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Abstract Art heritage cities are popular tourist destinations but for many of
them overcrowding is becoming an issue. In this paper, we address the problem
of modeling and analytically studying the flow of tourists along the narrow
alleys of the historic center of a heritage city. We initially present a mean
field game model, where both continuous and switching decisional variables
are introduced to respectively describe the position of a tourist and the point
of interest that it may visit. We prove the existence of a mean field game
equilibrium. A mean field game equilibrium is Nash-type equilibrium in the
case of infinitely many players. Then, we study an optimization problem for an
external controller who aims to induce a suitable mean field game equilibrium.
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1 Introduction

In the recent years, art heritage cities have experienced a continuous growth
of tourists to the point that overcrowding is becoming an issue and local au-
thorities start implementing countermeasures. In this paper, we address the
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problem of modeling and analytically studying the flow of tourists (more pre-
cisely pedestrian daily excursionists) along the narrow alleys of the historic
center of a heritage city. Starting from the results in Bagagiolo-Pesenti [4], we
recast this into a mean field game for controlled dynamics on a network, rep-
resenting the possible paths in the city together with the possible attractive
sites.

We suppose that the tourists have only two main attractions to visit. This is
for simplicity only: situations with more attractions can be equally treated. We
represent their possible paths inside the city by a circular network where three
points are identified: S the train station where tourists arrive in the morning
and to which they have to return in the evening; P1 the first attraction; P2

the second attraction (see Figure 1.a). We are given an external arrival flow at
the station, represented by a continuous function g : [0, T ]→ [0,+∞[ (roughly
speaking, g(t) stays for the density of arriving tourists per unit time). Here
T > 0 is the final horizon, the time before which everyone has to be returned
to the station, after the tour of the city. Each single tourist (agent) controls
its own dynamics represented by the equation

θ′ = u (1)

where θ ∈ R is a space-coordinate in the network and t 7→ u(t) ∈ R is a
measurable control. We denote by θS , θ1 and θ2, respectively, the position of
the station, of the attraction P1 and of the attraction P2. To each tourist,
we associate a time-varying label (w1, w2) ∈ {0, 1} × {0, 1}. For i ∈ {1, 2},
wi(t) = 1 means that, at the time t, the attraction Pi is not visited yet,
and wi(t) = 0 that the attraction was already visited. The state of an agent
is then represented by the triple (θ, w1, w2), where θ is a time-continuous
variable and w1, w2 are switching variables. In the following, we denote by
B = [0, 2π] × {0, 1} × {0, 1} the state space of variables (θ, w1, w2) and in
particular, we call (circle-)branch any subset Bŵ1,ŵ2

of B which includes the
states (θ, ŵ1, ŵ2), with θ ∈ [0, 2π]. Such branches also correspond to the edge
of the switching networks in Figure 2, which is another way to represent our
network model with its switching dynamics.

Indeed, while the evolution of the value of θ is governed by (1), the evolution
of the values switching variables can be only from 1 to 0 and is described by
the following condition

wi =

{
1 for t ∈ [t, τi]

0 for t ∈]τi, T ]

being τi ∈ [t, T ] is the first time instant at which the agent reaches and visits
attraction Pi, i ∈ {1, 2}. This dynamics is represented by the arrows and the
labels in Figure 1.b (see also Figure 2). In Figure 1.b, consider a tourist that
arrives in the station and visits P1 first, at time τ . It has state (θS , 1, 1) ∈ B1,1

when it arrives at the station. Then, at time τ ∈ [t, T ], its state w1 switches, it
was equal to 1 in [t, τ1], it assumes value w1 = 0 in a left-open interval ]τ1, T ].
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Fig. 1 a) the physical network of the paths inside the city (with the three identified points:
train station, S, and two attractions, P1, P2) and two tourists visiting the city following
opposite directions. b) the state network and the states (θ, w1, w2) of the tourists during
their visits. Each singular circle-branch represents the network of the city paths as seen by
tourist with given values of the switching variables w1, w2. The dashed arrows between the
four circles-branches represent the switching of the four labels: at the beginning the label
is (1, 1); when the attraction P1 is reached (and hence visited), the label switches to (0, 1),
and similarly when P2 is reached; the last is (0, 0) which holds when both attractions are
reached. The point-dashed arrow represents the external arrival flow in the station.
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Immediately after τ1, the tourist’s state switches to the branch B0,1. See also
Figure 2.

The cost to be minimized by every agent, when it starts its tour from the
station at time t, is given by a combination of terms representing: i) the hassle
of running during the tour; ii) the pain of being entrapped in highly congested
paths; iii) the frustration of not being able to visit some attractions; iv) the
disappointment of not being able to reach the station by the final horizon T .
Such a cost can be analytically represented by

J(t, u) =
∫ T
t

(
u(s)2

2 + Fw1(s),w2(s)(M(s))
)
ds+

c1w1(T ) + c2w2(T ) + cSξθ=θS (T )
(2)

Here, c1, c2, cS > 0 are fixed, and ξθ=θS (t) ∈ {0, 1} and it is equal to 0 if and
only if θ(t) = θS . In (2), the quadratic term inside the integral stays for the
cost i); the second term inside the integral stays for the congestion cost ii); the
first two addenda outside the integral stay for the cost iii); the third addendum
outside the integral stays for the cost iv). In particular, the congestion cost
Fw1(s),w2(s)(M(s)) is instantaneously paid by an agent whose switching label
at time s is (w1(s), w2(s)) being the actual distribution of the agents M(s).
For any (w1, w2) ∈ {0, 1}×{0, 1}, Fw1,w2 is a positive function defined on the
set of all admissible distribution of agents.

