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Abstract

We study optimal bank regulation in an economy with aggregate uncertainty.
Bank liabilities are used as “money” and hence earn lower returns than equity.
In laissez faire equilibrium, banks maximize market value, trading off the funding
advantage of debt against the risk of costly default. The capital structure is not
socially optimal because external costs of distress are not internalized by the banks.
The constrained efficient allocation is characterized as the solution to a planner’s
problem. Efficient regulation is procyclical, but countercyclical relative to laissez
faire. We show that simple leverage constraints can get the decentralized economy
close to the constrained efficient outcome.
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As various authors have pointed out1, the Modigliani and Miller (1958) theory of

corporate capital structure is not appropriate for understanding the capital structure

of banks. Whereas corporate debt is a claim on corporate cash flows, bank liabilities

circulate as money in addition to being a claim on cash flows. The liquidity services

provided by bank liabilities create a wedge between the risk adjusted returns on bank

debt and bank equity. As a result, debt may be a cheaper source of funding than equity.

In this paper, we undertake a theoretical investigation of optimal bank capital structures

in a model where the Modigliani-Miller theorem does not hold.

We are interested in studying the dynamics of bank capital structure when the econ-

omy is subject to aggregate shocks. Aggregate uncertainty makes the characterization of

general equilibrium analytically intractable, so we resort to numerical methods to solve

the model. The solution of the model is difficult because we solve the model globally

rather than using a linear approximation around the steady state. Computing a global

solution is necessary because non-linearities play an important role in the model and the

optimal dynamic policy varies across different states.

Another source of complications is the fact that markets are incomplete. Whenever a

bank or firm changes its capital structure, it is effectively creating new securities that are

not spanned by the existing securities. This gives rise to a complicated pricing problem.

The computational problems we face are made tractable by the fact that we have

developed a model that can be solved as the solution to a planner’s problem. The

planner makes the consumption and savings decisions for households and investment

decisions and capital structures for banks and firms that maximize the expected utility

of the representative agent. Then we can use the first-order conditions for the consumers’

problem to “back out” the market clearing prices. The capital structure chosen by the

planner turns out to maximize the market value of banks, when debt and equity are

priced using the appropriate stochastic discount factors. Solving the planner’s problem

is non-trivial, but it greatly simplifies the computational difficulty of solving the model.

We develop a two-sector dynamic equilibrium model consisting of bankers, producers,

and consumers. Bankers raise funds by issuing equity and debt (in the form of deposits)

and invest in capital goods. The bankers’ capital assets produce revenue using a linear,

stochastic technology that is subject to idiosyncratic as well aggregate shocks. Producers

1See, for example, DeAngelo and Stulz (2015) and Stein (2012).
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have a neoclassical technology with decreasing returns to scale for producing new capital

goods. Production is instantaneous and uses only consumption as an input, so there is

no need for producers to obtain financing for production. The producers are assumed

to maximize profits, which are immediately paid to the owners (consumers).

There is a large number of identical, infinitely lived consumers. Consumers have

an initial endowment of capital goods, which they sell to bankers in exchange for debt

(deposits) and equity. From that point onwards, consumers receive the returns on debt

and equity and manage their portfolios to maximize their expected utility over an infinite

horizon.

A banker chooses the capital structure that maximizes the market value of the bank

at each date. This entails a tradeoff between the funding advantage of debt and the

risk of costly default.2 This tradeoff determines a unique, optimal, capital structure in

equilibrium. The optimal capital structure changes over time, of course. Without the

funding advantage of debt, 100% equity finance would be optimal; without the risk of

costly default, 100% debt finance would be optimal. We need both the funding advantage

of debt and costs of default to explain a non-trivial capital structure.

A limitation of our approach is that there is no need for capital regulation. Be-

cause the equilibrium is a solution of the planner’s problem, an equilibrium allocation

is constrained efficient.3 One of the main reasons for studying bank capital structures,

of course, is the belief that banks are over-levered and that stricter capital regulation is

required to make the banking system more resilient and avoid financial crises.

We have two answers to this concern. First, studying a constrained efficient equilib-

rium may be useful for understanding regulation. It provides a benchmark by showing

how capital structures would behave in an ideal world. This may provide some guidance

to regulators who are trying to figure out what bank capital structures should look like.

We give some examples below. Our second response is to extend the model to include

external costs of bank distress. As long as those costs are additively separable, the equi-

2For simplicity, we assume that default results in bankruptcy and the loss of a fixed fraction of the
bank’s revenue. These costs are internalized by the banker and represent a deadweight loss for the
economy.

3Because markets are incomplete (debt and equity are the only claims on the banks’ cash flows), the
appropriate efficiency concept is constrained efficiency. In addition to the usual feasibility conditions,
the planner is required to use debt and equity to share risk and allocate consumption. This includes
the requirement that only deposits can be used to pay for consumption.
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librium of the laisser faire economy can still be computed as the solution of a planner’s

problem. This planner’s problem ignores the external costs, so the resulting equilibrium

is no longer constrained efficient. The socially optimal allocation, including the socially

optimal capital structures, must be derived from a different planner’s problem, one that

includes the additively separable external costs.

A good illustration of these two approaches is the behavior of bank leverage over

the business cycle. In both the laissez faire equilibrium (equilibrium, hereafter) and

the optimal solution of the planner’s program (optimum, hereafter) in the presence of

a negative externality, leverage is strongly procyclical. In both cases, an increase in

productivity leads to an increase in leverage in the banking sector. This contradicts

the view that capital regulation should be countercyclical, that is, requiring more bank

capital at the peak of the cycle than at the trough.4 The relationship between the

optimum and equilibrium leverage is highly non-linear, however. When productivity and

output are low, the difference between the equilibrium bank leverage and the optimal

bank leverage is negligible. When productivity is high, on the other hand, optimal

leverage is much lower than equilibrium leverage. In fact, the ratio of optimum leverage

to equilibrium leverage decreases monotonically as productivity increases. So, although

optimal leverage is procyclical, the policy is countercyclical in the sense that optimal

regulation restricts leverage relatively more compared to the equilibrium at the top

of the cycle than at the bottom. Thus, the model produces two surprising results,

the optimality of procyclical leverage together with a non-linear countercyclical policy

of “leaning against the wind.” These subtleties would not be observable in a linear

approximation of the model, of course.

Another interesting feature of the model’s dynamics is what we call the intertemporal

substitution effect. This is most clearly seen when we shut down the aggregate produc-

tivity shocks and observe the transition of the economy from some initial condition to

the steady state. Because of the negative externality associated with leverage, we expect

leverage to be lower in the optimum than it is in the equilibrium. However, this poses a

problem for the planner: reducing leverage will restrict consumption, other things being

equal, and increase investment. But what is the point of investing more if the returns

cannot be consumed? In fact, it is not optimal to reduce leverage at every point on

the growth path. Initially, leverage and the bank’s default probability are higher in the

4Gersbach and Rochet (2017) provides a rationale for countercyclical policy in this traditional sense.
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optimum than in the equilibrium. Then, when the capital stock has grown sufficiently

large, leverage and the probability of default level off in the optimum, but continue to

grow on the equilibrium path and eventually overtake the constrained efficient leverage

and default probability. This behavior is a consequence of the fact that the negative

externality is linear in the capital stock whereas the marginal utility of consumption is

diminishing as the capital stock and consumption grow. When the economy is small,

the marginal external cost is relatively unimportant compared to the marginal utility of

consumption. As the economy approaches the steady state, the marginal external cost

remains the same while marginal utility has become relatively small.

Once we re-introduce aggregate productivity shocks, the model no longer has a steady

state, but it has an ergodic set and we can see the intertemporal substitution effect at

work here as well. Along the transition to a steady state, it is optimal to increase

leverage when capital and consumption are low and reduce it when they are high. The

same intuition suggests that, in the ergodic set, optimal leverage should be relatively

high when productivity is low and relatively low when productivity is high. And this

is exactly what we see when we compare leverage in the equilibrium and optimum: the

ratio of optimal to equilibrium leverage is countercyclical.

In the presence of the negative externality, the constrained efficient solution to the

planner’s problem is the best that can be achieved, but it goes beyond what could

be interpreted as capital regulation because it requires the regulator to control every

aspect of the economy. Unfortunately, there is no way to decentralize decisions about

consumption, investment, and portfolios choice, while leaving regulation of bank capital

structure to the central authority. Even if such a decentralization result were available,

the fully state-contingent optimal capital regulation might be so complex that it would

be unrealistic to expect a regulator, with limited computational ability and information,

to implement it.

As an alternative to the central planning solution, we model the behavior of a bound-

edly rational regulator, while leaving everything else to be determined as in the laissez

faire equilibrium, in the form of an ad hoc rule that approximates the optimal leverage

policy derived from the planner’s problem. In the simplest case, this reduced-form reg-

ulation takes the form of a constant, state-independent, upper bound on leverage. A

more sophisticated version allows for the upper bound on leverage to vary with aggregate

productivity. In this way, we try to mimic a fixed maximum leverage ratio and a pro-
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cyclical maximum leverage ratio. These constraints on leverage are imposed exogenously

on banks, but producers and consumers are not directly constrained. They make their

equilibrium decisions in the usual way, taking prices as given, and then prices adjust to

clear markets. We refer to an equilibrium relative to an exogenous regulatory rule as a

regulated equilibrium.5

Our analysis of the various regulated equilibria shows that a simple policy can be

quite effective in certain circumstances. If we shut down the aggregate productivity

shock and set the maximum leverage equal to the steady state leverage in the optimum,

the regulated equilibrium with this constant, state-independent maximum leverage looks

pretty similar to the optimum. Along the transition path, the leverage constraint is not

binding but the unconstrained leverage is close to the constrained efficient leverage. Once

we get close to the steady state, the constraint begins to bind and regulated equilibrium

is forced to follow the same path as in the optimum.

Although this very simple policy does well if we set the upper bound equal to the

constrained efficient leverage in steady state, the results are sensitive to the choice of

policy. Choosing a slightly lower upper bound causes the economy to overshoot the

constrained efficient steady state and accumulate too much capital. Although this means

that consumption will eventually be higher in the steady state, the path as a whole is

inefficient and, in the steady state, consumption and welfare could both be raised by

reducing the capital stock through depreciation.

A constant maximum leverage ratio does well in the absence of aggregate uncertainty,

but it would be less successful in an economy with aggregate uncertainty. We know

that the optimal leverage is strongly procyclical. A constant maximum leverage ratio

is either never binding or prevents leverage from rising enough when productivity is

high. On the other hand, a state-contingent policy can do quite well. Although the

optimum leverage depends on two state variables, the capital stock and the productivity

shock, it is sufficient to make the maximum leverage in the regulated equilibrium a

function of the productivity shock alone. Setting the maximum leverage equal to the

expected leverage in the optimum, conditional on the productivity shock, we find that

the regulated equilibrium is very close to the optimum.

