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Abstract. In contrary to previous literature, we show in the Grossman-Stiglitz

model of noisy rational expectation that the social value of asymmetric infor-

mation can be improved with more informative prices when being informed is

uncertain. Investors always benefit from a privately payoff-relevant information,

but they have to pay more to increase the probability of observing the informa-

tion. In equilibrium, this trade-off can lead to high-risk, high return investments.

Consequently the marginal expected utility gain from observing the information

is not completely washed out by the cost of information acquisition, which leads

to Pareto-optimal equilibrium and improves investors’ welfare.

Key words: Social value of asymmetric information, information uncertainty, risk

premium, efficiency, welfare.

JEL Classification: D82, G12, G14
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1. Introduction

In exchange economics with costly information, it is well recognized that the more

information prices convey, the worse off everybody can be. Therefore, public infor-

mation has no social value; this is the so-called Hirschleifer effect.1 Essentially,

reducing the cost of private information makes more investors to be informed. This

improves price efficiency on the one hand and leads to low-risk/low return invest-

ments on the other hand, which then reduce investor welfare. Is this always the

case when information is more complex and uncertain? This paper introduces infor-

mation uncertainty into a noisy rational expectation equilibrium model to answer

this question. We find that, when investors pay to reduce the uncertainty to be

informed, improving price efficiency can be socially valuable. Intuitively, the indi-

vidual investor is always better off with the information. Facing the uncertainty to

be informed, to benefit from acquiring information, investors pay more to increase

the probability to be informed. This trade-off can lead to high-risk/high-return

investments, improving investor welfare. This paper explores when such investors’

welfare improvements are likely to arise.

The role of information on financial markets, in particular the effect of public

information on price efficiency has been studied extensively. In summary, the liter-

ature shows that, the more (public) information is available to investors, the more

informative the price is and the thinner is the space to make profits. This hurts

investors’ perception, thus diminishing exposures and risk sharing. More recently,

the debate on social welfare of public information has involved mandatory financial

disclosure, questioning the salvific role of disclosure itself (see Kurlat and Veldkamp

(2015), Gargano, Rossi and Wermers (2017) and Goldstein and Yang (2017)). If,

from one hand, information improves price efficiency, its consequences on social

welfare are still debated. After the pioneering works by Allen (1984) and Laffont

1The name follows after Hirshleifer (1978) where the role of information in the framework

of technological uncertainty is discussed. Franklin Allen has been the first to acknowledge the

implications of this effect for financial markets, especially in the context of exchange economies

(see Allen (1984)).
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(1985), in a recent contribution, Angeletos and Pavan (2007) have posed again the

question about the efficient use of information and the social value of information.

Security prices reflect available information about future payoffs, while uncer-

tainty about the payoffs in different dimensions can affect security prices differently.

Uncertainty about multi-national or complex firms can be very different from the

uncertainty of firms from particular industries. Even firms from the same industries

can be exposed to multiple dimensions of uncertainty, such as cash flows, technolog-

ical innovations, and firms idiosyncratic developments differently. Recent empirical

evidence shows the revolution in information technology over the last 50 years has

increased the price efficiency for the S&P 500 firms but indeed decreased for the av-

erage public firms (Bai, Philippon and Savov (2016)). With increasing uncertainty

on multi-dimensional information in financial markets,2 it seems heroic to assume

that investors are certain to be fully informed for a predetermined fixed cost. We,

instead, assume that traders pay to increase their probability of being correctly in-

formed. Put differently, we can think about an information market where investors

can have access to different sources of information of different quality: the higher

is the quality, the higher is the probability of being informed. However, there is a

cost/disutility effect: investors pay more to increase the probability to be informed.

Such a trade-off between cost and benefit of uncertain information plays a central

role in traders’ decision making and can have important implications to market

efficiency and social welfare.

With information uncertainty, this paper examines such trade-off in an other-

wise standard Grossman and Stiglitz (1980) model of noisy rational expectation

equilibrium (NREE). The results partially confirm the Hirschleifer effect and its

implications; making effort to be informed typically improves market efficiency but

at the cost of reducing social welfare. However, in contrast with the majority of

the aforementioned literature on the social role of information, we demonstrate that

2The role of multi-dimensional and complex information markets has been widely discussed

in recent literature. Among the others, Zhang (2006) discusses information uncertainty and its

role in shaping prices; Veldkamp (2006) considers different information providers with different

prices/quality. In Gorban, Obizhaeva and Wang (2018) authors assume the presence of high and

low quality signals and uncertainty about the number of high quality informed agents.
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when the information acquisition process is probabilistic and the cost of information

is increasing and convex in the cost or effort to be informed, the trade-off can lead

to high-risk, high return investments. Consequently the marginal expected utility

gain from observing the information is not completely washed out by the cost of

information acquisition, which leads to Pareto-optimal equilibrium and improves

investors’ welfare. Therefore there is possibility of detecting an increase of market

quality associated with a beneficial increase in social welfare.

When information is imperfect and costly in a competitive economy, Grossman

and Stiglitz (1980) show that information efficiency of a price system depends on the

proportion of individuals who are informed. The more individuals choose to be in-

formed, the more efficient the price becomes, the less valuable the information is, and

the less incentive individuals choose to be informed. Therefore in equilibrium, “the

number of individuals who are informed is itself an endogenous variable” and the

price becomes more informative when there are more informed traders. Concerning

the welfare, informed trading always improves (marginal) welfare in the sense that

an individual is always better-off for being informed rather uninformed, however in

aggregate more informed trading always reduces the welfare for both informed and

uninformed traders. In particular, the social welfare is always higher when traders

are all uninformed than when they are all informed. Put differently, we detect a sort

of Prisoner’s dilemma situation.3 The social welfare would be better off if nobody

is informed. However, the single individual is rationally driven to being informed,

at least with some positive probability. Therefore, in the equilibrium, the market

may end up into a sub-optimal equilibrium (from the welfare viewpoint) typical of

a coordination-failure situation.

Regarding the endogenous information production, we endogenize traders’ deci-

sion on their optimal effort to become informed when facing information uncer-

tainty. We model a continuum of agents playing an information game inspired by

global games (Morris and Shin (2002)). Differently from classical global games, the

3In Kurlat and Veldkamp (2015), a similar situation in which the economy would be better off

if nobody is informed, is discussed but they focus on financial market anomalies in information

disclosure. For a recent review about the implications of information disclosure in terms of market

quality and welfare, we refer the reader to Goldstein and Yang (2017).
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strategy of the players is expressed in terms of the probability of being informed.

With this respect, our model resembles some recent literature on probabilistic choice

models (Mattsson and Weibull (2002)) and classical results in information theory

(Hobson (1969)). In Mattsson and Weibull (2002), an individual optimally makes

an effort to deviate from the status-quo (a reference probability) and change the

likelihood of a finite set of possible scenarios in order to get closer to implement-

ing a more desired outcome. Given that the reward is always higher for informed

than uninformed, traders choose their optimal information acquisition strategy to

maximize the trade-off between a higher expected reward of being more informed

and a higher cost. When individuals set an optimal trade-off between the expected

reward and the cost of deviating from the status-quo, Mattsson and Weibull (2002)

show that the disutility of the optimal effort is related to the information entropy.

We rephrase this game-theoretic setting as a monetary reduction of wealth due to

the investment in the information acquisition. Eventually, we model a two-stage

optimization scheme based, firstly, on a strategic information game and, secondly,

on a classical mean and variance investment decision problem. We characterize a

unique Nash equilibrium in the vector of probabilities of traders being informed

and a NREE in asset pricing. With the cost of information being increasing and

convex, we show that traders’ optimal effort depends on their risk aversion and the

information structure. The resulting endogenous information equilibrium leads to

outcomes that are significantly different from the Grossman-Stiglitz model.

In the Grossman-Stiglitz model, traders can decide to pay a fixed cost to be-

coming informed for sure. When information is complex and multi-dimensional,

being informed becomes per se an uncertain process. The more they pay for the

information, the more likely they will discover the right signal. As in the Grossman-

Stiglitz model, in equilibrium, the proportion of investors to be informed is deter-

mined endogenously and the price becomes more informative when there are more

informed traders. However, different from the Grossman-Stiglitz model, the cost is

not fixed, but contingent on market proportion of investors to be informed them-

selves. The optimal cost or effort for investors to becoming informed depends on

investors’ risk aversion and market information structure. Intuitively, more informed
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trading reduces dividend risk but increases information risk for uninformed traders,

which dominates the dividend risk. This effect becomes more significant when price

becomes less informative, the supply is less noisy, or traders are less risk averse,

generating a hump-shaped risk premium relation to the informed trading. This

hump-shaped risk premium in informed trading then provides high return, high risk

investments, which improve investors’ welfare. Therefore, differently from the pre-

vious studies about the market implications of the Hirschleifer effect in exchange

economies, we show that there are situations in which market efficiency can be

improved without harming social welfare.

The structure of the paper is as follows. We first introduce the model and traders’

optimization problem and then characterize the equilibrium in Section 2. In Section

3, we conduct a welfare analysis, together with risk premia and price efficiency.

Section 4 extends the analysis to explicitly model trading motives as a possible

route to endogenous supply. Section 5 concludes and all the proofs are collected in

the Appendix.

