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A critical analysis of the available engineered nanomaterials (ENMs) environmental fate modelling approaches
indicates that existing tools do not satisfactorily account for the complexities of nanoscale phenomena. Fractal
modelling (FM) can complement existing kinetic fate models by including more accurate interpretations of
shape and structure, density and collision efficiency parameters to better describe homo- and heteroaggregation.
Pathways to including hierarchical symmetry concepts and a route to establishing a structural classification of
nanomaterials based on FM are proposed.
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1. Introduction

Nanotechnology is a field of science and technology involving the
design, production and use of structures at the nanoscale (SCENIHR,
2006). Due to the broad applicability of the unique physicochemical
characteristics of engineered nanomaterials (ENMs), a variety of nano-
enabled applications in electronics, nutrition, cosmetics, medical
drugs, food and agriculture, textiles, and energy have been introduced
(Hendren et al., 2011; Piccinno et al., 2012). There is concern, however,
that the above technological progress may also introduce environmen-
tal and human health risks (Klaine et al., 2008). The environmental risk
assessment (ERA) used for chemicals is considered as the pertinent ap-
proach to assess and quantify environmental risks posed by ENMs
(Hristozov et al., 2013; Stone et al., 2014). It is a four-step process,
consisting of: 1) hazard identification, 2) effect assessment, 3) exposure
assessment, and 4) risk characterization (Van Leeuwen and Vermeire,
2007). Exposure assessment is a fundamental step in the ERA, and
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consists of the calculation of Predicted Environmental Concentrations
(PECs). As recommended by the Registration, Evaluation, Authorization
and Restriction of Chemicals (REACH) Chemical Safety Assessment
guidance, dynamic or steady-state multimedia mass balance models
(MMMs) are commonly applied to estimate PECs in different compart-
ments. This is due to the fact that in the case of ENMs monitoring infor-
mation is scarcely available and analytical protocols are still under
development (Hassellov et al., 2008; Ono-Ogasawara et al., 2009;
Tiede et al., 2010; Tuoriniemi et al., 2012). Physical processes of agglom-
eration, sedimentation and re-suspension are considered relevant in
modelling ENMs environmental fate (Chekli et al., 2015; Meesters et
al., 2013; Praetorius et al., 2013, 2012; Quik et al., 2011) but the accuracy
of the estimations of these parameters is not satisfactory enough to get
realistic predictions (Garner and Keller, 2014).

Meesters et al. (2014) have stressed the relevance of modelling het-
ero-agglomeration kinetics of ENMs in the water media. A comprehen-
sive analysis of factors affecting ENMs fate, including collision frequency
and attachment efficiency is given but the lack of methods capable of
predicting structural and surface properties of nanoaggregates is
stressed.

To better represent the complexity of nanoaggregate structures in
the environment efforts were made to include Fractal Dimension (FD)
into the ENMs kinetic models (Arvidsson et al., 2011; Chowdhury et
al., 2013; Neil et al., 2016; Praetorius et al., 2012). Nanoparticle (NP) ag-
gregates are less dense material packings in comparison to monocrys-
tals and form structures that are difficult to describe by means of
Euclidian geometry. The incorporation of fractal (fractional) dimension
demonstrates that thematerial self-organizes in patterns that cannot fill
the granted 3-D space compactly and howmuch space is truly occupied.
However, it does not give insight on the phenomenological processes
governing aggregation or on specific morphological properties of parti-
cles. Fractal modelling (FM) is often applied to enhance kinetic models
(Saunders and Plane, 2006; Sithebe and Nkhalambayausi Chirwa,
2016) but no classification of NMs based on fractal properties has yet
been proposed.

The goals of this paper is to identify how limitations of existing ap-
proaches used for the predictions of ENMs fate may be overcome with
the help of FM. Specifically, this paper will (i) present the existing
methods employed for ENMs exposure and fate modelling, (ii) intro-
duce basic concepts and methods of fractal geometry and (iii) describe
the pathways of applying FM to obtain more realistic predictions of
ENMs environmental behaviour.