5Admittedly, the models of regulation we analyze are suboptimal and ad hoc. Nonetheless, it is
interesting to see how close one can come to the first best using such simple, ad hoc rules.
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One of the advantages of the regulated equilibrium is that we can see the effect of

capital regulation on market prices. In particular, we can see how the relative costs of

debt equity funding are affected. Again, the cleanest results are obtained for the model

in which the aggregate productivity shock is shut down and we consider a constant,

state-independent maximum leverage ratio. When the capital stock is low, the returns

to debt and equity are quite high and very similar. As the economy grows, approaching

the steady state, the returns on debt and equity fall and drift apart. The steady-state

returns on equity are determined by the consumers’ discount factor, as they would be in

any neoclassical growth model. The return on deposits, however, is much lower because

of the liquidity premium on deposits. The spread between the returns on debt and equity

is also very sensitive to the leverage constraint. A slight tightening of the constraint

can drive the return on deposits into negative territory. In the model with aggregate

uncertainty, the price dynamics are more complicated, but we continue to see significant

differences between the cost debt and equity funding and significant sensitivity to capital

regulation.

The rest of the paper is structured as follows. In Section 1 we discuss the contribution

of our analysis vis-a-vis the extant literature. In Sections 2-4, we introduce the dynamic

equilibrium model of economy with a banking sector and derive the fundamental de-

centralization results, which are instrumental to our analysis. Section 5 introduces our

models of bank regulation. In Section 6 we discuss the numerical results of our models.

1 Literature review

As highlighted in Galati and Moessner (2013), the financial crisis of 2007-09 exposed

important shortcomings in our understanding of the nexus between the real economy, the

financial system, and monetary policy ( Crowe, Johnson, Ostry, and Zettelmeyer 2010,

Claessens, Kose, Laeven, and Valencia 2014). Also, externalities play a crucial role in the

design of macroprudential policies (De Nicolò, Favara, and Ratnovski 2012), but much

of the literature does not consider these externalities or focuses on a representative bank.

Our paper fills these gaps proposing the study of optimal, dynamic, capital regulation

in an economy subject to aggregate productivity shocks, when bank liabilities circulate

as money but leverage of the banking sector creates a negative externality.
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There is now a substantial literature on macroeconomic models with financial fric-

tions. Recently, Gertler and Kiyotaki (2015) consider a macroeconomic model of bank

runs in which the supply of bank capital is fixed. Thus, the cost of capital does not

play an important role in determining the equilibrium capital structure. Similarly, in

Brunnermeier and Sannikov (2014), the quantity of bank capital changes due to macro

shocks and evolves according to a two-factor stochastic equation. Their model assumes

also that the debt risk free. In the models of Gertler and Kiyotaki (2015) and Brunner-

meier and Sannikov (2014), the level of consumption is not a choice variable, making

prices independent of consumption. These models have the merit of including a styl-

ized financial sector, although without developing a theory of asset pricing. Unlike the

macroeconomic literature, our paper focuses on the pricing of debt and equity and the

impact on financial decisions, such as the choice of the equilibrium capital structure,

rather than the role of financial frictions in the business cycle.

A second strand of literature studies optimal bank capital structure. Allen, Carletti,

and Marquez (2015) study a simple general equilibrium model in which banks and firms

are funded by debt and equity and choose their capital structures to maximize joint

surplus. In equilibrium they show that banks have much higher leverage than firms.

Gale and Gottardi (2017) generalize the results of Allen, Carletti, and Marquez (2015),

showing that similar results can be obtained in a standard competitive equilibrium

model without their restrictive assumptions. They argue that bank leverage can be

higher because the equity buffer held by firms does “double duty,” making the firms’

debt safer and thus making banks safer. In an important quantitative study, Gornal and

Strebulaev (2015) also study the general equilibrium determination of capital structures

in the corporate and banking sectors. They show that for reasonable parameter values,

leverage is much higher in the banking sector than in the corporate sector. They argue

that banks assets are safer for two reasons, because they are senior claims and because

the bank is diversified across firms. In the present paper, we combine the banking and

corporate sectors, following the approach in Allen, Carletti, and Marquez (2015). And

unlike the static models discussed above, our focus is on the dynamics of capital structure

and prices driven by aggregate shocks.

Admati and Hellwig (2013) base their argument that “bank capital cannot be expen-

sive” on the seminal Modigliani and Miller (1958) paper on corporate capital structure.

However, banks are special, as DeAngelo and Stulz (2015) point out. Banks provide liq-
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uidity services, that is, they are engaged in security design, and cannot take the prices of

securities as given. Instead, the banker takes as given the marginal utility that the rep-

resentative consumer will receive in each state, in each subperiod, and uses the marginal

utilities to value the bundle of contingent commodities represented by the securities. In

this way, banks provide liquidity insurance to depositors who wish to postpone consump-

tion (Diamond and Dibvig 1983). It is important to note that the optimal level of capital

and the leverage structure of the bank along the business cycle is not explored here. In

an early paper, Gale (2004) studied the endogenous choice of bank capital structure to

provide additional risk sharing to depositors. Again, among the channels of interaction

between the banking sector and the real economy, these papers do not consider the role

of consumption. An exception is Gale and Yorulmazer (2016), who highlight the social

value of deposits and the banks’ equilibrium capital structure is determined, similarly

to our model, by a trade off between the funding advantages of deposits and the risk of

costly default.

A third research strand examines the optimality of bank regulation and, in recent

times the welfare effect of capital and liquidity requirements. A first analysis of opti-

mality and the rationality of banking regulation is in Gale and Ozgur (2005).

In order to find an externality that justifies the introduction of capital regulation,

one has to go beyond the microeconomic analysis of a single bank and consider the

efficiency of risk sharing in the financial sector or the economy as a whole. Financial

fragility is one possible justification. A recent review of the literature is provided by

Marttynova (2015). She reviews studies exploring how higher bank capital requirements

affect economic growth. The study shows that the way banks meet capital requirements

(raise equity, cutting down lending, and reducing asset risk) matters and finds that both

theoretical and empirical studies are inconclusive as to whether more stringent capital

requirements reduce banks’ risk-taking and make lending safer.

De Nicolò, Gamba, and Lucchetta (2014) develop a dynamic model to study the

quantitative impact of microprudential bank regulations on bank lending. The model

assesses the efficiency and welfare of banks that are financed by debt and equity, un-

dertake maturity transformation, are exposed to credit and liquidity risks, and face

financing frictions. They show that the relationship between bank lending, welfare, and

capital requirements is concave. More importantly, they argue that resolution policies

contingent on observed capital, such as prompt corrective action, dominate in efficiency
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and welfare terms (non-contingent) capital and liquidity requirements. Relative to this

literature, one of our most important contributions is that efficient capital regulation

is procyclical and that a state-contingent leverage constraint can get the decentralized

economy close to the constrained efficient outcome.

Van den Heuvel (2008, 2016) analyze the welfare cost of capital requirement. His

model, like ours, assumes that banks liabilities provide liquidity in an otherwise standard

general equilibrium growth setting. He analyzes how capital requirements can affect

capital accumulation and the size of the banking sector when there is a tradeoff between

the benefit of bank’s deposits and the cost of capital requirement and supervision. He

argues capital requirements are very costly in terms of welfare (between 0.1 and 1 per

cent of the US GDP) because an increase in the capital requirement lowers welfare

by reducing the ability of banks to issue deposit-type liabilities. On the other hand,

capital requirements reduce bank supervision and the related compliance costs, given

the incentive compatibility constraint. While this may be an important factor, in our

model we consider a genuine market failure: the typical bank, being small, does not take

into account the negative externality of the overall banking sector leverage.

Differently from recent contributions, our model explicitly assumes macroeconomic

risk as the main driver. Van den Heuvel (2008, 2016) assumes no aggregate uncertainty.

In Boissay, Collard, and Smets (2016), recessions arise from a coordination failure be-

tween heterogeneous banks, as opposed to from aggregate uncertainty. They use a

simple textbook general equilibrium model, in which banking crises result from the pro-

cyclicality of bank balance sheets that originates from interbank market funding. In

their model, a crisis breaks out endogenously, following a credit boom generated by a

sequence of small positive supply shocks; it does not result from a large negative exoge-

nous shock. Thus, a procyclical regulation would not be optimal in their setting, as the

banks, through the interbank channel, would have problems with reciprocal funding.

Also Phelan (2016) attributes macroeconomic instability to the financial sector. He

derives a continuous-time stochastic general equilibrium model in which banks allocate

resources to productive projects, and bank deposits provide liquidity services. Bank

capital is set with a VaR rule, similarly to Adrian and Shin (2014), that makes lever-

age procyclical because asset’s risk is higher in downturns. Phelan shows that although

financial-sector leverage increases social efficiency in the short run, in the long run it

increases the frequency and duration of states with bad economic outcomes. Hence,
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according to Phelan, there is a linkage between procyclicality of leverage and financial

instability. While this literature argues that the procyclicality of bank leverage is detri-

mental to welfare, we show that the leverage in the constrained efficient economy is

procyclical.

2 The model

In this section, we introduce the model of competitive equilibrium that provides the

framework for the rest of the paper. We characterize the optimal allocation as the so-

lution to a planner’s problem and show that the constrained efficient allocation can be

decentralized as a laissez faire equilibrium. This approach has two advantages. First, it

allows us to compute the equilibrium allocation as the solution to a dynamic program-

ming problem. Second, it implies that the equilibrium allocation is constrained efficient.

The equilibrium prices can then be backed out from the first-order conditions of the

representative consumer, evaluated at the equilibrium allocation.

Time is assumed to be discrete and is indexed by t = 0, 1 . . . . At each date t,

there are two goods, a perishable consumption good and a durable capital good. The

consumption good is used as the sole input for the production of capital goods. The

capital good is used as the sole input for the production of consumption goods.

The economy consists of consumers, bankers, and producers. Consumers are the

initial owners of capital goods, which they sell to bankers in exchange for deposits and

equity. Consumers manage a portfolio of deposits and equity to fund lifetime consump-

tion. They also own the firms that produce capital goods.

Bankers control the technology for producing consumption goods. They fund the

purchase of capital goods by issuing debt (deposits) and equity. Constant returns to

scale and perfect competition ensure that bankers maximize the market value of their

banks but receive no remuneration in return. The bankers pay depositors principal

and interest from their revenues. The rest is earnings on equity which can be paid to

shareholders as dividends or retained and invested in assets (capital goods). Banks are

subject to revenue shocks, which introduce the possibility of default. If a bank has
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insufficient funds to meet the demand for withdrawals, it is forced into liquidation and

settles its debts from the sale of its assets (capital goods).

Producers use a neoclassical technology to produce capital goods. Since production

takes place instantantaneously and does not involve capital as an input, there is no need

for the producers to finance their operations with debt and equity. They choose inputs

and outputs to maximize current profits. Profits are immediately distributed to the

owners (consumers).