2. The Model

We consider the Grossman-Stiglitz model as our baseline model.4 There is a

continuum of homogenous traders, indexed by i ∈ (0, 1), who are price-takers and

can invest in two assets; a risk-free asset with a gross rate of return R > 1 and a

risky asset which pays a random dividend D̃ at the end of the period. As in the

Grossman-Stiglitzmodel, the dividend is given by

D̃ = d+ θ̃ + ε̃, (2.1)

where θ̃ ∼ N (0, vθ) and ε̃ ∼ N (0, vε), respectively, and d = E[D] (> R) is a constant.

Different from the Grossman-Stiglitz model in which θ̃ is fully observable at a fixed

cost c, we assume that θ̃ can only be observed with a probability of p at an increasing

and convex cost of c(p) in general. To have the most intuitive expressions, we present

4In the last decades, several generalizations to a dynamic setting of the classical Grossman-

Stiglitzmodel have been proposed. Among the others, Wang (1993), Veldkamp (2006), Kyle,

Obizhaeva and Wang (2017). For the sake of simplicity, we prefer to stick with the standard static

one-period model.



8

our main results for a quadratic cost function c(p) = p2 for p ∈ [0, 1].5 That is, p

is the probability of becoming fully informed about the private information θ̃ and a

trader observes it after paying the cost c(p). This implies that traders need to pay

more in order to increase their probability to be informed. Note that if traders can

only choose p = 0 or p = 1, we are back to the Grossman-Stiglitz model in which

traders are either informed (with p = 1) or uninformed (with p = 0).

The risk-free asset is in zero net supply and the risky asset has a noisy net supply

of z̃ ∼ N (0, vz). Note that the supply shock z̃ can be due to liquidity demand or

noise trading.6 The random variables θ̃, ε̃ and z̃ are independent of each other.

Traders are risk averse with a CARA utility function, i.e., u(W̃i) = −e−αW̃i , where

α is the absolute risk aversion and W̃i is trader i’s terminal wealth. Let xi be the

number of shares trader i holds and P̃ be the price of the risky asset, then trader

i’s terminal wealth becomes

W̃i = xi(D̃ −RP̃ ) +Wi,0R, (2.2)

where Wi,0 is trader i’s initial wealth. We assume traders’ initial wealth is zero.

Therefore, their trading motive is purely speculative; they make profit by supplying

liquidity to the noise/liquidity traders.

2.1. Information Uncertainty and Trading. There are three dates, t = 0, 1, 2.

At date t = 0, each trader-i chooses strategically pi and pays the cost µc(pi), where

µ is a scalar measuring the sensitivity to the cost. We refer to this stage as the

information game. Next, at date t = 1, a Boolean random variable ω̃i is drawn

independently for each trader i with P(ω̃i = 1) = pi and P(ω̃i = 0) = 1 − pi. If

ω̃i = 1, the trader observes θ̃ and becomes informed (type I). If ω̃i = 0, the trader

does not observe θ̃ and stays uninformed (type U). Then, the value of θ̃ is realized

and each trader, depending on his type, chooses his optimal demand x∗i (P ) in the

risky asset, where P is the price of the risky asset. Finally, at date t = 2, with the

5We have also considered other cost functions that are increasing and convex in p. In general,

we can also assume that p ∈ [p0, 1) and c(p0) = 0, where p0 ∈ [0, 1) is a reference or status quo

probability of becoming informed. For simplicity, we assume p0 = 0 in this paper.
6In Section 4, we model the behaviour of liquidity/noise traders explicitly using endowment

shocks. For now we simply take the noisy supply as given.



9

noise demand z̃, the market equilibrium price P̃ is determined by market clearing,

each trader gets their allocation of shares according to their optimal demand and

the equilibrium price. Then, the dividend D̃ is paid and consumption occurs.

2.2. Information Acquisition and Trading Decisions. Concerning the trading

decision, since dividend payoff is normally distributed (and the information cost c

does not depend on the investment strategy), the standard solution for trader i’s

optimal holding of the risky asset is given by

x∗i =
E[D̃ −RP̃ |Fi]

αVar[D̃ −RP̃ |Fi]
, (2.3)

where Fi is the information set for trader i.

Regarding the information acquisition, by taking into account the associated cost,

trader i’s objective at date t = 0 is to choose his probability pi of being informed to

maximize

U(pi;λ) = [piVI(λ) + (1− pi)VU(λ)] eαµ c(pi), (2.4)

where

λ =

∫ 1

0

ωi di =

∫ 1

0

pidi

is the market fraction of informed traders, which we will use as a state variable, and

VI(λ) = maxxi E
{
E
[
u
(
xi(D̃ − P )

) ∣∣∣FI]} , FI = {θ, P},

VU(λ) = maxxi E
{
E
[
u
(
xi(D̃ − P )

) ∣∣∣FU]} , FU = {P},

are the expected utilities of the informed and uninformed, respectively. Note that

VI(λ) and VU(λ) depend on λ since the equilibrium price P itself depends on λ.

Therefore, when needed, we will denote the price as Pλ.
7 Also, we assume traders

take λ as given, or more precisely, each trader conjectures the average choice of pi

by all other traders before giving his best response in a non-cooperative strategic

game.8 Two technical lemmas are now stated; the first provides the solution to

traders’ optimal portfolio and information acquisition decisions given the market

fraction λ. This result is based on a first order condition argument. The second

7More precisely, in equilibrium, Pλ = hλ(θ̃, z̃) is a random variable, where hλ is a deterministic

function depending on λ.
8Being λ a function of p = (pi)i∈[0,1], the problem of finding an optimal vector p∗ results in a

non-cooperative strategic game.



10

lemma provides a concavity (second order) condition ensuring that the optimization

problem is well-defined. For convenience, we denote by

γ(λ) = 1− VI(λ)

VU(λ)
(2.5)

the relative benefit of informed to uninformed. We also introduce the following

notations, vx ≡ Var[x̃], σx,y ≡ Cov[x̃, ỹ], βx,y ≡ σx,y/vx and ρx,y ≡ σx,y/
√
vxvy,

for any two normally distributed random variables x̃ and ỹ. Following the NREE

literature (Admati (1985), Admati and Pfleiderer (1987)), we postulate a linear price

P̃ =
1

R
(d+ bθθ̃ − bz z̃), (2.6)

where bθ and bz are two positive coefficients to be determined in equilibrium.

Lemma 2.1. Assume traders’ expected utility is concave in pi, i.e., U ′′(pi;λ)(=

∂2U(pi;λ)/∂p2
i ) < 0 and the equilibrium price P has the form of (2.6). Then

(i) trader i’s optimal demand in the risky asset is given by

x∗i (P ) =

 d+θ−RP
αvε

, ωi = 1;

d−RP
αvU

, ωi = 0,
(2.7)

where, conditional on his type k ∈ {I, U},

vU ≡
vε + vθ|P
1− βP,θ

, vθ|P ≡ (1− ρ2
θ,P )vθ, βP,θ =

σθ,P
vP

;

(ii) the expected utilities of trader i, conditional on his type k ∈ {I, U}, is given

by

Vk(λ) = − 1√
1 + ξk(λ)

, ξk(λ) ≡ vχk
vD|Fk

, (2.8)

where

ξI(λ) =
(1− b2

θ)
2vθ + b2

zvz
vε

, ξU(λ) =
(1− βθ,P )(b2

θvθ + b2
zvz)

vU
,

and χk ≡ E[D̃ −RP̃ |Fk] is the conditional risk premium;

(iii) trader i’s optimal choice of probability to be informed is given by

p∗i = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
, (2.9)

where g(pi) ≡ c′(pi).
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When trader’s optimization problem is well-defined, (2.7) gives the optimal de-

mand, (2.8) defines the value function to be informed and uninformed, while (2.9)

provides the optimal probability choice.

Lemma 2.2. The function U(pi;λ) as defined in (2.4) is concave in pi if and only

if
γ(λ)

g(λ)

[
2g(λ)

1− piγ(λ)
− g(pi)

1− λγ(λ)

]
≤ g′(pi)

g(pi)
, for all pi ∈ [0, 1]. (2.10)

A sufficient condition for U ′′(pi;λ) < 0, λ ∈ [0, 1], is given by

γ(λ) <
1

2
min
pi∈[0,1]

(
1

g(pi)
g′(pi)

+ pi
2

)
; (2.11)

moreover, if c(pi) = p2
i , (2.11) reduces to

γ(λ) <
1

3
. (2.12)

Some remarks are needed. First, note that, as soon as one of the concavity

conditions in Lemma 2.2 is met, the optimal probability p∗i in (2.9) is the same for

all agents. In this sense, similarly to the Grossman-Stiglitz model, the cost c(p∗i ) paid

for acquiring the signal is the same for all agents, although endogenously computed.

Having said that, our traders’ optimization problem differs significantly from that

of the Grossman-Stiglitz model, which has the following solution,

p∗i =

 0, γ(λ) < 1− e−αc;

1, γ(λ) > 1− e−αc,
(2.13)

where c is a fixed cost. Note that γ(λ) measures the relative benefit of informed to

uninformed. Therefore, Grossman-Stiglitz model’s information equilibrium requires

γ(λ) = 1 − e−αc or equivalently VI(λ)eαc = VU(λ). In other words, the expected

utility of the informed after the cost exactly matches the expected utility of the

uninformed. As a results, traders are indifferent between becoming informed or

staying uninformed. In our model, due to the information uncertainty, the cost is

associated with the average expected utility of being informed (with probability pi)

and uninformed (with probability 1− pi), characterized in (2.4).

