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ARTICLE INFO ABSTRACT

JEL classification: We propose a set of novel non-macro-based uncertainty indicators that rely on the frequency of
C32 Google searches (NM-GSIs) for the following health-, environmental-, security-, and political-
E32 related topics: “Symptom”, “Pollution”, “Terrorism”, and “Election”. By means of VAR in-
E52 vestigations, we document that an intensification of people interest in non-macro-based topics
Keywords: harms the US real economic activity. In particular, NM-GSI shocks generate (i) a significant drop
Non-macro-based uncertainty in consumer credit and (ii) a mild decrease (increase) in production (unemployment) levels.
iooglfyseamhes Noteworthy, rising non-macro-based uncertainty is found to have stronger influence on the
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outstanding level of consumer credit than rising macro-based uncertainty. Our findings suggest
that increasing interest in specific non-macro-based topics might be associated with raising
people's anxiety. A battery of robustness checks confirms our main findings.
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Business cycle

1. Introduction

The role of uncertainty in driving financial and macroeconomic aggregates has received a constantly rising amount of attention in
the most recent literature. In his seminal paper, Bloom (2009) highlights the difference between first-moment and second-moment
(uncertainty) shocks. In particular, he shows that uncertainty shocks “produce a rapid drop and rebound in aggregate output and
employment”. Research has focused mainly on the creation of macroeconomic policy-related uncertainty indexes. As highlighted in
Bontempi et al. (2017), the most used can be categorized into (i) finance-based indexes (Bachmann et al., 2013), (ii) forecast-based
measures (Bachmann et al., 2013; Jurado et al., 2015) and (iii) news-based measures (Baker et al., 2016; Caldara and Iacoviello,
2016; Bontempi et al., 2017).

Since Choi and Varian (2012), the economics academic community has started using data retrieved from Google Trends, i.e.,
search volume indexes based on specific words/topics of interest. Differently from filtering the perception of sentiment through
journalists’ feelings, measuring sentiment and uncertainty via rising Google searches on specific finance-related and economics-
related keywords has the advantage to intercept the actual behaviour of internet users, which (today) constitute a relevant portion of
the population. Recent empirical studies going in this direction are: Da et al. (2011, 2015), Dzielinski (2012), Donadelli (2015), Bijl
et al. (2016), Castelnuovo and Tran (2017), Bontempi et al. (2017), Tran (2017) and Kim et al. (2018).

Still, all these (novel) studies have focused on keywords/topics relying exclusively on macroeconomic policy-related issues. For
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example, Bontempi et al. (2017) have adopted the very same keywords used by Baker et al. (2016) for the construction of the
Economic Policy Uncertainty (EPU) index, while Castelnuovo and Tran (2017) and Tran (2017) make use of the uncertainty-related
keywords mentioned in the Federal Reserve's Beige Book for the United States and the Reserve Bank's Monetary Policy Statement for
Australia (e.g., “bankruptcy”, “stock market”, “economic reform”, “debt stabilization”).

In the present work, we take a different stand by focusing on the search intensity of some terms that may influence (negatively)
the mood of individuals, but that do not directly and strictly account for finance- or macroeconomic policy-related uncertainty. In
other words, we develop a set of non-macro-related Google search-based uncertainty indicators (NM-GSIs) that rely on the frequency
of internet searches for (i) “symptom” (i.e., a proxy for uncertainty related to health issues); (ii) “pollution” (i.e., a proxy for un-
certainty related to environmental issues); (iii) “terrorism” (i.e., a proxy for uncertainty related to security issues), and (iv) “election”
(i.e., a proxy for uncertainty related to political issues). The internet search intensity for the aforementioned non-macro topics is
captured at monthly frequency for the period January 2004 - December 2017. In the spirit of recent studies focusing on the mac-
roeconomic and financial implications of rising either news-based macroeconomic policy uncertainty or Google search-based mac-
roeconomic policy uncertainty (see, among others, Dzielinski, 2012; Colombo, 2013; Da et al., 2015; Donadelli, 2015; Caggiano et al.,
2017; Castelnuovo and Tran, 2017), our Google searches are limited to the US, where the market share of online search market held
by Google is above 60%." Moreover, focusing on the US allows us to compare the effects of Google search-based macroeconomic
policy uncertainty shocks with those generated by a shock to our newly developed NM-GSIs.

By means of VAR investigations, we then inspect whether the anxiety and apprehension induced by non-macro-based uncertainty
spills over to real economic and financial variables, i.e., stock market prices, long-term rates, consumer credit, industrial production,
and unemployment rate. Our main empirical findings suggest that, although the impact is (on average) weaker than the one of macro-
related uncertainty shocks (i.e., EPU shocks), there are significant effects of rising non-macro-based uncertainty on the real economic
activity. In particular, as population's interest in “symptom”, “pollution” or “terrorism” intensifies, consumer credit drops and, as a
milder consequence, industrial production (unemployment rate) decreases (increases).

The rest of the paper is organized as follows. Section 2 briefly reviews the literature on uncertainty indicators based on the
frequency of Google searches. Section 3 introduces and describes the newly developed NM-GSIs. The employed methodology and the
related empirical findings are discussed in Section 4. Section 5 concludes.

2. Related literature: a focus on Google-search-based uncertainty

Our paper fits into a growing literature aimed at developing novel finance-related and macro-related uncertainty indicators based
on the volume of internet searches and exploring their implications for financial and macroeconomic dynamics. In this respect, our
work is most closely related to Da et al. (2011, 2015), Dzielinski (2012), Donadelli (2015), Bijl et al. (2016), Castelnuovo and Tran
(2017), Bontempi et al. (2017) and Kim et al. (2018).

A stream of literature, originating from Da et al. (2011), focuses on the ability of internet search volume indexes based on
keywords related to listed companies to predict stock market returns. The existing evidence are mixed. Specifically, Da et al. (2011)
focuses on the stock ticker symbol or the main product for companies belonging to Russell 3000, from 2004 to 2008. They find that an
increase in the search volume leads to a price increase followed, after one or two weeks, by a price reversal. Bijl et al. (2016) consider
search volume indexes based on S&P500 listed company names for the period 2008-2013 and observe that rising internet searches
predict low future excess returns. The authors argue that the different result obtained with respect to Da et al. (2011) is likely to be
related to the different time period considered. Moreover, they develop a trading strategy based upon search volume indexes: the
portfolio based upon this strategy is able to outperform the market portfolio, but not enough to outweigh the associated transaction
costs. More recently, Kim et al. (2018) focus on the Norwegian stock market, and build search volume indexes based on the names of
listed companies. They find no statistical evidence of any relationship between rising interest in listed companies and associated stock
returns, while they find weak but significant evidence of a contemporary relationship and, to a larger extent, also predictive ability of
search volume indexes on volatility and trading volume.

Differently from the aforementioned studies, Da et al. (2015) search for words that, more generically, reveal sentiment towards
economic conditions like “recession”, “bankruptcy” and “depression”. These specific searches are then combined in order to construct
a Financial and Economic Attitudes Revealed by Search index (FEARS). Da et al. (2015) find that FEARS actually predicts aggregate
market returns. Specifically, low returns today and high returns tomorrow. Dzielinski (2012) builds a measure of uncertainty on
searches by US users of a single, but widespread, keyword: “economy”. Moreover, he transforms the raw series using an year-over-
year ratio. His measure is positively correlated with alternative measures of uncertainty and negatively with measures of investor
confidence, and the impact on the financial markets is consistent with the drop-and-rebound observed by Bloom (2009).