2.1 Market structure

A key assumption in our model is that markets and activities are segmented. The interval

[t, t+ 1), referred to as period t, is divided into two subperiods, which we call ‘morning ’

and ‘afternoon.’ Some markets are open only in the morning; other markets are open

only in the afternoon. This segregation of markets naturally leads to a segregation of

activities between the morning and afternoon, as well. The time line is as follows:

• morning of period [t, t+ 1):

– the aggregate productivity shock and the bankers’ idiosyncratic shocks are

realized;

– bankers’ cash flows are realized;

– consumers withdraw deposits from banks;

– deposits that are not used for consumption can be held until the afternoon;

• afternoon of period [t, t+ 1):

– solvent banks pay dividends to shareholders;

– failed banks are liquidated and their debts settled;

– new capital goods are produced and sold to banks;

– banks issue debt and equity to finance the purchase of new capital goods and

to optimize their capital structures;

– consumers purchase new debt and equity and rebalance their portfolios.
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This structure forces consumers who want to consume in the morning of period t + 1

to acquire deposits in the afternoon of period t. A consumer who receives dividends in

the afternoon of period t, cannot consume them immediately. Instead, the dividends

must be converted into deposits, which cannot be consumed until the morning of period

t+ 1.6

The segregation of activities between subperiods gives deposits a role as a medium

of exchange as well as a store of wealth. Deposits are not simply another asset: they

have social value because they make consumption possible. As we shall see, deposits

are a cheaper source of funding for banks than equity, because of the liquidity services

provided by deposits.

The segregation of activities also explains why banks that are short of ‘cash’ to pay

their depositors cannot obtain additional liquidity by selling part of their capital stock.

The market for capital goods is open in the afternoon, but not in the morning.

2.2 Consumers

There is a unit mass of identical and infinitely lived consumers. A consumer begins

life with k0 units of capital goods at date 0 that he sells to bankers in exchange for

deposits and equity. We assume there is no consumption or production at date 0, which

serves only as an opportunity for consumers to sell capital goods and for bankers to buy

capital goods and choose their initial capital structure, that is, the amount of deposits

and equity they issue in exchange for capital goods.

Consumer preferences are given by the standard, additively separable utility function

∞∑
t=1

βtu (ct) ,

6Consumption goods are perishable and cannot be stored between periods. In any case, deposits
are more efficient than storage, because bankers invest deposits in productive capital goods, which are
productive.

13



where 0 < β < 1 is the common discount factor, ct denotes consumption at date t and

u (ct) is the utility from consumption ct. The function u (·) is assumed to satisfy the

usual neoclassical properties:

u : R+ → R is C2 and u′ (c) > 0 and u′′ (c) < 0, for all c ≥ 0.

Consumers manage a portfolio of deposits and equity to provide the optimal con-

sumption stream over their infinite horizon. As we shall see, the return on (fully diver-

sified) deposits is always lower than the return on equity.

2.3 Bankers

There is a unit mass of bankers represented by the interval [0, 1]. Each banker i ∈ [0, 1]

receives two productivity shocks at date t, an idiosyncratic shock θit and a systemic or

aggregate shock At. One unit of capital produces θitAt units of the consumption good

in the morning of period t. We assume that the random variables {θit} are i.i.d. across

i and t. Let F (θ) denote the c.d.f. of the random variables {θit}. We assume that F is

continuous and increasing on [0, Z], with F (0) = 0 and F (Z) = 1. We assume the shock

At takes a finite number of values, At ∈ A = {a1, ..., an}, and has a stationary transition

probability, p (At+1|At) > 0, for every At, At+1 ∈ A. Without loss of generality, we can

order the shock values so that a1 < a2 < ... < an.

Because there is a large number of bankers and the productivity shocks are i.i.d.,

we assume that the cross-sectional distribution of shocks is the same as the probability

distribution F . Thus, for any θ, the fraction of banks that receive a shock θit ≤ θ is

F (θ). In particular, this means that the “law of large numbers” convention is satisfied,

so ∫ 1

0

θitdi = E [θit] ,

at every date t. Because we are interested in the aggregate behavior of bankers, we drop

the subscript i in what follows and use θt to denote the generic value of the productivity

shock to a representative banker.
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Bankers fund the purchase of capital goods by issuing debt (deposits) and equity.

One unit of deposits purchased at date t has a face value of ztkt at date t + 1,7 where

each bank is holding kt units of capital goods at the end of period t.

By issuing debt, the banks expose themselves to the risk of default. In the morning

of period t + 1, a bank produces θt+1At+1kt units of the good. If the bank has issued

deposits with face value less than or equal to θt+1At+1kt, it can redeem the deposits in

full. Otherwise, it is in default. In the event of default, the bank incurs additional costs

associated with bankruptcy. These costs are assumed to take the form of a fraction

0 < δ < 1 of output that is lost when the bank defaults.

2.4 Producers

The technology for producing capital goods is subject to decreasing returns to scale. An

input of I ≥ 0 units of the consumption good produces ϕ (I) units of the capital good

instantaneously:

ϕ is C1 on (0,∞) , ϕ′ (I) > 0 and ϕ′′ (I) < 0, for I > 0, and lim
I↘0

ϕ′ (I) =∞.

The production of capital goods is instantaneous, so no finance is required. If produc-

ers choose as inputs It units of consumption and produce ϕ (It) units of capital goods,

the revenue is vtϕ (It), where vt is the price of capital goods in terms of consumption,

and the profit is vtϕ (It)− It. The producers maximize profits each period:

πt = sup
It≥0
{vtϕ (It)− It} ,

Profits are immediately distributed to the firm’s owners (consumers).

2.5 The banker’s problem

Competition for capital goods forces bankers to maximize the market value of the secu-

rities, debt (deposits) and equity, that they issue. Two bankers with the same capital

7Because of the linearity of the bankers’ technology, we scale everything by the size of the capital
stock, which allows us to express the equilibrium conditions independently of kt.
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stock have the same production capabilities and hence the same potential value. The

only choice variable they control is their capital structure, which determines the risk of

default and the division of returns between debt and equity. The bank with the better

capital structure will have a higher market value, which allows the banker to bid more

for the available assets (capital goods). In equilibrium, competition drives up the price

of capital goods until the market value of the securities issued is just equal to the value

of the assets purchased, leaving nothing for the banker himself.

Although a bank may survive for many periods, the banker only needs to look one

period ahead when choosing the optimal capital structure. Because the capital structure

can be changed at the end of each period, the effect of the banker’s choice of capital

structure in the afternoon of period t lasts only until the afternoon of period t+ 1, and

the market value of the securities issued depends only on the income earned in period t

and the stock of depreciated capital goods that remains at the end of the period.

The capital structure chosen by a banker with kt units of capital goods is determined

by the face value of deposits, ztkt, issued in the afternoon of period t. The bank will be

in default if and only if the revenue, θt+1At+1kt, realized in the morning of period t+ 1

is less than ztkt. The bank’s total returns consist of the value of deposits in the morning

of period t + 1, the returns of equity holders in the afternoon of period t + 1, and the

value of the depreciated capital goods remaining at the end of period t + 1. Since the

depreciated capital stock, (1− γ) kt, is independent of the banker’s decision, it can be

ignored for present purposes. Since banks operate subject to constant returns to scale,

there is no loss of generality in considering the case of a bank that operates with one

unit of capital goods and deposits with face value zt.

Depositors will diversify their deposits across all banks, thereby eliminating idiosyn-

cratic risk. They are still subject to losses from default, however. A deposit in a bank

with an idiosyncratic shock θt+1 < zt/At+1 in state At+1 is worth (1− δ)At+1θt+1. A

deposit in a bank with an idiosyncratic shock θt+1 ≥ zt/At+1 in state At+1 is worth zt.

The expected value of a deposit in the representative bank, which is equal to the actual

yield from a diversified portfolio of deposits, will be

At+1 (1− δ)
∫ zt

At+1

0

θt+1dF + zt

(
1− F

(
zt
At+1

))
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in state At+1. The returns of the equity holders, leaving aside the depreciated capital

goods, are

At+1

∫ Z

zt
At+1

(
θt+1 −

zt
At+1

)
dF.

The characteristics of debt (deposits) and equity issued by the bank are determined

by the bank’s capital structure. For this reason, the banker cannot take the prices of

securities as given. Instead, the banker takes as given the marginal utility of represen-

tative consumer in each state and in each subperiod, and uses the marginal utilities to

value the securities. For each state At+1 ∈ A, let m1 (At+1) (resp. m2 (At+1)) denote

the marginal utility of consumption in the morning (resp. afternoon) of the following

period if the productivity shock is At+1. The market value of the securities is equal to

the weighted sum of the returns on deposits and equity:

∑
At+1

[
m1 (At+1)

(
At+1 (1− δ)

∫ zt
At+1

0

θt+1dF + zt

(
1− F

(
zt
At+1

)))
+

m2 (At+1)At+1

∫ Z

zt
At+1

(
θt+1 −

zt
At+1

)
dF

]
p (At+1|At) .

The banker will choose the face value of deposits zt per unit of capital to maximize the

market value of the bank’s securities.

2.6 The consumer’s problem

In the afternoon of period t, the representative consumer divides his wealth between

deposits and equity. A unit of deposits is a claim on a deposit with face value zt and a

unit of equity is a residual claim on the bank with one unit of capital goods and deposits

with face value zt. The consumer purchases dtkt units of deposits at the price qt and

purchases etkt units of bank equity at the price rt. One unit of deposits diversified across

all banks yields λt+1 (At+1) in the morning of period t+ 1, where

λt+1 (At+1) = At+1 (1− δ)
∫ zt

At+1

0

θt+1dF + zt

(
1− F

(
zt
At+1

))
,
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in state At+1. The consumer’s budget constraint in the morning of period t+ 1 is

ct+1 ≤ dtλt+1 (At+1) kt.

The consumer chooses ct+1 (At+1), subject to the liquidity constraint as part of its max-

imization problem. The constraint may be binding for some values of At+1 and non-

binding for others. When the constraint is not binding, the amount dtλt+1 (At+1) kt −
ct+1 (At+1) is carried over to the afternoon and is used to purchase equity or retained as

deposit.

Depositors also have a claim on the capital stock of failed banks that is realized in the

afternoon of period t+ 1. Let µt+1 (At+1) denote the value paid by one unit of deposits

in the afternoon of period t+ 1, where

µt+1 (At+1) =

∫ zt
At+1

0

min {zt − (1− δ)At+1θt+1, vt+1 (1− γ)} dF.

The depositors receive either the total value of the failed bank’s capital, vt+1 (1− γ) kt,

or the difference between the face value of deposits and what they actually received,

zt − (1− δ)At+1θt+1, whichever is less.

In the afternoon of period t + 1, the equity holders are owners of all of the leftover

capital, (1− γ) kt, and of the retained earnings of the firms minus what was paid to the

depositors in settlement of the bankrupt firms. Let Rt+1 (At+1) denote the total return

to one unit of equity in the afternoon of period t + 1. Then the equity holders receive

etRt+1kt in the afternoon of period t+ 1, where

Rt+1 (At+1) = vt+1 (1− γ) + At+1

∫ Z

zt
At+1

(
θt+1 −

zt
At+1

)
dF − µt+1 (At+1) .