As said, the optimization scheme of information acquisition and portfolio choice

for trader i can be separated in two stages and solved backwards. At date 1, trader
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i decides his portfolio choice x∗i given his type, i.e., the realization of ωi. This stage

amounts to determining VI and VU . At date 0, agents play the information game:

by averaging on the likelihood of being informed and forming an expectation about

other traders’ actions, traders strategically set optimal strategies, p∗ = (p∗i )i∈(0,1).

Finally, to close the model, the equilibrium price P of the risky asset is determined

by the market clearing condition as in the standard noisy rational expectation equi-

librium.

2.3. Information and Asset Market Equilibria. Before characterizing the in-

formation and asset market equilibria, we first introduce the following definition.

Definition 2.1. We say that probability p∗ = (p∗i )i∈(0,1), market fraction of informed

λ∗, and price P ∗ of the risky asset are in equilibrium if

(i) p∗ = (p∗i )i∈(0,1) is a Nash equilibrium, meaning that for every i ∈ (0, 1),

U(p∗i ;λ) ≥ U(pi;λ) for all pi ∈ [0, 1];

(ii) the following consistency equation is satisfied9

λ∗ = E
[∫ 1

0

ω∗i di

]
=

∫ 1

0

p∗i di, (2.14)

here ω∗i is the random variable associated to the optimal probability p∗i ;

(iii) the price P ∗ = Pλ∗ satisfies market clearing condition∫ 1

0

x∗i (P ) di = z̃, (2.15)

where x∗(P ) = (x∗i (P ))i∈(0,1) is the optimal investment strategy profile.

We now characterize the equilibrium in the following proposition.

Proposition 2.3. Assume (2.10) holds and denote by

n =
vθ
vε
, ξ0 = α2vzvD, ξ1 = α2vzvε,

the informativeness of the private signal, and the expected trading profit when no

traders are informed and when all traders are informed, respectively. Then

9At the equilibrium, expectations realize so that the fraction of informed, λ, exactly matches

the value expected by the traders when using the revealed vector of probabilities p∗.
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(i) the equilibrium market fraction of informed traders, λ∗, is determined by

λ∗ = λ satisfying

λ = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
; (2.16)

(ii) the linear equilibrium price of the risky asset is given by

P̃ =
1

R
(d+ bθθ̃ − bz z̃), (2.17)

where

bθ =
λv̄

vε
, bz = αv̄, (2.18)

and

1

v̄
=
λ

vε
+

1− λ
vU

, vU = vD +
1

α

(
vθ
vz

)(
λ

αvε

)
= vD

(
1 +

nλ

αξ0

)
. (2.19)

As argued before, under the mild concavity conditions of Lemma 2.2, equilibrium

probabilities p∗i , i ∈ [0, 1], all collapse to the same value p∗ solving (2.9); more-

over, by virtue of (2.14), we have λ∗ = p∗.10 Note that, in the Grossman-Stiglitz

model, although the asset market equilibrium is identical to ours, the information

equilibrium differs significantly. Instead of (2.16), Grossman-Stiglitz model requires

γ(λ) = 1−e−ac, which means that the expected utility of the informed traders, after

having paid the cost c, is exactly the same as that of the uninformed traders (who do

not pay any cost). Differently in our model, every trader optimally chooses to pay

a cost equal to µc(p∗i ) = µc(λ∗) in equilibrium, and p∗i = λ∗ becomes the (optimal)

probability of observing the signal θ̃. As we will see in Section 4, this difference from

the Grossman-Stiglitz model leads to very different welfare implications.

2.4. Existence and Uniqueness of Nash Equilibrium. We now examine the

existence and uniqueness of the Nash equilibrium with respect to parameter µ, which

measures the cost sensitivity. Intuitively, λ → 0 in equilibrium as µ → ∞; λ = 1

when µ is small enough; otherwise λ ∈ (0, 1). This is demonstrated as following.

10We stress the fact that, in principle, there could be multiple equilibira in λ for the fixed point

argument (2.16) even if the optimization problem is well-defined in p∗. In the following we provide

sufficient conditions for uniqueness to keep this paper more focused on welfare analysis and market

implications. We leave this intriguing discussion on multiple equilibira for future research.
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Proposition 2.4. Assume (2.10) holds and c(p) = p2. Then

(i) λ∗ = 0 as µ→∞;

(ii) λ∗ = 1 when µ ≤ µ̄ := 1
2α

γ1
1−γ1 , where γ1 ≡ γ(1) = 1−

√
n+ξ1
n+ξ0

;

(iii) λ∗ ∈ (0, 1) when µ > µ̄; furthermore the Nash equilibrium is unique under

condition (2.12).

Moreover, the equilibrium price P ∗, satisfying (2.17), is characterized by parameters

bθ and bz defined in (2.18) and (2.19), evaluated at the equilibrium λ∗.

Proposition 2.4 provides a necessary and sufficient condition (on the parameter

µ) for thee existence of a non-trivial Nash equilibrium 0 < λ∗ < 1 and a sufficient

condition (on the relative benefit γ) for the uniqueness. In general, the equilibrium

fraction of informed traders is expected to increase as traders become less sensitive

to the cost function. Put differently, we expect λ∗ to be decreasing in µ. However,

it turns out that monotonicity is not guaranteed.

Proposition 2.5. The equilibrium λ = λ(µ) is decreasing in µ if and only if

Γ′(λ)

Γ(λ)
≤ g′(λ)

g(λ)
, Γ(λ) =

γ(λ)

1− λγ(λ)
; (2.20)

or equivalently
γ2(λ) + γ′(λ)

1− λγ(λ)
≤ g′(λ)

g(λ)
. (2.21)

In particular, for c(p) = p2, condition (2.21) becomes

λ[γ2(λ) + γ(λ) + γ′(λ)] ≤ 1. (2.22)

In particular, at λ = 0, condition (2.22) is always satisfied; while at λ = 1, condition

(2.22) becomes √
ξ1 + n

ξ0 + n

[
1 +

ξ1 + n

ξ0 + n

]
≤ 3

ξ1 + n

ξ0 + n
+

n2ξ1

[ξ0 + n]2
. (2.23)

Proposition 2.5 provides conditions for the equilibrium λ = λ(µ) to be decreasing

in µ or, put differently, it provides a less restrictive condition for the uniqueness of

the Nash equilibrium λ∗. Note that, since λ < 1 and γ′(λ) < 0, condition (2.22) is

always satisfied as soon as (2.12) is satisfied. This leads to the following theorem in

which we summarize the main results of this section.
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Theorem 2.6. Consider the optimization problem (2.4) with c(p) = p2. Suppose

that µ < µ̄ and γ(λ) < 1/3. Then, there exists a unique equilibrium (P ∗, λ∗) such

that (i) λ∗ ∈ (0, 1), solves (2.16) and is decreasing in µ; and (ii) P ∗ is given by

(2.17).

3. Welfare Analysis

In this section, we analyze traders’ welfare and examine market conditions in

which traders’ welfare increases when prices become more informative in equilibrium.

3.1. The Welfare in the Grossman-Stiglitz Model. To better understand the

welfare effect of the information uncertainty, we first review the welfare results in

the Grossman-Stiglitz model. The following lemma is helpful for our analysis.11

Lemma 3.1. The expected utilities of informed and uninformed traders are given

by, respectively,

VI(λ) = f(λ)VU(λ) = − 1√
B(λ)

and VU(λ) = − 1

f(λ)
√
B(λ)

, (3.1)

where

f(λ) =

√
ξ1 + nλ2

ξ0 + nλ2
, B(λ) = 1 +

B1(λ)

B2(λ)
,

B1(λ) = ξ1

[
ξ1n(1− λ)2 + (ξ0 + nλ)2] , B2(λ) =

[
(1 + nλ)ξ1 + nλ2

]2
.

In addition, VI(λ) > VU(λ), V ′I (λ) < 0 and V ′U(λ) < 0 for λ ∈ [0, 1].

In the Grossman-Stiglitz model, with a fixed information cost of c, the social

welfare of market participants is defined by U∗GS(λ) = λVI(λ)eαc + (1 − λ)VU(λ).

Based on Lemma 3.1, it is straightforward to show that

U∗GS(0) = − 1√
1 + ξ0

and U∗GS(1) = − 1√
1 + ξ1

eαc. (3.2)

Note that ξ0 = ξ1(1 + n) and hence U∗GS(0) > U∗GS(1). Therefore, in terms of

welfare, traders are better off under the no-information equilibrium than under

the full-information one (even if the cost of acquiring information is zero), which

demonstrates the well-documented Prisoner’s dilemma situation in welfare.
11The results in Lemma 3.1 are based on Grossman and Stiglitz (1980) and Allen (1984), but

presented more explicitly for convenience of the analysis.
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As a textbook example, consider the case where we just have two players. By

fixing all the relevant parameters equal to one (vε = vθ = vz = α = 1), we obtain

VU(0.5) < VI(1) < VU(0) < VI(0.5), where λ = 0.5 accounts for the situation where

the two players choose a different action. Eventually, the normal-form game has a

payoff matrix as in Table 1. The resulting Prisoner’s dilemma illustrates a situation

in which traders fail to coordinate towards the best outcome (represented by VU(0))

and come up with a socially less preferable Nash equilibrium.

