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A B S T R A C T

In the context of global warming, as drought episodes become increasingly frequent, it is crucial to accurately
measure the impacts of droughts on the overall performance of agrosystems. This study aims to compare the
effectiveness of meteorological drought indices against satellite-based agronomical drought indices as crop yield
explanatory factors in statistical models calibrated at a local scale. The analysis is conducted in Spain using a
spatially detailed, 12-year (2003–2015) dataset on crop yields, including different types of cereals. Yields and
drought indices were spatially aggregated at the agricultural district level. The Standardised Precipitation Index
(SPI), computed at different temporal aggregation levels, and two satellite-based drought indices, the Vegetation
Condition Index (VCI) and the Temperature Condition Index (TCI), were used to characterise the dynamics of
drought severity conditions in the study area. Models resting on satellite-based indices showed higher perfor-
mance in explaining yield levels as well as yield anomalies for all the crops evaluated. In particular, VCI/TCI
models of winter wheat and barley were able to explain 70% and 40% of annual crop yield level and crop yield
anomaly variability, respectively. We also observed gains in explanatory power when models for climate zones
(instead of models at the national scale) were considered. All the results were cross-validated on subsamples of
the whole dataset and on models fitted to individual agricultural districts and their predictive accuracy was
assessed with a real-time forecasting exercise. Results from this study highlight the potential for including sa-
tellite-based drought indices in agricultural decision support systems (e.g. agricultural drought early warning
systems, crop yield forecasting models or water resource management tools) complementing meteorological
drought indices derived from precipitation grids.

1. Introduction

Climate change is expected to increase the frequency and severity of
droughts in continental Europe and the Mediterranean countries in the
next few years (Lehner et al., 2017). These extreme events threaten
global food security and local agri-food markets (Lesk et al., 2016;
Hadebe et al., 2017). It is therefore necessary to detect droughts at an
early phase and, more importantly, assess their impacts on the pro-
ductivity of cropping systems. Only then, risk control and mitigation
measures can be taken (IPCC, 2012; UNISDR, 2013). However, for an
accurate estimation of drought impacts on crop productivity, there are
still various data-related and methodological challenges that should be
addressed (Siebert et al., 2017). In particular, drought impact assess-
ments require: a) time series of local drought conditions, with sufficient
spatial detail to account for the differences between agricultural areas

in terms of climatic and biophysical conditions; and b) accurate, high-
resolution, long-term yield databases.

Meteorological drought indices – e.g. the Standardised Precipitation
Index (SPI) (McKee et al., 1993) or the Standardised Precipitation
Evapotranspiration Index (SPEI) (Vicente‐Serrano et al., 2010) – re-
ported by regional Drought Monitoring Systems, such as the US
Drought Monitor (http://droughtmonitor.unl.edu/) or the European
Drought Observatory (http://edo.jrc.ec.europa.eu), are usually derived
from climate gridded datasets. The use of gridded data may bias the
estimation of drought impacts on crop yields (Aufhammer et al., 2013).
This is because this data usually rely on a coarse network of weather
stations that is not able to capture the local climate and biophysical
heterogeneities of the landscape. To overcome this limitation, it is in-
creasingly common to use remotely sensed indices as a mean to provide
a high resolution measurement of the current status of the vegetation
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(Weissteiner and Kühbauch, 2005; Gu et al., 2007; Quiring and Ganesh,
2010; Wu et al., 2014).

The Normalized Difference Vegetation Index (NDVI) (Gao, 1995),
Land Surface Temperature (LST) – and related indices, such as the
Vegetation Condition Index (VCI), the Temperature Condition Index
(TCI) and the Vegetation Health Index (VHI) – are widely used in
agronomic studies, as they provide good surrogates of vegetation stress
(e.g. Sepulcre-Cantó et al., 2006; Siebert et al., 2014; Contreras and
Hunink, 2015; Heft-Neal et al., 2017). The use of these satellite-based
measures, isolated or combined, helps to quantify the severity of
droughts over a specific location and time period (Unganai and Kogan,
1998; Singh et al., 2003; Rembold et al., 2013; WMO and GWP, 2016).