In Bagagiolo-Pesenti [4] the problem of minimizing the cost (2) by a large
number of tourists is seen as a mean field game and, under some suitable
assumptions, the existence of a mean field game equilibrium is proven. A mean
field game equilibrium is a time-varying distribution of agents on the network,
t 7→ M∗(t) for t ∈ [0, T ], such that, when inserted it in (2), the returned
optimal control u∗(·; t) : [t, T ] → R, s 7→ u(s; t), which is implemented by
all agents who starts moving from the station at time t ∈ [0, T ], gives rise
to optimal trajectories of the agents which exactly generate the time-varying
distribution M∗. A mean field game equilibrium can be seen as a fixed point,
over a suitable set of time-varying distributions, of a map of the form

M−→ uM −→MuM (3)

where uM is the optimal control when M is inserted in (2), and MuM is the
corresponding evolution of the agents’ distribution when all of them are moving
implementing uM as control. Of course, the problem must be coupled with an
initial condition for the distribution M, whereas the boundary condition is
represented by the incoming external arrival flow g.

We remark that the concept of mean field equilibrium is a Nash-type equi-
librium concept. Indeed, in the case of a large number of agents, even infinitely
many, as the case of mean field games is, every single agent is irrelevant, the
single agent has measure zero, it is lost in the crowd. Hence, in the case of
equilibrium, for a single agent is not convenient to unilaterally change behav-
ior, because such a single choice will not change the mean field M, and the
agent will not optimize.
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The goal of the present paper is twofold. First we amend some stringent
assumptions that were made in [4] in order to prove the existence of a mean
field game equilibrium. Then we study a possible optimization problem for an
external controller who aims to induce a suitable mean field game equilibrium.
We suppose that such an external controller (the city administration, for ex-
ample) may act on the congestion functions Fw1,w2 , choosing them among a
suitable set of admissible functions.

Consider as an example the historical center of the city of Venice, Italy.
Tourists typically enter the city at the train station and from there they have
two main alternative routes, a shorter and a longer one, to the main monu-
ments. In the recent years, the shorter route have been particularly congested
on peak days. For this reason, local authorities have introduced both some
gates to slow down the access to the shorter route and some street signs to
divert at least part of the tourist flow long the longer route.

The mean field games theory goes back to the seminal work by Lasry-Lions
[22] (see also Huang-Caines-Malhamé [19]), where the new standard terminol-
ogy of Mean Field Games was introduced. This theory includes methods and
techniques to study differential games with a large population of rational play-
ers and it is based on the assumption that the population influences the indi-
viduals’ strategies through mean field parameters. Several application domains
such as economic, physics, biology and network engineering accommodate
mean field game theoretical models (see Achdou-Camilli-Capuzzo Dolcetta,
[1], Lachapelle-Salomon-Turinici[21]). In particular, models to the study of
dynamics on networks and/or pedestrian movement can be found for example
in Camilli-Carlini-Marchi [8], in Cristiani-Priuli-Tosin [15], Camilli-De Maio-
Tosin [9] and Bagagiolo-Bauso-Maggistro-Zoppello [5]. Our problem is also a
sort of routing problem. Indeed to control the roadway congestion, different
strategies was proposed as variable speed limits (Hegyi-Schutter-Hellendoorn
[18]), ramp metering (Gomes-Horowitz [17]) or signal control (Brian Park-Yun-
Ahn[7]). However, such mechanisms do not consider neither the agents’ per-
spective nor affect the total amount of vehicles/people. A significant research
effort was done to understand the agents’ answer to external communications
from intelligent traveler information devices (see Srinivasan-Mahmassani [25],
Khattak-Polydoropoulou-Ben Akiva[20]) and, in particular, to study the ef-
fect of such technologies on the agents’ route choice behaviour and on the dy-
namical properties of the transportation network (see Como-Savla-Acemoglu-
Dahleh-Frazzoli [14]). Moreover, it is known that if individual agents make
their own routing decisions to minimize their own experienced delays, overall
network congestion can be considerably higher than if a central planner had
the ability to explicitly direct traffic. From that, the idea to include in our
problem an external controller which induces a suitable mean field game equi-
librium. While, in the specific case of vehicular congestion, tolls payment is
considered to influencing drivers to make routing choices that result in glob-
ally optimal routing, namely to force the Wardrop equilibrium to align with
the system optimum network flow (see Smith [24], Morrison [23], Dial [16]
and Cole-Dodis-Roughgarden [13]). The Wardop equilibrium [26] is a config-



6 Fabio Bagagiolo et al.

uration in which the perceived cost associated to any source-destination path
chosen by a nonzero fraction of drivers does not exceed the perceived cost
associated to any other path. This is a stationary concept, indeed recently was
developed its continuous counterpart (see Carlier-Jimenez-Santambrogio [11],
Carlier-Santambrogio [12]) which fits the situation of pedestrian congestion
(that in this paper we indeed treat using a mean field model) and also it is
useful to look at large scale traffic problems, when one only want to iden-
tify average value of the traffic congestion in different zones of a large area.
Actually, also the models using that continuous framework are essentially sta-
tionary because they only accounts for sort a cyclical movement, where every
path is constantly occupied by the same density of vehicles, since those who
arrive at destination are immediately replaced by others. This is the essen-
tially difference with respect to the mean field models. Indeed in the latter,
due to the explicit presence of time, the optimal evolution is given by a system
coupling a transport equation and an Hamilton-Jacobi equation.

2 Preliminary results

In this section, we report some of the results introduced in Bagagiolo-Pesenti
[4], and we present some new ways to approach the problem.

Suppose that a distributional evolution t 7→ M(t) (the density of the
agents) is given. We denote by V (θ, t, w1, w2) the value function (i.e. the infi-
mum over the measurable controls of the cost functional (2)), faced by an agent
that at time t is in the position (θ, w1, w2) and starts its evolution. We drop
the dependence of V on M. Assuming that the functions t 7→ Fw1,w2(M(t))
are all continuous and bounded, then V : B× [0, T ]→ R can be uniquely iden-
tified by the viscosity solutions of system of Hamilton-Jacobi equations (one
per each branch) with boundary conditions mutually exchanged between the
branches. On the switching points of the branch, the boundary conditions are
given by the value function itself evaluated on the point where we switch on,
in the new branch. This fact comes from the dynamic programming principle
and for a suitable interpretation of the optimal control problem on a single
branch as a suitable exit-time optimal control problem (see Bagagiolo-Danieli
[3], and the references therein for similar problems.).