I U

I -0.70; -0.70 -0.56; -0.76

U -0.76; -0.56 -0.57; -0.57

Table 1. Two-player payoff matrix.

Furthermore, from Lemma 3.1, VI(λ) − VU(λ) > 0 for λ ∈ (0, 1); hence being

informed is always beneficial. The expected utilities of both informed and unin-

formed traders are decreasing in λ, however the difference VI(λ)−VU(λ), can either

increase or decrease in λ. In equilibrium, VI(λ)eαc = VU(λ), hence U∗GS(λ) = VU(λ).

Therefore, as the cost of acquiring information is reduced, more traders become in-

formed, which improves price efficiency12 but reduces welfare. Hence, we obtain the

following remark:13

Remark 3.2. In the Grossman-Stiglitz model, only the no-information equilibrium,

with λ = 0, is Pareto-optimal with respect to the social welfare. In fact, U∗GS(λ) <

U∗GS(0) for λ ∈ (0, 1).

3.2. The Welfare Improvement. To examine the welfare effect of information

uncertainty in equilibrium, we fist have the following equilibrium condition,

αµg(λ)V̄ (λ) = −[VI(λ)− VU(λ)],

12It is well known that, in the Grossman-Stiglitz model as in our model, price informativeness

measured by ρ2θ,P = 1/(1 +m), where m = ξ1/(nλ
2), is an increasing function of λ.

13Note that a similar result also holds for some related recent contributions on information

markets. See, for example, Kurlat and Veldkamp (2015) and Veldkamp (2006).
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where

V̄ (λ) ≡ λVI(λ) + (1− λ)VU(λ).

From Lemma 3.1, we then have

αµg(λ) = −VI(λ)− VU(λ)

V̄ (λ)
=

γ(λ)

1− λγ(λ)
,

where γ has been defined in (2.5) (and hence γ(λ) = 1 − f(λ) from Lemma 3.1).

Following (2.4), we now introduce traders’ welfare in equilibrium.

Definition 3.1. In equilibrium, the overall welfare of the (speculative) traders is

measured by

U∗(λ) ≡ U(λ;λ) = V̄ (λ)eΦ(λ), (3.3)

where

Φ(λ) ≡ c(λ)

g(λ)

γ(λ)

1− λγ(λ)
=

1

2

λγ(λ)

1− λγ(λ)

represents the cost function in equilibrium.14

Based on Definition 3.1, it is straightforward to show that

U∗(0) = − 1√
1 + ξ0

and U∗(1) = − 1√
1 + ξ1

eΦ(1). (3.4)

Therefore as in the Grossman-Stiglitzmodel, in terms of welfare, traders are better

off under the no-information than under the full-information equilibria even if the

cost of acquiring information is zero.

To better understand this dilemma, note that as λ increases, price becomes more

sensitive to the signal, i.e, bθ increases. When λ = 1, we obtain that d+ θ̃ − RP̃ =

αvεz̃. Therefore, the informed traders are only compensated by the risk premium

since the information they receive have been fully reflected by the equilibrium price,

i.e., bθ = 1. On the other hand, when λ = 0, which would be the outcome when

information is extremely costly, the price is uninformative since bθ = 0. Therefore,

traders are compensated by the risk premium, i.e, d − RP̃ = α(vε + vz)z̃, which is

however larger than in the case of λ = 1, because traders perceive a larger dividend

risk, thus a larger price discount is required.

14This condition is satisfied exactly when (2.16) is met. With a slight abuse of notation, we

write λ in place of λ∗.
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As in the Grossman-Stiglitz model, prices become more efficient as traders be-

come less sensitive to the cost (to reduce the information uncertainty). However,

differently from the Grossman-Stiglitz model, we show that, in contrast to Remark

3.2, traders’ welfare can be improved as the prices become more efficient. In partic-

ular, we provide necessary and sufficient conditions for the welfare to be increasing

in the fraction of informed traders, i.e., (U∗)′(λ) ≥ 0.

First, it follows from Lemma 3.1 that V̄ (λ) and hence U∗(λ) can be written as

V̄ (λ) = [1− λγ(λ)]VU(λ), U∗(λ) = [1− λγ(λ)]VU(λ)eΦ(λ). (3.5)

Note that 0 < γ(λ) < 1 and hence 0 < 1 − λγ(λ) < 1 for λ ∈ (0, 1]. Relatively

to the expected utility to be uninformed, (3.5) shows two opposite effects of the

information uncertainty on traders’ welfare: a positive effect on the information

benefit,15 defined as (1 − λγ(λ))−1, and a negative effect on the cost component

eΦ(λ) (to reduce the information uncertainty). With the cost function c(p) = p2, we

have Φ(λ) =
[
(1− λγ(λ))−1 − 1

]
/2; therefore the negative cost effect increases in

the information benefit. The welfare improves when the positive effect overwhelms

the negative one.

Proposition 3.3. In equilibrium,

(i) traders are better off than an (fictitious) uninformed trader, who does not pay

any cost to acquire private information, i.e. U∗(λ) ≥ VU(λ) for λ ∈ (0, 1) if

and only if

eΦ(λ) ≤ 1

1− λγ(λ)
; (3.6)

(ii) traders’ welfare is better than the welfare in the no-information equilibrium

λ = 0 (where all traders make no effort to reduce the information uncer-

tainty), i.e., U∗(λ) ≥ VU(0), if and only if

VU(λ)

VU(0)
eΦ(λ) ≤ 1

1− λγ(λ)
; (3.7)

15Since VU (λ) < 0, the benefit is actually reflected by the reciprocal of 1− λγ(λ).
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(iii) traders’ welfare is improving in the fraction of informed traders, i.e., (U∗)′(λ) ≥

0, if and only if

V ′U(λ)

VU(λ)
≤ 1

2

[1− 2λγ(λ)][γ + λγ′(λ)]

[1− λγ(λ)]2
; (3.8)

In particular, at λ = 0, (U∗)′(0) ≥ 0 if and only if

V ′U(0)

VU(0)
=

nξ0

1 + ξ0

≤ 1

2
γ(0) =

1

2

(
1− 1√

1 + n

)
; (3.9)

Proposition 3.3 (i) and (ii) show that traders’ welfare are better off than that of the

Grossman-Stiglitzmodel when the positive effect of information benefit dominates

the cost effect for all λ ∈ [0, 1]; in particular, than the welfare in the no-information

equilibrium λ = 0 when the dominance becomes stronger (note that VU(λ)/VU(0) ≥

1). The reason being that they can strategically choose the probability p∗i = λ

to observe θ̃ so that the welfare gain is not completely washed out by the cost of

information.

More importantly, Proposition 3.3 (iii) shows that price efficiency can actually

improve traders’ welfare if the reduction in the expected utility of the uninformed

traders due to an increase in λ is below a certain threshold, which depends on the

welfare difference between the informed and uninformed, i.e., γ(λ), and its derivative.

Let γ̄(λ) := 1
1−λγ(λ)

represent the information benefit effect. Condition (3.8) can be

written as
V ′U (λ)

VU (λ)
≤ γ̄′(λ)

[
1

γ̄(λ)
− 1

2

]
, or equivalently,

V ′U(λ)

VU(λ)
+

1

2
Φ′(λ) ≤ γ̄′(λ)

γ̄(λ)
,

meaning that, in equilibrium lambda, the marginal welfare cost due to an increment

in the fraction of informed traders is less than the marginal welfare gain due to an in-

crement in the probability of becoming informed.16 In particular, the no-information

equilibrium is not necessarily the best-case scenario (as in the Grossman-Stiglitz

model). More specifically, if condition (3.9) is satisfied, there exist a λ̂ > 0 such

that U∗(λ̂) > U∗(0) = VU(0) for λ ∈ [0, λ̂).

The intuition is as follows. There are two opposing effects on the welfare when

the fraction of informed traders increases and price becomes more informative. The

16In equilibrium the fraction of informed is the same as the probability of becoming informed,

though the interpretation of λ is different.
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first is the (negative) Hirshleifer effect : revealing private information reduces pay-

off uncertainty, which distorts risk-sharing between the informed and uninformed

traders. Put differently, they jointly make less trading profit from the noise de-

mand z̃. In the limiting case as vε → 0, their trading profit approaches zero. The

second (positive) effect comes from the increased probability to observe the private

signal θ̃, thus being able to place demands x∗i (P ) that are more positively correlated

with the payoff D̃. Essentially, (3.8) shows the condition under which the second

effect dominates the first, which results in a welfare improvement. At λ = 0, this

dominance occurs when the squared Sharpe ratio ξ0 = α2vzvD is relatively small,

while the information advantage of the informed over the uninformed traders, γ(0),

is relatively large.