Google search-based uncertainty indicators have been used to analyse the effects not only on financial markets, but also on the
real economic activity. Donadelli (2015) develops three uncertainty indexes based on Google searches (GSIs) for the following
keywords: “US stock market”, “US politics” and “US Fed”. He finds that GSI shocks produce significant adverse effects on main
macroeconomic indicators, i.e., (i) a rise in unemployment and (ii) a drop in share prices, long-term rates, industrial production,
consumer credit and consumer confidence.

In a similar fashion, Castelnuovo and Tran (2017) explore the effect of shocks to Google-search-based uncertainty indexes on real

! According to comScore: “Google Sites led the explicit core search market in February-16 with 64 percent of search queries conducted” (https://
www.comscore.com/Insights/Rankings/comScore-Releases-February-2016-US-Desktop-Search-Engine-Rankings).
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variables for Australia and the US. They document an economically and statistically significant contribution to unemployment dy-
namics for the US and a milder effect for Australia. Differently from Dzielinski (2012) and Donadelli (2015), the index developed by
Castelnuovo and Tran (2017) is based on a wide range of keywords mentioned in the Federal Reserve's Beige Book for the United
States and the Reserve Bank's Monetary Policy Statement for Australia.

Finally, in the spirit of Baker et al. (2016), Bontempi et al. (2017) present an uncertainty measure that relies on Google searches
for “economy” or “economic” plus “uncertain” or “uncertainty” and one or more policy-relevant terms. They find that for some topics
journalists lead the general interest of the public, while for other topics they react to the increased interests of their readers. They also
reject the dynamics suggested by Bloom (2009) and conclude that (i) “finance-based uncertainty induces overshooting effects”, (ii)
“forecast-based uncertainty induces very persistent effects”, and (iii) “news-based uncertainty induces transitory effects”.

Our newly-developed NM-GSIs complement other existing measures of uncertainty, allowing to measure the genuine interest of
the population towards a variety of “anxiety-provoking topics”. Actually, as opposed to the existing empirical works, our NM-GSIs do
not strictly rely on finance- or macro-related terms, but can be associated to anxiety and apprehension states. Not surprisingly, we
observe that the newly-proposed NM-GSIs and the existing macroeconomic policy-related uncertainty indicators are (on average) not
correlated or weakly correlated (see Table 2).

3. Data

Non-Macro-Related Google Search-Based Uncertainty Indicators (NM-GSIs). As anticipated in Section 2, our aim is to build
uncertainty indexes that are marginally related, or eventually, totally unrelated to topics or events directly affecting current and
future financial and real market dynamics. Google trends functions “related topics” and “related queries” allow to understand which
topics or (search) terms a given topic/term is related to.? We use these functions to select a set of topics that might (i) capture a wide
range of different “bad” (or uncertain) events and (ii) avoid spurious correlations with macro-related or finance-related issues/events.
We have thus voted for the following topics: “symptom”, “pollution”, “terrorism”, and “election”.® Related topics are reported in
Table 1. “Symptom” seems to be related with a wide range of health issues, ranging from serious diseases (like cancer or infection) to
less problematic ones (like influenza) including pregnancy, which is not a bad event per se but implies a substantial amount of
uncertainty. Similarly, the topic “pollution” is connected with air, water or land pollution, but even noise or light pollution. In-
tuitively, “terrorism” is related to some of the most well-known terroristic organizations, like ISIS, dates or locations of tragic
terroristic attacks, and war on terror. Finally, “election” tends to be associated with institutions like the President, parties and election
candidates, or election outcomes. Surely, among the four selected topics, “election” is the one more likely to be close to macro-
economic issues. On the one hand, it (strictly) represents a non-economic term. On the other, however, it is a policy-related topic. We
decide to include this topic in our analysis because not yet considered in previous studies (Donadelli, 2015; Bontempi et al., 2017;
Castelnuovo and Tran, 2017).% In this respect, our goal is to examine whether attention to future (and uncertain) elections revealed
by internet searches could be considered itself as an uncertainty indicator.

Loosely speaking, one could potentially relate the selected topics to higher anxiety and apprehension, which have been found to create
negative sentiment that may affect both financial and real aggregates (Kaplanski and Levy, 2010). Moreover, our choice is motivated by the
extensive media coverage that can be associated with the aforementioned topics. Widespread media coverage of topics like health, pollution
and terrorism — due to the presence of “bad images that can have a potential for psychological damage to viewers” — can be sufficiently
emotionally to provoke fear and increase stress, and thus alter economic agents’ plans (Kaplanski and Levy, 2010). Similarly, a large number
of news related to “election” could represent a signal of increasing uncertainty. As noticed by Kitzinger and Reilly (1997), once a topic gains a
certain level of media attention, it attracts more attention, and because it attracts more attention, it becomes more newsworthy. It turns out
that, a large number of news and a higher speed of information inflows represent the sources of the observed rise in media attention to
selected topics. In the era of internet and social media, this results in rising Google searches on those specific terms/topics. In other words,
search frequency intensifies as the level of attention to a specific topic rises. Note that in our VAR analysis the (raw) NM-GSIs will be
transformed first as in Da et al. (2011) and then following the procedure of Dzielinski (2012). This implies reducing the full sample (i.e.,
January 2004-December 2017) to the period January 2005-December 2017.

Moreover, as highlighted in Choi and Varian (2012), Google Trends data are computed using the sampling method. Therefore a
drawback of using Google Trends data is related to replicability, since the very same query made in two different moments gives rise
to (slightly) different trends. We stress that, for particular queries, these differences might be relevant. One of the novelties of our
paper is that, to overcome this issue and be as close as possible to the true population value, we do not rely on a single downloaded
series, but we ask the same query for at least ten consecutive days and then use the average of these series. For each single query, the
pairwise correlation is never lower than 0.99, meaning that the topics we use are quite robust to the sampling method.®

2«[Google trends] topics [...] are groups of terms that share the same concept in any language” (Kim et al., 2018).

3 Differently from terms such as “economy”, “white house”, “stock market”, “bankruptcy”, “US FED”, “debt ceiling”, “economic reforms” selected
by Dzielinski (2012), Donadelli (2015) and Castelnuovo and Tran (2017), the words we search for via Google trends are not directly related to
macro-related or finance-related issues/events.

* A similar argument holds for the following political-related keywords/topics: “poll” and “voting”.

S Note that, to the best of our knowledge, most of the existing studies capturing economic policy uncertainty by means of Google Trends are silent
on this issue. Two exceptions are Da et al. (2011) (“To increase the response speed, Google currently calculates internet search volume indexes from
a random subset of theactual historical search data. This is why Google search volume indexes on the same search term might be slightly different
when they are downloaded at different points in time.”) and Tran (2017) (“the exact replication of the data is not feasible due to sampling
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Table 1
Symptom, pollution, terrorism and election Google Searches — related topics
Symptom Pollution Terrorism Election
Pregnancy 100 Air pollution 100 War 100 Result 100
Cancer 82  Atmosphere of Earth 98  War on Terror 81 United States presidential election, 2016 41
Pain 72  Water 96  September 11 attacks 65  Voting 26
Disease 66  Water pollution 77 Counter-terrorism 65  President 24
Infection 60  Biophysical environment 26  Threat 47  President of the United States 24
Influenza 57 Ocean 17 Muslim 44 Primary election 22
Blood 36  River 16  Paris 41 Opinion poll 17
Diabetes mellitus 35  Fact 15 Islamic State of Iraq and the Levant 40  Election Day (US) 12
Urinary tract infection 29 China 15 Barack Obama 35 United States presidential election, 2012 12
Allergy 27 Waste 13 Bomb 31 Donald Trump 10
Abdomen 23 Light pollution 12 France 31 Candidate 7
Menstruation 22 Soil 11 Islamic terrorism 31 Barack Obama 7
Anxiety 21 Noise pollution 11 London 29 Democratic Party 6
Virus 20  Soil contamination 11 Domestic terrorism 29  Republican Party 6
Feeling 20  Marine pollution 11 Organization 23 Hillary Clinton 5
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Fig. 1. Evolution of NM-GSIs for the United States. Notes: This figure shows the evolution of the NM-GSIs. Black (solid) line: NM-GSIs are trans-
formed according to Da et al. (2011). Red (dashed) line: NM-GSIs are first transformed as in Da et al. (2011) and then seasonally adjusted using the
X-11-ARIMA procedure.