Indeed, when the distributionM is given (i.e. when the fixed point proce-
dure described above is performed), on every branch (as in Figure 2) the op-
timal control problem faced by any agent is a rather standard optimal control
given by some suitable combinations of reaching target (the station) problem
and exit time problems. In particular, on every branch Bw1,w2

we have the
(θ, t)-depending continuous value function V (·, ·, w1, w2). The exit cost from
B1,1 at time τ is given by V (θ1, τ, 0, 1) in θ1 and by V (θ2, τ, 1, 0) in θ2. The exit
costs from B0,1 and from B1,0 are, respectively, V (θ2, τ, 0, 0) and V (θ1, τ, 0, 0)
(on both exit points of the branch). On the final branch B0,0 we only have
the problem of reaching the station by the final time T paying as less as pos-
sible. Note that, when M is given, the optimal control problem on B0,0 can
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Fig. 2 Switching cross branches representation

be solved (and in particular V (·, ·, 0, 0) can be calculated) independently from
the behavior on the other branches. Solved the problem on B0,0 we can then
solve the problem on B0,1 and on B1,0 and eventually on B1,1.

Once the control problem is solved on every branch, then we tackle the
optimal transport problem which, when the initial distribution is given, returns
the evolution of the distribution of the agents in the interval [0, T ]. We can
then perform the fixed point analysis.

More formally, for every branch Bw1,w2 , the optimal feedback control u∗

is, at least in principle,

u∗(θ, t, w1, w2) = −Vθ(θ, t, w1, w2), ∀t,∀θ. (4)

For every (w1, w2) ∈ {0, 1} × {0, 1} and for every t ∈ [0, T ], we indicate by
mw1,w2(·, t) : [0, 2π] → [0,+∞[ the time dependent measure that represents
the agents’ distribution on the branch Bw1,w2

at time t. We assume that the
city network is initially empty of tourist, that is mw1,w2(·, 0) = 0 for (w1, w2) ∈
{0, 1} × {0, 1}. By conservation of mass principle, M in point satisfies∫

B

dM(t) =

∫
B1,1

dm1,1(t) +

∫
B1,0

dm1,0(t)+

+

∫
B0,1

dm0,1(t) +

∫
B0,0

dm0,0(t) =

∫ t

0

g(s)ds t ∈ [0, T ].

There a transport equations for the density mw1,w2 must hold, as an ex-
ample in case of B1,0 we have:

m1,0
t (θ, t)− [Vθ(θ, t, 1, 0)m1,0(θ, t)]θ = 0 in B1,0 × [0, T ]

m1,0(θ2, t) = m1,1(θ2, t), . (5)

The switching nature of the problem is reflected in the boundary conditions
like (5), which tie the distributions mw1,w2 of the different branches Bw1,w2

.
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As in [4], there are some suitable hypotheses: the initial distribution is
null (no-one is around the city at t = 0); the congestion functions Fw1,w2 do
not explicitly depend on θ (all agents in the same branch at the same instant
equally suffer the same congestion pain). These hypotheses lead to fact that
the control choice each agent makes in one of the point (θS ; 1, 1), (θ1, 0, 1),
(θ2, 1, 0), (θ1, 0, 0) and (θ2, 0, 0) do not change until the agent remains in the
same branch, and it is constant in time. Hence, only those points are to be
considered in the optimization procedure. In the sequel we will call them:
significant points.

Now here, instead of treating coupled Hamilton-Jacobi equations and trans-
port equation as it is common in mean field game theory), we write equivalent
conditions but in a different and in some sense more operative ways.

An agent in (θ1, 0, 0), at time t ∈ [0, T ], has two possibilities of behavior
(i.e. the optimal behavior is certainly one of the following two): either to stay
at θ1 without moving or to move and reach θS by time T (it is certainly not
convenient to reach θS before the time T and wait there; see the considerations
made in [4]). In the first case the optimal control is u ≡ 0, in the second case it
is u ≡ ± θS−θ1T−t . Here θs − θ1 stays for the length of the minimal path between
θS and θ1 in the circular network, and the sign is coherently chosen with (1),
in order to run that path. Similarly when the agent is in (θ2, 0, 0).

Hence we get, given the cost functional (2),

V (θ1, t, 0, 0) = min

{
cS ,

1

2

(θS − θ1)2

T − t

}
+

∫ T

t

F0,0 ds

V (θ2, t, 0, 0) = min

{
cS ,

1

2

(θS − θ2)2

T − t

}
+

∫ T

t

F0,0 ds

(6)

where we do not display the argument of F0,0, being it fixed (the distribution
M).

When the agent starts from (θ1, 0, 1) at the time t, it has three choices:
to stay at θ1 without moving; to reach θS at the time T ; to reach θ2 at some
τ ∈]t, T ]. Similarly as before, in the first case it uses the control u ≡ 0; in
the second case u ≡ ± θS−θ1T−t ; and in the third case u ≡ ± θ2−θ1τ−t . Similarly
for (θ2, 1, 0). Hence:

V (θ1, t, 0, 1) = min
τ∈[t,T ]

{
c2 + cS +

∫ T

t

F0,1 ds, c2 +
1

2

(θS − θ1)2

T − t
+

∫ T

t

F0,1 ds,

1

2

(θ2 − θ1)2

τ − t
+

∫ τ

t

F0,1 ds+ V (θ2, τ, 0, 0)

}
V (θ2, t, 1, 0) = min

τ∈[t,T ]

{
c1 + cS +

∫ T

t

F1,0 ds, c1 +
1

2

(θS − θ2)2

T − t
+

∫ T

t

F1,0 ds,

1

2

(θ1 − θ2)2

τ − t
+

∫ τ

t

F1,0 ds+ V (θ1, τ, 0, 0)