The above intuition is illustrated by Panels (A) and (C) in Fig. 3.1. Panel (C)

plots the equilibrium welfare functions for four values of the informativeness of the

private signal n. From which, we have the following two observations. First, the

initial welfare improvement from the no-information equilibrium increases as the

informativeness n increases, leading to a more hump-shaped welfare function and

a more significant welfare improvement for lower equilibrium λ. Second, there is a

strictly positive Pareto-optimal equilibrium λ∗ on the welfare improvement so that

U∗(λ∗) ≥ U∗(λ) for all λ ∈ [0, 1]. In addition, the Pareto-optimal equilibrium λ∗

decreases in n, meaning that the Pareto-optimal equilibrium can only be achieved

at a lower fraction of informed traders when the information become more informa-

tive. Panel (A) plots the regions Ω(λ) for the welfare improvement with the given

equilibrium λ and (U∗)′(λ) = 0 on the boundaries. It shows that the parameter

region in (n, vD) shrinks in λ, satisfying Ω(λ1) ⊂ Ω(λ2) for λ1 > λ2. Clearly, when

(U∗)′(0) > 0, we have (U∗)(λ) ≥ (U∗)(0) for λ ∈ [0, λ̄) with some λ̄ > λ∗. Pan-

els in Fig. 3.2 demonstrate that the region for (U∗)(λ) ≥ (U∗)(0) is larger than

the region for (U∗)′(0) > 0 for different values of λ. Therefore, different from the

Grossman-Stiglitz model, traders’ welfare is better than that in the no-information

equilibrium for 0 < λλ̄. More importantly, for 0 ≤ λ ≤ λ∗, traders’ welfare can be

improved as the prices become more efficient, resulting a positive relation between

price efficiency and social welfare.
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Figure 3.1. Panels A and B show that regions marked by

{n, vD} in which (U∗)′(λ) > 0 and v̄′(λ) > 0, respectively, for λ ∈

{0, 0.05, 0.10, 0.15, 0.20}. Panels C and D show U∗(λ) and v̄(λ) for 0 ≤

λ ≤ 1, where vD = 0.05 and n is chosen such that (U∗)′(λ∗) = 0 with

λ∗ ∈ {0.10, 0.15, 0.20} and n ∈ {0.386, 0.144, 0.020}. We set α = 1 and

vz = 1.

To better understand the underlying mechanism, we next try to relate traders’

welfare improvement to the behaviour of risk premium as a function of the state

variable.

3.3. Relationship between Welfare Improvement and Risk Premium. In

this subsection, we try to draw a connection between the condition for the im-

provement of traders’ welfare and the expected liquidity cost of the noise demand,

E
[
−z̃P̃

]
= (αv̄)vz, which is the product of the risk premium αv̄ and the variance

of the noise demand. It can be seen from Equation (2.18) in Proposition 2.3 that

v̄ is not necessarily decreasing in the fraction of the informed traders λ. Similarly,
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Figure 3.2. Regions characterized by {vD, n} for λ ∈

{0.05, 0.10, 0.15, 0.20}, where (U∗)′(λ) > 0, (U∗(λ) > U∗(0), v̄′(λ) > 0

and v̄ > αvD. We set α = 1 and vz = 1.

the total risk faced by the uninformed traders can be larger than the unconditional

variance of the dividend payoff, i.e., vU ≥ vD.

Intuitively, a larger proportion of informed traders reduces payoff uncertainty,

however it also increases adverse selection risk for the uninformed traders so that

they trade less aggressively knowing that price contains private information. There-

fore, the aggregate risk can increase in λ if the adverse selection risk plays the most

prominent role. The next corollary pins down the conditions for this to occur and

also its connection with welfare improvement.

Corollary 3.4. On the aggregate risk v̄ (per unit of supply, that is 1
z
∂E[D̃−RP̃ |z̃=z]

∂λ
):

(i) when ξ0 > 1, it decreases in λ;
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(ii) when ξ0 ≤ 1, it increases in λ if and only if

λ ≤ λ̄ =
1

n

[√
ξ1(n+ ξ0)− ξ0

]
;

(iii) when the aggregate risk v̄ is decreasing in λ, traders’ welfare U∗(λ) is also

decreasing at λ = 0, i.e., (U∗)′(0) < 0.

Corollary 3.4 shows that, close to the no-information equilibrium λ = 0, more

informed trading improves both risk premium and traders’ welfare only if the ex-

pected trading profit ξ0 ≤ 1. Intuitively, when the expected trading profit is large,

the welfare of the uninformed traders decrease at a faster rate, as shown by Equation

(3.9), although this can be offset by a relatively small n (signal informativeness),

a small n also reduces γ(0) (welfare gain by observing the private signal). There-

fore, an initial welfare improvement from the no-information equilibrium is always

accompanied by an increase in risk premium and expected liquidity cost. Note that

the converse is not true, i.e., an increase in risk premium is not a sufficient condition

for welfare improvement at the no-information equilibrium.

Figures 3.1 and 3.2 illustrate the above results numerically. Panel (D) in Fig. 3.1

plots the equilibrium risk premium v̄(λ) for the four values of the informativeness

n, showing the exact same pattern as the welfare to the informativeness of the

information. Together with Panel (C) in Fig. 3.1, it shows a positive connection

between social welfare and the risk premium. Panel (B) in Fig. 3.1 plots the regions

for the risk premium improvement for the given equilibrium λ with v̄′(λ) = 0 on the

boundaries. It shows that the parameter region for the risk premium improvement

shrinks in λ. In addition, comparing Panels (A) and (B) in 3.1, for the given λ, the

parameter region for the welfare improvement is always a subset of the parameter

region for the risk premium improvement. This implies a positive connection from

social welfare to the riks premium. This illustrates the risk premium channel to the

welfare improvement, but not otherwise, as shown in Corollary 3.4. This mechanism

channel becomes even more clearly in Figures 3.2, showing that, for given equilibrium

λ, the parameter region for v̄ > αvD is the largest, followed by the regions for

v̄′(λ) > 0, (U∗)(λ) > (U∗)(0), and (U∗)′(λ) > 0 as subsequent subsets. Therefore,
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the improvement in social welfare comes from high return, high risk investments,

which however not sufficient for better social welfare.

4. Modelling Trading Motives Explicitly

In this section, rather assuming noise in supply, we follow Bond and Garćıa (2017)

explicitly to motivate trading using endowment shocks.

Each trader i receives an endowment, eiD̃, at the end of the trading period. Thus,

trader i’s terminal wealth is given by17

W̃i = (xi + ei)(D̃ − P̃ ) + eiP̃ . (4.1)

We assume that ei is known to trader i, but not known to other traders. Moreover

ei = z̃+ ũi, where z̃ ∼ N (0, vz) is an aggregate endowment shock and ũi ∼ N (0, vu)

is an idiosyncratic shock, thus ve ≡ Var[ẽi] = vz + vu.

4.1. Optimization problem. As before, each trader i’s objective is to determine

the optimal probability p∗i of observing the private signal θ, in order to maximize

his expected utility of terminal wealth,

U(pi;λ, ei) ≡ [piVI(λ, ei) + (1− pi)VU(λ, ei)] e
αµ c(pi), (4.2)

where

VI(λ, ei) = max
xi

E
{
E
[
u(W̃i)|θ, P, ei

]
|ei
}
,

VU(λ, ei) = max
xi

E
{
E
[
u(W̃i)|P, ei

]
|ei
}

are trader i’s expected utility depending on whether or not he observes the private

signal θ. Note that apart from θ, trader i also has a another private signal, which is

his own endowment shock ei. Intuitively, ei helps trader i to forecast the aggregate

endowment shock z̃, which is negatively correlated with the equilibrium price P̃ . For

example, after observing the same price, a trader who receives a positive endowment

shock will infer a larger value for θ than a trader who receives a negative endowment

shock.

17For simplicity, we assume the the payoff of the risk-free asset, R = 1.
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Conditional on his information set, trader i’s optimal portfolio is given by

x∗i (Fi) =
E
[
D̃ − P̃ |Fi

]
αVar

[
D̃ − P̃ |Fi

] − ei, (4.3)

where the information set Fi = {θ, P, ei} if trader i is informed and Fi = {P, ei} if

he is uninformed. As before, we conjecture a linear equilibrium price,

P̃ = d+ bθθ̃ − bz z̃. (4.4)

Next, we characterize the solution to traders’ optimization problem. The optimal

demand for the uninformed and informed traders are given by

x∗i (P, ei) =
(1− κ)(d− P )− κβe,P ei

αvU
− ei, (4.5)

where

κ =
σθ,P

vP −
σ2
e,P

ve

, and vU = (vε + vθ)

(
1−

ρ2
P,D

1− ρ2
e,P

)
= vD − κσθ,P ,

and

x∗i (θ, P, ei) =
d+ θ − P

αvε
− ei, (4.6)

respectively.

Next, we compute expected utilities for the informed and uninformed traders,

i.e., VI(λ, ei) and VU(λ, ei). Next, we work out . First, trader i’s welfare given his

information set is given by

E
[
u(W̃i)|Fi

]
= − exp

{
−αeiP −

1

2

χ2
i

vi

}
, (4.7)

where χi ≡ E
[
D̃ − P̃ |Fi

]
and vi ≡ Var

[
D̃ − P̃ |Fi

]
. Since, conditional on the

investor i’s endowment shock ei, the price P and expected excess return χi follow a

bivariate normal distribution, we can obtain the following expression for trader i’s

welfare given his own endowment shock.