In the afternoon of period t + 1, a consumer with deposits dtkt receives the settlement

µt+1dtkt from failed banks plus the value of deposits not consumed λt+1dtkt − ct+1. As

a shareholder with equity etkt, the consumer has a total return etRt+1kt. A consumer

also receives the profits from production of capital goods πt+1. Thus, the wealth of

a consumer with a portfolio (dtkt, etkt) is λt+1dtkt + µt+1dtkt + Rt+1etkt + πt+1. The
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consumer purchases new deposits dt+1kt+1 and equity et+1kt+1 at a cost of qt+1dt+1kt+1 +

rt+1et+1kt+1, so the budget constraint is

qt+1dt+1kt+1 + rt+1et+1kt+1 ≤ λt+1dtkt − ct+1 + µt+1dtkt +Rt+1etkt + πt+1.

The consumer’s problem is to choose a sequence {(ct, dt, et)}∞t=0 to maximize

E0

[
∞∑
t=0

βtu (ct)

]

subject to the constraints

(ct, dt, et) ≥ 0 for any t,

c0 = 0 and q0d0k0 + r0e0k0 ≤ k0,

ct+1 ≤ λt+1dtkt for any t,

ct+1 + qt+1dt+1kt+1 + rt+1et+1kt+1 ≤ dt (λt+1 + µt+1) kt + etRt+1kt + πt+1, for any t.

2.7 The producer’s problem

The producers choose the level of investment It ≥ 0 to maximize profit vtϕ (It) − It at

each date and state. The first order condition

vtϕ
′ (It)− 1 ≤ 0 and (vtϕ

′ (It)− 1) It = 0

is necessary and sufficient for profit maximization. The Inada conditions ensure that

It > 0 at each date and state, so we can ensure the producers choose the correct value

of investment It by choosing vt to satisfy

vtϕ
′ (It) = 1,

at every date and state.
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2.8 Equilibrium

An allocation is a non-negative stochastic process {(ct, dt, et, It, kt, zt)}, where at each

date t, ct denotes consumption, dtkt is the demand for deposits, etkt is the demand for

shares, It is investment in new capital goods, kt is the capital stock and zt is the face

value of deposits supplied by banks. An allocation {(ct, dt, et, It, kt, zt)} is attainable if

(i) c0 = 0, and ct ≤ λtdt−1kt−1, for any t > 0,

(ii) (dt, et) = (1, 1) , for any t ≥ 0,

(iii) I0 = 0 and ct + It = Atkt−1

(∫ Z
0
θdF −

∫ zt−1
At

0 δθdF

)
, for any t > 0,

(iv) kt+1 = (1− γ) kt + ϕ (It) , for any t > 0.

(1)

A price system is a non-negative stochastic process {(qt, rt, vt)}, where at each date t,

qt is the price of deposits, rt is the price of equity, vt is the price of capital goods. An

equilibrium consists of an attainable allocation {(c∗t , d∗t , e∗t , I∗t , k∗t , z∗t )} and a price system

{(q∗t , r∗t , v∗t )} such that the following conditions are satisfied.

(i) Consumer optimality {(c∗t , d∗t , e∗t )} solves the consumer’s problem.

(ii) Banker optimality {z∗t } solves the banker’s problem at each date t.

(iii) Producer optimality {I∗t } solves the producer’s problem at each date t.

3 Constrained efficiency

An attainable allocation is constrained efficient if there is no other attainable allocation

that makes the representative consumer better off. In other words, a constrained effi-

cient allocation is an attainable allocation that maximizes the expected utility of the

representative consumer subject to the attainability constraints in (1). A constrained

efficient allocation can therefore be characterized as the solution of a planner’s problem.

Because the maximization problem is stationary, it can be put in the form of a recursive

and stationary dynamic programming problem. Because period t is divided into two

subperiods, morning and afternoon, the planner’s problem could begin in either sub-

period. For our purposes, it is convenient to think of the planner making his decision
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in the afternoon. The state of the system in the afternoon of date t is given by the

productivity shock At realized in the morning and the capital stock kt that exists in the

afternoon. Given the state (At, kt), the planner chooses the face value of the debt in

the banks’ capital structure and the next period’s consumption, investment, and capital

stock. The face value of the debt is determined by zt, given the state (At, kt). The

consumption, investment and capital stock for the next period will all depend on the

future productivity shock At+1 and the current state (At, kt). So we denote the consump-

tion, investment and capital stock by c (At+1), I (At+1) and k (At+1), respectively, taking

the value of (kt, At) as given. Using the notation with prime to denote period-(t + 1)

variables and without prime for period-t variables, we can state the planner’s dynamic

programming problem as follows:

V (k,A) = max
(c,I,k,z)

∑
A′∈A

β {u (c (A′)) + V (k (A′) , A′)} p (A′|A) (2)

subject to the constraints

(c, I,k, z) ≥ 0, (3)

c (A′) ≤ λ (A′) k, for any A′ ∈ A (4)

c (A′) + I (A′) ≤ A′k

∫ Z

0

θdF − A′k
∫ z

A′

0

δθdF, for any A′ ∈ A (5)

k (A′) ≤ (1− γ) k + ϕ (I (A′)) , for any A′ ∈ A. (6)

Because an increase in the capital stock always increases the value function V (k,A),

the constraints (5) and (6) will always holds as equalities. Then the next period’s

investment is given by

I (A′) = A′k

∫ Z

0

θdF − A′k
∫ z

A′

0

δθdF − c(A′)

and the capital stock is given by k (A′) = (1− γ) k+ϕ (I (A′)), for each A′. This implies

that the planner has two non-trivial choices to make. He has to choose the face value of

the debt z and divide the total output between consumption and the capital stock.

Proposition 1. Suppose that (c∗, I∗,k∗, z∗) � 0 is a feasible solution of the planner’s

dynamic programming problem, that is, it satisfies the constraints (3)–(6) and that the

value function V (·;A′) is concave and C1 for each A′. Then (c∗, I∗,k∗, z∗) is an optimal
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solution of the planner’s problem defined by (2)–(6) if and only if it satisfies the first

order conditions

βu′ (c∗ (A′)) = `∗1 (A′) + `∗2 (A′)ϕ′ (I∗ (A′)) , ∀A′ ∈ A, (7)

β
∂

∂k
V (A′, k∗ (A′)) = `∗2 (A′) , ∀A′ ∈ A, (8)∑

A′

βu′ (c∗ (A′))
δz∗

A′
F ′
(
z∗

A′

)
p (A′|A) =

∑
A′

`∗1 (A′)

(
1− F

(
z∗

A′

))
p (A′|A) , (9)

for some positive multipliers `∗1 (A′) and `∗2 (A′).

Proof. All proofs are collected in the appendix.

4 Competitive equilibrium

In this section we show that the solution to the planner’s dynamic programming prob-

lem can be decentralized as a competitive equilibrium. Because the planner’s problem is

recursive, the equilibrium will also be recursive. The planner’s problem determines the

values of consumption, investment, the capital stock, and the capital structure parameter

at each date, in each state. To specify the attainable allocation for a recursive equilib-

rium, we just have to set dt = et = 1 for each date and state. Then it remains to specify

the prices (qt, rt, vt) for each date and state so that consumers, bankers and producers

solve their respective optimization problems by choosing the appropriate quantities.

4.1 The consumer’s problem

The first step is to show that the prices of deposits and equity can be chosen so that

consumers choose dt = et = 1 at each date and state. The state at date t is (k,A),

where k is the capital stock carried forward to date t + 1 and A is the productivity of

capital in date t. The state at date t + 1 is denoted (k′, A′). As usual, q and r are the

respective prices of deposits and equity and d and e are the respective quantities of debt

and equity chosen, in the afternoon of date t. We suppress the reference to the initial

state (k,A) in what follows, but obviously the prices, q and r, and the quantitities, e and
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d, are functions of the initial state. We introduce a variable s to represent the amount

of wealth the consumer has to invest at the end of date t. In equilibrium, s = vk, but

the consumer does not take this into account.

The consumer’s objective function in the afternoon of date t is∑
At+1

{βu (c (A′)) + βV (s (A′) ; k (A′) , A′)} p (A′|A) ,

where V (s (A′) ; k (A′) , A′) is the expected utility of a consumer with wealth s (A′) in

the afternoon of date t + 1, when the state is (k (A′) , A′). In the afternoon of date t, a

consumer with wealth s chooses a portfolio (dk, ek), consisting of dk units of deposits

and ek units of equity. One unit of deposits purchased in the afternoon of date t pays

λ (A′) k in the morning of date t + 1 and µ (A′) k in the afternoon of date t + 1. One

unit of equity yields R (A′) k units of goods in the afternoon of date t+ 1. The portfolio

(dk, ek) yields consumption

c (A′) ≤ λ (A′) dk

in the morning of date t+ 1 and wealth

µ (A′) dk +R (A′) ek

in the afternoon of date t+ 1.

The consumer’s decision problem in the afternoon of t is to choose (d, e, c, s) to solve

V (s; k,A) = min
(d,e,c(A′),s(A′))

−
∑
A′

{βu (c (A′)) + βV (s (A′) ; k (A′) , A′)} p (A′|A) (10)

subject to the constraints

qdk + rek − s ≤ 0 (11)

c (A′)− λ (A′) dk ≤ 0 (12)

c (A′) + s (A′)− (λ (A′) + µ (A′)) dk −R (A′) ek − π (A′) ≤ 0. (13)

We assume that V (·; k,A) is concave and C1, so that the optimal portfolio is determined

by the first order conditions of the consumer’s problem.
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Proposition 2. At any state (k,A), consumers will choose d = e = 1 if and only if

m0q =
∑
A′

{m1 (A′)λ (A′) +m2 (A′)µ (A′)} p (A′|A)

and

m0r =
∑
A′

m2 (A′)R (A′) p (A′|A)

where m0 is the marginal utility of income in the afternoon when the decision is made

and m1 (A′) (resp. m2 (A′)) is the marginal utility of income in the morning (resp.

afternoon) of the subsequent period, when state A′ occurs.

These equations determine the equilibrium prices and ensure that the consumers’

demand for deposits and equity clear the market, at each date and state. Importantly,

from the proof of Proposition 2, we have that m2(A
′) ≤ m1(A

′) for all A′, with the

inequality being strict when the constraint in (12) is binding, that is when the debt is

only used to finance consumption. This condition ensures that for bank’s debt is cheaper

than capital.

4.2 The bankers’ problem

From Proposition 1, the planner’s choice of z is determined by the first order condition

∑
A′

βu′ (c (A′))
δz

A′
F ′
( z
A′

)
p (A′|A) =

∑
A′

`1 (A′)
(

1− F
( z
A′

))
p (A′|A) ,

where `1 (A′) is the Lagrange multiplier on the constraint (4). The first order condition

for the banker’s problem is characterized in the following proposition.

Proposition 3. For any values of m1 (A′) > 0 and m2 (A′) > 0, A′ ∈ A, the solution

of the banker’s problem satisfies the first order condition

∑
A′

[
m1 (A′)

δz

A′
F ′
( z
A′

)
− (m1 (A′)−m2 (A′))

(
1− F

( z
A′

))]
p (A′|A) = 0
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The solution is uniquely determined if the summand

m1 (A′)
δz

A′
F ′
( z
A′

)
− (m1 (A′)−m2 (A′))

(
1− F

( z
A′

))
is increasing in z, for each A′ ∈ A.