}
(7)
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Finally, in (θS , 1, 1) at the time t, the possibilities are: to stay there without
moving, to reach θ1 at a certain τ ∈ [t, T ]; and to reach θ2 at a certain η ∈ [t, T ].
Hence, similarly as before,

V (θS , t, 1, 1) = min
τ,η∈[t,T ]

{
c1 + c2 +

∫ T

t

F1,1 ds,
1

2

(θ1 − θS)2

τ − t
+

∫ τ

t

F1,1 ds+

+V (θ1, τ, 0, 1),
1

2

(θ2 − θS)2

η − t
+

∫ η

t

F1,1 ds+ V (θ2, η, 1, 0)

}
(8)

Note that from (6)–(8), when M is fixed, performing the minimization
procedures we get an optimal behavior: to stay or to move towards some of
the other points. In doing that we also detect the possible arrival time (τ and
η), and finally the corresponding optimal control u.

3 Existence of a mean field game equilibrium

In this section we give a proof of the existence of a mean field game equilibrium.
By the considerations of the previous section, the only significant points

are (θS , 1, 1), (θ1, 0, 1), (θ2, 1, 0), (θ1, 0, 0) and (θ2, 0, 0). Together with them,
we have also to consider the flows of arrivals on them (see Figure 2): g the
external arrival flow at the station (it is a datum); g01 the arrival flow in
(θ1, 0, 1); g10 the arrival flow in (θ2, 1, 0); g12 the arrival flow in (θ2, 0, 0); g21
the arrival flow in (θ1, 0, 0) (the last four being part of the solution). Such
flows must satisfy the conservation conditions, for all t ∈ [0, T ] :∫ t

0

g(τ)dτ ≥
∫ t

0

g01(τ)dτ +

∫ t

0

g10(τ)dτ,∫ t

0

g01(τ)dτ ≥
∫ t

0

g12(τ)dτ,∫ t

0

g10(τ)dτ ≥
∫ t

0

g21(τ)dτ.

(9)

Denoting by ρw1,w2(t) the actual total mass of agents on the branch Bw1,w2 ,
we then have

ρ1,1(t) =

∫ t

0

g(τ)dτ −
∫ t

0

g01(τ)dτ −
∫ t

0

g10(τ)dτ,

ρ0,1(t) =

∫ t

0

g01(τ)dτ −
∫ t

0

g12(τ)dτ,

ρ1,0(t) =

∫ t

0

g10(τ)dτ −
∫ t

0

g21(τ)dτ,

ρ0,0(t) =

∫ t

0

g12(τ)dτ +

∫ t

0

g21(τ)dτ.

(10)

Actually, using the notation of the previous section, it is
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ρw1,w2(t) =

∫
Bw1,w2

mw1,w2(θ, t)dθ.

Form now on, we suppose that Fw1,w2 only depends, in a continuous manner,
from ρw1,w2 and denote by ρ the 4-uple (ρ1,1, ρ0,1, ρ1,0, ρ0,0). However, more
general situations may be taken into account. Hence, for what concerns our
problem, to give the distribution M is equivalent to give ρ. Accordingly, the
idea is to perform a fixed-point procedure on ρ sent to a new ρ′ given by the
transport law given by the minimization (6)–(8) with ρ inserted on it. To this
end, we need some convexity and compactness properties that we introduce in
the following.

First of all note that the flow functions g·,· are bounded. Their bounds come
from the bound of the external arrival flow g at θS (see also the Appendix for
more details on such flows). Then functions ρw1,w2 are Lipschitz continuous,

and moreover they are also bounded by K =
∫ T
0
g(s)ds. Hereinafter, we denote

by L the Lipschitz constant of any Lipschitz function we are going to consider.
We then have, for the quadruplet ρ,

ρ ∈ {f : [0, T ]→ [0,+∞[ s.t. Lipschitz constant L, bounded by K}4 := X.

Space X is convex and compact for the uniform topology.
Next, obserserve that the function for which we need to exhibit the exis-

tence of a fixed point should be a continuous function ψ : X → X which acts
in the following way: it takes ρ ∈ X, inserts ρ in (6)–(8), obtains the optimal
controls u, constructs the flow-functions g·,· and gives the new corresponding
ρ′ ∈ X. Note that the flow-functions g01, g10, g12 and g21 as well as the external
flow g are time densities which, in order to run along the branches Bw1,w2 with
the optimal control, at first must transform in spatial densities and then be-
come again time densities on the switching points. Hence, the function ψ need
to built the spatial and temporal components of the mentioned flow-functions
in order to obtain the new ρ′ ∈ X (we report the computation of both spatial
and temporal components of the above flow-functions in the Appendix.)

As regards the continuity of ψ the main difficulty is that the optimal feed-
back controls may be not unique: for any fixed t, the minimization procedure
in (6)–(8) may return more than one minimizers, when more than one of the
arguments of the considered min{., .} functions reaches the minimum value.
In particular, this situation may happen for several t, even accumulating or in
a whole interval, in (7)–(8). Differently, in (6) it may occur at most in a single
instant and in this case is not a problem.

When such a multiplicity situation occurs, then the agents naturally split
in more communities using one of the optimal behaviors. In some sense they
use mixed-strategies, that is they convexify. The function ψ described above,
is defined assuming that the agents do not split: all agents, in the same posi-
tion and at the same instant makes the same choice for their behavior (this
is indeed a characteristic feature of the mean field games model: the agents
are homogeneous and indistinguishable). But this is coherent only with the
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uniqueness of the optimal feedback. When, instead, we have multiplicity, this
is not more true and, when such a multiplicity accumulates in time, the con-
tinuity of the function ψ is not evident. In particular there are more than one
way to construct it: just taking different optimal behaviors.