Proposition 4.1.

E
{
E
[
u(W̃i)|Fi

]
|ei
}

= − exp

{
−A0ei +

1

2
A1e

2
i

}(
ν

vi

)−1/2

, (4.8)
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where

A0 = α d, A1 =
α2(vP |e(vε + vθ)− σ2

θ,P )− β2
e,P − 2α(vε + vθ − σθ,P )βe,P

ν

and

ν ≡ vχi + vi = vP |e + (vε + vθ)− 2σθ,P , vP |e ≡ Var
[
P̃ |ei

]
= vP −

σ2
e,P

vz + vu
.

From Proposition 4.1, the expected utility gain of becoming informed is indepen-

dent of his endowment shock ei, i.e.,

γ(λ) ≡ VI(ei;λ)− VU(ei;λ)

−VU(ei;λ)
= 1−

√
vε

vD − κσθ,P
. (4.9)

Therefore, the solution to trader i’s optimization problem in (4.2) is given by (2.9)

just as in the baseline model. Also, the concavity condition, U ′′(pi;λ, ei) < 0, is

satisfied if (2.12) is true, where γ(λ) is given by (4.9).

4.2. Equilibrium. Since we assume the risky asset is in zero net supply, market

clearing requires ∫ 1

0

[λx∗i (θ, P, ei) + (1− λ)x∗i (P, ei)] di = 0, (4.10)

where λ is the fraction of informed traders. In the next proposition, we determine

the coefficient bθ and bz in equilibrium.

Proposition 4.2. For given λ ∈ (0, 1), let Ψ ≡ vz/(vz + vu), there exists a linear

equilibrium price of the risky asset,

P̃ = d+ bθθ̃ − bz z̃, (4.11)

where x ≡ bθ
bz

solves

x =
1

αvε

(
λ+

1− λ
Ψ−1 + x−2(v−1

ε + v−1
θ )vu

)
, (4.12)

bθ =
1

1 + x−2 v
−1
θ +λv−1

ε

v−1
u +v−1

z

+
λ

vε+λvθ
vε+vθ

+ x2 v
−1
u +v−1

z

v−1
ε +v−1

θ

, (4.13)

and λ is the solution of

λ = g−1

(
1

αµ

γ(λ)

1− λγ(λ)

)
, (4.14)

where γ(λ) is given by (4.9), assuming the sufficient condition for concavity in (2.12)

is satisfied for the equilibrium λ.
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4.3. Welfare. The welfare of trader i, given his endowment shock, ei can be mea-

sured by

U∗(λ; ei) ≡ U(λ;λ, ei), αµ =
1

2

γ(λ)

λ (1− λγ(λ))
, (4.15)

since every trader optimally choose the same probability p∗i = λ in the Nash equi-

librium.

Next, we consider two special cases where λ = 0 and λ = 1. Note that for λ = 0,

the equilibrium price becomes P̃ = d−α(vθ +vε)z̃ and trader i’s optimal portfolio is

x∗i (P, ei) = d−P
α(vθ+vε)

− ei. On the other hand, when λ = 1, the equilibrium price and

trader i’s optimal portfolio are given by P̃ = d+θ̃−αvεz̃ and x∗i (θ, P, ei) = d+θ−P
αvε
−ei.

The following proposition characterizes traders’ overall welfare.

Corollary 4.3. The welfare of trader i is characterized by Equation (4.8), where

A1 =
α2(vε + vθ)

(
2vz/ve − (vz/ve)

2 + α2(vε + vθ)vz|e
)

1 + α2vz|e(vε + vθ)
,

ν

vi
= 1 + α2(vε + vθ)vz|e

(4.16)

when λ = 0 with µ→∞, and

A1 =
α2vε

(
2vz/ve − (vz/ve)

2 + α2vεvz|e
)

1 + α2vz|evε
+ α2vθ,

ν

vi
= 1 + α2vεvz|e (4.17)

when λ = 1 with vz|e ≡ Var [z̃|ei] = (v−1
z + v−1

u )−1 and αµ = 1
2

γ(1)
1−γ(1)

.

Moreover, traders are always better off in the no-information equilibrium than in

the full-information equilibrium, i.e.,

U∗(0; ei)

U∗(1; ei)
= exp

{
−1

2

γ(1)

1− γ(1)
− 1

2
α2

(
vu
ve
ei

)2

vθ

}√
1 + α2vεvz|e

1 + α2(vε + vθ)vz|e
≤ 1.

(4.18)

Corollary 4.3 shows that, in terms of welfare, the no-information equilibrium (no

traders observe θ̃) dominates the full-information equilibrium (all traders observe θ̃),

since welfare improves for every trader when λ switches from zero to one, regardless

of the realization of endowment shocks. In other words, the full-information equi-

librium is not Pareto efficient, in the sense that there exists an equilibrium with a

different λ such that no traders are worse off and at least one trader’s welfare im-

proves. Therefore, an important question is whether the no-information equilibrium

also dominates any other equilibrium with λ ∈ (0, 1). If so, one may conclude that
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(at least in this particular model setting), the social value of asymmetric information

is strictly negative, and traders can be made better off if no one observes θ̃, e.g. by

increasing the cost parameter µ. However, in the following we show (numerically)

that this is not the case.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.1

0.2

0.3

0.4

n

v
D

(B) *(λ+Δ;e)>*(λ;e)

e=0

e=0.1 ve

e=0.2 ve

e=0.3 ve

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.1

0.2

0.3

0.4

n

v
D

(A) *(λ+Δ;0)>*(λ;0)

vu /vz =∞

vu /vz =3

vu /vz =2.5

vu /vz =2

0.2 0.4 0.6 0.8 1.0
λ

-0.010

-0.008

-0.006

-0.004

-0.002

0.002

(C) *(λ+Δ;0)-*(λ;0)

vu /vz =∞

vu /vz =3

vu /vz =2.5

vu /vz =2

0.2 0.4 0.6 0.8 1.0
λ

-0.010

-0.008

-0.006

-0.004

-0.002

(D) *(λ+Δ;e)-*(λ;e)

e=0

e=0.1 ve

e=0.2 ve

e=0.3 ve

Figure 4.1. Panels A and B show that regions marked by {n, vD}

in which U∗(∆; e) > U∗(0; e), where e = 0 and
√
vu/vz ∈ {∞, 3, 2.5, 2}

in Panels A, and e/
√
ve ∈ {0, 0.1, 0.2, 0.3} and

√
vu/vz = 3 in Panels B.

Panels C and D show the welfare improvement U∗(∆; e)− U∗(0; e), where

n = 0.1. Also, we set α = 1 and vz = 1.

In Figure 4.1, it is clear that the welfare improvement region shrinks in vu and

e. Also the λ∗ for which U ′(λ∗; e) = 0 increases with vu but decreases with e.

Therefore, there exists λ close to zero such that the welfare improves for traders

with small endowment shocks, i.e., e relatively close to zero. Therefore, equilibria

with asymmetric information can be Pareto efficient, since it is not dominated by

the no-information equilibrium.
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5. Conclusion

In this paper, we model traders’ strategic choice of the probability to observe a

costly private signal that helps to reduce uncertainty of the future payoff in an oth-

erwise standard noisy rational expectation model of Grossman and Stiglitz (1980).

We find that, in contrary to prior literature, paying a cost to increase the probabil-

ity of becoming informed can be beneficial to speculative traders who are supplying

liquidity to either noise traders (with exogenously given liquidity needs) or hedgers

who trade to insure against future endowment risk. Due to high-risk, high return

investments, the marginal expected utility gain from observing the information is

not completely washed out by the cost of information acquisition. Therefore, with

information uncertainty, the social value of asymmetric information is not strictly

negative as suggested by previous literature. Consequently, an increase of market

quality can be associated with a beneficial increase in social welfare.

Appendix A. Proofs

Proof of Lemma 2.1: Since traders’ terminal wealth W̃i = xi(D̃ − P̃ ) is normally dis-

tributed, given his type, trader i’s optimal demand is given by

x∗i (P ) =
E
[
D̃ −RP̃ |Fi

]
αVar

[
D̃ − P̃ |Fi

] . (A.1)

For the informed trader who observes θ and P ,

E
[
D̃ −RP̃ |θ, P

]
= d+ θ −RP, Var

[
D̃ − P̃ |θ, P

]
= vε. (A.2)

On the other hand, for the uninformed trader who only observes P ,

E
[
D̃ −RP̃ |P

]
= (1− βP,θ)(d−RP ), Var

[
D̃ − P̃ |P

]
= vθ(1− ρ2

θ,P ). (A.3)

Substituting (A.2) and (A.3) into (A.1) leads to (2.7).
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Next, we compute trader i’s expected utility given their information set Fi, which yields

E
[
u(W̃i)|Fi

]
= − exp

{
−α

(
E
[
W̃i|Fi

]
− 1

2
αVar

[
W̃i|Fi

])}

= − exp

−α
x∗i E [D̃ −RP̃ |Fi]︸ ︷︷ ︸

χi

−1

2
α(x∗i )

2 Var
[
D̃ −RP̃ |Fi

]
︸ ︷︷ ︸

vD|Fi




= − exp

{
−1

2

χ2
i

vD|Fi

}
. (A.4)

For the informed, vD|FI = vε and vχI = Var [(1− bθ)θ − bzz] = (1− bθ)2vθ + b2zvz, whereas

for the uninformed trader, vD|FU = vD|P = vε + (1 − ρ2
θ,P )vθ = vε + (1 − βP,θbθ)vθ and

vχU = Var[(1− βP,θ)(d−RP )] = Var[(1− βP,θ)(−bθθ + bzz)] = (1− βP,θ)2(b2θvθ + b2zvz).