2. Towards the incorporation of fractal modelling in transformation
and transport kinetics models

2.1. Existing modelling approaches in ENMs environmental fate and
transport

Modelingmethodologies applied so far to ERA considermainlyMass
Flow Analysis (MFA). Mueller and Nowack (2008) developed the first
material flow model considering releases of ENMs from products in
different lifecycle stages to estimate PECs for nanoscale Ag, TiO2 and
Carbon Nanotubes (CNTs) in the Swiss air, soils and waters. Later this
approach was applied to budgeting environmental distribution of
ENMs in Denmark (Gottschalk et al., 2015). Further developments
overcame the simple approach by addressing input uncertainties for a
holistic spectrum of possible scenarios through a probabilistic model in-
volving Monte Carlo, Bayesian and Markov Chain analyses (Gottschalk
et al., 2009, 2010). In Keller and Lazareva (2014) this modelling ap-
proach is applied to predict region-specific environmental concentra-
tions. The models incorporate input parameters such as production
and consumption volumes, fate pathways quantified though transfer
coefficients. However, it is stressed that relevant factors of engineered
nanoparticles’ (ENP) size, structure, chemical activity and evolution in
the environment are not taken into consideration. To model such
parameters, new mechanistic approaches (Maggi, 2009; Sithebe and
Nkhalambayausi Chirwa, 2016) that would take specific physical and
chemical nanoscale phenomena (Bishop et al., 2009; Walker et al.,
2010a) into consideration are needed.

Kinetic models were applied in Quik et al. (2011) to introduce disso-
lution and sedimentation rate constants seeking a step-by-step environ-
mental fate simulation. This approach represented a move toward
defining exposure in the aquatic environment but did not provide the
possibility to describe the transport of ENMs and accordingly predict
their behaviour in different media. Arvidsson et al. (2011) proposed
the use of kinetic laws by Smoluchowski (1917) and Friedlander
(2000) along with the inclusion of sedimentation, perikinetic and
ortokinetic agglomeration caused by shear flows and differential set-
tling caused by sedimentation into account.

In later work, Praetorius et al. (2012) added ENM interactions with
suspended particulate matter (SPM) to the model. Definitions for rate
constants were derived from Elimelech et al. (1995a). Aggregation
with environmental colloids is more frequent than interaction between
the pristine particles, and the lack of a systematized approach to de-
scribing physical aspects of the phenomena responsible for these inter-
actionsmakes accurate fate predictions a complicated task (Docter et al.,
2015, Jun et al., 2016).

2.2. FM applied to aggregation modelling

The first steps to account for the shortcomings related to shape and
topology were made by including fractal dimension into the kinetic
equations as a statistical parameter (Arvidsson et al., 2011; Praetorius
et al., 2012). Wiesner (1992) and Elimelech (1995a) were among the
first to introduce FD-dependent floc density when modelling nano-
and micro-scale aggregation. According to Wiesner (1992), the mass
density ρ of a sphere of radius r within a floc is a power function

ρ rð Þ∼r D f−3ð Þ

where fractal dimension Df can take values from 1 to 3. This shows that
the material occupies less volume within the Euclidian space than an
entirely compact object such as a coalesced sphere. The value of fractal
dimension is obtainedwith the same equation that gives the dimension
of objects in the Euclidian space. When an object is split into N equal
parts that are r times smaller than the original object the dimension D
of the object is defined as:

D ¼ logN
log 1=rð Þ

D = 2 for a compact plane, and 3 for a compact cube. In the case of
less dense objects for a large enough r dimension would take fractional
values, accounting for the space not occupied bymaterial, andwould be
called fractal dimension (FD) (Crownover, 1995). It is also used as a
measure of complexity for structured non-compact mathematical ob-
jects, especially those completely or partially self-similar at any scale
of examination, called fractals (Mandelbrot, 1983). FMuses various iter-
ative algorithms to build such complex structures.

The first methods applied to physical aggregation modelling were
based on the concepts of the Diffusion Limited Aggregation (DLA), pro-
posed byWitten and Sander (Witten and Sander, 1981; Frenklach et al.,
2009; Köylü et al., 1995; Pippa et al., 2013) where particles moving in
Brownianmotion stick together in case of collisions (Fig. 1). The process
is chaotic, however by modifying the rules of attachment and
disattachment the FD dimension can vary (Inci et al., 2014).

Deterministic fractals with a strictly defined symmetry are an alter-
native to DLA. The idea of using self-similarity and self-affinity tomodel
nanosystems has been presented by Mandelbrot (1986). In the men-
tioned work an object is defined as self-affine if it consists of non-over-
lapping parts that can be represented by applying a linear affine



Fig. 1.ADLAmodel of a 3000 particle aggregate on a square lattice. Courtesy ofWitten and
Sander, 1981.