In Bagagiolo-Pesenti [4], the above difficulty is overcome by a-priori assum-
ing that there exists a finite number N that bounds the maximum number of
times at which those multiplicities appear, independently on ρ. This assump-
tion guarantees a sort of continuity of the function ψ by considering a multi-
function whose image is the closed convex hull of all possible outputs of the
function ψ. Specifically, the assumption on the uniform bound N , guarantees
that such a closed convex hull is given by a set of a a-priori bounded number
of extremal points, and hence getting compact image and closed graph.

Here we let such an assumption drop and we prove the continuity and
convexity of ψ by defining a sequence of continuous convex functions approx-
imating of ψ, based on the assumption that an agent can make sub-optimal
decisions as described in the following.

Take ε > 0 and, whenever you make an optimal choice for all agents in
one of the minimization problems (6)–(8), then maintain the same choice, i.e.,
consider the same argument within the min{., .} function as minimizing one
until, possibly, its difference with a new minimizing one is greater than ε. In
this latter case, select the new minimizer as the new choice. Calling ψε such a
new correspondence we now describe it in a precise way.

In (8), let us call (8)-1, (8)-2, (8)-3 respectively the first, the second and
the third term inside the parenthesis in the right-hand side. Note that, when
(8)-1 is the minimizer, then it means that to stay at θS without moving till
the final time T is an optimal strategy. When the minimum is realized by (8)-2
(for some τ), then to move and reach θ1 at time τ is an optimal strategy. When
the minimum is given by (8)-3 (for some η), then to move and to reach θ2 at
time η is an optimal strategy. In the sequel, when we say, for example, “at
the time t the agents make the choice (8)-2”, it means that they also choose
the corresponding minimizing τ and move towards θ1 with constant velocity
|θ1 − θS |/(τ − t). But it does not mean that it is necessary the best choice at
all.

At (θS , 1, 1) at the time t0 = 0, all the present agents make the same
optimal choice, among the optimal ones, for example (8)-2. Then, all other
agents, at (θS , 1, 1) at every subsequent times t, continue to make the same
choice (8)-2, as long as, at t, (8)-2 realizes the minimum up to an error lower
than ε (i.e. they continue to choose (8)-2 even if it is not more optimal, but
anyway ε-optimal). Let t1 ∈ [0, T ] be the possible first instant at which the
error is equal to ε. Then the agents at (θS , 1, 1) at t1 make a new optimal
choice (certainly different from (8)-2) among the optimal ones, for example
(8)-3. Then, all other agents, at (θS , 1, 1) at every subsequent times t, continue
to make the same choice (8)-3, as long as, at t, (8)-3 realizes the minimum up
to an error lower than ε. We proceed in this way, taking a possible new instant
t2, and so on.



12 Fabio Bagagiolo et al.

We similarly argue for the other points (θ2, 1, 0), (θ1, 0, 1), (θ2, 0, 0), (θ1, 0, 0)
and for the whole time interval [0, T ]. Note that the arguing above is not in-
fluenced by the actual presence of the agents in the points.

Of course, starting from t0 = 0, we may have more than one of such possible
constructions. For example, at (θS , 1, 1) we may have more than one possible
optimal choices at the time t0 = 0. Different choices will generate different
first instants t1 for which other optimal choices will be considered, which will
generate different second instants t2 and so on. However, the number of all such
possible instants is finite. Indeed, the functions involved in the minimization
(6)–(8) can be considered as Lipschitz functions of their time-entries: t, τ ,
η. Actually, the terms of the form, for example, (θ1 − θ2)2/(τ − t) are not
Lipschitz in t, τ ∈ [0, T ], but they play a role in the minimization certainly
until they are not grater than cs + c1 + c2, and until it happens, they are
uniformly Lipschitz. Hence, at every significant points as above, the distance
of two subsequent instants in anyone of the sequences constructed as before
is not less than ε/L. This means that, in the time interval [0, T ], we have
a uniform a-priori bound Nε for the number of all those possible instants.
Hereinafter Nε will denote any possible bound of the number of some specific
quantities.

The above arguments allow us to state that for each one of the significant
points as above we can divide the interval [0, T ] in a finite number of sub-
intervals, in the interior of which the number and the type of the ε-optimal
choices does not change. Such choices are indeed ε-optimal because they realize
the minimum in the corresponding formula (6)–(8) up to an ε-error, and those
minima are exactly the optima.

Now we describe as ψε acts. Take ρ = (ρ1,1, ρ0,1, ρ1,0, ρ0,0) ∈ X and insert
it in (6)–(8); for each significant point construct all possible sequences of ε-
optimal behaviors choosing one of them inside anyone of the time sub-intervals
(the number of all such sequences, as well as the number of their terms is
bounded byNε). For each one of those sequences, starting by the given external
arrival flow g, construct the flow functions g·,· (see the Appendix) and then the
new mass concentration ρ′ = (ρ′1,1, ρ′0,1; ρ′0,1, ρ′0,0) ∈ X, using (10). Define
ψε(ρ) ⊆ X as the set of all possible mass concentrations ρ′ constructed in
this way. Note that ψε(ρ) is a finite set with no more than Nε elements,
independently on ρ.

Since ψε is a multifunction and we want to apply the fixed-point Kakutani
Theorem, we need compact and convex images and closed graph. The set
ψε(ρ) being finite is certainly not convex, hence we have to convexify. We
define as ψ̃ε(ρ) ⊆ X the set of all quadruplets constructed in the following
way. At (θS , 1, 1), for each one of the sub-intervals of [0, T ] suppose that the
agents (arriving with the given flow g) split in some fractions each one of
them following one of the possible ε-optimal choices in the time sub-intervals.
This gives a mass concentration ρ̃1,1 on the branch B1,1, and, considering all

the admissible splitting, we get the first components of all elements of ψ̃ε(ρ).
For any of the possible splitting we also get the corresponding flow functions
g01, g10, and then, as above, we consider all admissible splitting in the points
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(θ1, 0, 1) and (θ2, 1, 0) getting the mass concentrations in the corresponding
branches. This gives the second and the third components of the elements of
ψ̃ε(ρ). In a similar way we construct the fourth components. The set ψ̃ε(ρ)
is then a convex subset of X (any split is a convex combination of masses).
It is a sort of convex hull of ψε(ρ), suitably performed branch by branch.
The fact that ψε(ρ) is a finite set, also gives the closedness (and hence the
compactness, being X compact) of ψ̃ε(ρ) in X (for the uniform topology).
Similarly, the multifunction ρ 7→ ψ̃ε(ρ) has closed graph. Here, we sketch such
a proof.