Fig. 1 shows the evolution of our four NM-GSIs for the US. Outstanding peaks can be easily related to key events: for example,
“terrorism” NM-GSI peaks around the Boston Marathon bombing of April 2013 or the November 2015 Paris attacks. Similarly,
“election” highest peaks correspond to October and November of presidential-elections and mid-term-elections years; that is, the
month preceding the election and the month of the election. It is worth noting that in December (i.e., after the election but still before
the freshly elected formally assume the office) the interest has already almost completely vanished.

In Table 2, we show the correlation between our four newly developed NM-GSIs and a variety of existing popular indicators of equity
market- and economic policy-related uncertainty. In order to match the frequency of our NM-GSIs, only indicators available at monthly
frequency are used. These are: VIX, EPU-US, EPU-GLOBAL, GPR, GSI (“US stock market”) and GTU. Notably, “symptom”, “pollution” and
“terrorism” are uncorrelated or even negatively correlated with the majority of the existing uncertainty measures. Sizable co-movement is
found only between “terrorism” and the GPR index of Caldara and Iacoviello (2016). Actually, we observe a statistically significant positive
correlation of 0.53. This should not come as a surprise given that the news-based GPR index relies also on terms related to war and terrorist
threats (i.e., words groups 3 and 4 of the GPR). A similar argument applies for the observed positive (but milder) and significant correlation
between the Global EPU indexes and our “terrorism” NM-GSI. In fact, the construction of the Global EPU involves searches for war-related
words in some countries (e.g., “military” or “Guerra” for Mexico). Moreover, we observe a significant (mild) positive correlation between the

(footnote continued)
variability, especially for small volume search terms”). Both studies argue that such sampling variability is not affecting their analysis. Still,
differently from us, they do not provide any empirical strategy aimed at fixing the “Google trends replicability issue”.
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Table 2
Correlation: NM-GSIs vs. macroeconomic policy-related indexes
VIX EPU EPU EPU EPU GPR GSI GTU
US (news) Us Global Global (PPP) Us

Symptom 0.47%** —0.01 0.08 -0.10 -0.10 —0.09 0.11 0.51%**
Pollution 0.24%** 0.06 0.01 0.05 0.07 0.02 0.21%** 0.17%**
Terrorism 0.03 0.07 0.00 0.21%** 0.21%** 0.53%** 0.18** —0.26%**
Election 0.18** 0.27%** 0.19%* 0.25%** 0.24%** —0.04 0.28%** 0.02

Notes: This table reports the correlation between a number of different economic policy related uncertainty indicators and NM-GSIs. NM-GSIs are
transformed according to Da et al. (2011) and seasonally adjusted using X-11-ARIMA procedure. VIX: = CBOE Volatility Index; EPU US (news): =
(Baker et al., 2016) US news-based economic policy uncertainty index; EPU (US): = (Baker et al., 2016) US economic policy uncertainty index; EPU
(Global): = (Baker et al., 2016) global economic policy uncertainty index based on current-price GDP; EPU Global (PPP): = (Baker et al., 2016)
global economic policy uncertainty index based on PPP-adjusted GDP; GPR: = Caldara and Iacoviello (2016) geopolitical risk index; GSI: =
(Donadelli, 2015) Google search-based index for “US Stock Market”; GTU: = (Castelnuovo and Tran, 2017) US Google trend uncertainty index,
available until 2016:M12.

“symptom” and “pollution” NM-GSIs and both the VIX and the GTU of Castelnuovo and Tran (2017). In this respect, some studies have shown
that shocks to health-(Huberman and Regev, 2001; Donadelli et al., 2017b) and environmental-related (Bansal et al., 2016; Donadelli et al.,
2017a) issues might be related to negative equity market outcomes (i.e., high equity market volatility).” Then, and not surprisingly, the
policy-related topic “election” is significantly correlated with the majority of the considered proxies of fear/uncertainty. Still, the absolute
value of these correlations is quite low, ranging from a min of -0.04 (GPR) to a max 0.28 (GSI).

Financial and Macroeconomic Variables. As US macroeconomic indicators, we use the industrial production index (IP), civilian
unemployment rate (UR), total consumer credit owned and securitized (CC). All the US macroeconomic aggregates are from the
Federal Reserve Bank of St. Louis database. As financial indicators, we use the share price index (SPI), which is measured as the
closing value of the S&P500 and is retrieved from yahoo.finance database, and the 10-year treasury constant maturity rate (R), from
the FRED database. We also use both the Consumer (CCI) and the Business Confidence Index (BCI), from OECD. All data are monthly
and run from January 2004 to December 2017.

4. Empirical analysis
4.1. Methodology

The effects of a NM-GSI shock on main financial and macroeconomic aggregates are identified via standard VAR models
(Donadelli, 2015; Bontempi et al., 2017; Castelnuovo and Tran, 2017). Our benchmark VAR model reads as follows:

P
Y=Co+ ) BYiyp +V
=1 @

where the reduced-form residuals in V are normal with zero mean and variance covariance matrix E(VV') = Q,
Y = [NM — GSI, SPI, R, CCI, BCI, CC, IP, UN]’ is the vector including all endogenous variables, C, is a vector of constants, B is the
VAR's coefficient matrix. VAR coefficients are estimated via OLS. All variables in our VAR analysis are expressed in percentage
change form, except for the NM-GSI,” the interest rate, R, and the unemployment rate, UR, which are in levels. In the spirit of
Donadelli (2015), the ordering in Y; is based on the assumptions that NM-GSI shocks contemporaneously affect financial market
dynamics (SPI and R), then consumer and business confidence, and finally the real economic activity (CC, IP and UR).® NM-GSIs are
thus ordered first in a Cholesky decomposition.” The AIC, SC and HQC are jointly employed to select the optimal number of en-
dogenous lags. Unless specified in the text or in the caption, this number of endogenous lags is equal to two.

4.2. Main results

In this section we report the impulse response functions of main financial, confidence and macroeconomic indicators to different
NM-GSI shocks. Specifically, we discuss the implications on the real economic activity of a shock to a (i) “symptom” NM-GSI (Fig. 2);
(ii) “pollution” NM-GSI (Fig. 3); (iii) “terrorism” NM-GSI (Fig. 4) and (iv) “election” NM-GSI (Fig. 5).

6 Note that controlling for the VIX (or GTU) does not alter the main effects of “symptom” and “pollution” NM-GSI shocks. Unreported results are
available upon request.

7 Please note that our baseline NM-GSI measures the percentage change deviation from the median value of the preceding year.