At the same time, global (e.g. FAOSTAT) and regional (e.g. NASS-
USDA in US, or FADN in Europe) crop yield data are usually aggregated
at regional levels, making it difficult to retrieve reliable yield-drought
relations at a finer scale (van Ittersum et al., 2013; FAO and DWFI,
2015). National yield statistics available in most European countries
have also this limitation. Quantifying the local-scale impacts of drought
severity on crop yields requires data, at least, at the plot or county level.
In Spain, ESYRCE, a database on crop acreage and yields (Encuesta sobre
Superficies y Rendimientos de Cultivos), comes at a plot-level resolution,
which facilitates its incorporation into local drought-yield analyses.

To assess the relationship between drought conditions and crop
yields, either process-based methods or statistical (data-driven)
methods can be used. Process-based methods, also known as mechan-
istic methods, are typically used for studies at the plot level but they are
data- and computationally demanding. At the European level, the Joint
Research Centre implemented the process-based WOFOST model
(Boogaard et al., 2014), whose outputs are channelled through an
agricultural drought early warning bulletin (MARS) (https://ec.europa.
eu/jrc/en/mars/bulletins). However, in recent years statistical (or
empirical) methods have been applied with success by a wide range of
researchers (e.g. Schlenker and Roberts, 2009; Lobell et al., 2011; Tack
et al., 2015; Ceglar et al., 2016; Schauberger et al., 2017). More spe-
cifically, multiple linear regression models have proven to be successful
(Quiring and Papakryiaokou, 2003; Lobell et al., 2014; Bachmair et al.,
2018), as they are flexible and easily applicable. Michel and Makowski
(2013) showed that linear models outperform in many cases more
complex statistical crop models in explaining yield variability.

This work focuses on the main cereal crops cultivated in Spain, i.e.
wheat, barley, grain maize, oat, and rye, as they correspond to the
largest cultivated area and are used for human and animal consump-
tion. In 2014 these five classes covered 96% of the total harvested area
and 93% of the total national production of cereals (MAPAMA, 2015).
Cereal yields in Spain are generally lower than those observed in other
European countries, such as France or Germany (López-Querol et al.,
2016), constrained by more adverse heat and drought conditions and

shorter growing cycles. With the exception of maize, typically grown in
summer under irrigation regimes, cereals in Spain are predominantly
rainfed (MAPAMA, 2015) and thus highly vulnerable to drought events,
even though they appear to be more resistant to water deficit than other
crop species (Daryanto et al., 2017).

The aim of this study is to locally quantify the ability of meteor-
ological and satellite-based drought indices to explain factors of cereal
yield variability in water limited environments using high-resolution
agricultural and drought data. Results were validated by considering
different climate zones, pre-processing methods and temporal ag-
gregation levels, and by assessing the models’ forecast performance
with a real-time exercise.

2. Materials and methods

2.1. Crop yield data

Farm-level yields and harvested areas spanning the years 2003 to
2015 were retrieved from the ESYRCE (Encuesta sobre Superficies y
Rendimientos de Cultivos) dataset (see Table S1 for descriptive statis-
tics of this dataset). ESYRCE is an annual, comprehensive, field-level
survey providing data on agricultural surface and crop yields in Spain.
ESYRCE serves as the Spanish input for the European Union’s Farm
Accountancy Data Network (FADN) (http://ec.europa.eu/agriculture/
rica/), which describes in detail the income and productivity of agri-
cultural holdings throughout the European Union and represents a tool
for evaluating EU’s Common Agricultural Policy.

ESYRCE is based on a conglomerate stratified sampling method. The
Universal Transversal Mercator (UTM10) coordinate system is used to
build 10km-sided blocks covering the entire country, as is shown in the
left panel of Fig. 1. Each of these blocks is then subdivided in 100
equivalent cells of 1 km×1 km (or 100 ha). Squared segments of 700m
side anchored in the southwest extreme of each cell are the basic units
that are sampled every year (see centre and right panel of Fig. 1). Blocks
are sampled according to their production intensity: three segments are
visited in extensive blocks, and from nine to fifteen in intensive or very
intensive production areas.

Around 6 million hectares of cereals are planted on average in Spain
every year. Production is widespread around the whole territory but
intensively located at the central plateaus and the banks of the main
rivers (Ebro, Duero, and Guadalquivir), as evidenced in Fig. 2 (top) for
wheat and barley (see Fig. S1 for oat, rye and grain maize). There are
about a dozen species of cereals grown in Spain every year. In this
study, we focus on the five most representatives, namely, winter wheat
(including common wheat and durum wheat), barley, oat, rye and grain
maize. The four first species are eminently rainfed whilst grain maize is
mostly irrigated. These five classes cover 96% of the total area and 93%

Fig. 1. Description of sampling conglomerates in ESYRCE. Projection of the UTM10 grid over Spain (left). Each UTM10 block is subdivided in 100 equivalent cells,
some of which are visited for sampling (centre). An overview of the parcel structure of a particular visited segment (right).
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of the total production of cereals in Spain.
As shown in Fig. 2 (bottom), winter wheat and barley yields have

remained relatively stable since the beginning of the sample period (see
Fig. S2 for oat, rye and grain maize), corroborating the generalised
evidence of the stagnation of crop yields across Europe during the last
two decades (Lobell and Moore, 2015; Ceglar et al., 2016).