Fig. 2. A conceptual representation of a self-similar and self-affine hierarchical object.
Courtesy of Shevchenko and Mackay (2011).

Fig. 3. (a) A 2D IFSmodel of a dendrite cluster. (b) A SEM image of themodelled CaSO4 –H2O – C
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transformation function (combination of translation, scaling and rota-
tion operations) to other parts of this object (Fig. 2).

As shown inmethodological works of Barnsley on the Iterated Func-
tions System (IFS)method (Barnsley, 1988; Barnsley and Demko, 1985;
Nikiel, 2007) the recursive process of applying such transformations
froma predefined set to a primary particle builds traces of fractal objects
with a desired symmetry (Fig. 3a).

Fractals (Fig. 1, 3a) are inherently characterized by a fractal dimen-
sion. The common method to calculate FD of fractal models is the Box-
Counting method when the studied object is repeatedly covered with
sets of boxes, and each set is defined by the size of the box’s edge, r.
The number of boxesN necessary to cover the object is plotted as a func-
tion of r and the slope S of the log(N(r))/log(r)) graph gives the FD, in
this case called box fractal dimension (Jelinek et al., 2013; Feder, 1988).

The relevance of fractals for the nanoscale is linked to the morphol-
ogy-specific physico-chemical properties that distinguish them from
chemicals and before aNP dissolves (Dale et al., 2013) colloidal aggrega-
tion should be accounted for (Cai et al., 2017;Wang et al., 2003). By now
fractal dimension is included in various NM studies, e.g. evolution stud-
ies of nanoscale TiO2 in aquatic media (Chowdhury et al., 2013; Godinez
and Darnault, 2011; Loosli et al., 2013; Xu et al., 2014), studies of
fullerite nanoparticles in electrolyte solutions (Meng et al., 2013). Frac-
tal image analysis methods were used to classify organic and inorganic
structures (Kimori et al., 2011; Kong et al., 2014; Papanicolaou et al.,
2012; Smith et al., 1996, Neil and Curtis, 1997). Neil et al. (2016) studied
fractal structures of iron oxide nanoparticles aggregated with natural
organic matter and arsenate to better predict the sedimentation rates
in the environment. The oil industry recently adopted fractals to en-
hance environmental kinetics models (Mohammadi et al., 2016;
Sterling et al., 2005). Fractal parameters are used to realistically mimic
nanosystems in biology, medicine and pharmaceutical sciences
(Graham and van Ooyen, 2001; Jayasuriya et al., 2013; Pippa et al.,
2013; Captur et al., 2015; Kaandorp, 1994; Karperien et al., 2013).
2.3. Introduction of a fractal classification of ENPs aggregate structures

The last mentioned work of Karperien et al. (2013) is focused on de-
veloping a classification of neuron cells based on their fractal shape. This
approach is feasible as such representations of cells require little
amounts of hard-drive storage (fractals are represented by functions
that can be written in a text file) and give a comprehensive description
of the cell’s structure.

To develop such a classification for ENMs, a structure analyzing
method should be applied. One of the first applications of fractals was
image compression, and many specialized image processing methods
NThybridmaterial with the corresponding symmetry. Courtesy of Bitutskaya et al. (2013).

Image of Fig. 1
Image of Fig. 2
Image of Fig. 3


Fig. 4. A schematic of the proposed route for the integration of fractal modelling into environmental kinetic models.

81S. Avilov et al. / Environment International 99 (2017) 78–86
were developed (HoMoon et al., 1999; Papanicolaou et al., 2012; Smith
et al., 1989; Xiaoqing et al., 2013). A good example of awell applied frac-
tal classification are fingerprint databases (Lin, Chen and Gaing, 2010).
The process of building a fractalmodel is rapid as it is based on recursive
algorithms. For instance, an array of 50000 pixels requires less than 8
seconds to be built using the IFS method and rendering algorithms for
various FM methods are constantly optimized for productivity
(Gröller, 1994; Karam and Nakajima, 2001; Martyn, 2010).