8 Note that assuming uncertainty responding not contemporaneously to changes in financial and macroeconomic variables represents a very
common restriction (see, among others, Bachmann et al., 2013; Caggiano et al., 2014; Castelnuovo and Tran, 2017).

°In Section 4.3 we perform a couple of robustness checks to show that the macroeconomic implications of NM-GSI shocks are not affected by
alternative variable orderings.
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Fig. 2. Impulse Responses to a “Symptom” NM-GSI Shock. Notes: This figure reports “Cholesky” orthogonalized impulse responses to a “Symptom”
NM-GSI (1sd) shock. Column A: the raw NM-GSI is transformed as in Da et al. (2011). Column B: the raw NM-GSI is transformed as in Da et al.
(2011) and the VAR includes seasonal dummies. Column C: the raw NM-GSI is transformed as in Dzielinski (2012). VARs are estimated with a
constant. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68%
bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

For the sake of robustness, impulse responses are estimated using three different VAR specifications. First, impulse responses are
obtained from a VAR where the raw Google trends are transformed following the procedure described in Da et al. (2011) (Figs. 2-5,
Column A). Since the approach suggested by Da et al. (2011) seems to account only partially for seasonality, in a second check, we
compute impulse responses from a VAR including seasonal dummies (Figs. 2-5, Column B). Finally, we transform our raw NM-GSIs
by using the transformation suggested by Dzielinski (2012) (Figs. 2-5, Column C). VAR estimated impulse responses are reported
jointly with 90% bootstrapped confidence intervals. Following recent empirical works focusing on the macroeconomic effects of
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Fig. 3. Impulse Responses to a “Pollution” NM-GSI Shock. Notes: This figure reports “Cholesky” orthogonalized impulse responses to a “Pollution”
NM-GSI (1sd) shock. Column A: the raw NM-GSI is transformed as in Da et al. (2011). Column B: the raw NM-GSI is transformed as in Da et al.
(2011) and the VAR includes seasonal dummies. Column C: the raw NM-GSI is transformed as in Dzielinski (2012). VARs are estimated with a
constant. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68%
bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

uncertainty shocks and rising policy uncertainty, 68% bootstrapped confidence intervals are also reported (Caggiano et al., 2014,

2017; Castelnuovo and Tran, 2017).°

10 For instance, Castelnuovo and Tran (2017) compute impulse response functions to a GTU shock where only 68% confidence bands are added.
Only 68% confidence bands are reported also in Caggiano et al. (2017) who examine the impact of an EPU shock in the US using a non-linear
approach. Differently from these studies, for the sake of completeness, we compute both 68% and 90% confidence bands.
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Fig. 4. Impulse Responses to a “Terrorism” NM-GSI Shock. Notes: This figure reports “Cholesky” orthogonalized impulse responses to a “Terrorism”
NM-GSI (1sd) shock. Column A: the raw NM-GSI is transformed as in Da et al. (2011). Column B: the raw NM-GSI is transformed as in Da et al.
(2011) and the VAR includes seasonal dummies. Column C: the raw NM-GSI is transformed as in Dzielinski (2012). VARs are estimated with a
constant. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68%
bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

“Symptom.” The most relevant and significant consequences of an unanticipated 10% increase in the frequency of internet
searches for the topic “symptom” are observed in the real economy. Precisely, a rising search intensity for the topic “symptom”
generates (i) a drop in consumer credit of around 0.1 percentage points (pp) lasting for five months and (i) a long-lasting significant
increase in the unemployment rate. A significant decrease on impact in the industrial production growth (of around 0.15pp) and in
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Fig. 5. Impulse Responses to a “Election” NM-GSI Shock. Notes: This figure reports “Cholesky” orthogonalized impulse responses to a “Election” NM-
GSI (1sd) shock. Column A: the raw NM-GSI is transformed as in Da et al. (2011). Column B: the raw NM-GSI is transformed as in Da et al. (2011)
and the VAR includes seasonal dummies. Column C: the raw NM-GSI is transformed as in Dzielinski (2012). VARs are estimated with a constant.
Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped
confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the long-term interest rate is also observed following a “symptom” NM-GSI shock.""
“Pollution.” An intensification of internet searches for “pollution” gives rise to adverse effects both in the financial markets and

in the real economy. For instance, a 10% “pollution” NM-GSI shock produces on impact a drop of around 0.05pp (0.02pp) in the
consumer credit (industrial production). Both effects last for several months after the shock. Moreover, from five months after the

11 please note that, unless differently specified, by “significant” we mean “significant at the 10% level”.
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Fig. 6. Impulse Responses to a Shock to the dummy indicator for abnormal interest in the topic “Election”. Notes: This figure depicts “Cholesky”
orthogonalized impulse responses to a (1sd) shock to the dummy indicator for abnormal interest in the topic “Election” (far from an election). This
indicator assumes value one when two conditions are satisfied (i) NM-GSI “Election” is in the top quartile and (ii) the month is different from
October or November of an even year. VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses.
Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

shock there is also a significant rise in the unemployment rate. A “pollution” NM-GSI shock affects also the stock market. Precisely,
we observe a significant drop in the SPI of around 0.15pp two months after the shock. The fact that the aggregate stock market price
falls after the shock (see Fig. 3) with no evidence of a short-time price-reversal seems to be in line with recent empirical evidence
suggesting that climate change-related phenomena lower equity valuations (Bansal et al., 2016; Balvers et al., 2017; Donadelli et al.,
2017a). As briefly mentioned in Section 3, the idea here is that increasing media attention to environmental-related phenomena is
associated to an intensification of Google searches for “pollution”.

“Terrorism.” The impulse responses depicted in Fig. 4 suggest that the most relevant result related to a “terrorism” NM-GSI shock is the
strong and highly significant decrease in consumer credit both on impact (of around 0.02pp following a 10% shock) and after one month (of
around 0.06pp). Moreover, on impact, the shock leads to (i) a significant drop (of around 0.01pp) in the interest rate and (ii) a 0.01pp increase
in the unemployment rate. Counterintuitively, a 0.1pp increase in the stock market returns fourth months after the shock is also observed.

“Election.” Perhaps surprisingly, a rise in the frequency of internet searches for the topic “election”, which could be considered as
the least “macro-neutral” of the four selected topics, does not have significant macroeconomic implications. In particular, it does not
generate a contraction is consumer credit (as observed following a “symptom” and “terrorism” NM-GSI shock). The only effect
detected in the real economy is a decline (of around 0.01pp) in the industrial production growth three months after the shock. Let us
remark that this effect is weaker and less long-lasting than the one generated by a “symptom” and “pollution” NM-GSI shock. There is
also a significant 0.08pp decrease in the share price after one month.

Probably, uncertainty caused by the imminence of an election is an expected source of uncertainty. Households and firms are not
surprised by the occurrence of an election at the beginning of November of an even year, and they do not sharply revise their
consumption habits or production plans. Therefore, there are macroeconomic effects, but these are milder if compared to sudden and
unexpected shocks, concerning for example health or environmental issues, that induce households to suddenly change their beha-
viour. Following this intuition, we construct a dummy indicator for abnormal interest in the topic “election” far from an election. This
indicator assumes value one when the following two conditions are satisfied: (i) NM-GSI “election” is in the top quartile and (ii) the
month is different from October or November of an even year. In doing so, we check whether worrying for elections, when there are
no immediate reasons to care about elections, has any aggregate real effect. Actually, using this indicator we obtain impulse responses
(Fig. 6) more in line with those generated by a shock to the other NM-GSIs. In particular, we observe a significant (at 32% level) drop
in the consumer credit after one month. A significant drop in consumer confidence and long-term rates is also observed.