2.2. A meteorological drought index: the SPI

The Standardized Precipitation Index (SPI-n) (McKee et al., 1993)
compares the total rainfall observed at a particular location during a
window period of n months with the long-term rainfall distribution for
the same period at that location. SPI is computed on a monthly basis for
a moving window of fixed length in which rainfall is accumulated. The
length of the accumulated period typically takes values from 1 to 24
months depending on which type of drought needs to be evaluated: for

example, short accumulation periods (e.g., SPI-1 to SPI-3) are better
related with drought impacts on seasonal herbaceous systems, while
larger SPIs (SPI-9 or SPI-12) are better connected with impacts on
perennial crops (Contreras and Hunink, 2015).

We concentrated on shorter accumulation periods (1, 3, and 6),
more linked to agricultural impacts, and calculated SPI based on a
monthly precipitation gridded dataset from the Climatic Research Unit
of the University of East Anglia (CRU TS, version 3.25) (Harris et al.,
2014). This updated version covers the period 1901–2016 at the global
scale and has a spatial resolution of 0.5°.

For each accumulation period, precipitation frequencies were fitted
a gamma probability distribution. The resulting cumulative distribution
function was then transformed into that of a standardised normal
variable with zero mean and variance equal to one. SPI values were
measured in units of standard deviation from the long-term mean of the
standardised distribution and range from -3 (extreme dry) to 3 (extreme

Fig. 2. (top) Geographical distribution of winter wheat and barley production in each agricultural district, as derived from the ESYRCE dataset. (bottom) Histogram
of crop yields over the study period. Horizontal bars inside boxes represent median yield values, boxes represent 1.5*IQR (interquartile range), whiskers the range
between 10th and 90th percentile. A solid line connects yield median values.
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wet). SPI values were obtained from the original precipitation time
series using the R package SPEI (https://cran.r-project.org/web/
packages/SPEI/index.html).

2.3. Satellite-based drought indices

Three satellite-based drought indices, the Vegetation Condition
Index (VCI), the Temperature Condition Index (TCI), and the average of
the two, the Vegetation Health Index (VHI) (Kogan, 1995, 1997), were
used to quantify local drought severity. These indices were retrieved
from the InfoSequia Drought Monitoring System (www.infosequia.eu),
a satellite-based web-mapping climate service for the operational
monitoring of droughts at the Spanish national level.

The VCI is retrieved from the Normalized Difference Vegetation
Index (NDVI), and provides a normalised relative index in which the
current observed value of NDVI is compared against the extreme limits
(minimum and maximum values) observed during a reference period.
TCI is similarly computed, but using instead Land Surface Temperature
(LST) as input. While VCI provides a good surrogate of the vegetation
stress due to wetness conditions, the TCI is more closely related to the
thermal stress of vegetation. The VHI, computed as the average of both
indices, provides a combined effect of both stressors and thus represents
a good overall indicator of the health status of vegetation. VCI, TCI and
VHI values range between 0 (highest level of drought severity) and 100
(lowest level of severity). These indices are widely employed in drought
impact assessments on agriculture (WMO and GWP, 2016; Bokusheva
et al., 2016).

For any desired time step t, VCI and TCI are computed as

=
−

−
VCI NDVI NDVI

NDVI NDVI
100 *t

t min

max min (1)

=
−

−
TCI LST LST

LST LST
100 *t

max t

max min (2)

=
+VHI VCI TCI
2t

t t
(3)

where NDVImin (LSTmin) and NDVImax (LSTmax) refer to the historical
minimum and maximum values at each desired time step over the study
period. Composite values to calculate both indices were extracted from
the Collection 6.0 of MODIS products. In particular we used MOD13A2
and MYD13A2 (Didan, 2015a, 2015b) for NDVI and MYD11A2 (Wan
et al., 2015) for LST.