Comparing the first order condition from Proposition 3, with the first order condition

from the planner’s problem, we see that the two conditions are identical since

βu′ (c (A′)) = m1 (A′)

and

`1 (A′) = m1 (A′)−m2 (A′) .

If the monotonicity condition of Proposition 3 is satisfied, this ensures that the bank

will choose the correct value of z at each date and state.

4.3 The producer’s problem

To induce the producers to produce the right amount of capital goods, it is sufficient to

set the price of capital goods so that v (A′)ϕ′ (I (A′)) = 1 for every A′. But in order to

show that the equilibrium can be decentralized, we need to check that this definition is

consistent with our definition of q and r.

Proposition 4. If q and r are defined by the first order conditions in Proposition 2 and

v = 1/ϕ′ (I), where I is the investment in state (k,A), then v = q + r.

This shows that our definitions of prices are consistent and the optimal solution of

the planner’s problem can be decentralized as a competitive equilibrium.
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5 Regulated equilibrium

In our economy, the motivation for bank regulation is provided by a negative externality

created by the overall leverage of the banking sector. The externality is incorporated in

the utility function of the representative agent,

u (c)− ξzk,

where ξ > 0 is a parameter and zk is the overall leverage of the banking sector. Because

the cost of the externality is additively separable, it affects the consumer’s welfare but

does not affect the behavior of the consumers, bankers, and producers. Thus, it does

not change the definition of equilibrium. This fact is important because it allows us to

calculate equilibrium behavior and prices in the same way, whether there is an externality

or not. The cost is fully internalized, on the other hand, in the social planner’s optimal

allocation. As we will see below, the regulator can only restrict the leverage of the banks,

so his ability to achieve a constrained efficient allocation is limited and will generally

fall short of restoring the constrained efficient allocation.

While the constrained efficient solution to the planner’s problem shows the best that

can be achieved, it is not a realistic model of regulation. First, it requires the regulator

to control every aspect of the economy. There is no decentralization theorem to show

how decisions about consumption, investment, and capital structure could be left in the

hands of private decision makers, subject to regulation by a central authority. Second,

the solution to the planner’s problem may be so complex that it would be unrealistic to

expect it to be implemented by a regulator with limited information and computational

ability.

These two observations lead to us consider a reduced form model of a boundedly

rational regulator. Instead of trying to implement the constrained efficient allocation,

we assume the regulator imposes an upper bound on bank leverage, while leaving ev-

erything else to be determined as in the laissez faire equilibrium. The limitations on

the regulator’s information and computational ability are captured by an ad hoc rule

that approximates, more or less closely, the leverage policy that is part of the solution

to the planner’s problem. In the simplest case, we assume the regulator chooses a fixed

upper bound on leverage, denoted by z̄. A more sophisticated regulator might be able to
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choose the upper bound, z̄ (A), as a time invariant function of the productivity shock A.

Finally, the most sophisticated model of the regulator allows the upper bound z̄ (k,A)

to be a time invariant function of the state (k,A). Producers and consumers are not

directly affected by this regulation; only the banker’s behavior is directly constrained.

Apart from the leverage constraint, the banker’s decision problem is essentially the same

as described in Section 2.5. In each state (k,A), the banker chooses the value of leverage

z to maximize

∑
A′

[
m1 (A′)

(
A′
∫ z

A′

0

(1− δ) θdF + z
(

1− F
( z
A′

)))
+

m2 (A′)A′
∫ Z

z
A′

(
θ − z

A′

)
dF

]
p (A′|A)

subject to the constraint z ≤ z̄ (k,A), where z̄ (k,A) is exogenously given.8 Apart

from this change in the banker’s problem, the definition of a regulated equilibrium is

essentially the one given in Section 2.8.

To calculate the regulated equilibrium, we use a variation of the method described

in Section 4. We begin by setting up a planner’s problem to represent the behavior of

consumers, producers and bankers. As in Section 4, the “planner” ignores the negative

externality. The difference, now, is that the “planner” is subject to the upper bound

on leverage, z̄ (k,A), which he treats as an exogenous constraint. The addition of the

leverage constraint is, in fact, the only change in the planner’s problem. Thus, the

planner’s dynamic programming problem is as follows:

V (k,A) = max
(c,I,k,z)

∑
A′∈A

β {u (c (A′)) + V (k (A′) , A′)} p (A′|A)

subject to the constraints

(c, I,k, z) ≥ 0,

z ≤ z̄ (k,A) ,

c (A′) ≤ λ (A′) k, for any A′ ∈ A,
8To simplify the discussion, we deal explicitly with the case where the upper bound is contingent on

the state (k,A). The other two cases, where the upper bound is either a constant z̄ or a function z̄ (A)
of the productivity shock, are obtained as special cases.
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c (A′) + I (A′) ≤ A′k

∫ Z

0

θdF − A′k
∫ z

A′

0

δθdF, for any A′ ∈ A,

k (A′) ≤ (1− γ) k + ϕ (I (A′)) , for any A′ ∈ A.

Notice that the value function V (k,A) depends only on the state (k,A) because the

leverage constraint z̄ (k,A) is independent of time. The solution of this dynamic pro-

gramming problem provides us with a stochastic process {(ct, It, kt, zt)} which can then

be decentralized using the same method as in Section 4, that is, by backing out the

equilibrium prices {(qt, rt, vt)} using the first-order conditions for the consumer’s and

producer’s problems.

For our numerical results, we have investigated four versions of the regulated equilib-

rium. In the first two, the maximum leverage is assumed to be a constant, z̄, independent

of k and A. In these simulations, we assume that z̄ = 0.55 and z̄ = 0.53. The first value

is the average steady value of leverage in the constrained efficient allocation, when there

is no aggregate uncertainty. The slightly lower value, z̄ = 0.53, is used to test the sen-

sivity of the equilibrium to a tightening of the constraint. The non-contingent policy

does a reasonable job in the model with no aggregate uncertainty, but obviously will not

do as well when there are aggregate productivity shocks. In the third experiment, we

allow the maximum leverage to be a function z̄ (A) of the aggregate productivity shock

A. The value of z̄ (A) is set equal to the conditional mean leverage in the constrained

efficient allocation, for each value of A. In the fourth model of regulation, we allow the

maximum leverage to be a function z̄ (k,A) of the state (k,A).

Although we refer to the rules z̄, z̄ (A), and z̄ (k,A) as “models” of the regulator,

there is in fact no optimization going on. We have simply chosen rules that approximate

the leverage observed in the constrained efficient allocation. Even if we take as given the

form of the rule, for example, assume that maximum leverage is a constant z̄, the policy

may not be optimal in a decentralized economy. Consumers, bankers, and producers

are making decisions that may be sub-optimal. A regulator who takes into account the

impact of z̄ on private decisions (about consumption, investment, etc.) might be able

to do better. For all these reasons, the “models” of regulation we are analyzing here are

quite ad hoc. Nonetheless, it is interesting to see how close one can come to the first

best using such simple, ad hoc rules.
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6 Results

The results we present in this section are based on a numerical solution of the equilibrium

in different regulatory scenarios.

6.1 Numerical methods

The results are based on the numerical solution of the planner’s program described in

Section 5, which gives the optimal state-contingent allocation (c, I,k, z), and then using

such allocation and Propositions 2 and 4 to derive the price of bank’s securities and

of capital goods. An important conceptual issue from Proposition 2 is that while we

can calculate m1 and m2 as a function of future wealth s(A′), there is no abvious way

of deriving m0 as a function of s. This issue is addressed by exploiting the recursive

structure of the planner’s program, and therefore, if ψt+1 = m2 is clearly determined at

all possible levels of s(A′), then m0 is found as ψt as a function of s.

To solve the planner’s program numerically, we specify the model as follows. The

utility function, including the negative externality induced by the leverage of the banking

sector, is

u(c) =
c1−α − 1

1− α
− ξzk for α ∈]0, 1[ and u(c) = log c− ξzk for α = 1,

and the production function is ϕ(I) = Iη for η ∈]0, 1[. We assume that the distribution

of θ is a generalized uniform with cumulative function F (θ) =
(
θ
Z

)m
, with m ≥ 1 and

support [0, Z].

We solve the regulator’s dynamic program using a value function iteration approach

on a discrete grid of states. In particular, for the case with no aggregate uncertainty, we

set nk = 601 levels of kt as

{
k, k(1− γ)1/16, k(1− γ)2/16, . . . , k(1− γ)nk/16

}
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with k = 22, while the optimization is based on nz = 601 discrete levels of z in the

interval [0, Z].9

For the model with aggregate uncertainty, we define the discrete-state macroeconomic

shock A by discretizing a log-AR(1) process, logA′ = κ logA + σε′, where ε are i.i.d.

shocks drawn from a Normal distribution N (0, 1), truncated over a bounded support,

[A,A], where the bounds are set at three times the unconditional standard deviation of

logA. We discretize A with nA = 5 points using the method of Tauchen (1986). The

optimization with respect to contingent consumption is made by an exhaustive search

over a discrete grid of consumption levels with nC = 201 points. Due to the increased

size of the grid of states in the case with aggregate uncertainty, we adopt a discretization

based on nk = 151 levels of kt{
k, k(1− γ)1/2, k(1− γ)2/2, . . . , k(1− γ)nk/2

}
with k = 29 and in the optimization nz = 121 discrete levels of zt.

The numerical results are based on the baseline parameters Z = 1, m = 5, κ = 0.90,

σ = 0.04, β = 0.95, δ = 0.10, η = 0.48, γ = 0.12, α = 0.70, and ξ = 0.07. While

we choose these parameters for the purpose of illustrating the properties of the model,

the qualitative conclusions we draw here below are general. Results are available upon

request.

6.2 Intertemporal substitution

We begin by looking at some features of the model that are most easily seen and under-

stood in the context of an economy with no aggregate uncertainty. For this purpose we

set the productivity parameter A = 1 at all dates. One interesting feature of the model

that can be illustrated in this case is the intertemporal substitution effect. Because of

the negative externality associated with high leverage, we intuitively expect that lever-

age will be too high under laissez faire, but this is not always true. There are times

when the optimal leverage will be lower than the laissez faire level and times when it

will be higher.

9In the case with no aggregate uncertainty, the liquidity constraint in (4) holds as equality, and so
optimal consumption is determined by the choice of z.
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Figure 1 shows the policy functions for leverage, consumption and investment. These

policy functions are the solutions of the dynamic programming problems corresponding

to the laissez faire equilibrium and the constrained optimum. We can see that there is a

capital level k̂ such that,10 for values of k below k̂, leverage is higher in the constrained

optimum and lower in the laissez faire equilibrium. For values of k higher than k̂, the

inequality is reversed. Correspondingly, consumption is higher and investment is lower

in the constrained optimum for k less than k̂. Conversely, consumption is lower and

investment higher in the constrained optimum for k greater than k̂. The intuition for

this is simple. The negative externality is a linear function of deposits, whereas utility

is concave in the level of consumption. When the capital stock is low (resp. high),

the marginal utility of consumption is high (resp. low), whereas the marginal negative

externality of deposits is constant. For this reason, the optimal policy increases leverage

relative to the laissez faire equilibrium when capital is low and reduces leverage when

capital is high.