We have to prove that whenever ρn converges to ρ in X, and ξn ∈ ψ̃ε(ρn)
converges to ξ in X, then ξ ∈ ψ̃ε(ρ). By definition, the first component of
the quadruplet ξn is given by a suitable split of the external arrival flow g in
every sub-intervals of [0, T ] and hence by the transport with the corresponding
choices (8)-1, (8)-2, (8)-3. Since, independently on ρn, the number of sub-
intervals is bounded by Nε, and the number of choices is always not more
than three (in other words, the number of the element of ψε(ρ

n) is uniformly
bounded with respect to ρ), we may suppose that, at least for a subsequence,
the first component of all ξn is constructed by using the same number of sub-
intervals with exactly the same type of choices for every sub-interval. Moreover,
the sub-interval depending triple, (λn1 , λ

n
2 , λ

n
3 ) representing the sequences of

split-fractions of the mass of agents that choose one of the admissible choices
(if in the sub-interval a choice is not admissible, then the corresponding λ
is zero) converge, sub-interval by sub-interval, to a limit fraction (λ1, λ2, λ3).
Due to the convergence of ρn to ρ, using (8) we have that the first sub-interval
of every step n converges to a limit sub-interval, which is coherent with (8) and
ρ. Similarly, for the second sub-intervals and so on. Hence we have a candidate
limit partition of [0, T ] in sub-intervals, with the corresponding choices and the
corresponding split-fractions. Since ξn uniformly converges to ξ, it is easy to
see that the first component of ξ is generated by those sub-intervals, choices
and split-fractions. Moreover, sub-interval by sub-interval, the flow functions
to the branches B0,1 and B1,0 converges to some some flow functions which,
reasoning as above in the new branches gives the construction (sub-intervals,
choices, split-fraction) of the second and third component of ξ. Similarly for
the fourth component. Hence ξ ∈ ψ̃ε(ρ).

By the Kakutani fixed point theorem, for every ε > 0 there exists a fixed
point ρε ∈ X for ψ̃ε, that is ρε ∈ ψ̃ε(ρε). This means that, if all agents suppose
that the realized congestion is given by ρε than there is a suitable split choice
of behaviors such that ρε is actually realized and moreover, by construction,
every agent, when moving by one of the admissible choices (split fractions
not null), is subject to a cost (2) whose difference with the optimal one is
infinitesimal as ε. In some sense ρε is a ε- mean field games equilibrium.

Definition 1 A mean field game equilibrium for our problem is a pair (ρ, λ)
where ρ ∈ X and λ ∈ L∞(0, T )13 is a string of 13 split-fractions functions,
that is
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λ =
(
λ
(θS ,1,1)
1 , λ

(θS ,1,1)
2 , λ

(θS ,1,1)
3 ,

λ
(θ1,0,1)
1 , λ

(θ1,0,1)
2 , λ

(θ1,0,1)
3 , λ

(θ2,1,0)
1 , λ

(θ2,1,0)
2 , λ

(θ2,1,0)
3 ,

λ
(θ1,0,0)
1 , λ

(θ1,0,0)
2 , λ

(θ2,0,0)
1 , λ

(θ2,0,0)
2

) (11)

which means, for example, that in (θS , 1, 1) we consider an arrival flow of

density λ
(θS ,1,1)
1 g of agents which will make the choice (8)-1, an arrival flow

of density λ
(θS ,1,1)
2 g of agents which will make the choice (8)-2, and so on.

This will generate flows functions on the branches B0,1 and B1,0 which will be
correspondingly split by the fractions in the second line of (11), and so on.

The pair (ρ, λ) is a mean field game equilibrium if the behavior explained
above generates exactly the mass density ρ (by (10)) and if, putting ρ inside
the cost (2), that behavior makes each agent optimize. This means that for
almost every instants t, whenever one of the split fractions is not null, then
the corresponding choice is an optimal one.

Remark 1 Similarly to the definition of λ for the mean field games equilibrium
(11), we have the split fractions functions λε for the ε-problem. In that kind
of problem, such functions are, by construction, constant in the sub-intervals.
Denoting by λε the string of 13 of split functions we used in the construction
of the element of ψε(ρ) as well as of ψ̃ε(ρ), the corresponding notion of split
functions λε as in (11) is given, in some sense, by the product of elements of
λε. For example

(λε)
(θS ,1,1)
2 = (λε)

(θS ,1,1)
2

(λε)
(θ1,0,1)
2 = (λε)

(θS ,1,1)
2 (λε)

(θ1,0,1)
2

(the product between the arriving fraction and the departing fraction)

(λε)
(θ1,0,0)
2 = (λε)

(θS ,1,1)
2 (λε)

(θ1,0,1)
2 (λε)

(θ1,0,0)
2

(here the arriving fraction is the product of the first two factors)
(12)

All the fractions functions must applied to the global flow g transported,
branch by branch, by the chosen control. We refer to the Appendix for more
details in the subject of transport on networks.