These considerations predict a possibility to develop and apply a
quantitative structure classification of nanomaterials to include in ki-
netic transport and transformation models used in environmental fate
modelling. A schematic representation of the predicted steps is given
in Fig. 4. Further Table 1 focuses on how various parameters used in
existing environmental models (Dale et al., 2015) could benefit from
FM and nearest steps required for an integration are presented in
more detail in Section 3.

3. Steps to include FM in ENM environmental kinetic models

In this section nearest steps required to fulfill the tasks resulting
from the schematic approach shown in Fig. 4 are presented.

3.1. Step 1. Collecting empirical data and building the fractal model

The lack of quantification methods for creating a nanoaggregate
morphology classification was stressed by Pippa et al. (2013) and
Papanicolaou et al. (2012). Currently technology provides powerful
methods to study material structures. For example, Fig. 5a shows a
Cryo-TEM tomography reconstruction of an organic nanoparticle.
This 3-D image can be analyzed to find a characteristic symmetric
algorithm.

The Polar IFS and the Generic Programming image-decoding
methods are capable of solving the task of defining an IFS for a given
image (Collet et al., 2000; Hart, 1996; Hart et al., 1997). An electron mi-
croscopy image of an aggregate can also be reduced to its outlines to
simplify the analysis (Kimori et al., 2011; Du et al., 2012; Ferreiro et
al., 2013; Hagerhall et al., 2004). The symmetry types can be extracted
from new geometrical theories developed for new tasks in material en-
gineering (Lord et al., 2006; Shevchenko andMackay, 2011; Ivanov and
Talanov, 2013; Bokeloh et al., 2010).

In the given example (Fig. 5a), the symmetry is icosahedral and a
fractal model with a corresponding symmetry can be created. In the
self-affine approximation the model (Fig. 5b) represents the real parti-
cle’s structuring.

It was shown that NMs do not maintain ideal symmetrical struc-
tures, and form semi-chaotic structures (Mandelbrot, 1992; Walker et
al., 2011). However, taking into account the appearance frequency of
polyhedral objects in the nanoscale world (Kowalczyk et al., 2011;
Walker et al., 2010a, 2010b) the deterministic FM approaches
(Karperien et al., 2013; Avilov et al., 2014) can be considered applicable
for aggregationmodelling. The IFS fractal generation process is based on
a chaotic algorithm that allows for variability and provides realistic
uniqueness to every modelled object while sustaining a general sym-
metrical pattern.

The turtle graphics (L-system) method that builds branching sys-
tems according to a pre-defined rule (Ju et al., 2004; Crownover,
1995) could be an alternative to the IFS models. It was found applicable
in the modelling of neuron structures (Karperien et al., 2013).
3.2. Step 2. Linking physico-chemical characteristics to the fractal model

Environmental fate and exposure modelling of ENMs deals with an
abundance of variables and the aim is to find simple enough approaches
that would streamline this complexity (Sani-Kast et al., 2015). However
even given the possibility to model complex fractal structures it is nec-
essary to functionalize them with relevant physical and chemical
properties.

TheDLVO theory is used inMMMs to addresses the colloidal stability
through the description of the interactions experienced by a nanoparti-
cle when approaching another nanoparticle or a collector surface. The
classical DLVO theory (Petosa et al., 2010) takes only van der Waals
and electrostatic interactions into account, whereas the revised version
of the theory additionally considers other specific interactions that are
relevant when dealing with NMs, such as magnetic forces, steric

Image of Fig. 4


Table 1
The table reports definitions of the descriptors used in MMMs and improvements that can be introduced to these descriptors by FM.

Descriptors relevant for ENMs fate
modelling

Approaches from MMMs Predicted FM improvements

Particle shape Particles are assumed to be spherical (Arvidsson et al., 2011; Liu and Cohen, 2014; Praetorius et
al., 2012).

Aggregates are to be represented as complex self-similar hierarchical deterministic symmetric or
chaotic objects (Gmachowski, 2002; Mandelbrot, 1992).

Density Density is given as a constant. Fractal dimension is introduced as a coefficient to better represent
how aggregates occupy the given volume (Arvidsson et al., 2011).

Floc density can be predicted from the morphology and FD of the fractal models. Pores and voids
that influence material density are often hard to study experimentally whereas they can
mathematically predicted with the use of fractal models (Pia et al., 2016).

Particle size distribution Describes how the size of the individual particles varies in a dispersion (Linsinger et al., 2012). Deterministic fractals predict stable characteristic sizes (Li et al., 2016) within modelled
structures basing on the chosen symmetry and hierarchical scaling properties.