Taken together, our findings suggest that an increase in the search intensity concerning non-macro-based topics, but that are
anyway related to fear and uncertainty (i.e., bad mood states or stressed times), has significant implications for real economic
variables, i.e., a drop in the outstanding amount of consumer credit (except for “election”), a decrease in industrial production
(except for “terrorism”) and an increase in the unemployment rate (except for “election”). Among these three observed effects, the
one that appears to be more relevant and significant is the one on consumer credit which, most likely, is the macroeconomic
aggregate more directly affected by consumers’ behaviour (which determine the demand side of consumer credit) among the financial
and macroeconomic variables we considered.'? Actually, the observed drop in consumer credit is likely to be related to the increase in

12 Note that this finding is not altered by different VAR specifications, including controlling for credit tightness using the Credit Easing (CE) Index,
as suggested by Carroll et al. (2012). All these robustness tests are discussed in Section 4.3.
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precautionary saving motives that follows a first-moment or second-moment adverse shock; i.e., rising consumers’ anxiety affects
their willingness to borrow money for consumption purposes. Within our analysis, stronger credit implications are found to occur
upon the realization of shocks to a very frequently searched topic (i.e., “symptom”) and unexpected and exceptional fear-provoking
events (i.e., “terrorism”). The order of magnitude is a monthly decrease of 0.05pp-0.1pp in the outstanding amount of consumer
credit following a 10% increase in the search volume of “symptom” or “terrorism”. The consequences of shocks to less frequently
searched topics (“pollution”) or unfrequent but unsurprising uncertainty-provoking events (“election”) are present, but milder.

Let us stress that the downside of anxiety related to a sudden, maybe even irrational, shock of interest for a non-macro-based
source of uncertainty is somehow limited and unlikely to be large enough to provoke a new Great Depression. In fact, an exceptional
ten-fold increase in the search frequency would imply a drop of around 2-3pp of the outstanding amount of consumer credit. Still, it is
worth mentioning that the macroeconomic effects of “non-macro-based anxiety” are tangible and not trivial.

4.3. A battery of robustness checks

In this section we perform a battery of robustness empirical tests regarding the implications of NM-GSI shocks on the US financial,
confidence, and macroeconomic indicators.'®

Alternative topics. As a first set of robustness test, we examine the implications of rising interest in topics close to “symptom”
and “pollution”. In doing so, one can account for different dimensions of non-macro-based uncertainty/anxiety. First, we focus on the
following health-related topics: “health”, “disease”, and “cancer”.'* An intensification of the interest in each of these topics has a
different quantitative economic relevance and statistical significance, but the qualitative interpretation of the adverse macro-
economic effects is basically unaffected, i.e., a “health”, “disease”, or “cancer” NM-GSI shock generates a drop in industrial pro-
duction and consumer credit (Fig. A1)."®> We then consider a set of environmental-related topics, with a particular focus on climate
issues, i.e., “climate change” and “global warming”. Impulse responses to “climate change” and “global warming” NM-GSI shocks are
rather similar (Fig. A2). For instance, on impact, consumer credit and industrial production drop following a “global warming” NM-
GSI shock. Slightly different effects are found among confidence and financial indicators.

Different lag-order (3 lags). In the baseline analysis, the endogenous number of lags is selected according to the AIC, SC and
HQC criteria, which for all the considered cases suggest a value of two. Here we fix (for all VARs) the number of lags to three. Impulse
responses obtained from a VAR with three lags are reported in Fig. A3. Results are qualitatively similar.’® Importantly, we still
observe consumer credit (unemployment) significantly decreasing (increasing) upon the realization of a “symptom” or “pollution”
NM-GSI shock.

Different variables ordering. In the spirit of recent studies examining the impact of macroeconomic policy-related shocks on
financial and macro dynamics (Bachmann et al., 2013; Caggiano et al., 2014; Jurado et al., 2015; Castelnuovo and Tran, 2017), in our
baseline VAR analysis, uncertainty is ordered first. What about ordering it last? To address this issue, we rely on the following vector,
Y = [SPI, R, CCI, BCI, CC, IP, UN, NM — GSI, ]/, where our newly developed NM-GSIs are ordered last in a Cholesky decomposi-
tion. Note that this allows us to control for the possible role played by contemporaneous variables in the VAR in affecting non-macro-
based uncertainty. Impulse responses from this alternative VAR specification are reported in Fig. A4. The imposed alternative or-
dering marginally affects the impulse responses to a “symptom” (Fig. A4, Panel A) and a “terrorism” (Fig. A4, Panel C) NM-GSI shock.
In particular, rising internet search frequency for symptom and terrorism still generates a significant drop in consumer credit.
Differently, under this alternative ordering the response of consumer credit to “pollution” (Fig. A4, Panel B) and “election” (Fig. A4,
Panel D) NM-GSI shocks is partially altered. For instance, the impact response of consumer credit following a NM-GSI “pollution”
shock becomes statistically insignificant. Specifically, a significant drop on consumer credit is found (at 32% level) only from three to
five months after the shock (see Fig. 3 vs. Fig. A4 “Panel B”).

Generalized IRFs. As a further robustness check, instead of imposing a given variables ordering, we adopt the generalized
impulse response function (GIRF), which “does not require orthogonalization of shocks and is invariant to the ordering of the
variables in the VAR” (Pesaran and Shin, 1998). Results are reported in Fig. A5. Following this order-agnostic approach leads to
similar macroeconomic implications. Importantly, we still observe a significant drop in consumer credit (at least at 90% confidence
interval) following a “symptom” (Fig. A5, Panel A), a “pollution” (Fig. A5, Panel B) and a “terrorism” (Fig. A5, Panel C) NM-GSI
shock.'” A significant drop in production and a rise in the unemployment rate following a “symptom” NM-GSI shock is also found.

Seasonally adjusted indexes. The transformation suggested by Da et al. (2011) is quite robust, since the raw value is divided by
the median of the monthly values of the previous year, but does not get rid of the seasonality presented by several queries. For
instance, we still have a very strong seasonality for “pollution” (see Fig. 1). As previously mentioned, this motivates our choice of

13 We thank two anonymous referee for asking questions and raising issues that elicited the information in this section.

14 We prefer “symptom” rather than queries concerning specific diseases because (i) it is more frequently searched and (ii) it allows to capture a
broader range of health issues. We also prefer “symptom” rather than “health” because the latter is more mood-neutral and, among the related
topics, several are administrative ones, like “health care”, “health insurance” or “clinic”.

5 This is not surprising given that “disease”, and “cancer” are among the most closely related topics searched jointly with “symptom” (see
Table 1).

16 similar conclusions can be drawn by estimating a VAR with one or four lags. For the sake of brevity results are not reported but available upon
request.