Next, since the conditional expectation χi = E
[
D̃ −RP̃ |Fi

]
itself is a normally dis-

tributed random variable for both informed and uninformed traders, we can use following

standard result to compute trader i’s unconditional expected utility.

Lemma A.1. Let X ∈ Rn be a normally distributed random vector with mean µ and

variance-covariance matrix Σ. Let b ∈ Rn be a given vector, and A ∈ Rn×n a symmetric

matrix. If I − 2ΣA is positive definite, then E
[
exp{b>X +X>AX}

]
is well defined, and

given by

E
[
exp{b>X +X>AX}

]
=|I − 2ΣA|−1/2 exp{b>µ+ µ>Σµ

+
1

2
(b+ 2Aµ)>(I − 2ΣA)−1Σ(b+ 2Aµ)}.

Applying Lemma A.1 to the conditional expected utility in (A.4) with X = χi, A =

−1
2(vD|Fi)

−1, Σ = vχi , b = 0, µ = 0 leads to the desired result and the expressions for

ξI(λ) and ξU (λ) in (2.8).

Thus, assuming the concavity condition U ′′(pi, λ) is satisfied, trader i’s optimal choice

of pi is determined by the first order condition,

αµg(p∗i ) = − VI(λ)− VU (λ)

λVI(λ) + (1− λ)VU (λ)
=

γ(λ)

1− λγ(λ)
,

which leads to (2.9).
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Proof of Proposition 2.3: We substitute the linear equilibrium price P = 1
R [d+ bθθ̃ − bz z̃]

into traders’ optimal demand functions in (2.7), from which we obtain

x∗I(θ, P ) =
d+ θ −RP

αvε
and x∗U (P ) =

(
1− bθvθ

b2θvθ+b2zvz

)
(d−RP )

α
(
vε + b2zvz

b2θvθ+b2zvz
vθ

) . (A.5)

Then, by applying the market clearing condition,

λx∗I(θ, P ) + (1− λ)x∗U (P ) = z̃,

we obtain the following equilibrium price,

P̃ =
1

R


λ
vε

(d+ θ̃) +
(1−λ)

(
1− bθvθ

b2
θ
vθ+b

2
zvz

)
vε+

b2zvz

b2
θ
vθ+b

2
zvz

vθ
d− αz̃

λ
vε

+
(1−λ)

(
1− bθvθ

b2
θ
vθ+b

2
zvz

)
vε+

b2zvz

b2
θ
vθ+b

2
zvz

vθ


=

1

R

(
d+

λv̄

vε
θ̃ − αv̄z̃

)
, (A.6)

where

1

v̄
=
λ

vε
+

(1− λ)
(

1− bθvθ
b2θvθ+b2zvz

)
vε + b2zvz

b2θvθ+b2zvz
vθ

.

Thus, by matching coefficient to the conjectured equilibrium price, we obtain

bθ =
λv̄

vε
and bz = αv̄.

Since bθ = λbz/(αvε), we obtain an explicit solution for v̄ by solving

λ

vε
+

(1− λ)
(

1− (λbz/α) vθ/vε
(λbz/α)2vθ/v2ε+b2zvz

)
vε + b2zvz

(λbz/α)2vθ/v2ε+b2zvz
vθ

=
bz
α

for bz and substituting the solution back into the expression for 1/v̄.

On the optimization problem in (2.4), let V̄ (λ) ≡ λVI(λ) + (1− λ)VU (λ) and V̄ (p;λ) ≡

pVI(λ) + (1− p)VU (λ), we have18

U ′(p;λ) = eαµc(p)[αµg(p)V̄ (p, λ) + [VI(λ)− VU (λ)]]

U ′′(p;λ) = αµg(p)eαµc(p)
[(
αµg(p) +

g′(p)

g(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)]

]
.

Therefore the necessary and sufficient condition for U ′′(p;λ) ≤ 0 is(
αµg(p) +

g′(p)

g(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)] ≤ 0. (A.7)

18We drop the subscript i for the remainder of the proof, in order to ease the notation.
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Note that in equilibrium,

αµ = − 1

g(λ)

VI(λ)− VU (λ)

V̄ (λ)
=

1

g(λ)

γ(λ)

1− λγ(λ)
.

Also, note that

V̄ (p, λ) = [1− pγ(λ)]VU (λ), VI(λ)− VU (λ) = −γ(λ)VU (λ).

Therefore in equilibrium, (A.7) becomes[
γ(λ)

1− λγ(λ)

g(p)

g(λ)
+
g′(p)

g(p)

]
(1− pγ(λ))− 2γ(λ) ≥ 0. (A.8)

We have from (A.8) that

− γ(λ)

1− λγ(λ)

g(p)

g(λ)
+

2γ(λ)

1− pγ(λ)
≤ g′(p)

g(p)
, (A.9)

which leads to condition (2.10).

Moreover, for a sufficient condition, note that (A.7) can be written as

VI(λ)− VU (λ) ≤ −1

2

[
g(p)

g(λ)

VI(λ)− VU (λ)

−V̄ (λ)
+
g′(p)

g(p)

]
V̄ (p, λ), (A.10)

which can be written as[
1− 1

2

V̄ (p, λ)

V̄ (λ)

g(p)

g(λ)

]
︸ ︷︷ ︸

≤1

[VI(λ)− VU (λ)] ≤ −1

2

g′(p)

g(p)
V̄ (p, λ). (A.11)

Therefore, a sufficient condition for U ′′(p;λ) ≤ 0 is given by

VI(λ)− VU (λ) ≤ −1

2

g′(p)

g(p)
V̄ (p, λ), (A.12)

which is equivalent to [
1 +

1

2

g′(p)

g(p)
p

]
VI(λ)− VU (λ)

−VU (λ)︸ ︷︷ ︸
γ(λ)

≤ 1

2

g′(p)

g(p)
(A.13)

that simplifies to the condition (2.12).

Next, if the sufficient condition for U ′′(p;λ) ≤ 0 is satisfied, the Nash equilibrium for the

choice of probability pi to observe the private signal θ must be symmetric, since traders

are homogeneous, i.e., p∗i = λ for all i ∈ (0, 1), from which we obtain the equilibrium λ in

(2.16).

Proof of Proposition 2.4: Note that γ(λ) ∈ (0, 1). With c(p) = p2, from the equilibrium

condition 2αµλ = γ(λ)/[1− γ(λ)], it is easy to see that λ → 0 as µ → ∞. For λ = 1, we

have µ = 1
2α

γ(1)
1−γ(1) .
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It remains to discuss the case µ > µ̄. To this aim, note that, in case of c(p) = p2, the

fixed point (2.16) is equivalent to

λ2 − 1

γ(λ)
λ+

1

2αµ
= 0. (A.14)

By defining

F 1(λ) =
1

2γ(λ)
− 1

2γ(λ)

√
1− 2γ2(λ)

αµ
; F 2(λ) =

1

2γ(λ)
+

1

2γ(λ)

√
1− 2γ2(λ)

αµ
,

(A.14) can be rewritten as

[λ− F 1(λ)][λ− F 2(λ)] = 0.

Assuming µ ≥ 2γ2(λ)/α (otherwise the fixed point has no solution and λ∗ = 1), F 1 and

F 2 are well-defined. It is not difficult to show that 0 < F 1(λ) ≤ F 2(λ). Therefore, since

F 1(0) > 0, one solution to (A.14) exists if and only if F 1(1) < 1. This condition is exactly

µ > µ̄.

Finally, concerning uniqueness, note that dF 1(λ)/dλ < 0. Indeed,

dF 1(λ)

dλ
= − γ′(λ)

2γ2(λ)

(
1−

√
1− 2γ2(λ)

αµ

)
+

γ′(λ)

αµ
√

1− 2γ2(λ)
αµ

=
γ′(λ)

γ(λ)

F 1(λ)√
1− 2γ2(λ)

αµ

< 0.

Negativity is due to the fact that γ′(λ) < 0, γ(λ) > 0, and F 1(λ) > 0. By monotonicity,

λ = F 1(λ) provides at most one solution. Therefore, if a second solution λ̃ to the fixed

point exists, it must solve λ̃ = F 2(λ̃). By definition F 2(λ) > 1
2γ(λ) ; therefore, as soon

as γ(λ∗) < 1/3, we would have λ̃ = F 2(λ̃) > 3/2, which is unfeasible. This proves that

the solution to the fixed point is unique as soon as the sufficient condition for concavity,

γ(λ) < 1/3, is satisfied.

Proof of Proposition 2.5: In equilibrium,

αµg(λ) = −VI(λ)− VU (λ)

V̄ (λ)
=

γ(λ)

1− λγ(λ)
= Γ(λ).