Initial particle shape and size Also mentioned as primary particle size (Praetorius et al., 2012) or crystallite size (Linsinger et
al., 2012), it corresponds to the diameter of the primary particles of which aggregates are
formed.

Dots in fractal models can be replaced with monocrystal or amorphous particles of the initial size
and shape and corresponding physico-chemical parameters can be linked (ISO, 2012; Mishin et
al., 2015).

Break-up and limiting size It is defined in (Elimelech et al., 1995b) as the maximum size of aggregates that depends on the
applied shear or energy dissipation and on “floc strength”, also dependent on the attractive
forces between particles.

Particle break-up can be predicted if forces responsible for aggregation and disaggregation (Li et
al., 2016; Bishop et al., 2009; Walker et al., 2011) are applied and binding forces between the
models and model parts are evaluated for both homo- and heteroagglomerates.

Collision frequency It is a second-order rate constant, which depends on a number of factors, such as particle size
and transport mechanisms. Recent studies of particle functionalization in the environment
(Docter et al., 2015; Nasser and Lynch, 2016) stress the need to model physicochemical
properties in order to predict the real size of functionalized particles in the environment.

In (Elimelech et al., 1995b) it is shown that the real volume occupied by aggregates tends to be
higher than that of the smaller particles summed together, thus a more realistic prediction of an
overall collision frequency can be achieved if fractal dimension and structuring are taken into
account when calculating particle volume.

Collision efficiency also referred to as
"sticking probability" or "stickiness
coefficient", α

It is defined as the fraction of collisions that are effective in agglomeration in (Elimelech et al.,
1995b). Praetorius et al. (2012) and by Quik et al. (2011) refer to it as attachment efficiency.

Predictions of collision efficiency can be made if physico-chemical characteristics (Buffle et al.,
1998; Stolpe and Hassellöv, 2007) are applied to the modelled particle’s surface area and binding
forces with other particles are calculated. The descriptor is used in DLA models (Witten and
Sander, 1981) as an input parameter.

Composition The chemical nature of the materials. Recent studies show that the composition of the
eco-corona (Docter et al., 2014; Nasser and Lynch, 2016) is highly relevant for ENMs fate in the
environment. The protein corona may be considered the endpoint of ENPs within a live organism
(Canesi and Corsi, 2016), thus it is relevant for risk assessment.

The surface chemistry properties of modelled nanoparticles are defined by the properties of the
comprising material (Lin, Tian, et al., 2010; Tuchin et al., 2014). Also the parameter of
composition can be used to predict self-assembly patterns (Walker et al., 2010b) if a
classification of NMs is produced, and vice versa.

Homo- and
Hetero-agglomeration/aggregation
rate constants

Mentioned in (Arvidsson et al., 2011) as the rate constants governing agglomeration/aggregation
processes. Homo-agglomeration/aggregation refers to interactions of ENMs of the same type;
hetero-agglomeration/aggregation is the interaction of ENMs with natural colloids and SPM.

A structural classification of ENMs and relevant environmental particles with linked
physico-chemical parameters can help develop an algorithm to predict the stability of
aggregation between nanomaterials and particles of similar and different composition
(López-López et al., 2006; Zhang, 2014; Smith et al., 2015).
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Fig. 5. a) A Cryo-TEM tomography reconstruction of a protein-RNA nanoparticle with an icosahedral symmetry. Pentagon, triangle and oval symbols indicate the icosahedral symmetry
axes. Courtesy of Kler et al. (2013). b) An IFS fractal dot model with an icosahedral symmetry. Array of 80000 pixels. Colored overlapping cubes depict the transformations that the 13
affine functions would apply to a larger primary unitary cube. Courtesy of Avilov et al. (2014).
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interactions, and hydration forces (Grasso et al., 2002, Bishop et al.,
2009; Healy and White, 1978; Lin and Wiesner, 2012).

