. A silhouette plot is a plot that displays a measure of how close each point in one cluster is 
to points in the neighboring clusters. No good clustering of the probes is found, as the average silhouette widths 
are either small (a and b), or they are high but with only 2 disproportionate clusters found (c).
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Figure 4. Representative dendrogram for single-link-
age clustering, using the unstandardized Manhattan 
distance. No underlying good clustering is apparent.

Figure 5. Classical mutidimensional scaling with: a) Edit distance (non-normalized), b) Nearest neighbor dis-
tance. No clustering is noticeable.

Clustering of Microarray Probes using 
Proximity Graphs

Now, proximity-graph-based clustering techniques are 
applied on the same dataset and using the same two 
approaches. In the feature-based approach, clustering 
using the Gabriel graph – Zahn’s criterion gives rise 
to the plots in Fig. 6. The result, for each distance 
measure, consists of one very large cluster, containing 
most of the probes and one or more smaller clusters 
containing too few probes to be considered. Therefore, 
we can consider this as more evidence to the theory 
that no natural clustering structure is present in the 
data. This time, edges  allow an easy visualization of 
the clustering.

For the sequence-based approach, the ISOMAP 
algorithm is first used to embed the distance matrix 

in the best Euclidean space, taking into account the 
possibility that the data set is in reality manifold-shaped. 
ISOMAP found the 3D space to be the best space in  
which to embed our probes. This makes it possible  to 
plot the points in 3D and to apply clustering using  the 
Gabriel graph – Zahn’s criterion algorithm as shown 
next in Fig. 7. If a higher dimensional space was found 
by ISOMAP, clustering using Gabriel graphs would still 
be possible, and visualizing it would require additional 
projection methods. Again, no good clustering is found, 
as one cluster turns to have most of the points, and the 
others only few. This time, the absence of real clustering 
in the data is confirmed.

FUTURE TRENDS

Proximity graphs will continue to play a crucial role 
in applications such as the calibration problem in 
microarray analysis, as well as in other clustering 
applications, especially in those applications where 
clustering is a preprocessing step for a problem where 
the need to discover the presence or absence of any 
real clustering in the data, and where the visualization 
of  the data points and clusters plays a determining 
role to this end. The current most efficient manifold-
learning algorithms are based on nearest neighbor 
types of graphs.  Further research on incorporating 
Gabriel graphs in manifold learning algorithms, such 
as ISOMAP, should be considered, since Gabriel 
graphs have consistently been proven to be powerful 
and helpful tools in designing  unsupervised learning 
and supervised instance-based learning algorithms. 
Moreover, answers to open questions that arise when 
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Figure 6.Gabriel graph with Zahn's edge cutting criterion: a) Standardized Manhattan distance, b) Standardized 
Euclidean distance, c) Mahalanobis distance. No real clustering of the probes is noticeable.

Figure 7. Gabriel Graph with Zahn edge cutting criterion: a) Edit distance, b) Nearest neighbor distance. No 
real clustering of the probes is noticeable.

applying Gabriel-graph-based clustering on a fixed-size 
set of points as the dimension gets higher, will have 
to be investigated.   In fact, in a situation like this, 
Gabriel graphs can have edges between all pairs of 
points (Chazelle, Edelsbrunner, Guibas, Hershberger, 
Seidel, & Sharir, 1990; Jaromczyk, & Toussaint, 1992); 
a situation that may also be viewed from the standpoint 
of supervised learning, when features of a dataset, 
which correspond to dimensions, are so numerous, 
that a comparatively smaller number of data points is 
not enough to learn them, essentially leading to what 
is termed the curse of dimensionality. Which subgraph 
of the Gabriel graph would give the best result in this 
case, or how sparse the graph should be, will then be 

interesting future research problems to be solved in 
this field. 

CONCLUSION

Proximity-graph-based clustering can be a very 
helpful preprocessing tool for the calibration problem 
in microarray analysis. Both classical and proximity-
graph-based  clustering methods can be used to cluster 
microarray probes. However, classical methods do not 
provide a simple, elegant, and clear way of visualizing 
the clustering, if it exists. Furthermore, unlike some 
proximity-graph-based   algorithms, they almost always 
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fail to detect any clusters of structurally complex 
higher level shapes, such as a manifold. Proximity-
graph-based clustering methods can hence be efficient 
and powerful alternate or complementary tools for 
traditional unsupervised learning. These methods can 
also play a useful role in visualizing the absence (or 
presence) of any real clustering in the data that may 
have been found using classical clustering methods. 
Moreover, in this context, novel interdisciplinary 
probe-feature-extraction methods are being considered, 
and a sequence-based approach that defines novel 
distance measures between probes is currently under 
investigation.
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KEY TERMS

Clustering: Data mining technique falling under 
the unsupervised learning category. It is the process of 
organizing data elements into groups, called clusters, 
whose members are similar in some way

Gabriel Graph (GG): A proximity graph formed 
by joining by an edge all Gabriel neighbors.

Gabriel Neighbors:  Two points are Gabriel 
neighbors if the hyper-sphere that has them as diameter 
is empty, i.e., if it does not contain any other point.

Inter-Onset Interval Histogram (IOIH):  A 
histogram that summarizes how many intervals there 
exist in a binary string of a fixed length, where ‘interval’ 
denotes the distance between two (not necessarily 
successive) set bits.

Microarray: An array of ordered sets of DNA 
fragments fixed to solid surfaces. Their analysis, using 
other complementary fragments called probes,  allows 
the study of gene expression.

Nearest Neighbor: The point, in a point set, that 
has the minimum distance to a given point, with respect 
to a certain distance measure.

Nearest Neighbor Distance: A distance measure 
that measures the dissimilarity of two binary strings via 
the concept of nearest set bit neighbor mapping. A first 
pass is done over the first string, say from left to right, 
and set bits are mapped to their closest set-bit neighbors 
in the second string, in terms of character count. The 
same kind of mapping is done in a second pass over 
the second string. The nearest neighbor distance is the 
accumulated distances of each mapping link without 
counting twice double links.

Nucleotide: A subunit of DNA or RNA. Thousands 
of nucleotides are joined in a long chain to form a DNA 
or an RNA molecule,. One of the molecules that make 
up a nucleotide is a nitrogenous base (A, G, C, or T 
in DNA; A, G, C, or U in RNA); hence a nucleotide 
sequence is written as a string of characters from these 
alphabets.

Probe:  A sequence of a fixed number of nucleotides 
used for the analysis of microarrays. It is designed to 
bind to specific DNA fragments in a microarray, and 
emit fluorescent light as an indicator of the binding 
strength.

Proximity Graph: A graph constructed from a set 
of geometric points by joining by an edge those points 
that satisfy a particular neighbor relationship with each 
other.  The most well-known proximity graphs are the 
nearest neighbor graph (NNG), the minimum spanning 
tree (MST), the relative neighborhood graph (RNG), the 
Urquhart graph (UG), the Gabriel graph (GG),  and the 
Delaunay triangulation (DT).