2.4. Spatial aggregation

The basic spatial unit used in this analysis was the agricultural
district. This classification stems from an initiative of the Spanish
Ministry of Agriculture in the 1970s to respond to the need of im-
plementing and designing more efficient agricultural policies. The
country was divided in non-legislative medium-sized spatial units
(larger than a municipality and smaller than a province), with homo-
genous agricultural characteristics, such as similar potential output,
agro-management practices and agro-climatic patterns. The total
number of agricultural districts in Spain is 346 (excluding Canary
Islands), with an average area of 14*10^4 Ha. and a standard deviation
of 9.4*10^4 Ha. Fig. S3 shows a geographical description of the agri-
cultural districts classification.

The motivation for this spatial aggregation is twofold. First, the
existence of limitations inherent to survey data, usually answered va-
guely and incompletely. Potential farm-level uncertainties as well as
data inaccuracies and gaps can be largely smoothed out by aggregating
individual farm-level data to a wider spatial unit. Second, the mismatch
in spatial resolution between the SPI (0.5 °) and the remotely sensed
variables from InfoSequia (1 km) can a priori bias the regression results
in favour of the latter. By upscaling the spatial level of analysis, a fairer
comparison between all candidate predictors can be done. In this study,

geo-referenced, area-weighted crop yields and drought indicators were
thus spatially aggregated at the agricultural district level.

2.5. Statistical crop models

Statistical models of crop yield typically express either yield levels
or yield anomalies as the dependent variable. Models based on yield
levels usually account for a time trend to control for the combined ef-
fects of changes in agro-management practices, environmental and
socio-economic factors and climatic changes and a weather-related
component driving crop yield variability. We used the following pooled
yield level model for each crop:

∑= + ∙ + +Y α β t γ X εit i
i

i it it
(4)

where Yit is the crop yield level in agricultural district i at growing
season t, αi represents an agricultural district fixed effect, β is a vector of
loadings of t, Xit represents the vector of candidate predictor at different
frequencies over the growing season and εit are the residuals.
Considering the Spanish annual calendar for crops (Oteros et al., 2015),
a growing season between October and June was used for winter wheat,
barley, oat and rye. For these crops, candidate predictors were quarterly
aggregated to capture three different growing stages of the plant: early
or tilling stage (October-December), mid or anthesis stage (January-
March) and late or grain filling stage (April-June). For grain maize, a
growing period between March and September was considered, with
candidate predictors aggregated in equally-spaced two-month periods.

Additionally, yield anomalies relating inter-annual changes of crop
yields to inter-annual changes of weather variables were calculated. To
calculate yield anomalies, yield levels for every agricultural district, i,
were standardised using the Z-score formula as follows:

=
−Z Y Y

σ
¯

it
it i

Yi (5)

being Yit the crop yield level in agricultural district i at growing
season t, Ȳi the sample average yield of agricultural district i and σYi its
standard deviation. Zit has a mean of 0 and a standard deviation of 1.
The resulting rescaled variables represent the dependent variable in the
following model:

∑= +Z δ X uit
i

i it it
(6)

where yield anomalies Zit of agricultural district i at growing season t
are linearly related to the candidate predictors Xit, with coefficients δi
and residuals uit. As the dependent variable is standardised, no constant
term is required. Model residuals should be normally distributed, in-
dependent and homoskedastic. We tested these assumptions using the
Shapiro, Durbin–Watson and Breusch-Pagan tests. Also, an alternative
method to calculate yield anomalies was considered. More specifically,
yield anomalies were obtained by estimating a temporal trend with
linear and quadratic terms. Alternative detrended yields were obtained
as follows

′ = − ∙ − ∙Z Y θ t θ tˆ ˆit it 1 2
2 (7)

where parameters θ̂1 and θ̂2 were estimated via OLS by regressing Yit on
t and t2.