'7 Notice that impulse responses in Fig. A5 are accompanied with 95% Montecarlo simulated confidence bands (and not 90% or 68% confidence
bands).
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Table 3
Correlation: random composite NM-GSIs vs. baseline NM-GSIs
Randoml Random2 Random3 Random4 Random5 Random6
Symptom 0.21%** 0.05 —0.02 —0.08 0.07 0.12
Pollution —0.14* —0.05 —-0.09 0.05 —0.21%** —0.18**
Terrorism 0.02 0.2%* 0.09 0.07 0.08 0.06
Election —0.21%** —0.29%** 0.19%* 0.01 —0.15*% 0.07

Notes: This table reports the correlation between random composite NM-GSIs and baseline NM-GSIs. NM-GSIs are transformed according to Da et al.
(2011) and seasonally adjusted using X-11-ARIMA procedure.

presenting both the VAR including time dummies and the VAR in which raw data are transformed following Dzielinski (2012), which
has the drawback of being sensitive to outliers but, at the very same time, accounts (almost fully) for seasonality. For the sake of
completeness, in this robustness test the Da et al. (2011) transformed NM-GSIs are also seasonally adjusted by using the Xx-11-ARIMA
procedure. Of course, seasonal dummies are no more included in the VAR. Intuitively, VAR investigations deliver very similar
impulse responses (see Fig. A6).

Growth vs. level effects. In the baseline VAR analysis, all the financial and macroeconomic variables (except for long-term rates and
unemployment) enter as growth rates. In recent existing similar studies (Donadelli, 2015; Castelnuovo and Tran, 2017), however, these variables
have been expressed in log-levels. For robustness and comparison purposes, we also estimate our baseline VAR where stock market prices,
confidence indicators, consumer credit and production are expressed in log-levels. Not surprisingly, the effects tend to be more long-lasting. Still,
an increase in the Google search intensity for “symptom”, “pollution” or “terrorism” turns out to have adverse real economic effects.

Controlling for general uncertainty. Even if correlation coefficients reported in Table 2 suggest that NM-GSIs and standard indicators of
macroeconomic policy uncertainty tend to capture different dimensions of uncertainty, we augment our baseline VAR first by controlling for
the general level of economic policy uncertainty in the US, and secondly by controlling for the Google search-based index for “US Stock
Market” (Donadelli, 2015). Specifically, in the first analysis we add to our baseline vector the US EPU index and order it first, i.e.,
Y = [EPU, NM - GSI, SPI, R, CCI, BCI, CC, IP, UN]’, while in the second we add the GSI index and order it first, i.e.,
Y = [GSI, NM — GSI, SPI, R, CCI, BCI, CC, IP, UN]'. By doing so, we purge each NM-GSI from the contemporaneous movements in the
general level of uncertainty, or from contemporaneous shifts in the interest for the “US Stock Market”. Results — reported in (A8-A11) —
suggest that the macroeconomic implications of NM-GSI shocks are not altered by variations in the EPU or the GSI level. Moreover, it is
interesting to note that these economics-related uncertainty indexes have, as theoretically expected, a stronger and more significant adverse
impact than non-macro uncertainty on all the macroeconomic and financial variables we consider — except for consumer credit. Turning the
attention to the effects on consumer credit, the effect of rising EPU is not significant, while the one of a GSI shock is significant but smaller
than that one generated by a “symptom” or “terrorism” NM-GSI shock.

Controlling for credit tightness. For three of the four NM-GSIs we consider, we find a relevant and significant effect on consumer
credit. Of course, this is not necessarily related to consumers’ anxiety states (demand side) but could also be the consequence of credit
tightness (supply side). For this reason, we control for credit tightness by including a proxy for the Credit Easing in our VAR analysis.
As in Carroll et al. (2012), this is represented by “the change in the banks’ willingness to provide consumer instalment loans from the
Senior Loan Officer Opinion Survey on Bank Lending Practices” (http://www.federalreserve.gov/boarddocs/snloansurvey/).'®
Unfortunately, these data are available only at quarterly frequency. Monthly figures are obtained using the Chow-Lin interpolation
method (Chow and Lin, 1971). CE is added and ordered first, i.e. Y = [CE, NM — GSI, SPI, R, CCI, BCI, CC, IP, UN]'. The impulse
response of consumer credit to a shock to “terrorism” and “symptom” maintains the order of magnitude estimated in the baseline
analysis and remains statistically significant at the 10% level, while the one to a “pollution” shock has, on impact, an effect which is
barely significant at conventional levels, but significant at the 32% level.

Composite NM-GSIs. In this robustness test, we test whether the selected four non-macro-related NM-GSIs pooled together
generate similar financial and macroeconomic effects. We build first an aggregate NM-GSI by computing the simple (weighted)
average of the four search intensities.'” We denote this index as “NM-GSI_AVG”. Then, for the sake of completeness, we build and
additional composite index (“NM-GSI_PCI”) by relying on the first principal component extracted from the dataset composed by the
four different Google searches (i.e., Google trends for “symptom”, “pollution”, “terrorism” and “election”). Impulse responses to
composite NM-GSI shocks are reported in Fig. A13. Actually, a shock to “NM-GSI_AVG” generates significant adverse effects on the
real economy, namely a drop on impact in consumer credit and, after two months, a decline in industrial production and an increase
in the unemployment rate. We observe also a decrease on impact in SPI followed by a decrease in R (flight-to-quality effect). Similar
conclusions can be drawn by looking at the effects of a “NM-GSI_PCI” shock (Fig. A13, Panel B).

“Random Search” Are our results just driven by luck? Are they influenced by spurious correlations? To exclude the (unfortunate)
hypothesis that any Google query is able to explain financial and macroeconomic patterns, we have download six different sets of
quartets of random words/topics. The randomly chosen keywords sets are:

8 Carroll et al. (2012) use the accumulated change, while we use the change.

19 Specifically, downloading Google trends for more than one keyword at the same time, all data are scaled with respect to the “highest monthly
maximum” among the requested keywords. Therefore, it is possible to compare the distribution of two, or more, keywords using the same measure,
and to infer their relative importance in Google users’ searches.
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—

. “Attorney”, “Bag”, “Boot”, “Bread”.

ii. “Beach”, “Movie”, “Song”, “Play”.

iii. “Flower”, “Rain”, “Sun”, “Team”.

iv. “Bed”, “Cup”, “King”, “Star”.

v. “Ball”, “Boat”, “Shoes”, “Snow”.

vi. “Bike”, “Final”, “Flight”, “Restaurant”.

Each quartet is then aggregated as done for the benchmark “NM-GSI_AVG”. This leads us to having six different Random
Composite NM-GSIs.

First and most importantly, one can observe that the newly developed (by means of random searches) composite NM-GSIs are
weakly correlated with our “symptom”, “pollution”, “terrorism” and “election” NM-GSIs (see Table 3). Only sporadically, we observe
a statistically significant correlation. However, this is either negative or really small (i.e., < 0.3).

Figs. A14-A16 present the results against those obtained using the benchmark “NM-GSI_AVG”. The effects on macroeconomic and
financial variables are rarely statistically significant. There are very few exceptions. For instance, a shock to the NM-GSI built using
the first random set of keyword (i.e., “attorney”, “bag”, “boot” and “bread”) seems to have a significant impact on the interest rate,
consumer credit and production. We stress that the the drop in consumer credit (industrial production) is significant at 32% only two
months (one month) after the shock. One might argue that this random set includes “attorney”, which is a term likely to induce
anxiety and apprehension. Moreover, it is reasonable to assume that an increased volume of searches for “attorney” is related to an
higher demand for attorney services, and the expected high expense induces higher saving and lower borrowing. A short term drop in
consumer credit is also induced by a shock to the composite NM-GSI built using the random set (ii) and (vi). However, the effect is less
significant, smaller in magnitude and less long-lasting than the one produce by a “symptom” (Fig. 2), “pollution” (Fig. 3) or “ter-
rorism” (Fig. 4) NM-GSI shock. The above examples highlights that, for sure, “symptom”, “pollution”, “terrorism” and “election” are
not the only four topics which induce anxiety and apprehension. We select these words to have proxies of different kind of un-
certainties - related to health, environmental, security and political issues, respectively - and to check whether these sources of
uncertainty have implications on the real economy, but the set of words affecting the mood of individuals is definitely much larger.
An analysis of the macroeconomic implications of raising interest in different topics is left for future research.