Theorem 1 There exists a mean field game equilibrium

Proof. For every ε > 0 we have a fixed point ρε for ψ̃ε, and we have the
corresponding split-fractions function λε ∈ L∞(0, T )13 which, for every ε is
constant in each sub-intervals (note that the numbers of sub-intervals is not in
general bounded uniformly in ε). Let λ ∈ L∞(0, T )13 be the weak-star limit of

λε as ε → 0 (i.e.
∫ t
0
λεf →

∫ T
0
λf for all integrable function f) and ρ ∈ X be

the uniform limit of ρε (at least for a subsequence). By the construction of λε,
by the weak-star convergence of λε to λ, and by the uniform convergence of
ρε to ρ, we get that λ is a split-fractions function generating the mass density
ρ (it generates flow functions g·,· which by (10) generate ρ). Finally, at every
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step ε, if the agents exactly perform the behavior given by the split-fractions
λε, then they get an ε-optimal cost. We then conclude that the pair (ρ, λ) is
a mean field game equilibrium. Indeed, for almost every instants t such that
one of the components of λ is not null, by the weak-star convergence there
is, at least for a sub-sequence, a sequence of instants tε converging to t such
that the corresponding component of λε(tε) is not null. This means that the
corresponding choice is ε-optimal with respect to ρε and we conclude. ut

Remark 2 The introduction of the ε-problem, is mostly due to an analytical
purpose: the possibility of the construction of an ε-mean field games equilib-
rium ρε ∈ ψ̃ε(ρε) by the fact that the number of sub-intervals is finite, and
then the passage to the limit.

However, from an applicative modeling point of view, the ε-problem is
also interesting by itself. Indeed, it takes account of a typical human decision
phenomenon: herd behavior (see, e.g., [6]), where an agent looks at and is
influenced by the decisions made by other agents in taking its own decision,
even if it is not the optimal choice for him. In these situations a second thought
occurs when discrepancy from the optimal choice becomes too large (more
than ε) and than it is evident that it is better to change choice.

4 The optimization problem

In this section we introduce a possible optimization problem faced by a local
authority, hereinafter referred as to controller, that intends to manage the flow
of tourists.

We restrict our analysis to congestion cost functions of the form

Fw1,w2(ρ) = αw1,w2
ρw1,w2(s) + βw1,w2

(13)

with ρ = (ρ1,1, ρ0,1, ρ1,0, ρ0,0) ∈ X. In (13), the coefficients (αw1,w2 , βw1,w2) are
at disposal of an external controller whose aim is to force the realized mean
field game string ρ to be as close as possible (in the uniform topology) to a
reference string ρ ∈ X, i.e. to minimize:

max
w1,w2∈{0,1}

{
max
t∈[0,T ]

|ρw1,w2(t)− ρw1,w2(t)|
}

= ‖ρ− ρ‖X (14)

Formally, let us denote by χα,β the set of all possible (mass component) mean
field games equilibrium corresponding to the choice of the parameters α =
(α1,1, α0,1, α1,0, α0,0) and β = (β1,1, β0,1, β1,0, β0,0), and let us suppose that
the parameters are restricted to belong to a compact set K ⊂ R4 ×R4. Then,
the controller faces the optimization problem given by

inf
(α,β)∈K

E(α, β) = inf
(α,β)∈K

(
inf

ρ∈χα,β
‖ρ− ρ‖X

)
(15)

Theorem 2 There exists an optimal pair (α, β) ∈ K.
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Proof. Let (αn, βn) ∈ K be a minimizing sequence for E , and for every n
let ρn ∈ χαn,βn realize the infimum in (15) up to 1/n. By compactness we

may suppose that (αn, βn) converges to (α̃, β̃) ∈ K, and that ρn uniformly
converges to ρ̃ ∈ X. To prove the statement, we only need to prove that
ρ̃ ∈ χα̃,β̃ .

1) ρ̃ ∈ χα̃,β̃ . This means to prove that ρ̃ is a mean field game equilibrium
for the problem. Let λn be the split-fraction functions associated to the mean
field game equilibrium ρn, and let λ̃ be a weak-star limit of it. Then, due to
the considered convergences, arguing as in the proof before, we get that the
pair (ρ̃, λ̃) is a mean field equilibrium for (α̃, β̃)

ut

Remark 3 To consider in (15) an optimization problem of the form

inf
(α,β)∈K

(
sup

ρ∈χα,β
‖ρ− ρ‖X

)
would be certainly more interesting and robust from the point of view of
an external controller. However, the existence of an optimal pair, due to the
possibilities of more than one mean field game equilibrium is not evident.
Certainly there exists a pair (α, β) and ρ ∈ Xα,β such that ‖ρ− ρ‖X is equal
to that infimum, but this does not guarantee that the pair (α, β) is optimal.

If we would be able, under some suitable hypotheses, to guarantee the
uniqueness of the mean field games equilibrium, then such a problem will be
bypassed. Maybe, stronger hypotheses on the costs F could be useful. We leave
such a question to future investigations.

So far we have assumed that the coefficients (αw1,w2
, βw1,w2

) of conges-
tion cost functions Fw1,w2 are not time-depending. This hypothesis plays an
essential role in the analysis of the problem, in particular on the nature of
the optimal controls. Here we little bit amend such a hypothesis by assuming
that (αw1,w2

, βw1,w2
) may be piecewise constant functions and that the control

is implemented at the significant points of each branch of the network, e.g.,
through gates.

We consider a finite sequence of fixed instant t0 = 0 < t1 < t2 < ... <
tN = T , and for every i = 0, ..N − 1, the coefficients (αi, βi) ∈ K at disposal
of the external controller in the interval [ti, ti+1[. The congestion cost paid by
an agent at time s becomes

F̃w1,w2(s) = αw1,w2(τ(s))ρw1,w2(s) + βw1,w2(τ(s))

where αw1,w2
(τ) = αiw1,w2

, respectively βw1,w2
(τ) = βiw1,w2

, for ti ≤ τ < ti+1,
i = 0, ..., N − 1; and τ(s) is the last switching instant not greater than s along
the agent trajectory, i.e., the instant at which the agent state entered Bw1,w2