The robustness of our results was evaluated for all crops and mod-
elling methods. Several measures of quality fit and prediction accuracy
were calculated, such as variable-adjusted R2, Root Mean Squared Error
(RMSE), Akaike Information Criterion (AIC) or Model Efficiency Index
(NS). In addition, a cross-validation estimation experiment was de-
signed. In particular, a repeated (N=1000) sequence of regressions
from a random subset of the whole sample (70%) was estimated and
tested in the remaining (30%) observations. Robust RMSE values were
calculated for all crops and models.
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2.6. Predictive ability

A real-time forecasting exercise was designed to assess the effec-
tiveness of the prediction models to describe actual yield variability.
The region of Castilla y León, which includes a total number of 59
agricultural districts, was selected for this statistical experiment.
Castilla y León has the largest proportion of cereal production in Spain
(see Fig. 2). Modelling was performed on a rolling window over a 5-
year period (2011–2015). Models of crop yield anomalies (Eq. (6)) were
re-calibrated after a complete vintage of data (yield and drought in-
dices) was released. In-season yield anomaly forecasts were updated as
new weather data became available. In quarters (months) where
weather data was not yet released, average historic values were used.
The three different SPI-based models were compared with the bench-
mark VCI-TCI model and an optimised version of the latter, fitted to
Continental climate regions including only agricultural districts with
less than 5% of urban land, according to the most updated version of
the CORINE Land Cover project (https://land.copernicus.eu/pan-
european/corine-land-cover). A false alarm yield anomaly detection
rate (ratio of false positives and false negatives to total number of
forecasts) was computed to compare the performance ability of each
model.

3. Results

3.1. Explaining crop yield levels and anomalies

Pooled-OLS estimation for representative agricultural districts
(more than 10 years of observed yields) was performed for every crop
and candidate predictor. In Table 1, variable-adjusted coefficients of
determination (R2-adj) for all the competing models are presented.

Satellite-based (VCI, TCI, and VCI+ TCI) models performed sys-
tematically better than precipitation-based (SPI-n) models in explaining
both crop yield levels and crop yield anomalies. Seventy percent of
winter wheat yield level variability was explained when quarterly va-
lues of satellite indices were combined. The overall fit was slightly
better than that obtained with only the VCI (69.3%) or the TCI (66.1%).
In all cases, models built with satellite-based indicators showed su-
perior fit than those based upon precipitation-based. The use of satellite
data improved R2-adj figures by 7% to 10%. As shown in the second
part of Table 1, the performance of the competing models to describe
wheat yield anomalies decreased overall, but relatively less in the case
of satellite-based models. R2-adj percentage gains from using satellite-
based indices (and their combination) were substantial (above 40%).
Results for barley, oat and rye were quantitatively comparable to those
shown above for winter wheat. Yield level explanatory power of

satellite-based models ranged between 50%–70% and was always
greater than SPI-based models. R2-adj gains were more marked in yield
anomaly models, with satellite-based models almost doubling the ex-
planatory power of precipitation-based models in some cases. Among
the SPI models, SPI-3 models performed better than the others. The
three-month SPI provides a comparison of the precipitation over a
specific 3-month period with the precipitation totals from the same 3-
month period for all the years included in the historical record, thus
making this indicator particularly suitable for the chosen temporal
(three-month) aggregation scheme.

Several other goodness-of-fit and model evaluation statistics were
calculated, such as Root Mean Squared Error (RMSE), Nash-Sutcliffe
efficiency index (NS) and Akaike Information Criterion (AIC). All of
them support the messages delivered in this subsection with regards to
the R2-adj analysis. Detailed results for all competing models can be
seen in Tables S2-S4.

Of the winter crops considered in this study (winter wheat, barley,
oat and rye), 83% are rainfed (MAPAMA, 2015). The few irrigated
fields were excluded from the analysis. Fitting Eqs. (4) and (6) to grain
maize data yielded notably different results. The explanatory power of
both types of models decreased substantially compared to the crops
considered before. The combination of VCI and TCI explained a max-
imum yield level variability of 25%.

3.2. Robustness of the results

To assess the consistency of the main results, several experiments
were conducted. Firstly, a cross-validation procedure was designed, as
described in the last part of Section 2.5. The prediction error of each
model was tested by calculating the RMSE both within the training
dataset and the test dataset. Table S5 summarises these average robust
statistics, for each crop species and candidate model. These results
confirm those presented in Section 3.1

Secondly, individual models were fitted to each agricultural district.
Due to the short studied period (2003–2015), local estimations could
suffer from small sample size problems. To reduce the impact of this
limitation, a LOOCV exercise was applied to individual districts with
more than 10 observed yields. Also, to avoid potentially overfitted
models, the VHI was used. A summary of the findings is presented in
Fig. 3 and Fig. 4. The panels in Fig. 3 show for each district two in-
teresting features: firstly, the already mentioned better performance of
crop yield level models against crop yield anomaly models and, sec-
ondly, the confirmation of the better fit of satellite-based models versus
SPI1 (left), SPI3 (centre) and SPI6 (right) at the local level. Fig. 4 de-
scribes geographically where individual R2-adj gains are located, which
are concentrated to the west and south hemisphere of the country.
Better fit of satellite-based models against SPI models is also observed
for the cases of barley, oat and rye (Fig. S4-S6). Meanwhile, localised
R2-adj gains show uneven and sparse, as seen in Fig. S7-S9.