The comparison of policy functions does not tell the whole story, however, because

the economy grows at different rates under laissez faire and the constrained optimum,

so the capital stocks will be different. Figure 2 shows the long run growth paths of the

laissez faire and constrained efficient economies. Initially, the capital stock grows faster

under laissez faire but, eventually, it is overtaken by the constrained optimum. We can

see the reason for this if we look at leverage. There is a date t̂ (in our case equal to 20),

such that leverage is higher under the constrained efficient policy for t < t̂ and it is lower

for t > t̂. As a result, consumption is initially higher in the constrained optimum, but

the laissez faire economy overtakes it because its capital stock is growing faster. When

leverage on the constrained efficient path drops below leverage on the laissez faire path,

however, the constrained optimum starts to grow faster and eventually its consumption

overtakes consumption on the laissez faire path. This guarantees that, in the long run,

the capital stock and consumption will both be higher under the constrained efficient

policy, even though leverage is lower than in the laissez faire equilibrium. In short,

the constrained efficient policy trades lower consumption in the medium run for higher

consumption in the short and long run.

Figures 3 and 4 show the corresponding policy functions and growth paths for the

laissez faire equilibrium and a variety of regulated equilibria. In a regulated equilibrium,

10While in the current choice of parameters k̂ = 16, the behaviour we describe is general.
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the maximum leverage z̄ is imposed exogenously, but the remaining endogenous variables

are determined, in the usual way, by optimizing behavior and market clearing conditions.

In one case, we set the maximum leverage z̄ equal to 0.55, the leverage attained in the

constrained efficient steady state. In another, we reduce the maximum leverage to

0.53, to test the sensitivity of the equilibrium to regulation. In a third, we assume the

maximum leverage is a function z̄ (k) of the capital stock and set it equal to the leverage

chosen in the constrained efficient allocation.11 In the first two cases, the leverage

constraint does not bind until the equilibrium is close to the steady state. In the third

case, the equilibrium path approximates the constrained efficient path. One interesting

feature is that the tighter regulation z̄ = 0.53 leads to larger deviations from the optimum

than the looser constraint z̄ = 0.55. In particular, the steady state capital stock shown

in Figure 4 is much larger than the other three, which are relatively close together.

This suggests that relatively small changes in the maximum leverage can have large

effects in the long run. The excess capital accumulation, which occurs because of the

restriction of consumption, is inefficient in two ways. First, consumption is lower along

the transition to the steady state; second, although consumption is slightly higher in the

steady state, most of the extra output goes to investment required to replace depreciating

capital: although the steady state capital stock is 5% higher on the tightly regulated

path, compared to the constrained efficient path, consumption is only 2% higher, while

investment is 10% higher. Welfare could be increased by reducing investment, allowing

the capital stock to depreciate, and increasing consumption. By contrast, the steady

state consumption levels on the other growth paths (laissez faire, loosely regulated, and

contingently regulated) are almost identical to the constrained efficient path.

6.3 Cost of debt and equity

The model allows us to characterize the relative cost of debt and equity. Figure 5 shows

the net returns on debt and equity along the laissez faire equilibrium path. Both are

quite high when the capital stock is low and fall progressively as capital stock rises.

This fall in rates of return cannot be due to diminishing returns in the banking sector,

because the bank technology is linear. Instead, it results from the slowing rate of growth

11Although the maximum leverage z (k) equals the actual leverage in the constrained efficient case,
the other endogenous variables may be distorted. In other words, the regulated equilibrium will not
necessarily be constrained efficient.
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dictated by diminishing returns to scale in the production of capital goods. The (gross)

return on equity is denoted by 1 + ρt and defined by12

1 + ρt =
Rt+1

rt

where rt is the price of equity in the afternoon of period t and Rt+1 is the total return

to equity in the afternoon of period t + 1. As we showed in Proposition 2, the price of

equity satisfies the following first order condition for the consumer’s problem

ψtrt = βψt+1Rt+1,

where ψt denotes the marginal utility of one unit of the consumption good in the after-

noon of date t. Solving for rt and substituting the expression in the equation for ρt, we

obtain

1 + ρt =
ψt

βψt+1

. (14)

The rates of return on equity are illustrated in Figure 6. The returns on equity

are similar for the laissez faire equilibrium and the three regulated equilibria. All four

returns are highest when the capital stock is lowest and decline over time as the capital

stock increases and the economy converges to a steady state. The decline in the rates of

return is a corollary of the slowing growth rate as the economy approaches the steady

state. When consumption is low and the growth rate is high, we expect ψt/ψt+1 to be

high and when consumption is high and the growth rate is low, we expect ψt/ψt+1 to be

low. Then equation (14) implies a fall in the return on equity. As the economy converges

to the steady state, ψt/ψt+1 will converge to one and equation (14) implies that 1 + ρ

will converge to 1/β. This is what happens in any neoclassical growth model, of course,

so there is nothing surprising in this. In Figure 6, we see that the return on equity

converges to 0.05, which is consistent with our parameterization β = 0.95.

The return on deposits are a different story, however. Although the deposit rate is

lower than the return on equity and declines over time in each case, there are noticeable

differences even in the limit. The behavior of the return on deposits can be explained by

12Because we are considering the case A′ ≡ 1, we do not need to calculate the expectations with
respect to A′.
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two factors, the rate of growth and the tightness of the leverage constraint. The (gross)

expected return on debt is denoted by 1 + it and defined by

1 + it =
λt+1 + µt+1

qt

where qt satisfies the first order condition from the consumer’s problem shown in Propo-

sition 2,

ψtqt = β {u′ (ct+1)λt+1 + ψt+1µt} .

In our simulations, the value of µt+1 is very small because the probability of a bank

defaulting is quite low, generally around 5%. If we ignore this term, the return on

deposits can be approximated by

1 + it ≈
λt+1ψt

βu′ (ct+1)λt+1

=
ψt

βu′ (ct+1)
.

The expression on the right is illustrated in Figure 7. Comparing the graph of it in

Figure 6 with the graph of ψt/ βu
′ (ct+1) in Figure 7, this seems to be a reasonable

approximation.

When the liquidity constraint is not binding, ψt = u′ (ct), and

1 + it ≈
u′ (ct)

βu′ (ct+1)
.

In this case, which occurs when the capital stock is low and the growth rate is relatively

high, the return on deposits and equity will be similar. As the economy grows and gets

closer to the steady state, the leverage constraint begins to bind, ψt < u′ (ct) ≈ u′ (ct+1),

and so the return on deposits, 1+i, will fall below the return on equity, 1+ρ. The tighter

the leverage constraint, the lower the return on deposits. The most striking feature is

that the deposit rate in the regulated equilibrium with z̄ = 0.53 is negative and much

lower than the rates in the other three cases. Again, the interest rate it seems to be very

sensitive to a (modest) tightening of the upper bound on leverage, whereas consumption

does not differ much between the equilibria with z̄ = 0.55 and z̄ = 0.53 because the

tighter leverage constraint leads to an inefficiently higher investment and capital stock.
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6.4 Capital structure dynamics

In the version of the model with no aggregate productivity shocks—and hence no ag-

gregate uncertainty—fixing the maximum leverage at z̄ = 0.55 is a reasonably good

approximation to an optimal policy (Figure 3). But once aggregate productivity shocks

are introduced, we must allow for contingent regulation. Figure 8 illustrates the con-

strained efficient and laissez faire paths for a sequence of aggregate shocks. Two features

of the simulation are very clear. First, leverage is procyclical in the sense that an increase

in productivity (A) leads to an increase in leverage (z). This is true for both the laissez

faire equilibrium and the constrained efficient allocation.13 Second, the constrained ef-

ficient leverage is always lower than the laissez faire equilibrium. This is quite intuitive

because of the presence of the negative externality, which the planner internalizes and

the bankers do not.

In fact, we can go further and say that the constrained efficient policy is “coun-

tercyclical,” in the following sense: the constrained efficient leverage is proportionately

smaller compared to the laissez faire leverage in the upswing of the cycle, when A is high,

than it is in the downswing, when A is low. This is easily seen in the bottom panel of

Figure 8, which shows the ratio between the constrained efficient leverage and the laissez

faire leverage. This shows clearly that the ratio is countercyclical. Although Figure 8

is calculated for a particular sequence of shocks, the pattern is in fact quite general.

The table below shows the conditional expected value of the same ratio, calculated by

averaging over the entire ergodic set, conditioning on the value of the productivity shock

A.
A zCE/zLF

1.3169 .9527

1.1476 .9680

1.000 .9808

0.8714 .9907

0.7593 .9978

In the lowest two states, the laissez faire leverage is almost the same, on average, as the

constrained efficient leverage, but it is 2% per cent higher than the constrained efficient

13Nuño and Thomas (2017), in an analysis of the cyclical fluctuations of the leverage ratio of US
financial intermediaries in the post-war period, find that leverage has been positively correlated with
assets and GDP.
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leverage in the middle state, more than 3% higher in the second highest state, and about

5% higher in the highest state. In this relative sense, constrained efficiency prescribes

that leverage be reduced more in the upswing of the cycle than in the downswing.

Figure 9 shows simulations of the laissez faire and regulated equilibria for the same

sequence of productivity shocks. Obviously, the two equilibria with constant maximum

leverage z̄ = 0.55 and z̄ = 0.53 cannot show the same fluctuations in leverage as the

other two. In fact the constraints are binding for the three highest states, so it is only in

the lowest two states that there is any variation in leverage. The contingent regulated

equilibrium, on the other hand, exhibits very similar leverage and consumption to the

laissez faire (and therefore, the constrained efficient) case. Recall that the limits on

leverage are assumed to be functions of the state. More precisely, z̄ (A) is set equal to

the average constrained efficient leverage in state A, where the average is computed over

the ergodic set. This suggests that the state-dependent leverage constraint may be a

good approximation to the constrained efficient policy. This conjecture is given support

by the correlation analysis in Table 1. The correlation between the state A and the

leverage ratio z in the constrained efficient allocation, calculated over the ergodic set,

is 1.00. This suggests that there is relatively little variation in z within a given state,

that is, the optimal leverage is approximately a function of A. The correlation between

A and z is also 1.00 in the equilibrium with contingent regulation, which suggests that

the constraint z (A) is binding almost all the time. More surprisingly, the correlation

between A and z in the laissez faire equilibrium is also very high, 0.99. When regulation

takes the form of a fixed limit z̄ = 0.55, on the other hand, the correlation between A

and z is much lower, 0.76 (and even more so if such limit is z̄ = 0.53). Of course, there is

no correlation between A and z when the constraint is binding. It is only in those states

where z < z̄ that there can be any correlation between A and z. So the correlation that

we do observe is explained by the variation in unregulated leverage.