Different countries: Evidence from the UK and Australia. In this section, we analyze whether anxiety for health-, environmental-,
security- or political-related issues have comparable results also in other countries. Specifically, we select other two English-speaking
countries, i.e., UK and Australia. All financial and macroeconomic variables for the UK are from the OECD, except for the consumer credit
(monthly amounts outstanding of total sterling consumer credit lending to individuals), which is from the Bank of England. Australian data on
stock market prices, long-term rates, consumer and business confidence are from the OECD. Data on industrial production (monthly activity
indicators - retail sales - all industries) and consumer credit (credit - total) are instead from the Reserve Bank of Australia.

The impulse responses to NM-GSI shocks for Australia and the UK are depicted in Figs. A17 and A18, respectively. Apparently, in
the UK there seems to be a recessionary effect on the consumer credit. However, it appears to be less statistically significant than the
one found in the US. Conversely, in Australia significant macroeconomic implications of rising search intensity for “symptom”,

” o«

“pollution”, “terrorism” and “election” are not present.*’

5. Concluding remarks

The empirical analysis carried out in this paper has shed new light on the most recent and growing literature focusing on the macro-
economic effects of internet-search-based uncertainty. By building four indicators of non-macro uncertainty based on the frequency of Google
searches for “symptom”, “pollution”, “terrorism” and “election”, we show that not only rising interest in topics (strictly) related to economic
and financial issues are associated with negative macroeconomic outcomes. Via standard VAR investigations, we show that a shock to the
frequency of internet searches for anxiety-related and fear-related topics, i.e., “symptom”, “pollution” and “terrorism”, harms the real eco-
nomic activity. In particular, a significant drop in consumer credit is observed. Noteworthy, shocks in the attention for a policy-related topic
(i.e., “election”) are less effective than pure non-macro-based anxiety and fear in explaining the movement of consumer credit. Adverse effects
on the industrial production and the unemployment rate are also observed. However, for these macroeconomic aggregates non-macro-based
uncertainty seems to be less relevant than macroeconomic policy uncertainty. Finally, rising interest in selected non-macro topics (e.g.,
“symptom”) is found to have (mild) effects on financial aggregates.

Overall, our novel empirical findings have shown that increasing attention to specific topics that might be anxiety-inducing are
associated with negative macroeconomic outcomes. Not surprisingly, the most relevant is a drop in consumer credit. Google trends
data are available almost in real time. Measuring the interest for anxiety/fear-provoking topics affecting directly households’
spending decisions could be thus helpful for financial intermediaries in estimating one step ahead liquidity demand.

There are, of course, a number of directions in which our empirical analysis could be fruitfully extended. First, we focus mainly on the U.S.
It would be interesting to check whether an intensification of Google searches concerning health issues, the environment, security issues and
politics have similar macroeconomic implications in other advanced or emerging economies. Second, we limit our main analysis to the search
of four, quite broad, topics. One could potentially build a larger set of NM-GSIs by focusing on alternative anxiety-inducing topics. For

20 Mild effects on unemployment, production and prices for Australia following a Google trend based uncertainty indicator (GTU) shock can be
found also in Castelnuovo and Tran (2017). However, differently from us, their GTU relies exclusively on macroeconomic policy-related variables.
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instance, what about building an index based on Google searches for very particular topics/events such as “Dieselgate” in Germany and
“Zika” in South America and Africa, or more general issues such as “hurricane” in the US, or “climate change” (Globally), or “CO2 emission”
in the World's most polluted countries (China, India, Pakistan, Egypt)? All these additional empirical tests are left for future research.

Appendix A. Robustness tests

Alternative health- and environmental-related topics

“HEALTH”

da_health —=> da_health

0.05
0.04
0.03
0.02
0.01
0.00
—-0.01
0

2 4 6 8 10 12 14 16
da_health —> SPI_delta

18 20

0.008
0.004F
0.000

-0.004|~

-0.008

-0.012

0

2 4 6 8 10 12 14 16 18 20

da_health => R

o 2 4 6 8 10 12 14 16

x 1073
| T I I I |
M= 00000
oOONOPO DM

0o 2 4 6 8 10 12 14 16 18 20

da_health —> Ip_delta

x 1073
|

R
ohmrOMD

0 2 4 6 8 10 12 14 16
da_health => UR

18 20

0.14
0.10
0.06
0.02
-0.02
—0.06
0.100

2 4 6 8 10 12 14 16

“DISEASE”

do_disease —> da_disease

“CANCER”

da_cancer —> da_cancer

0.05 0.05

0.04 0.04

0.03 0.03

0.02 0.02

0.01 0.01

0.00 0.00 ==

—-0.01 -0.01

o 2 4 6 8 10 12 14 16 18 20 2 6 8 10 12 14 16 18 20
da_disease —> SPI_delta da_cancer —> SPI_delta

888% 0.010

0.004 0.006

§Z§(8)§ == 0.002 _
7888% w_/ ~0.002
—0.008] \Z* —0.008p N3
-0.010 -0.010

0 2 4 6 8 10 12 14 16 18 20 2 6 8 10 12 14 16 18 20
da_disease —> R da_cancer —=> R

0.04

0.00

—0.04

-0.08

-0.12

-0.16

o 2 4 6 8 10 12 14 16 18 20
da_disease —> CCl_delta

N

o 2 4 6 8 10 12 14 16 18 20

6 8 10 12 14 16
da_cancer —> CC_delta

18 20

PO s o

0 2 4 6 8 10 12 14 16 18 20

6 8 10 12 14 16 18 20

x 1073

L

N=—=—=0000—
NOPOINNOO

0o 2 4 6 8 10 12 14 16
da_disease —> UR

18 20

6 8 10 12 14 16 18 20

da_cancer —=> UR

o 2 4 6 8 10 12 14 16

6 8 10 12 14 16 18 20

Fig. Al. Impulse Responses to alternative health-related NM-GSIs Shocks. Notes: This figure reports “Cholesky” orthogonalized impulse responses to
alternative health-related (“Health”, “Disease”, “Cancer”) NM-GSI (1sd) shocks. All “health-related” raw NM-GSIs are transformed as in Da et al.
(2011).VARs are estimated with a constant and include seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines:
90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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“GLOBAL WARMING”
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Fig. A2. Impulse Responses to alternative envinronmental-related NM-GSIs Shocks. Notes: This figure reports “Cholesky” orthogonalized impulse
responses to alternative climate-related (“Climate Change” and “Global Warming”) (1sd) NM-GSI shocks. Both “climate-related” raw NM-GSIs are
transformed as in Da et al. (2011). VARs are estimated with a constant and include seasonal dummies. Solid “black” lines: estimated impulse
responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-
2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Different lag-order