Lastly, an alternative method to detrend yields was considered.
Following Eq. (7), a quadratic time trend was estimated and new yield
anomalies were obtained. Eq. (6) was re-calculated with this new de-
pendent variable. The findings in Section 3.1 regarding the explanatory
power of the candidate models and the better performance of satellite-
based models are confirmed by this scenario. No measurable differences
stem from the detrending method chosen (see Table S6 for detailed
results).

3.3. Efficient temporal aggregation of predictors: Quarterly versus monthly
aggregation

An operational statistical model for forecasting crop yields should
be based on drought indicators at a high frequency. Infosequia variables
are provided at a maximum of 8-day frequency whereas accumulated
precipitation data is only available on a monthly basis.

Eqs. (4) and (6) were adapted at this stage to accommodate monthly

Table 1
Explained variability (R2-adj) of statistical crop models for the five cereal
species considered. Dependent variable: crop yield level (top) and crop yield
anomaly (bottom). Drought indicators aggregated at quarterly frequency.

Wheat Barley Oat Rye Maize

dep. var: yield level
VCI 0.693 0.674 0.646 0.509 0.103
TCI 0.661 0.607 0.629 0.457 0.132
VCI+TCI 0.700 0.677 0.654 0.511 0.254
SPI-1 0.636 0.583 0.608 0.456 0.084
SPI-3 0.656 0.621 0.629 0.488 0.167
SPI-6 0.655 0.609 0.622 0.473 0.168
dep. var: yield anomaly
VCI 0.323 0.387 0.271 0.254 0.090
TCI 0.254 0.300 0.226 0.150 0.085
VCI+TCI 0.350 0.412 0.299 0.260 0.176
SPI-1 0.203 0.269 0.201 0.175 0.054
SPI-3 0.249 0.342 0.247 0.221 0.122
SPI-6 0.245 0.318 0.229 0.204 0.126
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indicators. The fit of the new models is described in Table S7. The
addition of more regressors created a generalised and proportional in-
crease in the overall fit of the available models. Satellite-based models
continued to outperform SPI-based models, both for crop yield levels
and yield anomalies. Interestingly, the SPI-1 family of models behaved
better than models based on SPI-3 because SPI-1 figures describe
monthly precipitation anomalies better (by construction).

3.4. Accounting for different climate zones

The use of climate zones to upscale process-based or statistical crop
models is widespread at the global and national scale. Geographic areas
are configured based on homogeneity in weather variables that have

the greatest influence on crop yield. In Spain, due to its large size, there
are marked differences between provinces close to the coast and those
belonging to the vast central plateau, or Meseta, a continental influ-
enced climate with hot, dry summers and cold winters, beneficial to
cereals seeds requiring vernalisation processes. In the north, the
Cantabrian Mountains, the Basque Country, Cantabria, Asturias and
Galicia have a maritime climate, with cool summers and mild winters.
On the Mediterranean coast, the climate is moderate with rain in spring
and autumn. Following Fernández-Díaz et al. (1987), three different
climate zones were distinguished, namely, Mediterranean, Continental
and Atlantic. The geographical distribution of each zone can be seen in
Fig. S10. Crop yield level and yield anomaly models were fitted sepa-
rately for each climatic area. Results were partially conditioned by the

Fig. 3. Scatterplots of regression model performance (R2-adj) of models fitted to winter wheat yields at single agricultural districts. X-axis denotes fit of yield level
models whereas Y-axis denotes fit of yield anomaly models. Black solid line denotes 1:1 equal fit line. Green dots indicate fit of VHI-based models. Blue dots show the
fit of SPI-1 models (top left), SPI-3 models (top right) and SPI-6 models (bottom left). A 95% confidence ellipse for the mean of each bi-variate distribution is
provided. Results are based on LOO independent estimations (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).

Fig. 4. Agricultural district level model fit (R2-adj) of VHI-based models (top left), SPI-1-based models (bottom left) and R2-adj gains from using VHI-based against
SPI-1-based (right). Grey-shaded districts were not included in the analysis.
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presence of each crop in a specific area. R2-adj values, using VCI-TCI as
predictors for each crop for the three different climatic areas are shown
in Table 2.