For λ = λ(µ), taking the derivative w.r.t. µ, we have

αg(λ) = −λ′(µ)[Γ′(λ)− g′(λ)

g(λ)
Γ(λ)].

Therefore λ′(µ) ≤ 0 if and only if (2.20) holds.
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Applying c(p) = p2 to condition (2.20) leads to condition (2.21). Clearly, (2.21) holds

for λ = 0. For λ = 1, condition (2.21) becomes

γ2
1 + γ1 + γ′1 ≤ 1.

Since γ(λ) = 1− f(λ), this is equivalent to

1 + f2
1 ≤ 3f1 + f ′1.

Using the fact that f(λ) =
√

ξ1+nλ2

ξ0+nλ2
, we obtain condition (2.23).

Proof of Proposition 3.3: In equilibrium, the welfare function is given by

U∗(λ) = V̄ (λ) exp(Φ(λ)),

where

V̄ (λ) = λVI(λ) + (1− λ)VU (λ) = (1− λγ)VU (λ), Φ(λ) =
c(λ)

g(λ)

γ(λ)

1− λγ(λ)
.

Hence

U∗′(λ) = eΦ(λ)(−V̄ (λ))

[
V̄ ′(λ)

−V̄ (λ)
− Φ′(λ)

]
.

and U∗′(λ) ≥ 0 if and only if

V̄ ′(λ)

−V̄ (λ)
≥ Φ′(λ),

Note that
V̄ ′(λ)

−V̄ (λ)
=

V ′U (λ)

−VU (λ)
+
γ(λ) + λγ′(λ)

1− λγ(λ)

and

Φ′(λ) =
γ(λ)

1− λγ(λ)

[
1− c(λ)g′(λ)

g2(λ)
+
c(λ)

g(λ)

γ(λ)

1− λγ(λ)

]
+
c(λ)

g(λ)

γ′(λ)

(1− λγ(λ))2
.

Therefore U ′(λ) ≥ 0 if and only if

V ′U (λ)

VU (λ)
≤ γ(λ)

1− λγ(λ)

c(λ)

g(λ)

[
g′(λ)

g(λ)
− γ(λ)

1− λγ(λ)

]
+

(
λ

1− λγ(λ)
− c(λ)

g(λ)

1

(1− λγ(λ))2

)
γ′(λ).

Since c(p) = p2, it follows that

S(λ) ≡ 1

2

[
1− λγ(λ)

1− λγ(λ)

]
+
λ

2

[
2− 1

1− λγ(λ)

]
γ′(λ)

γ(λ)
=

1

2

1− 2λγ(λ)

1− λγ(λ)

[
1 + λ

γ′(λ)

γ(λ)

]
,

which leads to (3.8). At λ = 0,
V ′U (0)

VU (0)
=

nξ0

1 + ξ0
.

Applying this to condition (3.8) at λ = 0 leads to condition (3.9).
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Proof of Corollary 3.4: The risk premium per unit of supply is given by 1
zE[D̃−RP̃ |z] = αv̄.

From (2.19), we have
vε
v̄

= λ+
1− λ

1 + n+ n
ξ1
λ
.

Then
∂(vε/v̄)

∂λ
=

[1 + n+ n
ξ1
λ]2 − [1 + n+ n

ξ1
]

[1 + n+ n
ξ1
λ]2

. (A.15)

(i) When ξ0 > 1, ∂(1/v̄)
∂λ > 0 always holds, meaning that the risk premium v̄ decreases

in λ.

(ii) When ξ0 ≤ 1, we have ∂(1/v̄)
∂λ ≤ 0 if and only if

1 + n+
n

ξ1
λ ≤

√
(1 + n) +

n

ξ1
,

which leads to the result.

(iii) When λ = 0, aggregate risk v̄ decreases in λ, i.e., v̄(0) < 0, if and only if ξ0 > 1.

Note that if ξ0 > 1, the necessary and sufficient condition for welfare improvement

in (3.9) becomes

n ≤ γ(0) = 1−
√

1

1 + n
⇒ 1− n ≥

√
1

1 + n
, (A.16)

which requires n < 1. However, when n < 1, (A.16) becomes

(1− n)2(1 + n) ≥ 1, (A.17)

which never holds since

(1− n)2(1 + n)− 1 = n[n(n− 1)− 1] < 0. (A.18)

Proof of Proposition 4.1: In the following proof, we drop the trader specific subscript,

as we will always be referring to trader i. First, note that each trader’s expected utility

conditional on his information set is given by

VK(e;λ) ≡ E
{
E
[
u(W̃ )|F

]
|e
}

= E
[
− exp

{
−αeP − 1

2

χ2

v

}
|e
]
, K ∈ {I, U},

(A.19)

where χ ≡ E[D̃ − P̃ |F ] and v ≡ Var[D̃ − P̃ |F ], respectively.

First, since (given the endowment shock e) χ and P follow a bivariate normal distribu-

tion with mean vector and covariance matrix given by

µ =

 µχ|e

µP |e

 and Σ =

 vχ|e σ(χ,P )|e

σ(χ,P )|e vP |e

 , (A.20)
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where µχ|e ≡ E[χ|e], µP |e ≡ E[P |e], vχ|e ≡ Var[χ|e], vP |e ≡ Var[P |e] and σ(χ,P )|e ≡

Cov[χ, P |e]. Thus, using Lemma A.1 we can establish the following result,

VK(e;λ) = − exp

−µ
2
χ|e + αe

[
2νµP |e + 2µχ|eσ(χ,P )|e + αe

(
σ2

(χ,P )|e − νvP |e
)]

2ν


√
v

ν
,

(A.21)

where ν = v + vχ|e.

If the trader is informed (K = I), i.e., F = {θ, P, e}, since χ = d + θ − P and v = vε,

we obtain that

µχ|e = −βe,P e, µP |e = d+ βe,P e,

vχ|e = vθ + vP |e − 2σθ,P , σ(χ,P )|e = σθ,P − vP |e. (A.22)

Substituting (A.22) into (A.21) leads to the expected utility of an informed trader in (4.8)

with v = vε.

On the other hand, if the trader is uninformed (K = U), i.e., F = {P, e}, since χ =

(1− κ)(d− P )− κβe,P e and v = vD − κσθ,P , κ = σθ,P /vP |e, we obtain that

µχ|e = −βe,P e, µP |e = d+ βe,P e,

vχ|e = (1− κ)2vP |e, σ(χ,P )|e = −(1− κ)vP |e. (A.23)

Substituting (A.23) into (A.21) leads to the expected utility of an uninformed trader in

(4.8) with v = vD − κσθ,P .

Proof of Proposition 4.2: Substituting the optimal demands x∗(P, e) and x∗(θ, P, e) in

(4.5) and (4.6) into the market clearing condition (4.10) leads the following,

(d− P )

αv̄
+

λ

αvε
θ̃ =

[
1 + (1− λ)

κβe,P
αvU

]
z̃ (A.24)

where

1

v̄
≡ λ

vε
+

1− λ
ṽU

, ṽU =
vU

1− κ
.

Thus, the equilibrium price can be written as

P = d+
λv̄

vε︸︷︷︸
bθ

θ̃ − αv̄
[
1 + (1− λ)

κβe,P
αvU

]
︸ ︷︷ ︸

bz

z̃. (A.25)

Therefore, we obtain

x ≡ bθ
bz

=
1

αvε

λ

1 + (1− λ)
κβe,P
αvU

, (A.26)
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which can be written as

x =
1

αvε

[
λ− (1− λ)

(
κβe,P

vε
vU

)
x

]
. (A.27)

Since vU = vD − κσθ,P , κ = σθ,P /vP |e and βe,P = σe,P /ve, also

σe,P = −bzvz, σθ,P = bθvθ,

vP |e = b2θvθ + b2zvz|e, vz|e = (v−1
z + v−1

u )−1, (A.28)

we can obtain that

−
(
κβe,P

vε
vU

)
x =

vzvεvθx
2

vuvzvD + vevεvθx2
=

1

ve/vz + x−2vu(v−1
θ + v−1

ε )
. (A.29)

Substituting (A.29) back into (A.27) leads to (4.12).

Next, given x, we substitute (A.28) into the expression for bθ and obtain that

bθ =
λv̄

vε
=

λbz
(
vuvzvD + vevεvθx

2
)

bzx2vzvεvθ − vevεvθx(1− λ) + bzvu(vεvθx2 + vzvDλ)
. (A.30)

Since bz = bθ/x, (A.30) can be simplified to

bθ =
vevεvθx

2 + vuvzvDλ

vevεvθx2 + vuvz(vε + vθλ)
, (A.31)

which leads to the expression in (4.13).

Proof of Corollary 4.3: For λ = 0, since the equilibrium price P̃ = d− αvDz̃, we have

vP |e = α2v2
Dvz|e, σθ,P = 0,

βe,P = −αvD
vz
ve
, ν = vD(1 + α2vDvz|e). (A.32)

Substituting (A.32) into (4.8) leads to (4.16).

On the other hand, for λ = 1, since the equilibrium price P̃ = d+ θ̃ − αvεz̃, we have

vP |e = vθ + α2v2
ε vz|e, σθ,P = vθ,

βe,P = −αvε
vz
ve
, ν = vε(1 + α2vεvz|e). (A.33)

Substituting (A.33) into (4.8) leads to (4.17).
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