.
In this situation the total cost payed by an agent is the usual

J(t, u) =
∫ T
t

(
u(s)2

2 + F̃w1(s),w2(s)(s)
)
ds+

c1w1(T ) + c2w2(T ) + cSξθ=θS (T )
(16)
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but we have an explicit dependence on the time of the congestion cost through
αw1,w2(.) and βw1,w2(.). Nevertheless, such a dependence is compatible with
the structure of the choices of the agents in our model. Indeed, by the cost
(16), the agents that arrive at (θS , 1, 1) at the beginning feel the actual value
of the parameters α1,1 and β1,1, and act as they are constant until the possibly
exit from the branch B1,1. Suppose that they switch on the branch B0,1. Then,
at that moment, they feel the actual value of the parameters α0,1 and β0,1 and,
again, act as they are constant until the possibly exit from the branch, and
so on. It is here worth recalling, that we assume that the controller applies its
controls at the beginning of the network branches and that this latter model
as the previous one implies that the agents make their decisions each time they
enter a new branch, then a possible change in the parameters (αi, βi) is not
perceived by the agents that are “on the road” along a branch. Consequently
the considered time-dependence of the cost does not change the reasoning we
did before about properties of the optimal controls. In particular, formulas
(6)–(8) remain valid, and the existence of a mean field games equilibrium is
guaranteed. Moreover a similar optimization problems as above can be suc-
cessfully performed.

5 Conclusions

In this paper we have introduced a mean field game model as a possible way
of representing the flows of tourists in the alleys of an heritage city. Then, we
used this model as a basis of the optimization problem that aims at managing
the tourist flows according to some targets posed by the local authorities.

Many further refinements of both the model and the optimization problem
presented are possible from both a theoretical and an applicative perspective.
As an example, the assumption of the existence of surveillance cameras, to
count people entering and leaving areas of interest, may suggest the descrip-
tion of a new type of information in the model and justify the definition of
a feedback control policy on the coefficients (αw1,w2 , βw1,w2) at disposal of
an external controller. In addition different kinds of local authority manage-
ment measures can be modeled and more than two places of interests may
be considered. Note that in the latter case the number of alternative paths
would increase exponentially. However the direct experience of the authors in
Venice suggests that the vast majority of the tourists is interested in very few
attractions in each city.
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A Appendix: on some flows and transports on networks

In this appendix, we discuss the characteristics of the flow functions g and g.,. both from a
spatial and a temporal perspective.

Le us consider what happens in our model on the branch B1,1. At the point θS there
is an entering flow of agents, represented by the function of time g. This is a “density
with respect to time”, that is, from a dimensional point of view, something like ”number
of agents” divided by time. When instead we calculate the actual total mass ρ1,1(t) on
the branch, we have to integrate on space (over the whole branch) a “density with respect
to space ”, that is something as ”number of agents” divided by space. Moreover, in the
two switching points θ1, θ2 of the branch, we need to recover again a “density with respect
to time” which has to represent the entering flow in the other branches. Actually, in our
model, being the congestion cost depending only on the total mass on the branch, we do
not really need to pass through the determination of density with respect to space, but the
computation of the exiting flows is enough, see (10). However, in a more general setting we
need both computations. In the sequel, we call them the spatial and temporal component
of the flow. Obviously, this argument is linked to what is called, for example, disintegration
of a measure (see for instance Ambrosio-Gigli-Savaré [2] and Camilli-De Maio-Tosin [9]).

Still considering the branch B1,1 as example, we recall that, in our model, the agents
arriving in θS at time t choose their behavior at exactly that time and they do not change
it until they, possibly, leave the branch.

Now we sketch how, in our situation, to split the flow in the two components. If an agent
at time t is in the position θ and it is going towards θ1, then there is a time τ < t at which
it has arrived at θS , and there is a time τ > t at which it will arrive at θ1. And it is using a
constant velocity u(τ) of absolute value |θ1 − θS |/(τ − τ). In particular here τ is calculated
as the minimizing time for the second term in (8) with t replaced by τ . Let us indicate by
Λ(θ, t) the function that gives the entering time τ . Note that, when the mass concentration
is given (i.e. when performing the fixed point procedure) the function Λ is evaluable using
(6)–(8) which give all possible constant velocities u(τ).

In the present heuristic arguing we suppose that Λ and u are differentiable (actually, in
our setting they are Lipschitz and hence at least almost everywhere differentiable). Assuming
for simplicity θS = 0, θ > 0, and denote λ(τ) = 1/u(τ), we have the following relation

Λ(θ, t) + λ(Λ(θ, t))θ = t, (17)

Deriving with respect to t and θ we have the relations

Λt(θ, t) =
1

1 + λ′(Λ(θ, t))θ
= −

Λx(θ, t)

λ(Λ(θ, t))

Now, supposing that all agents arriving in θS with flow g move towards θ1, then the
density in time g at θS is spread on the spatial density component −g(Λ(θ, t))Λx(θ, t) and on
the temporal density component g(Λ(θ, t))Λt(θ, t) (which act only if in the point θ at time
t actually there are agents, some agents are already arrived, otherwise they are zero). Such
relations may be verified by standard mass balance/conservation arguments. In particular,
at the point θ1 the arriving flow (density in time) which will be the entering flow in the
new branch B0,1 is t 7→ g(Λ(θ1, t))Λt(θ1, t). If moreover, at θS there is a split of the agents

among different choices, and the corresponding split fraction is λ
(θS ,1,1)
2 (see (11)), then the

entering flow in B0,1 through θ1 is t 7→ g(Λ(θ1, t))λ
(θS ,1,1)
2 (t)Λt(θ1, t). And this is exactly

the flow denoted by g01 in (10). Similar considerations (with different function Λ and λ)
hold in the case of agents moving towards θ2 in the branch B1,1 and for all other cases in
the other branches.

The above argument is applied in the fixed point procedure in Section 3 for ψ̃ε where,
starting from ρ ∈ X we obtain another ρ′ ∈ X, passing through the flow functions. For
example the flow entering in the branch B0,0 through (θ2, 0, 1), that is the flow g12 in (10),
using the notation in (12), is (for the corresponding function Λ of the motion from θ1 to

θ2 on the branch B0,1) t 7→ g0,1(Λ(θ2, t))(λε)
(θ1,0,1)
2 (t)Λt(θ2, t), where g0,1 is evaluated as

above.
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