Continental-specific crop models showed better results than the
pooled models presented in Section 3.1. Winter wheat yield level
variability is highly explained (75%) in Continental areas. The same
was observed for yield anomaly models, where 20% gains in yield
variability explanatory power were observed, compared to the bench-
mark model. Similar results were obtained for barley, the other pre-
dominant crop in Continental areas, experiencing R2-adj gains of 7.5%
and 20.5% for yield level and yield anomaly models, respectively. In-
creases in explanatory power of oat and rye modelling were weaker
than those observed for winter wheat and barley. Goodness of fit in
Mediterranean and Atlantic areas was negatively affected, reflecting the
existence of additional orographic or climate variables influencing crop
yield.

3.5. Out-of-sample performance: real-time forecasting exercise

As seen in the left panel of Fig. 5, satellite-based models predict
winter wheat yield anomalies better than SPI-based models in real time.
In general, as more information about the current season comes avail-
able nearly all models become more accurate. The optimised VCI-TCI
model (Continental climate zone and<5% of urban land) delivers a
better performance skill than the benchmark VCI-TCI model, benefiting
from cleaner pixels and climate-specific parameterisation. Similar
conclusions are drawn from the forecast derived from monthly models
(right). Almost for all lead times the optimised VCI-TCI model provides
better forecasts on average, with increasing performance as the crop-
ping season unfolds and more data comes available. Results for barley

are qualitatively similar to those of winter wheat (see Fig. S11). So are
those for oat and rye but the relatively reduced number of observations
of these two last crops limits the value of the forecast exercise, as seen
in Fig. S11-S13.

4. Discussion and conclusions

Satellite-based models showed better performance than SPI-based
models, for both crop yield levels and crop yield anomalies and for all
considered crops. Yield level models were able to explain about 70% of
winter wheat and barley yield level variability, a remarkable figure
given the simplicity of the modelling approach and the high degree of
spatial resolution. Crop yield anomaly models of wheat and barley
explained 35%–40% of total yield variability, a similar figure to that
obtained by other authors in different study regions (Quiring and
Papakryiaokou, 2003; Lobell et al., 2014; Ceglar et al., 2017). For oat
and rye, similar results were obtained in qualitative terms but estima-
tions suffered from sparse data and reduced sample size. Our results for
grain maize, predominantly irrigated in Spain, were very poor for both
precipitation-based and satellite-based models, probably conditioned
by the smaller range of variability of maize yields and because of as-
suming a fixed agronomic calendar for all cropping systems. It is rea-
sonable to think that growing cycles are adjusted to latitude (heat) and
other climatic factors. Incorporating this feature into our models may
well result in an improvement of the overall fit. Considering alternative
drought indicators, such as total evapotranspiration, may increase the
fit of maize models (Zdeněk et al., 2017). For the case of wheat, dis-
tinguishing between common and durum wheat, the latter regarded as
being more resistant to drought and heat stress, could also enhance our
model performance.

We also applied crop models to different climate-geographical
zones, on the premise that different agroclimatic regions at the national
scale may have different model statistics, due to large climate hetero-
geneity between zones (van Wart et al., 2013; Ribeiro et al., 2018). We
found that there was an R2-adj gain in concentrating our modelling on
Continental climate areas, where national cereal is dominant. Further
investigation is required, though, to assess the effect of agronomic ca-
lendar and phenology in our estimations. For the sake of simplicity, we
imposed in our models a fixed agronomic calendar for all climate zones.
Running each climate zone model adjusted to the timing (calendar) and
length (phenology) of the growing cycle would shed some more light
into our final results. This statement will be tested in future research.
Also, the overall performance of our approach to assess drought impacts
in more humid climates may improve if the water balance of these areas
is taken into account (Vicente‐Serrano et al., 2010) or if non-local hy-
drology (e.g. river discharge) is included (Zampieri et al., 2018).

Table 2
Explained variability (R2-adj) of statistical crop models for the five cereal
species considered. Dependent variable: crop yield level (top) and crop yield
anomaly (bottom). Drought indicators: VCI-TCI. Models are fitted to each cli-
matic zone.