Apart from the listed forces, there are other nanoscale-specific phe-
nomena that are to be taken into consideration. For example, in
(Browne and Grzybowski, 2011; Walker et al., 2013; Wang et al.,
2011) it is shown how curvature of nanoparticles impacts electrical
field distributions and the character of aggregation for various mate-
rials. Modelling by Tuchin et al. (2014) and Zhukalin et al. (2014) for
carbon nanotubes shows that curvature at the nanoscale governs the re-
distributions of surface electric fields. Length- and diameter-dependent
oscillations of the band gap and the subsequent altering of chemical
properties for nanotubeswere described inGanin et al. (2014).More ac-
curate shape considerations would improve predictions of chemical re-
activity that can depend on surface energy for nanocrystals (Pal et al.,
2007; Solla-Gullón et al., 2008; Xu et al., 2006).

The importance of the primary cluster morphology for aggregate
evolution was shown in (Brasil et al., 2001) where a characteristic at-
tachment angle parameter was defined for carbon soot particles. In
the self-affine approximation, the relative arrangement of the affine re-
flections that form the fractal model can be chosen to correspond with
the attachment angle. The initial monocrystals are then considered in-
formation carriers, responsible for the subsequent symmetrical aggre-
gate self-assembly (Walker et al., 2010b, 2010a).

This approach to modelling hierarchical nanoparticles enhanced by
physicochemical functionalization can be further applied to modelling
heteroaggregation (Bitutskaya et al., 2013; Patil and Mann, 2008;
Ruiz-Hitzky et al., 2008). Experimental evidence (Bitutskaya et al.,
2013; Neil et al., 2016) shows that during the formation of hybrid nano-
systems NMs can rebuild their structure depending on the intrinsic
qualities (i.e. shape, dispersability) of the components. From themodel-
ling point of view, it could be described as an integration of two (or sev-
eral) characteristic symmetries and the formation of a qualitatively and
quantitatively new symmetry. More specific experimental data is need-
ed to develop and validate this approach to modelling hetero-aggrega-
tion. As shown in Bitutskaya et al. (2013) and Zhukalin et al. (2014)
symmetry modifications can depend on component concentrations,
pressure and other parameters.

3.3. Step 3. Validation and application

A created model should be verified with experimental data before
incorporating it into a structural database and making predictions of
structures of similar composition or properties.

In environmental kinetic models (Arvidsson et al., 2011; Praetorius
et al., 2012) the volume and, subsequently, density of fractal aggregates
are linked to FD, that itself is dependent on aggregatemorphology. Then
the same methods used to measure floc volume and density should be
applied in silica for fractal models. Given the chemical composition of
the modelled material and the initial particle shapes and sizes, a mass
value can be calculated for the volume occupied by themodelled fractal
morphology. Themeasured and calculated densities are then compared
to validate the model. Important to note that density is a complex pa-
rameter as it depends on the experimental conditions and material
packing. In nanosystems density is often quantified in molecules/nm3,
not in g/ml and can change depending on coatings (Park et al., 2004;
Zhuravlev and Potapov, 2006).

The same algorithm can be applied to compare measured and
modelled electro-physical parameters of surface charge, zeta-potential,
etc.

In Kowalczyk et al. (2009) and Bishop et al. (2009) it was stated that
the sizes of NPs likely to aggregate tend to stay within one scaling level,
i.e. after reaching a certain limit larger particles loose reactivity with
smaller particles, but theymaybe able to agglomeratewith one another.
A relation between scale and binding force was shown in Kalsin et al.
(2006)where ordered non-compact structureswere observed for larger
aggregate sizes of silver and gold NPs. This demonstrates the scale selec-
tivity of physico-chemical interactions at the nanoscale and could be an-
other validation algorithm, in which characteristic stable aggregate
sizes are compared with characteristic sizes of the hierarchical fractal
models.

The values of the physico-chemical constants obtained from frac-
tal models can then be used when solving environmental kinetics
equations as input parameters and factors affecting statistical de-
scriptors mentioned in Table 1 to achieve more accurate ENM fate
predictions.

4. Conclusions

The critical analysis of the available ENMs environmental fate
modelling approaches presented in this work confirms that existing
tools do not satisfactorily reflect the complexity of relevant nanoscale
aggregation phenomena. It has been shown that FM would provide a
more realistic representation of NP aggregate structures, and steps to
apply a fractal-based NM classification to improve existing kinetic
models were proposed. A listing of descriptors from existing MMMs
that can be described more accurately with FMwas given. The present-
ed approach in modelling is applicable to non-compact colloid aggre-
gates, however fractal image analysis may be more broadly used for
the detection of specific ENMs in the environment.
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