6.5 Model dynamics

The dynamic properties of the model are summarized by the impulse response functions

in Figures 11–14. These figures show the average response of the endogenous variables to

a one standard deviation change in the productivity shock At+1. It is important to bear

in mind two facts when interpreting the impulse response functions. First, the value of
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the productivity shock changes for only one period, but the responses are determined by

the policy functions that anticipate the shock’s serial correlation. Thus, an increase in

productivity will give rise to expectation of continued high productivity in the near future

and that will influence current decisions about consumption and investment. After the

initial shock, the dynamics are driven solely by the predetermined values of the capital

stock k and leverage z. The initial increase in the productivity shock has no effect

on subsequent values of the productivity shock. Second, when the productivity shock

changes, the value of leverage z has already been chosen. The predetermined leverage

has asymmetric effects depending on whether the productivity A increases or decreases.

If productivity increases, consumers may want to consume more, but find themselves

constrained by the predetermined level of deposits. If the shock decreases and consumers

want to consume less, there is nothing to stop them from reducing consumption. This

asymmetry has implications for investment. When consumption is constrained after an

increase in the productivity shock, the extra output must be invested.

We can get a better sense of the response of investment and consumption to pro-

ductivity shocks from Figure 10. The top panel shows us the level of consumption as

function of the capital stock following a productivity increase (solid lines) and decrease

(dotted lines), for the constrained efficient allocation and the laissez faire equilibrium.

In the constrained efficient case, the difference in consumption is small. The difference

is somewhat larger in the laissez faire case, but it is small compared to the impact

on investment, shown in the lower panel, where we see, in both cases, investment fol-

lowing a productivity increase is much higher than investment following a productivity

decrease. This shows that the impact of a change in productivity is mainly absorbed by

changes in investment. When productivity rises, consumption is constrained by deposits

so increased output flows into investment. When productivity falls, on the other hand,

deposits do not prevent consumption from falling but it is either maintained (in the

constrained efficient case) or slightly reduced (in the laissez faire equilibrium). Again,

investment absorbs most of the impact.

Figure 11 shows the effect of an increase in A on the laissez faire equilibrium and

constrained efficient allocation in the ergodic set. The leverage at t = 1 is determined

at t = 0, so the spike in leverage at t = 1 reflects the response to the increase in A and,

more importantly, the expectation of a higher than normal value of A in the future. At

values of t > 1, it is clear that both expectations and leverage have returned to normal.

37



Consumption initially rises only slightly, in the constrained efficient allocation, be-

cause it is constrained by the level of deposits chosen at t = 0. The spike in consumption

occurs at t = 2, after deposits have been increased at t = 1. By contrast, there is no

spike in consumption in the laissez faire equilibrium and the path of consumption is

much smoother. In both cases, consumption remains somewhat elevated for a long time

because the capital stock is elevated.

Investment, unlike consumption, rises as soon as the productivity shock increases at

t = 1. Consumption is constrained by deposits, so all the increased output goes into

investment. As soon as the productivity returns to “normal,” investment falls, somewhat

more sharply in the case of the constrained efficient allocation than in the case of laissez

faire. Thereafter, investment returns to “normal” and the capital stock, after jumping

up at t = 2, gradually declines as a result of depreciation.

Figure 12 shows the same information for the laissez faire and regulated equilibria.

The qualitative features are similar to those in Figure 11, except that, in the regulated

equilibria with non-contingent upper bounds on leverage, there is no spike in consump-

tion. The equilibrium with state contingent regulation, on the other hand, resembles

the constrained efficient allocation and exhibits a spike in leverage and consumption.

As we have already noted, there is an asymmetry between the effects of an increase

and a decrease in the productivity shock. A decrease in A is expected to reduce con-

sumption and investment, but consumption is not constrained by deposits. Nonetheless,

there are significant differences between the laissez faire equilibrium and constrained

efficient allocation in both the timing and size of responses. Figure 13 shows impulse

response functions for a one standard deviation decline in A for the laissez faire equi-

librium and the constrained efficient allocation. In both cases, the leverage z changes

only after a one period delay and then returns to normal. Consumption, however, drops

sharply at t = 1 in the laissez faire equilibrium but, in the constrained efficient case,

does not drop significantly until t = 2. In both cases, consumption returns to normal

after t = 2. Investment responds to the negative shock at t = 1 and then rebounds at

t = 2, after which investment returns to normal in both cases. The profile of the capital

stock is different in the two cases, however, because the drop in investment at t = 1 is

larger in the constrained efficient allocation, so the capital stock takes longer to recover.

38



Figure 14 shows the impulse response functions for the regulated equilibria. The two

equilibria with non-contingent regulation have quite similar responses, except that the

one with the tighter constraint, z̄ = 0.53, has a slight drop in leverage and consumption

at t = 1 and a slightly weaker recovery in the capital stock following t = 3. The

equilibrium with contingent regulation, not surprisingly, looks similar to the constrained

efficient allocation.

As we explained above, a change in productivity has immediate and asymmetric ef-

fects because leverage, z , is predetermined, but this effect disappears as soon as leverage

is adjusted, unless, of course, leverage cannot be adjusted because of a binding leverage

constraint. This suggests that the impact of productivity shocks may be quite different

in the medium term depending on the kind of regulation imposed. We find strong evi-

dence of this in Table 1, which shows the correlation of productivity (A) with leverage

(z), consumption (c), and investment (I), for the constrained efficient allocation and

the laissez faire and regulated equilibria. The different cases fall into two groups. On

the one hand, we have three cases where leverage is free to vary over the medium term:

the constrained efficient allocation, the laissez faire equilibrium, and the contingently

regulated equilibrium. The correlations across this group are very similar. Leverage is

perfectly correlated with productivity and the correlations of consumption and invest-

ment with productivity are very high, though consumption is more highly correlated

than investment. On the other other hand, we have the two regulated equilibria with

constant leverage constraints (z̄ = 0.55, 0.53). In this group, the correlation coeffi-

cients are quite different. The correlation of leverage with productivity is much lower, of

course, because leverage cannot vary when the constraint is binding. The correlation of

consumption with productivity is also lower and is very similar to the leverage correla-

tion, suggesting that consumption is normally determined by deposits. The correlation

of investment with productivity, on the other hand, is somewhat higher than what we

observe in the other group and much higher than the correlations of consumption and

leverage with productivity. In effect, non-contingent regulation extends the short term

asymmetric effect of predetermined leverage, which we discussed above, into the medium

term. As a result, investment has to absorb the impact of increases in productivity when

consumption is constrained by (regulated) leverage.
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Figure 1: No aggregate shock - Constrained efficient and laissez faire alloca-
tion. For the model with no aggregate uncertainty, we show the equilibrium allocation,
(zt, ct+1, It+1) for a unit of capital stock, for the constrained efficient (black lines) and
the laissez faire (blue lines) cases, against the state variable kt.
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Figure 2: No aggregate shock - Equilibrium dynamics. For the model with no
aggregate uncertainty starting from the lowest value of capital towards the steady state,
we show the evolution of the equilibrium allocation, for the constrained efficient (black
lines) case and the laissez faire (blue lines) case.
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Figure 3: No aggregate shock - Effect of regulation. We show the state-contingent
equilibrium allocation, (zt, ct+1, It+1) per unit of capital stock, against the state variable
kt. We consider the laissez faire equilibrium (blue lines), a non-contingent regulation
(magenta lines), for which we assume either z = 0.55 (solid magenta lines) or z = 0.53
(dotted magenta lines). Finally, we consider a state-contingent regulation with upper
bound z̄(k) (green lines).
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Figure 4: No aggregate shock - Regulation dynamics. We show the evolution of
the equilibrium allocation from a model starting from the lowest value of capital towards
the steady state. We consider the laissez faire (blue lines), the regulated equilibrium
(magenta lines) with either z = 0.55 (solid magenta lines) or z = 0.53 (dotted magenta
lines), and the state-contingent regulation with upper bound z̄(k) (green lines).
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Figure 5: No aggregate shock - Return dynamics. For the model with no aggregate
uncertainty starting from the lowest value of capital towards the steady state, we show
the evolution of the return on bank’s equity (solid line) and deposits (dotted line), for
the laissez faire equilibrium.
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Figure 6: No aggregate shock - Regulation and return dynamics. We show
the evolution of the return on bank’s equity (topb panel) and deposits (bottom panel)
from a model starting from the lowest value of capital towards the steady state. We
consider the laissez faire (blue lines), the regulated equilibrium (magenta lines) with
either z = 0.55 (solid magenta lines) or z = 0.53 (dotted magenta lines), and the state-
contingent regulation with upper bound z̄(k) (green lines).
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Figure 7: No aggregate shock - dynamics of discount factor. For the model with
no aggregate uncertainty starting from the lowest value of capital towards the steady
state, we show the evolution of the ratio ψt/u

′(ct+1). We consider four cases: laissez faire
(blue lines), non-contingent regulation, in which either z = 0.55 (solid magenta line) or
z = 0.53 (dotted magenta line). Finally, we consider the case with state-contingent
regulation z(k) (green lines).
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Figure 8: Capital structure dynamics in the business cycle. For the model with
aggregate uncertainty, this figure shows the steady-state evolution of bank leverage in
response to aggregate shock, At (upper panel) for the constrained efficient case (black
line) and the laissez faire (blue line) equilibrium. In the bottom panel, we report the
path of the ratio zCE

t /zLFt . The simulation is done for the baseline parameters.
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Figure 9: Capital structure dynamics in the business cycle with regulation.
For the model with aggregate uncertainty, this figure shows the steady-state evolution
of bank leverage of the model in response to the systematic shock, At, for the laissez
faire economy (blue lines), the regulated equilibrium with non-contingent restrictions on
deposits (for this case, we assume either z = 0.55 – solid magenta line – or z = 0.53 –
dotted magenta line), and the regulated equilibrium with state-contingent restrictions
on deposits (green line). The simulation is done for the baseline parameters.
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Table 1: Correlation of allocation with business cycle. For the model with ag-
gregate shocks, this table shows correlations of the allocation (z, c, I) with A. Starting
from a random draw of the initial capital, k0, we simulate 100 economies for 1050 years
using the law of motion of the state variables (kt, At) resulting from the solution of the
general equilibrium problem, and drop the first 50 years to eliminate the dependence
on the initial state, (k0, A0). We consider the constrained efficient economy, the laissez
faire economy, the regulated economy with a state-contingent constraint on leverage at
z̄(A), and the regulated economy with a non-contingent constraint on leverage at either
z = 0.55 or at z = 0.53. The simulation is done using the baseline parameters.