PANEL (A): “SympTOM”
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Fig. A3. Impulse Response to NM-GSI Shocks (3-Lags). Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A), “Pollution”
(Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. Raw NM-GSIs are transformed as in Da et al. (2011). VARs are estimated with
a constant, seasonal dummies and three endogenous lags. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence
bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Different variables ordering
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Fig. A4. Impulse Responses to NM-GSI Shocks (NM-GSI LAST). Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A),
“Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. NM-GSIs are transformed as in Da et al. (2011). VARs are
estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands.
Dashed “grey” lines: 68% bootstrapped confidence bands. In all VARs, NM-GSI is ordered last in a Cholesky decomposition. Sample: 2005:M1-2017:M12.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Generalized IRFs
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Fig. A5. “Generalized” Impulse Responses to NM-GSI Shocks. Notes: This figure reports Generalized impulse responses to a “Symptom” (Panel A),
“Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. Raw NM-GSIs are transformed as in Da et al. (2011) and
seasonally adjusted following the x-11-ARIMA procedure. VARs are estimated with a constant. Solid “black” lines: estimated impulse responses.
Solid “blue” lines: 95% (Montecarlo simulated) confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Seasonal-adjusted NM-GSIs
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Fig. A6. Impulse Responses to NM-GSI Shocks (X11-SA). Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A),
“Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. Raw NM-GSIs are transformed as in Da et al. (2011) and
seasonally-adjusted using the Xx-11-ARIMA procedure. VARs are estimated with a constant. Solid “black” lines: estimated impulse responses. Dashed
“blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Growth vs level effects
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Fig. A7. Impulse Responses to NM-GSI Shocks (Variables in log-levels). Notes: This figure reports orthogonalized impulse responses to a “Symptom”
(Panel A), “Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. Raw NM-GSIs are transformed as in Da et al.
(2011). VARs are estimated with a constant, seasonal dummies and three endogenous lags. Solid “black” lines: estimated impulse responses. Dashed
“blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. The NM-GSIs, the interest rate and the
unemployment rate are in levels, while the remaining variables are in log-levels. Sample: 2005:M1-2017:M12. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Controlling for general uncertainty
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Fig. A8. Impulse Responses to EPU and NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a EPU (left column) and
“Symptom” (Panel “A”, right column) and “Pollution” (Panel “B”, right column) NM-GSI (1sd) shocks. NM-GSIs are transformed as in Da et al.
(2011). The Baker et al. (2016) EPU is added to the original baseline vector and ordered first in a Cholesky decomposition (i.e.,
Y = [EPU, NM — GSI, SPI, R, CCI, BCI, CC, IP, UN]’). VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated
impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample:
2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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PANEL (A): “TERRORISM”
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Fig. A9. Impulse Responses to EPU and NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a EPU (left column) and
“Terrorism” (Panel “A”, right column) and “Election” (Panel “B”, right column) NM-GSI (1sd) shocks. NM-GSIs are transformed as in Da et al.
(2011). The Baker et al. (2016) EPU is added to the original baseline vector and ordered first in a Cholesky decomposition (i.e.,
Y = [EPU, NMGS]I, SPI, R, CCI, BCI, CC, IP, UN]’). VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated
impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample:
2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A10. Impulse Responses to “US Stock Market” GSI and NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a “US Stock
Market” GSI (left column) and Google “Symptom” (Panel “A”, right column) and “Pollution” (Panel “B”, right column) NM-GSI (1sd) shocks. NM-GSIs are
transformed as in Da et al. (2011). The Donadelli (2015) “US Stock Market” GSI is added to the original baseline vector and ordered first in a Cholesky
decomposition (i.e., Y = [GSI, NMGSI, SPI, R, CCI, BCI, CC, IP, UN]"). VARs are estimated with a constant and seasonal dummies. Solid “black” lines:
estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample:
2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A11. Impulse Responses to “US Stock Market” GSI and NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a “US
Stock Market” GSI (left column) and Google “Terrorism” (Panel “A”, right panel) and “Election” (Panel “B”, right panel) NM-GSI (1sd) shocks. NM-
GSIs are transformed as in Da et al. (2011). The Donadelli (2015) “US Stock Market” GSI is added to the original baseline vector and ordered first in
a Cholesky decomposition (i.e., Y = [GSI, NMGSI, SPI, R, CCI, BCI, CC, IP, UN]’). VARs are estimated with a constant and seasonal dummies. Solid
“black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped

confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. A12. Impulse Responses to NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A), “Pollution”
(Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock. NM-GSI s are transformed as in Da et al. (2011). Credit Easing

Accumulated (CEA) Index is added to the original

baseline vector

and ordered first in a Cholesky decomposition (i.e.,

Y = [CEA, NMGSI, SPI, R, CCI, BCI, CC, IP, UN]’). VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated
impulse responses. Dashed “blue” lines: 90% bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample:
2005:M1-2017:M12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A13. Impulse Responses to Aggregate NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to a “composite NM-GSI”
(1sd) Shock. All the four Google search volume indexes (i.e., Google trends for “Symptom”, “Pollution”, “Terrorism” and “Election”) are transformed
as in Da et al. (2011). Panel A: the “composite NM-GSI” is represented by the weighted average of the four different NM-GSIs. Panel B: the
“composite NM-GSI” is represented by the first principal component extracted from the dataset composed by the four different NM-GSIs. VARs are
estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped con-
fidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. Al4. Impulse Responses to Alternative Composite NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to different
“composite NM-GSI” (1sd) shocks. All raw NM-GSIs are transformed following Da et al. (2011). Composite NM-GSIs are defined as the weighted
average of four different search volume indexes. Column A: baseline set of words: “Symptom”, “Pollution”, “Election” and “Terrorism”. Column B:
first set of random words: “Attorney”, “Bag”, “Boot”, “Bread”. Column C: second set of random words: “Beach”, “Movie”, “Song”, “Play”. VARs are
estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped con-
fidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. A15. Impulse Responses to Alternative Composite NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to different
“composite NM-GSI” (1sd) shocks. All raw NM-GSIs are transformed following Da et al. (2011). Composite NM-GSIs are defined as the weighted
average of four different search volume indexes. Column A: baseline set of words: “Symptom”, “Pollution”, “Election” and “Terrorism”. Column B:
first set of random words: “Flower”, “Rain”, “Sun”, “Team”. Column C: second set of random words: “Bed”, “Cup”, “King”, “Star”. VARs are
estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped con-

fidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. A16. Impulse Responses to Alternative Aggregate NM-GSI Shocks. Notes: This figure reports orthogonalized impulse responses to different
“composite NM-GSI” (1sd) shocks. All raw NM-GSIs are transformed following Da et al. (2011). Composite NM-GSIs are defined as the weighted
average of four different search volume indexes. Column A: baseline set of words: “Symptom”, “Pollution”, “Election” and “Terrorism”. Column B:
first set of random words: “Ball”, “Boat”, “Shoes”, “Snow”. Column C: second set of random words: “Bike”, “Final”, “Flight”, “Restaurant”. VARs are
estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped con-
fidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2017:M12. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. A17. Evidence from other countries: Australia. Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A),
“Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock in Australia. NM-GSIs are transformed as in Da et al.
(2011). VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90%
bootstrapped confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2018:M3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A18. Evidence from other countries: United Kingdom. Notes: This figure reports orthogonalized impulse responses to a “Symptom” (Panel A),
“Pollution” (Panel B), “Terrorism” (Panel C) and “Election” (Panel D) NM-GSI (1sd) shock in the UK. NM-GSI s are transformed as in Da et al. (2011).
VARs are estimated with a constant and seasonal dummies. Solid “black” lines: estimated impulse responses. Dashed “blue” lines: 90% bootstrapped
confidence bands. Dashed “grey” lines: 68% bootstrapped confidence bands. Sample: 2005:M1-2018:M3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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