Wheat Barley Oat Rye Maize

dep. var: yield level
Mediterranean 0.622 0.569 0.476 – 0.372
Continental 0.746 0.728 0.685 0.531 0.338
Oceanic 0.315 – – – –
dep. var: yield anomaly
Mediterranean 0.270 0.253 0.325 – 0.367
Continental 0.417 0.497 0.301 0.279 0.296
Oceanic 0.141 – – – –

Fig. 5. Wheat yield anomaly false alarm average detection rate for 5-year (2011–2015) real-time forecasting exercise. SPI-1-based, SPI-3-based, SPI-6-based and VCI-
TCI-based models are compared at quarterly (left) and monthly (right) frequencies. The VCI-TCI* model is optimised to Continental climate districts and incorporates
the removal of districts with> 5% of urbanised area.
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Finally, we demonstrated through a simple real-time forecasting ex-
ercise the higher performance of satellite-based models as operational
drought assessment tools, both at the quarterly and monthly temporal
scale, with satellite-based models better avoiding false positives and
false negatives yield anomalies. More work and alternative measures,
however, are required to validate the forecast accuracy of these models.
The use of a probabilistic approach that incorporates short-term
drought forecasts can be also considered for future exercises (Madadgar
et al., 2017).

Results derived from this analysis demonstrate that: (1) finer spatial
resolution provided by satellite products capture local drought condi-
tions better than drought measures based on climate gridded datasets,
which usually rest on data provided by a coarse network of weather
stations (Aufhammer et al., 2013); (2) remote sensing data related to
vegetation health give a better picture of local drought conditions than
drought indices that only rely on rainfall, mainly because vegetation-
related indices inherently consider the local biophysical (soil, slope)
and climate conditions.

The current study used two common indices describing the vege-
tation status of the plant. Future local-scale assessments could expand
on the number of climate/land surface variables included in our models
and use it to more comprehensively understand crop-specific sensitiv-
ities to drought. Other available satellite-based indicators not currently
used for operational drought monitoring, such as near-surface air re-
lative humidity data, may improve the performance of our models and
tell us more of the spatial patterns and temporal trends of crop yields
(AghaKouchak et al., 2015). Also, remotely sensed soil moisture from
the Soil Moisture and Ocean Salinity (SMOS) or the Soil Moisture Active
and Passive (SMAP) missions may be incorporated as additional in-
dicators of agricultural drought (Sánchez et al., 2016). A geographically
weighted combination of the available indicators could also result in an
increase of the explanatory power of our models (Páscoa et al., 2017).

Even though we advocate in this study for the use of satellite-based
measures to detect agronomical drought stress because of the limita-
tions of climate gridded data, the recent proliferation of local, good
quality, high-resolution precipitation gridded datasets (Quintana-Seguí
et al., 2017) has yet to be tested in local-scale drought assessments. In
the case of Spain, the Version 4 of the Spain02 dataset (Herrera et al.,
2016), shows a horizontal resolution of up to 0.11°, five times larger
than the CRU dataset and very similar to that of the remote sensing
products used in the current study. There also exists a novel trend in the
literature claiming for coupling statistical models with seasonal fore-
casts stemming from climate models or an ensemble of climate models
(Hao et al., 2018). This (hybrid) modelling strategy opens an entire
avenue for research and has yet to be further explored in regional and
local assessments (Ceglar et al., 2018) as, for example, in our case study
area.

There is an increasing need for weather and climate services that
provide user-focused information on anticipated drought impacts to
improve agricultural water management (van den Hurk et al., 2016).
However, there is still a gap between what stakeholders in the agri-
cultural sector need in terms of spatial resolution (i.e. at least district
level) and the meteorological drought information available from ob-
servations or climate models (i.e. coarser information potentially useful
at the provincial level). The current study confirmed that high-resolu-
tion satellite-based drought information portrays drought impacts at
the district scale better than meteorological drought information. Still,
for drought impact forecasting, seasonal forecasts from dynamic cli-
mate models based on coarse meteorological information (Iizumi et al.,
2013) may still have an added value.

The predictive quality of seasonal climate models is still increasing
and has shown to be useful for certain areas in Europe (Turco et al.,
2017). Potentially, satellite-based information on current drought
conditions can be used to downscale coarser forecasts of crop yield
impacts. New guidelines for updating Agricultural Water and Drought
Management Plans in all the Spanish River Basins recognise the need to

include SPI as an index to be monitored for agricultural drought
emergency plans. This study suggests that satellite-based drought in-
dices may complement SPI, as they have been demonstrated here to be
more directly related to crop yield impacts and thus to the economic
consequences of droughts in Spain.
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