z c I

constrained efficient 1.00 0.89 0.82
laissez faire 0.99 0.89 0.84
z < z̄(A) 1.00 0.89 0.83
z < .55 0.76 0.75 0.87
z < .53 0.72 0.73 0.89
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Figure 10: Allocation response to a change of productivity. This figure shows
equilibrium consumption and investment per unit of capital stock, when the optimal
(kt, At)-contingent zt has been already decided, against the state variable kt, with At
equal to the unconditional average of A. We assume either At+1 < At (dotted lines) or
At+1 > At (solid lines). We consider the constrained efficient optimum (black lines) and
the laissez faire equilibrium (blue lines).
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Figure 11: Impulse responses to an upward shock on A. This figure plots the
impulse response of the equilibrium allocation, (z, c, I, k), in response to an upward shock
of one standard deviation on At at time t = 1. There are two model specifications: the
constrained efficient (black lines) and the laissez faire (blue lines). We present deviations
with respect to the pre-shock steady-state level of the variable.
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Figure 12: Impulse responses to an upward shock on A - regulated economies.
This figure plots the impulse response of the equilibrium allocation, (z, c, I, k), in re-
sponse to an upward shock of one standard deviation on At at time t = 1. There are
three model specifications: the laissez faire (blue lines), the regulated equilibrium with
non-contingent restrictions on deposits (for this case, we assume either z = 0.55 – solid
magenta line – or z = 0.53 – dotted magenta line), and the regulated equilibrium with
state-contingent restrictions on leverage z̄(A) (green line). We present deviations with
respect to the pre-shock steady-state level of the variable.
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Figure 13: Impulse responses to a downward shock on A. This figure plots the
impulse response of the equilibrium allocation, (z, c, I, k), in response to a downward
shock of one standard deviation on At at time t = 1. There are two model specifications:
the constrained efficient (black lines) and the laissez faire (blue lines). We present
deviations with respect to the pre-shock steady-state level of the variable.
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Figure 14: Impulse responses to a downward shock on A - regulated economies.
This figure plots the impulse response of the equilibrium allocation, (z, c, I, k), in re-
sponse to a downward shock of one standard deviation on At at time t = 1. There are
three model specifications: the laissez faire (blue lines), the regulated equilibrium with
non-contingent restrictions on deposits (for this case, we assume either z = 0.55 – solid
magenta line – or z = 0.53 – dotted magenta line), and the regulated equilibrium with
state-contingent restrictions on leverage z̄(A) (green line). We present deviations with
respect to the pre-shock steady-state level of the variable.
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A Internet Appendix

A.1 Proof of Proposition 1

Let the total value of deposits in state A′ be denoted by D (A′) and defined by putting

D (A′, z) ≡ A′k (1− δ)
∫ z

A′

0

θdF + zk
(

1− F
( z
A′

))
and let total output in state A′ be denoted by Y (A′, z) and defined by

Y (A′, z) ≡ A′k

(∫ Z

0

θdF − δ
∫ z

A′

0

θdF

)
.

The constraint (5) will always hold as an equality at the optimum, so we can use the

constraint to solve for I (A′) as

I (A′) ≡ A′k

∫ Z

0

θdF − A′k
∫ z

A′

0

δθdF − c (A′)

= Y (A′, z)− c (A′)

for each value of A′. Then the constraints (4) and (6) can be written as

c (A′)−D (A′, z) ≤ 0, for each A′ ∈ A (15)

k (A′)− (1− γ) k − ϕ (Y (A′, z)− c (A′)) ≤ 0, for each A′ ∈ A. (16)

The Lagrange multipliers corresponding to (15) and (16) are denoted by `1 (A′) and

`2 (A′), respectively. The Lagrangean for the dynamic program can be written in canon-

ical form as follows:

L (c,k, z) =∑
A′

{−β [u (c (A′)) + V (k (A′) , A′)] + `1 (A′) [c (A′)−D (A′, z)] +

`2 (A′) [k (A′)− (1− γ) k − ϕ (Y (A′, z)− c (A′))]} p (A′|A) .
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The first-order condition for c (A′) is

−βu′ (c (A′)) + `1 (A′) + `2 (A′)ϕ′ (I (A′)) = 0, ∀A′ ∈ A,

and the first order condition for k (A′)

−β ∂

∂k
V (k (A′) , A′) + `2 (A′) = 0, ∀A′ ∈ A,

which establishes equations (7) and (8) in Proposition 1.

The first order condition for z is

∑
A′

`1 (A′)

[
− ∂

∂z
D (A′, z)

]
p (A′|A) +

∑
A′

`2 (A′) [−ϕ′ (Y (A′, z)− c (A′))]
∂

∂z
Y (A′, z) p (A′|A) = 0.

From the definitions of D (A′, z) and Y (A′, z), direct calculation shows that

∂

∂z
D (A′, z) = A′k (1− δ)

( z
A′

)
F ′
( z
A′

) 1

A′
+ k

(
1− F

( z
A′

))
− zkF ′

( z
A′

) 1

A′

= −δk
( z
A′

)
F ′
( z
A′

)
+ k

(
1− F

( z
A′

))
and

∂

∂z
Y (A′, z) = −δA′k

( z
A′

)
F ′
( z
A′

) 1

A′

= −δk
( z
A

)
F ′
(
d

A′

)
.

Substituting these expressions into the first-order condition above and dividing by k we

obtain

∑
A′

`1 (A′)

[
δz

A′
F ′
( z
A′

)
−
(

1− F
( z
A′

))]
p (A′|A) +

∑
A′

`2 (A′)ϕ′ (I (A′))
δz

A′
F ′
( z
A′

)
p (A′|A) = 0.

59



The first order condition for k (A′) implies that `2 (A′) = β ∂
∂k
V (k (A′) , A′) and substi-

tuting this expression into the first order condition for c (A′) gives us

βu′ (c (A′))− `1 (A′) = β
∂

∂k
V (k (A′) , A′)ϕ′ (I (A′)) .

Then substituting for β ∂
∂k
V (k (A′) , A′)ϕ′ (I (A′)) in the first order condition for z gives

us

∑
A′

`1 (A′)

[
δz

A′
F ′
( z
A′

)
−
(

1− F
( z
A′

))]
p (A′|A) +

∑
A′

[βu′ (c (A′))− `1 (A′)]
δz

A′
F ′
( z
A′

)
p (A′|A) = 0,

which simplifies to

∑
A′

βu′ (c (A′))
δz

A′
F ′
( z
A′

)
p (A′|A) =

∑
A′

`1 (A′)
(

1− F
( z
A′

))
p (A′|A) .

This establishes equation (9) and completes the proof of the proposition.

A.2 Proof of Proposition 2

Writing the Lagrangean for the consumer’s problem defined in (10)–(13), we obtain

L (c, d, e, s) = −
∑
A′

{βu (c (A′)) + βV (s (A′) ; k (A′) , A′) +

`0 [qdk + rek − s] + `1 (A′) [c (A′)− λ (A′) dk] +

`2 (A′) [c (A′) + s (A′)− (λ (A′) + µ (A′)) dk −R (A′) ek − π (A′)]} p (A′|A) .
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The first-order conditions are as follows:

−βu′ (c (A′)) + `1 (A′) + `2 (A′) ≤ 0

−β ∂

∂s (A′)
V (s (A′) ; k (A′) , A′) + `2 (A′) ≤ 0

`0q −
∑
A′

{`1 (A′)λ (A′) + `2 (A′) [λ (A′) + µ (A′)]} p (A′|A) ≤ 0

`0r −
∑
A′

`2 (A′)R (A′) p (A′|A) ≤ 0,

each with its own complementary slackness condition.

The optimal values of d and e are both positive, so we obtain the pricing equations

`0q =
∑
A′

{`1 (A′)λ (A′) + `2 (A′) [λ (A′) + µ (A′)]} p (A′|A)

and

`0r =
∑
A′

`2 (A′)R (A′) p (A′|A) .

The conclusion of the proposition follows from the fact that `0 = m0, `1 (A′) + `2 (A′) =

m1 (A′) and `2 (A′) = m2 (A′).

A.3 Proof of Proposition 3

The revenue received by a banker cannot exceed anZ so there is no loss of generality in

assuming that the face value of deposits satisfies 0 ≤ z ≤ anZ. The banker’s objective

function is continuous and must have a maximum in the interval [0, anZ]. If z = 0, the

derivative of the objective function is∑
A′

[m1 (A′)−m2 (A′)] p (A′|A) > 0.

In fact, the marginal utility of consumption in the morning, m1 (A′) is equal to βu′ (0),

which is infinite. So z = 0 cannot be an optimum. If z = anZ, the derivative is

∑
A′

m1 (A′)

(
−δanZ

A′

)
F ′
(
anZ

A′

)
p (A′|A) < 0,
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because F ′
(
anZ
A′

)
> 0 if A′ < an, so z = anZ is not an optimum. The optimum must

therefore satisfy 0 < z < anZ. If the banker’s problem

max
z

∑
A′

{
m1 (A′)

[
A′
∫ z

A′

0

(1− δ) θdF + z
(

1− F
( z
A′

))]
+

m2 (A′)A′
∫ Z

z
A′

(
θ − z

A′

)
dF

}
p (A′|A)

has an interior solution 0 < z < anZ, it must satisfy the first order condition

∑
A′

{
m1 (A′)

[
A′ (1− δ) z

A′
F ′
( z
A′

) 1

A′
− zF ′

( z
A′

) 1

A′
+
(

1− F
( z
A′

))]
−

m2 (A′)
(

1− F
( z
A′

))}
p (A′|A) = 0.

Collecting like terms, this expression can be rewritten as

∑
A′

{
m1 (A′)

(
−δz
A′

)
F ′
( z
A′

)
+ [m1 (A′)−m2 (A′)]

(
1− F

( z
A′

))}
p (A′|A) = 0.

The first-order condition uniquely determines the value of z if the summand is increasing

in z.

A.4 Proof of Proposition 4

Summing the two first order conditions in Proposition 2, we obtain

m0 (q + r) =
∑
A′

{m1 (A′)λ (A′) +m2 (A′)µ (A′) +m2 (A′)R (A′)} p (A′|A)

=
∑
A′

{m1 (A′)λ (A′) +m2 (A′) [Y (A′)− λ (A′)] +m2 (A′) v (A′) (1− δ)} p (A′|A)

=
∑
A′

β

{
u′ (c (A′))λ (A′) +

∂

∂k
V (k (A′) , A′)ϕ′ (I (A′))

[
Y (A′)

k
− λ (A′)

]
+

∂

∂k
V (k (A′) , A′) (1− δ)

}
p (A′|A) .
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The envelope theorem, applied to the planner’s problem, tells us that

∂

∂k
V (k,A) =

∑
A′

β

{
u′ (c (A′))λ (A′) +

∂

∂k
V (k (A′) , A′)ϕ′ (I (A′))

[
Y (A′)

k
− λ (A′)

]
+

∂

∂k
V (k (A′) , A′) (1− δ)

}
p (A′|A) ,

or

m0 (q + r) =
∂

∂k
V (k,A) .

From the first order conditions of the planner’s problem in Proposition 1, we know that

βu′ (c)− `1 = `2ϕ
′ (I)

= β
∂

∂k
V (k,A)ϕ′ (I)

= β
∂

∂k
V (k,A)

1

v
.

Since βu′ (c) is the marginal utility of income in the morning, βu′ (c) − `1 must be the

marginal utility of money in the afternoon. Thus, β ∂
∂k
V (k,A) /v is equal to the marginal

utility of money m0 in the afternoon and it follows that q + r = v.
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